VORTEX

Vertically Optimized Research, Testing, & EXploration

Test Readiness Review

Customer: Steve Borenstein Advisor: Donna Gerren Project Manager: Bill Chabot

<u>Team</u>

Mohamed Aichiouene Joseph Buescher Colton Cline Roland Ilyes Cameron Kratt Joseph Rooney

Stephen Albert Bill Chabot Brandon Cummings Delaney Jones Michael Patterson Justin Troche

Project Overview

Mission Statement

In order to expand the capabilities of the IRISS center and TORUS project in gathering meteorological data and understanding the formation of supercell thunderstorms, the VORTEX team will bring Vertical Takeoff and Landing (VTOL) functionality and extended endurance to the RiteWing Drak airframe.

Mission CONOPS

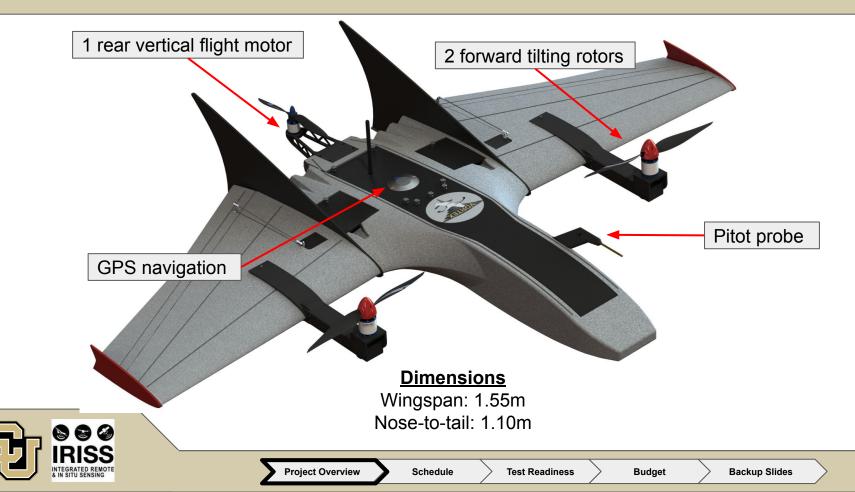
Budget

) в

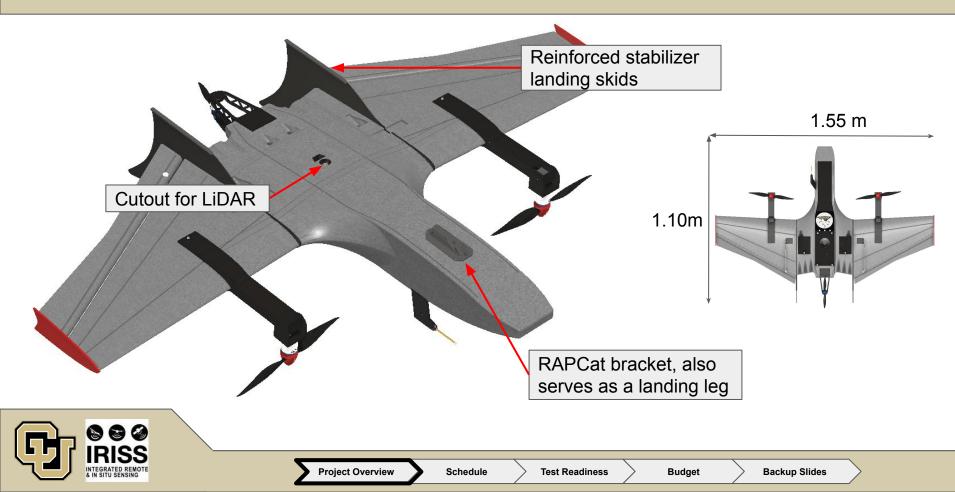
Levels of Success

	Level 1	Level 2	Level 3
Flight	Show on a static test stand that the propulsion system is capable of producing enough thrust to provide a TWR greater than 1	Maintain tethered hover at 2m altitude for 30 seconds as well as demonstrate capability to transition to horizontal flight while aircraft is mounted to a test stand	Aircraft shall demonstrate takeoff ability via RAP Cat launch system as well as demonstrate full transition from vertical to horizontal flight modes.
Budget	The aircraft shall cost no more than \$1250, not including IRISS avionics package.	The aircraft shall cost no more than \$1000, not including IRISS avionics package.	The aircraft shall cost no more than \$900, not including IRISS avionics package.
Endurance	The propulsion system shall maintain required thrust output for the equivalent of 1 hour cruise and 2 takeoffs and landings (approximately 1 hr 16 minutes) on a static test stand in simulated freestream conditions of 18 m/s with >15% battery remaining	-	Demonstrate 1 hour of flight cruise as well as 2 takeoffs and landings
Airframe	A finite element analysis of the modified airframe will be performed to demonstrate that it can withstand the required forces with a FOS of 1.7	The aircraft will have full integration capabilities with RAPCat launch system, and show that it can withstand the forces due to acceleration.	The airframe shall with stand axial and lateral forces up to 10G.
Avionics & Electronics	All motors and actuators shall be successfully inte grated with the flight con troller. The telemetry link shall be maintained with less than 25% packet loss within 1 km of the ground station.	All external (non-native) sensors are successfully integrated with the avionics system.	-

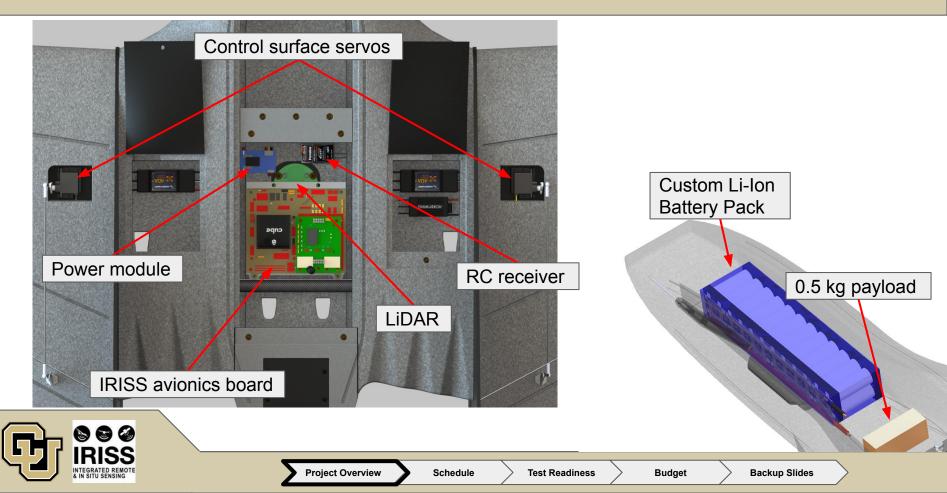
<u>Element</u>	Justification
Vertical Takeoff and Landing (VTOL)	Primary deliverable of project.
Structure (STR)	Structure must withstand forces of takeoff, flight, and landing.
Endurance (END)	Aircraft must be able to maintain flight for the required duration of 1 hour plus takeoffs and landings.
Automation (AUT)	Aircraft must autonomously perform mission flight profile as well as controlling takeoff, landing, and transitions.



