# **VORTEX**

## Vertically Optimized Research, Testing, & EXploration

# **Spring Final Review**



Customer: Steve Borenstein Advisor: Donna Gerren Project Manager: Bill Chabot

#### <u>Team</u>

Mohamed Aichiouene Joseph Buescher Colton Cline Roland Ilyes Cameron Kratt Joseph Rooney

Stephen Albert Bill Chabot Brandon Cummings Delaney Jones Michael Patterson Justin Troche

## **Project Overview**

## **Mission Statement**



In order to expand the capabilities of the IRISS center and TORUS project in gathering meteorological data and understanding the formation of supercell thunderstorms, the VORTEX team will bring Vertical Takeoff and Landing (VTOL) functionality and extended endurance to the RiteWing Drak airframe.



## **Mission CONOPS**





| Broject Overview | Design      | Teating | Systems     | P      |
|------------------|-------------|---------|-------------|--------|
| Project Overview | Description | resung  | Engineering | / Mana |

roject agement

|                           | Level 1                                                                                                                                                                                                                                                           | Level 2                                                                                 | Level 3                                                                                                                                                      |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Avionics &<br>Electronics | All motors and actuators shall be<br>successfully integrated with the flight<br>controller. The telemetry link shall be<br>maintained with less than 50% packet loss<br>within 2 km of the ground station.                                                        | All external (non-native) sensors are successfully integrated with the avionics system. | _                                                                                                                                                            |
| Autonomy                  | Both the VTOL and fixed-wing modes have<br>valid dynamic models to ensure active<br>stabilization is possible. Ensure that the<br>chosen avionics package interfaces<br>successfully with propulsion system,<br>sensors, and connectivity with ground<br>station. | The aircraft can autonomously execute a takeoff and landing.                            | The aircraft shall autonomously execute a full mission profile, transitioning between flight modes, and land within a 1.5 meter radius of a target location. |
| Safety                    | The aircraft shall have an autonomous<br>return to loiter function if telemetry is lost for<br>an extended period (90 seconds) as well as<br>capability to terminate the flight immediately<br>upon command from the GSE                                          | _                                                                                       | _                                                                                                                                                            |



INTEGRATED REMOTE & IN SITU SENSING

|           | Level 1                                                                                                                                                                                                                                                                      | Level 2                                                                                                                                                                           | Level 3                                                                                                                                                        |  |  |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Flight    | Show on a static test stand that the<br>propulsion system is capable of producing<br>enough thrust to provide a TWR greater<br>than 1                                                                                                                                        | Maintain tethered hover at 2 m of altitude for 30<br>seconds as well as demonstrate capability to<br>transition to horizontal flight while aircraft is<br>mounted to a test stand | Aircraft shall demonstrate takeoff ability via<br>RAP-Cat launch system as well as<br>demonstrate full transition from vertical to<br>horizontal flight modes. |  |  |  |
| Budget    | The aircraft shall cost no more than<br>\$1250, not including IRISS avionics<br>package or batteries                                                                                                                                                                         | The aircraft shall cost no more than \$1000, not including IRISS avionics package or batteries                                                                                    | The aircraft shall cost no more than \$900,<br>not including IRISS avionics package or<br>batteries                                                            |  |  |  |
| Endurance | The propulsion system shall maintain<br>required thrust output for the equivalent of<br>1 hour cruise and 2 takeoffs and landings<br>(approximately 1hr 16 minutes) on a static<br>test stand in simulated freestream<br>conditions of 18 m/s with >15% battery<br>remaining | _                                                                                                                                                                                 | Demonstrate 1 hour of flight cruise as well<br>as 2 takeoffs and landings                                                                                      |  |  |  |
| Airframe  | A finite element analysis of the modified<br>air-frame will be performed to<br>demonstrate that it can withstand the<br>required forces with a FOS of 1.7                                                                                                                    | The aircraft will have full integration capabilities<br>with RAPCat launch system, and show that it<br>can withstand the forces due to acceleration.                              | The airframe shall withstand axial and lateral forces up to 10G.                                                                                               |  |  |  |
|           |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                   |                                                                                                                                                                |  |  |  |