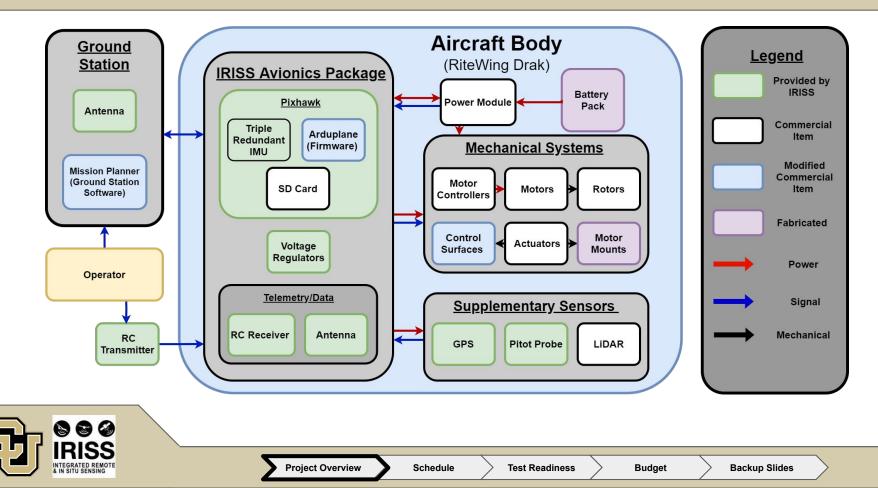
FR1	VTOL	The aircraft shall be a VTOL conversion of the COTS Ritewing RC "Drak" airplane kit
FR2	END	The aircraft shall have an endurance of 1 hour with 2 takeoffs and landings
FR3	AUT	The aircraft shall be able to autonomously execute all aspects of its mission from first takeoff through final landing
FR4	AUT	The aircraft shall maintain communication with the ground station up to a distance of 2km
FR5	STR	The aircraft shall be capable of carrying a 0.5kg payload
FR6	STR	The aircraft shall be capable of taking off from existing RAPCat launch system
FR7	VTOL	The airframe, propulsion system, and required mounting hardware shall cost no more than \$1000 per aircraft



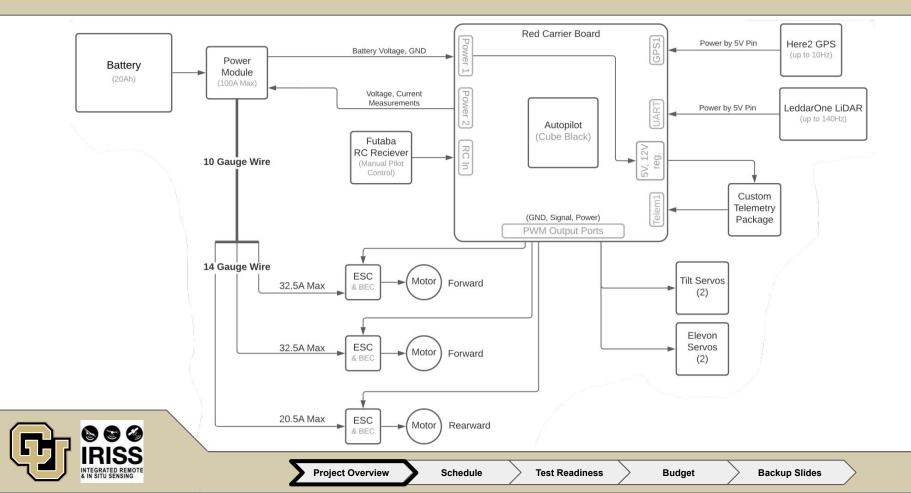
Schedule


Baseline Design (CDR)

Baseline Design (CDR)



Baseline Design (CDR)



10

System Functional Block Diagram

Avionics Functional Block Diagram

Manufacturing Update Since MSR

Overall Manufacturing Update

Completed Manufacturing	Remaining Manufacturing	
Base wing kits	First Prototype Modified Drak	
Glued and ready to be used in testing Cutouts for test mounts and modifications complete	Fully operational and calibrated/configured	
Preliminary motor mounts	Second Prototype model	
Wing attachments Motor arms Tilt brackets	May or may not include motors and/or battery depending on budget	
Li-Ion Battery pack	Additional Drak test configurations (tail & canard)	
Avionics package Lidar is functioning	Further iterations of 3D printed parts	

Project Overview	Project Overview	
------------------	------------------	--

Schedule

Drak Manufacturing Update

Completed:

- Fully assembled wing kit (right)
- Motor mounts attached in place

In Progress:

- Motor arm iteration/improvements
- Wire channeling
- Subsystem component installation
 - Avionics board
 - Battery
 - Propulsion systems

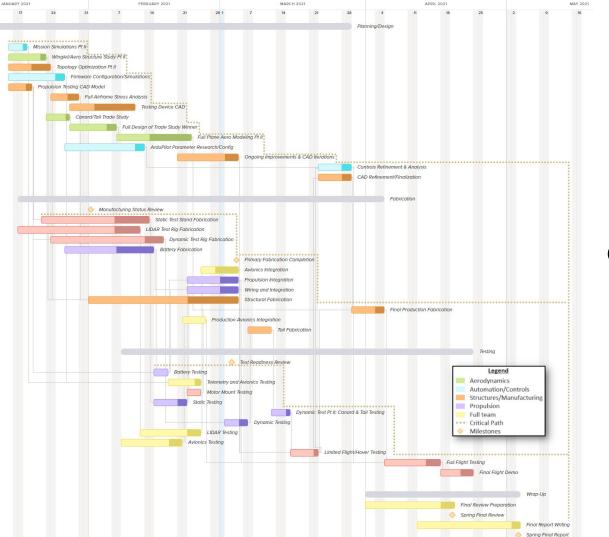
Project Overview

Schedule

Test Readiness

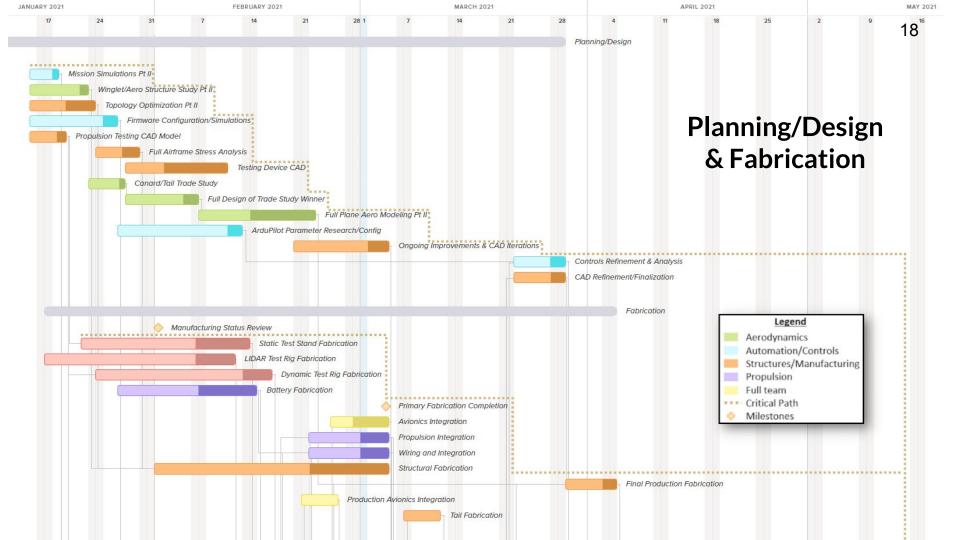
• Tail integration

Budget

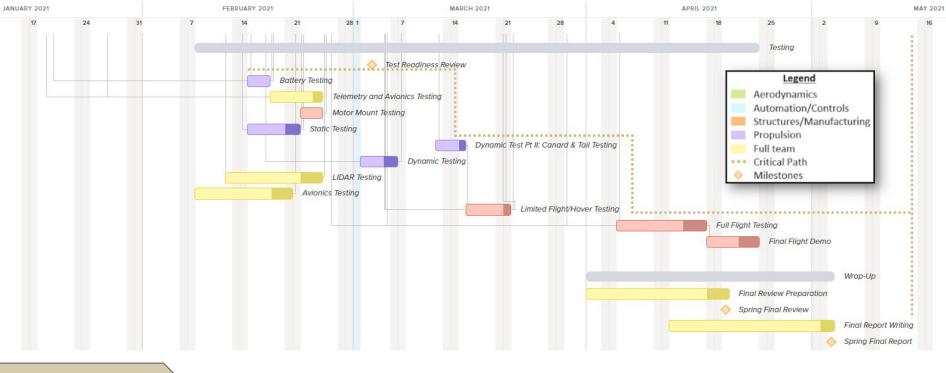

Dimensions Wingspan: 1.55m Length: 2.14m

Backup Slides

15



Schedule

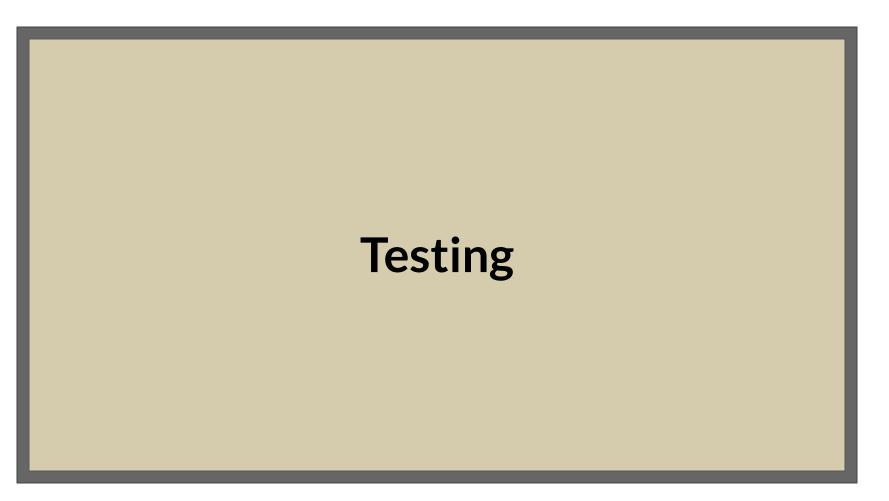


Full Project Gantt Chart -Second Semester

17

Testing Gantt Chart

Schedule


Project Overview

Test Readiness

Budget

Backup Slides

19

Test Overview

	Functional Requirement	Element	Test	Description	Status
1	FR6	STR	Wing Motor Mount Stress	Verification of FEM model and testing structural limits of wing motor mounts	In Progress
2	FR2	END	Battery Endurance	Verify and prove the assembled battery meets modeled capacity performance	Complete
3	FR1	VTOL	Static Motor	Testing thrust and power draw in static conditions	In progress
4	FR3	AUT	Controls	Verify that control surfaces actuate properly	Complete
5	FR3	AUT	Lidar	Testing LiDAR system for accuracy	In progress
6	FR4	AUT	Telemetry	Verify/test avionics package and communications	In Progress

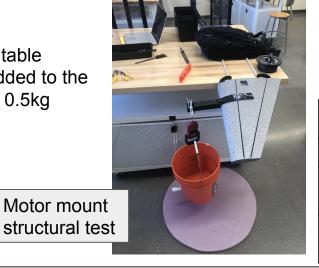
Test Readiness

Test Overview

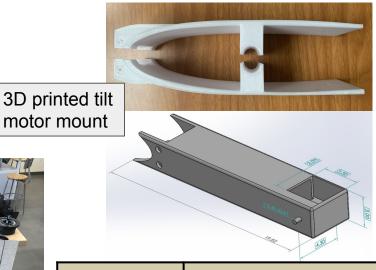
	Functional Requirement	Element	Test	Description	Status
7	FR2	END	Dynamic Motor	Testing thrust and power draw in flight conditions	Planned by 3/8
8	FR2	END	Car Top Aerodynamic	Obtain aerodynamic forces to validate CFD	Planned by 3/8
9	FR6	STR	RAPCat Integration	Validate that Drak fits into existing RAPCAT bracket and test launch procedure	Planned 3/21
10	FR1	VTOL	Hover	Verify stability in hover	Planned 3/16
11	FR2	END	Full Flight	Verify that Drak can execute the mission	Planned 4/5

Wing Motor Stress Testing

What and Why:


- Verification of FEM simulations; ensuring requirements met
- Increasing load applied to end of motor arm / wing assembly
- Removes risk of failure during maximum loading in flight

Project Overview


Testing Procedure:

In Progress

- Wing spars clamped to table
- Weight incrementally added to the end of the motor arm in 0.5kg increments

Schedule

	Requirement	Description
-	FR 6	RAPCat Compatibility
	DR 6.2	Withstand 5G acceleration during RAPCat launch
	DR 6.5	Withstand 10G during takeoff and landing operations
Test Readin	ess Budget	Backup Slides

Wing Stress Testing Results

Downward Stress (Landing):

- 10G requirement is 1.9kg (18.65N)
 - Tested to 2.1kg (20.5N)
 - No FOS calculation
- Small bending in arm and wing

Upward Stress (Takeoff):

- Requirement of 2.5kg (24.5N)
 - Tested incrementally to 6.6kg (64.7N)
 - 2.6 FOS

- Extreme bending in arm and wing
- Only small plastic deformation after test

In Progress

RAPCat Launch/Compatibility

Project Overview

Schedule

Test Readiness

• Upcoming

Budget

Backup Slides

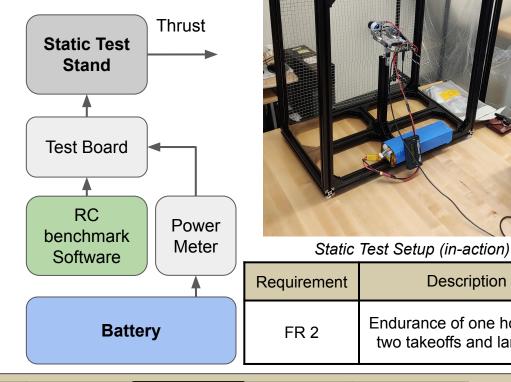
Battery Endurance Testing

What and Why:

- Verification of custom battery assembly functionality
- Reduces the risk of power capabilities for the aircraft

Testing Procedure:

- Verify battery cell balanced voltage
- Maintained a cruise condition current draw until battery voltage drops below 18V


Exposed battery view

Project Overview

Schedule

Test Overview

Test Readiness

Budaet

25

Description

Endurance of one hour with

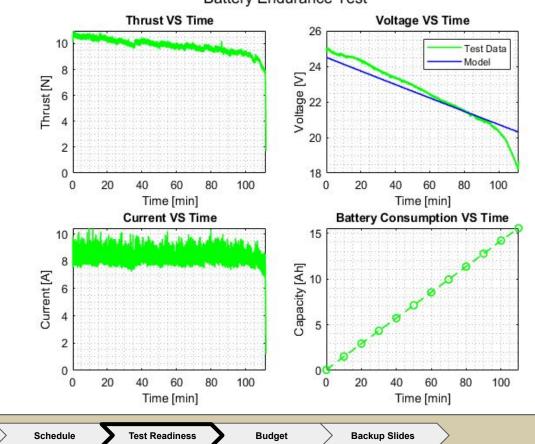
two takeoffs and landings

Backup Slides

Battery Endurance Testing Results

- Endurance Test:
 - Manually maintained expected cruise current draw of 8-8.3A

Total run time: 110 minutes


• Conclusion:

Complete

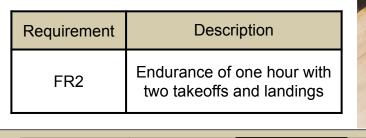
6 8 3

 Battery capacity meets expected performance for 1 hour cruise flight

Project Overview

Battery Endurance Test

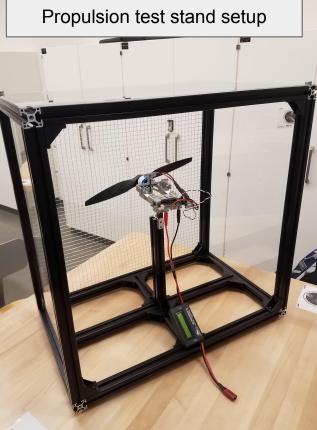
Static Propulsion Test Stand


What and Why:

- Test for thrust and endurance requirements
- Using RC Benchmark software to track specific test properties
- Motor and load cells contained in plexiglass & chicken wire box

Testing Procedure:

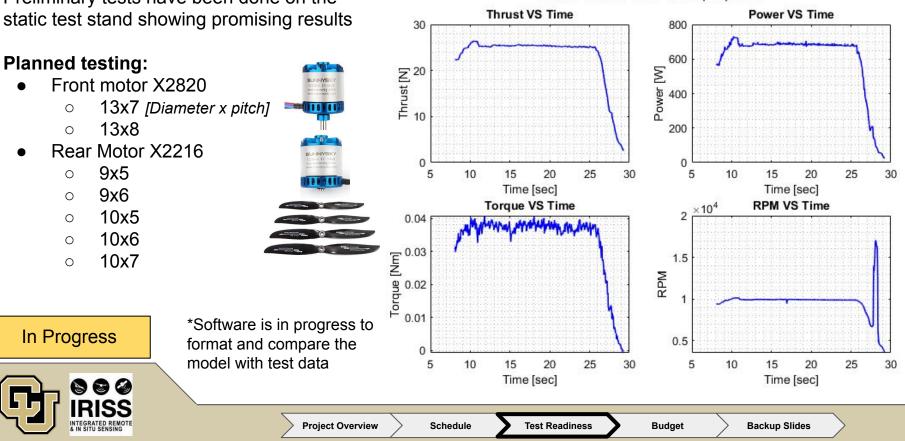
- Configure battery, motor, ESC, and propeller
- Use RC benchmark software to manually toggle throttle power input


Project Overview

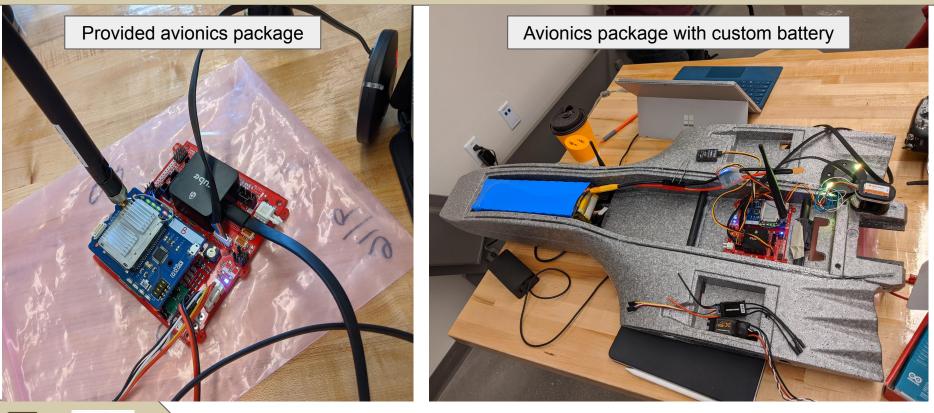
Schedule

Test Readiness

Budget



Backup Slides


Static Propulsion Test Stand Results

Preliminary tests have been done on the static test stand showing promising results

Static Thrust Test 13x8 propeller

Avionics System

Project Overview

Schedule

Test F

Test Readiness

Budget

Backup Slides

Telemetry Test

What and Why:

• Aircraft must to maintain communication with GS computer up to 2km

So Far:

- GS computer successfully communicating with flight controller at short range
- Radio Transmitter successfully communicating with SBUS Receiver
- Exploring options to power ground station radio for long-distance telemetry test

In Progress

Quick	Actions	PreFlight	Gauges	Status	Servo/Relay	Te
						Edit
Very	rify GPS		3>=	3		
Gps Sat Count			6 Sat	ts		
Ťele	Telemetry Signal					
Battery Level			33.19	θV		
Mode		FBW	A	K.		
Che	ck Altitude	•	-0.21	< 5m		\checkmark

Requirement	Description
FR 4	The aircraft shall maintain communication with the ground station up to a distance of 2km

Schedule

Project Overview

Test Readiness

Controls Test

<u>So Far</u>

- Servos configured, connected, and actuating
- Servos responding to RC stick input
- Servos responding automatically to attitude changes

Project Overview

Schedule

Test Readiness

Requirement	Description
FR 3	Verify that control surfaces actuate properly

Budget

Backup Slides

LiDAR Test

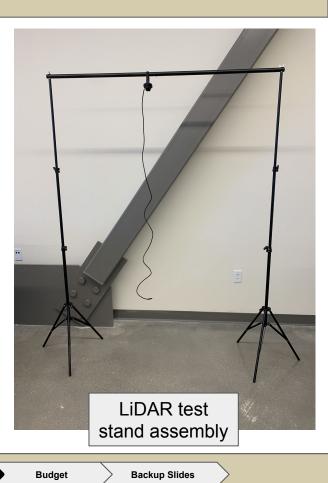
Issues:

 Rangefinder data not being read by Mission Planner

100100	H	
rangefinder1	0	
rangefinder2	0	
rangefinder3	0	
entonttitudo	Â.	

- Most likely a bad telemetry port
- New PCB being fabricated by IRISS

In Progress



Requirement	Description
FR 3	Autonomous mission execution
DR 3.4	Vertical accuracy of <10cm is desired in takeoff and landing when below GPS altitude of 5m
DR 3.5	Complete mission profile without pilot input

Schedule

Test Readiness

Project Overview

Avionics System Progress

<u>Component</u>	<u>Progress</u>	<u>Details</u>
Servos	Functional	Actuating and Connecting, Need final calibration and permanent connection. See slide 30
Telemetry	Functional	99% on Mission Planner, Ground Station Communicating
GPS	Functional	GPS verified on Mission Planner, Showing position accurately
Pitot-Static Tube	Installed	Needs Final Calibration
Lidar	Close to Functional	Issues with hardware connections, most likely PCB
Battery	Functional	Need final configuration, Failsafe not in place
ESC's/Motors	Not installed	Need to be connected, Simple Procedure
Other	Close to Functional	IMUs need calibration, need hover test verification

Schedule

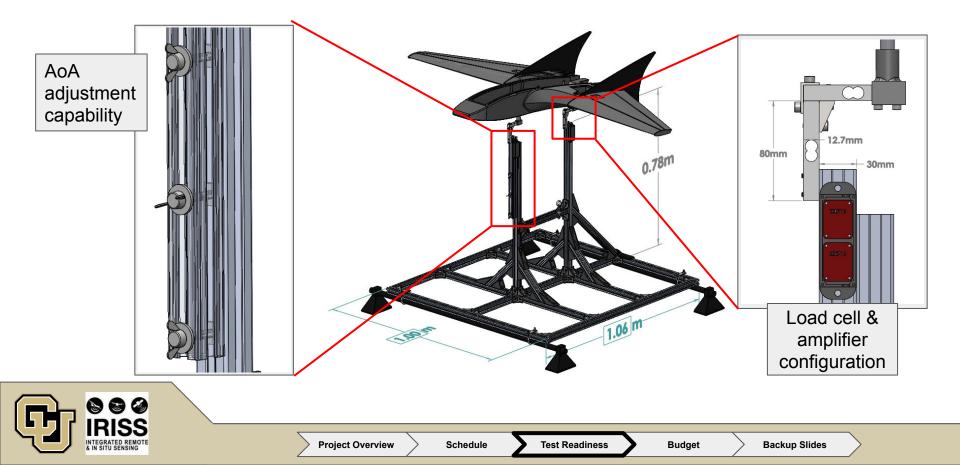
Aerodynamic Test Stand

Summary:

- Testing for aerodynamic forces
- Drak too large for wind tunnel
- Working with CASP to use a private road

Testing Procedure:

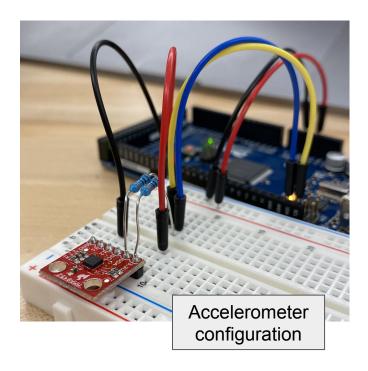
- Mount test stand to vehicle using U-bolts
- Adjust angle of attack to desired value
- Drive in a straight line at 18m/s (~40mph) for at least 45-60 seconds
 - Obtain enough data to be able to filter out noise



Planned 3/8

Schedule

Aerodynamic Test Stand



Electronics Successes:

- Accelerometer (for error estimation) configured
- Amplifiers soldered to load cells

Electronics Issues:

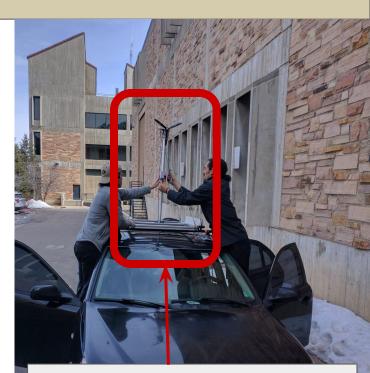
- Load cell calibration trouble with Arduino
- Micro SD card module not saving data

In Progress

Project	Overview
110,000	01011101

Schedule

Test Readiness


Dynamic Motor Testing

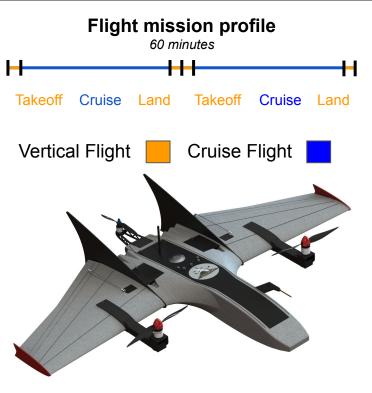
Summary:

- Test thrust requirements in dynamic cruise conditions (loss in efficiency)
- Using RC Benchmark software to track specific test properties
- Motor and load cells elevated on car top test stand traveling at cruise speeds (40 mph)

Testing Procedure:

- Similar to static test stand: configure battery, motor, ESC, and propeller
- Use RC benchmark software to manually toggle throttle power input

37


Dynamic motor test stand mounted

Planned 3/8

Schedule

Future Tests

RAPCat Integration

- Verify the connector fits correctly
- Execute launch procedure

Hover Test

- Execute static full mission profile
- Show stability in hover

Full Flight Test

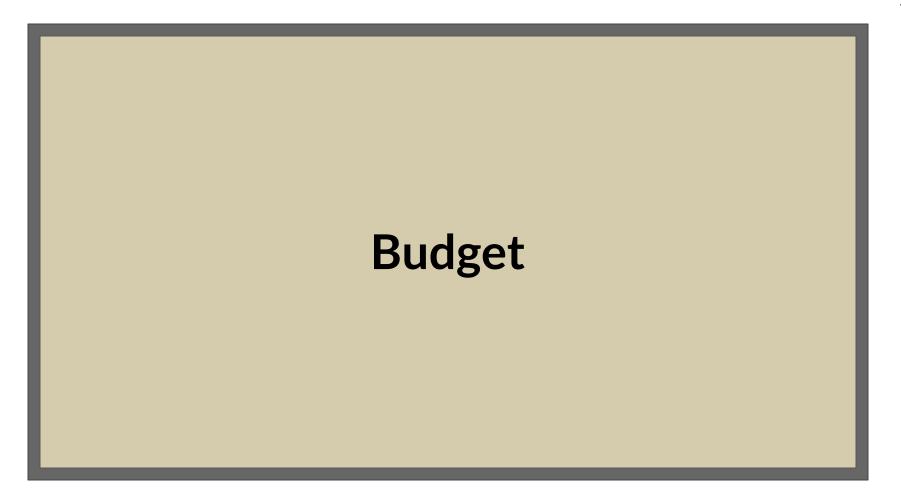
Schedule

Project Overview

• Execute realistic full mission profile similar to CONOPS

Test Readiness

Budget


Planned 3/21

Planned 3/16

Planned 4/5

Backup Slides

Parts/Material Procurement

Important Parts	<u>Application</u>	<u>Status</u>	
LiDAR Sensor	Avionics, Testing	Received	
Servos	Controls	Received	
Batteries	Endurance, Testing	Received	
Front and Rear Motors	Propulsion	Received	
Front and Rear Propellers	Propulsion, Testing	Received	
Front and Rear ESCs	Endurance/ Propulsion	Received	
Ritewing Drak Kit	Structures, Testing	Received	

Important Parts	Application	<u>Status</u>
Ritewing Drak - Extra Wings	Testing	Received
Nuts/Screws/Bolts etc.	Manufacturing	Received
Aluminum Extrusion	Testing, Manufacturing	Received
LiDAR Test Stand	Testing	Received
Load Cells	Testing	Received
Adhesives	Manufacturing	Received
Misc Battery Fabrication Materials	Testing	Received

Project Overview	>
------------------	---

Schedule

Test Readiness

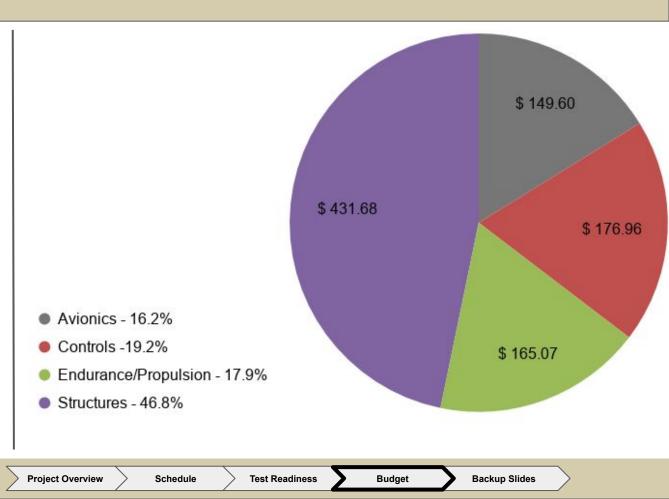
Budget

Backup Slides

Parts/Material Procurement

Important Parts	Application	<u>Status</u>
Standoffs	Avionics, Testing, Flight	Ordered
SD Card	Avionics	Ordered
USB Connector Cable (Transmitter)	Avionics, Testing, Flight	Ordered
3D Printer Filament	Manufacturing	Ordered
Additional Propellers	Propulsion, Testing	Ordered
Additional ESCs	Propulsion	Ordered
Tail	Controls	Awaiting Test Data

Per Unit Budget


Unit Budget Breakdown: Target Budget: \$1,000.00

Avionics: \$149.60 Controls: \$176.96 Endurance/Propulsion: \$165.07 Structures: \$431.68*

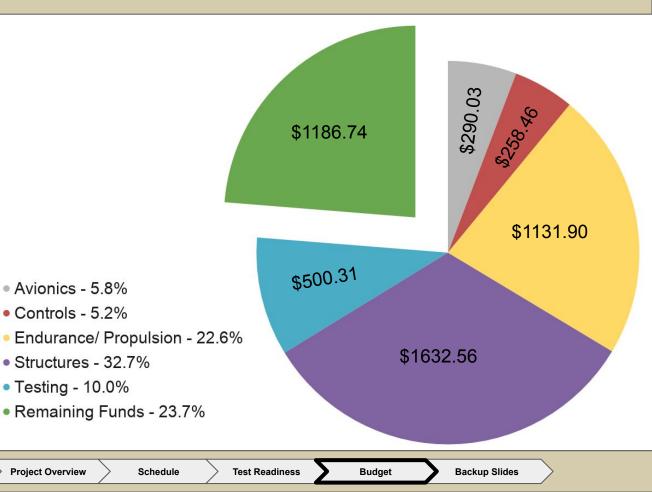
Final Cost Per Unit: \$923.31

*Note: Includes rough estimate for cost of materials to construct tail.

Financial Status/ Budget

VORTEX Budget Breakdown:

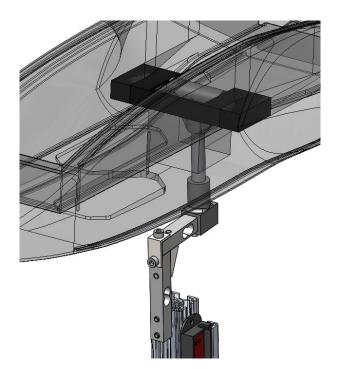
Total Budget: \$5,000.00


Confirmed Purchases: \$4,013.26 Pilot Lab Deposit: -\$200.00 (assuming is returned) Contingency Budget: \$1000.00 *

Total Expenses: \$4,813.26

Estimated Final Balance: \$186.74

***Note:** Estimated final balance assumes entire contingency/complication budget is used.



Backup Slides

Aerodynamic Test Stand Adjustable Angle Bracket

- Internal bracket allows spar to slide forwards and backwards to change angle
- Horizontal carbon fiber rod slides inside internal bracket
- Internal bracket will be 3D printed out of PETG

Test Readiness

The purpose of the early manufacturing stages with regards to the VORTEX project is to both build and test individual subsystems.

- 1. Assemble basic functioning subsystems
- 2. Assemble testing apparatuses
- 3. Test and simulate realistic performance against modeled performance

Moving forward, each subsystem will be iteratively improved to meet desired performance. Full system testing can begin.

Project Overview

Schedule

Test Readiness

Subsystem	Testing Equipment
Autonomy	ArdupilotPixhawkLIDAR Test Stand
Structures	• Dynamic Test Stand
Propulsion	 Static Test Stand Construction Battery Dynamic Test Stand
	Кеу

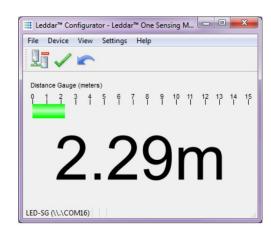
Budaet

Software (in-house) Custom Hardware (in-house) Borrowed Hardware

Backup Slides

LiDAR Data

Testing the purchased LiDAR sensor to verify 10cm accuracy


LeddarTech Configurator

- Exports data to .txt file
- USB to UART cable to laptop

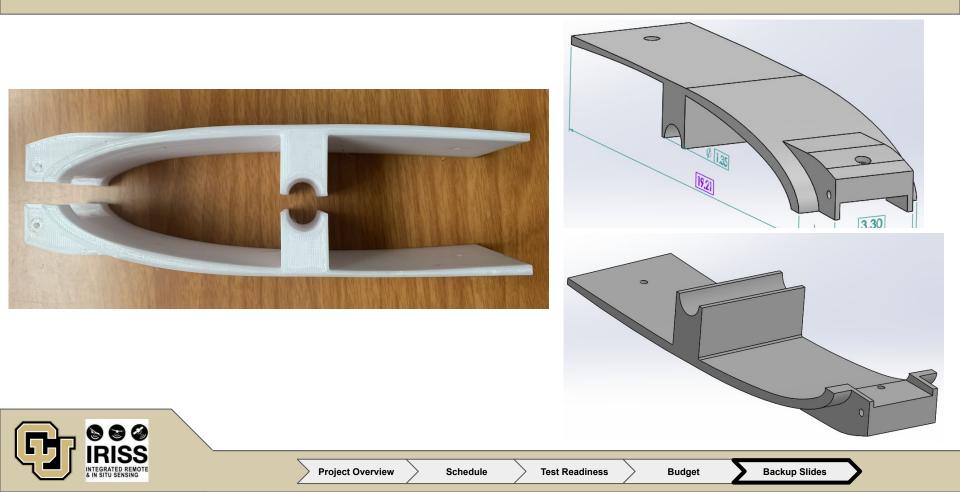
LeddarOne Sensor

6 🔁 🍪

LeddarTech Configurator

Canard vs Tail Trade Study

	Criteria	Things to Consider	Criteria Weight
 Options Considered Static Canard Static Tail 	Llft and Drag Performance	 Trim Lift Deficit Calculations Estimate Drag, NACA airfoil, Parasite, Induced, etc. Effect on Elevon deflection at trim 	25%
 Tail with Elevator 	Stability	 Static Margin Calculations Trim Moment Deficit Calculations Stall performance Static, dynamic stability 	30%
 Tail with Elevator won out Reduces elevon deflection 	Weight	 Weight of supplementary components Servos, Spars, Foam Shift in center of gravity 	15%
 Used by IRISS Heavier than Canard though Easy to manufacture 	Complexity	 Supplementary Components Electronics Structure required Manufacturability Materials and Methods Design Optimization Expected effort to optimize the design 	30%



		esign Optin ○ Expe	nization cted effort to op	timize t	he design		
Project Ov	verview	Schedule	Test Readines	is >	Budget	Ва	ckup Slides

LiDAR Test Stand

LiDAR Test Stand

Aerodynamic Test Stand - 3D Printed

Project Overviev

Test Readiness

Budget

Backup Slides

Custom Battery Progress

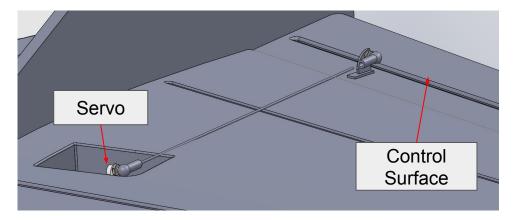
- On Hand:
 - Insulator rings
 - XT90 connectors
 - XT60 connectors
 - MT60 connectors
 - \circ 10 AWG Wire
 - Wire Kapton tape
 - 100x LiPo battery cells

Waiting on R2R approval and balancing cable to begin manufacturing

Barriers to Progress

•

- Balancing cable not delivered
- Waiting on R2R
- Spot welding to connect cells
- Spot welder supplied by IRISS


Schedule

Test Readiness

>

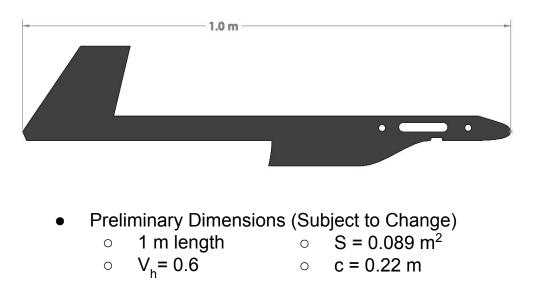
Manufacturing Extra Control Surfaces

- Control Surface
 - Same material and manufacturing method as horizontal tail
 - Mounted using Z-Tape
- Servo
 - Mounted inset into the horizontal tail
 - Connected to control surface same as wing
- Foam and servo still need to be purchased

Mounting example from the wing

Manufacturing of horizontal tail and control surfaces is scheduled to be completed by Feb 11th

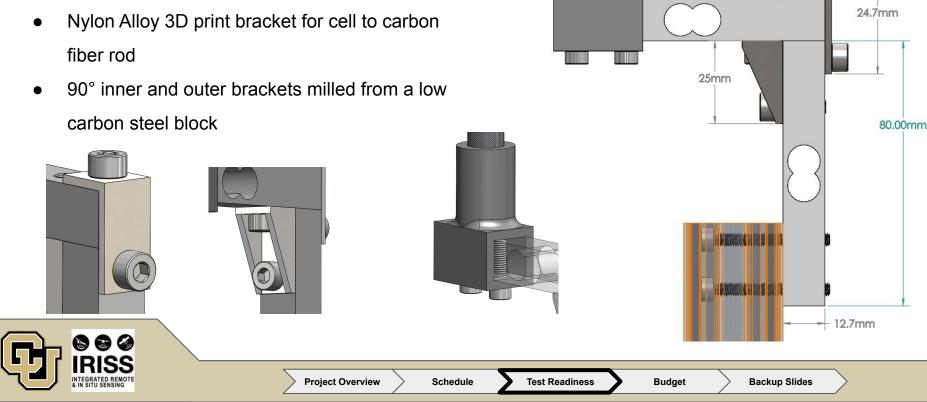
Test Readiness


Budaet

Manufacturing the Tail

- Cut Foam Horizontal Tail
 - CNC Hot Wire Foam Cutter
 - XPS foam

- Tail Booms
 - Laser Cut Coroplast
 - 8 mm thick





Aerodynamic Test Stand: Load Cells

Manufacturing Sufficient Brackets

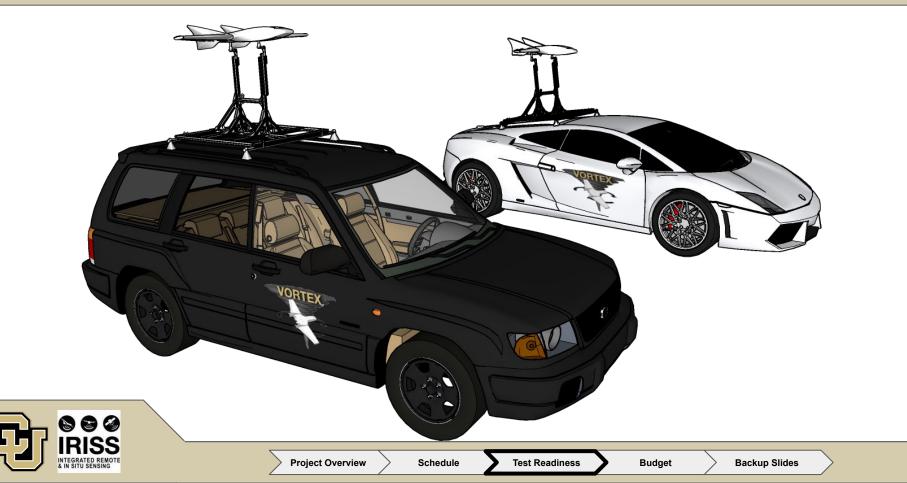
Solution:

>	Project Overview

Schedule

> Test Readiness

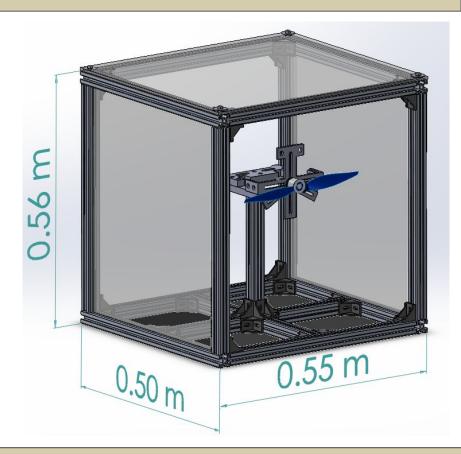
ss >


) Ba

Budget

Backup Slides

57


Aerodynamic Test Stand

Static Propulsion Test Stand

- Will be assembled by us
- Main Parts
 - Aluminum Extrusion
 - Cut to length/thread ourselves
 - 3 ¼" Acrylic Panels on sides
 - Cut to size ourselves
 - 1" wire screen for front/rear
 - Load Cell/Motor Mount Assembly
 - Lent by DBF

Cutting aluminum extrusion and assembling this week

Proi	iect	Overvie	w

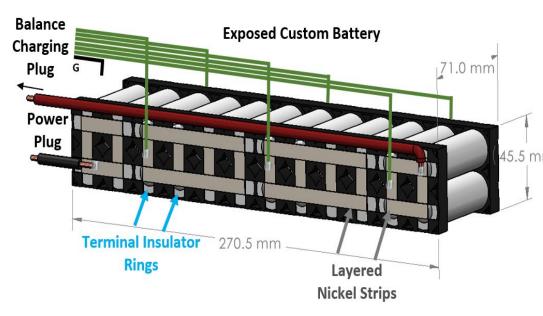
Schedule

Test Readiness

Custom Battery Progress

Inventory

Still waiting for procurement on 1 major part


• Charging pin (delivery eta: **unknown**)

Deliverables

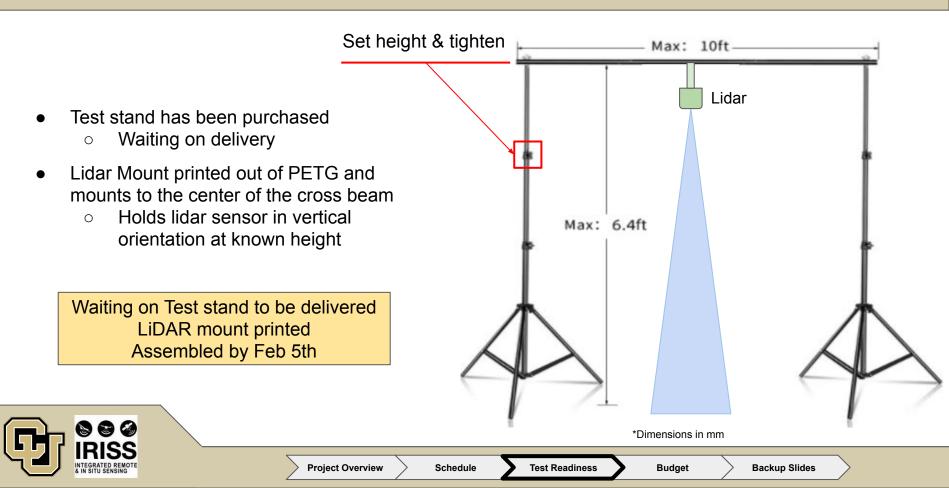
- 1. Single simple parallel cell testing (4 cells) Estimated time (1 hour)
- 2. 1st iteration full battery pack (24 cells) Estimated time (1 day)

Progress

Waiting on R2R approval to begin manufacturing

Budget

Proj	ect	Overview

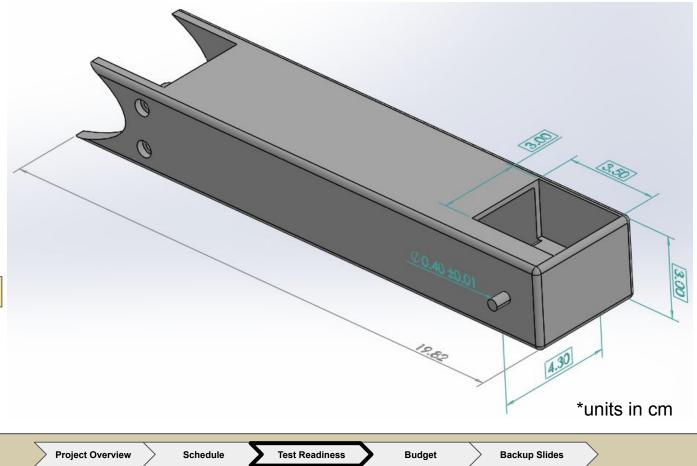

Schedule

Test Readiness

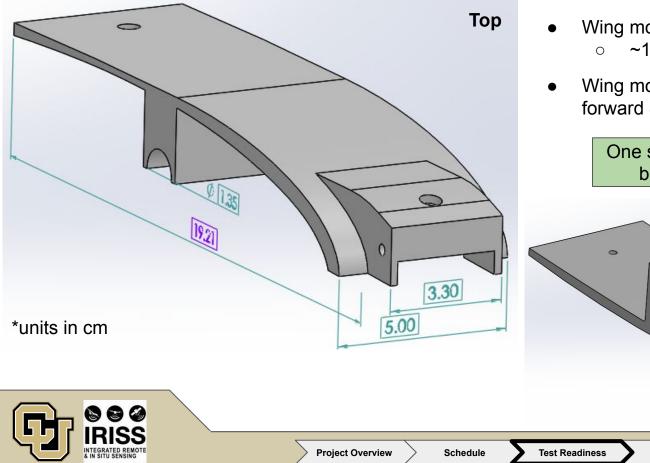
ss 🔪

Backup Slides

60

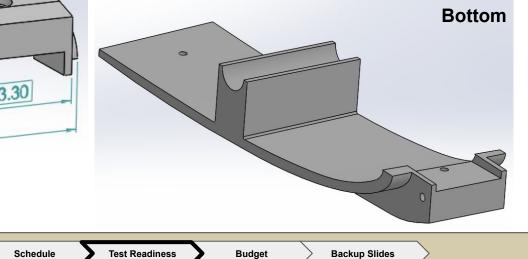


Motor Arm


- Arm mounts printed out of PETG
 - ~10 hours each
 - Hollow to allow for wire channeling
- Motor arm attaches to wing mount by two horizontal 3mm bolts

To be 3D printed by Feb 5th

6 6 3


Wing Mounting

- Wing mounts printed out of PETG

 ~12 hours total
- Wing mounts held together by glue and forward & rear 3mm bolts in the wing

One set is printed and ready to begin wing load testing

Overview and Scope

Component	Purchased or Manufactured	Manufacture Time	Completion Date	Status
Drak Wing Kit	Purchased/Assembled	~ 3 days	Feb 5th-8th	Waiting on Adhesive
Wing & Motor Mounts	Manufactured/Printed	12 hours	Jan 30th	Printed
Lidar Test Stand	Purchased/Printed	1 hour	Feb 5th	Printed, Waiting on Delivery
Custom Battery	Manufactured	6 hours	Feb 3rd	Waiting on R2R
Static Test Stand	Manufactured	3 hours	Feb 4th	Waiting on R2R
Dynamic Test Stand	Manufactured	4 hours	Feb 3rd	Waiting on Delivery

Schedule

Test Readiness

Drak

- Three Drak kits purchased and in our possession
 - Backups in case of damage during testing
- Extra wing set
 - Test wing mount loading
- Kit includes EPP foam body, coro-plast stabilizers, carbon fiber rods and spars
- Additional assembly tools
 - Adhesive

6 6 3

• Tape for control surfaces

All Drak kits procured, waiting on adhesive to be delivered To be assembled by Feb 5th-8th

Schedule

Budaet

<u>Category</u>	<u>Concern</u>	Notes
Dynamic Test Stand	High	Primarily safety, Milling and cutting metal, Organizing testing space, Intense data processing
Static Test Stand	Medium	Safety, Experience with DBF propulsion testing, Shop work
Custom Battery Packs	Medium	Shipping parts. Battery pack performance after manufacturing. Safety
Motor Mounts, and Loading Test	Low	Uncertainty in FEM causing failure before the required loading.
Extra Control Surface	Low	Tail booms approx. 40 in, Hot wire foam cutting, Optimization Sizing, Ardupilot parameters

Project Overview

Schedule

Test Readiness