Testing

Systems

Engineering

Project

Management

**Backup Slides** 

Design

Description

**Project Overview** 



## **Design Description**

## **Critical Project Elements**

| <u>Element</u>                                   | Justification                                                                                                       |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Vertical Takeoff<br>and Landing<br><b>(VTOL)</b> | Primary deliverable of project.                                                                                     |
| Structure<br>(STR)                               | Structure must withstand forces of takeoff, flight, and landing.                                                    |
| Endurance<br><b>(END)</b>                        | Aircraft must be able to maintain flight for the required duration of 1 hour plus takeoffs and landings.            |
| Automation<br>(AUT)                              | Aircraft must autonomously perform mission flight profile as well as controlling takeoff, landing, and transitions. |

Project Overview





Design Description Testing

Systems Engineering

Management

Project

| FR1 | VTOL | The aircraft shall be a VTOL conversion of the COTS Ritewing RC "Drak" airplane kit                                    |
|-----|------|------------------------------------------------------------------------------------------------------------------------|
| FR2 | END  | The aircraft shall have an endurance of 1 hour with 2 takeoffs and landings                                            |
| FR3 | AUT  | The aircraft shall be able to autonomously execute all aspects of its mission from first takeoff through final landing |
| FR4 | AUT  | The aircraft shall maintain communication with the ground station up to a distance of 2km                              |
| FR5 | STR  | The aircraft shall be capable of carrying a 0.5kg payload                                                              |
| FR6 | STR  | The aircraft shall be capable of taking off from existing RAPCat launch system                                         |
| FR7 | VTOL | The airframe, propulsion system, and required mounting hardware shall cost no more than \$1000 per aircraft            |



## **Final Design**



## **Final Design**



## **Final Design**



## **System Functional Block Diagram**



## **Changes Since TRR**

#### Electronics

- Upgraded tilt servos for higher torque
- Airspeed sensor protocol changed to I<sup>2</sup>C

#### Structures

- Mass of tilt rotor wing mount reduced
- Reduced characteristic drag
- Increased structural support in rear motor mount

**Project Overview** 

Design

Description

Testina

#### Aerodynamics

• Designed and manufactured empennage

### Automation

- Initial aircraft tuning in hover
- Integrated LiDAR



Project

Management

Backup Slides

Systems

Engineering



## **Elements Critical for Project Success**

## Vertical Takeoff and Landing

- Tricopter configuration with tilting front motors
- High discharge custom battery

## Structures

- Forward tilt motor mounts
- Rear vertical motor mount

### Endurance

- Empennage for better stability and horizontal cruise
- High voltage custom battery

## Automation

- Rangefinding lidar
- ArduPilot parameters tuned to match aircraft configuration
- Various flight mode settings and autonomous mission profiles



## **Test Overview**

## **Test Overview**

|   | Functional<br>Requirement | Element   | Test                           | Description                                                                  | Status       |
|---|---------------------------|-----------|--------------------------------|------------------------------------------------------------------------------|--------------|
| 1 | FR6                       | STR       | Wing Motor<br>Mount Stress     | Verification of FEM model and testing structural limits of wing motor mounts | Complete     |
| 2 | FR2                       | END       | Battery<br>Endurance           | Verify and prove the assembled battery meets modeled capacity performance    | Complete     |
| 3 | FR1                       | VTOL      | Static Motor                   | Testing thrust and power draw in static conditions                           | Complete     |
| 4 | FR3                       | AUT       | Controls                       | Verify that control surfaces actuate properly                                | Complete     |
| 5 | FR3                       | AUT       | LiDAR                          | Testing LiDAR system for accuracy                                            | Complete     |
| 6 | FR4                       | AUT       | Telemetry                      | Verify/test avionics package and communications                              | Complete     |
|   | RISS<br>INTEGRATED REMOTE | Project C | Dverview Design<br>Description | Testing Systems Project Ba                                                   | ackup Slides |

Description

Systems Engineering

Management

## **Test Overview**

|    | Functional<br>Requirement | Element | Test                   | Description                                                                        | Status       |
|----|---------------------------|---------|------------------------|------------------------------------------------------------------------------------|--------------|
| 7  | FR2                       | END     | Dynamic<br>Motor       | Testing thrust and power draw in flight conditions                                 | Complete     |
| 8  | FR2                       | END     | Car Top<br>Aerodynamic | Obtain aerodynamic forces to validate CFD                                          | Complete     |
| 9  | FR6                       | STR     | RAPCat<br>Integration  | Cat Validate that Drak fits into existing RAPCAT bracket and test launch procedure |              |
| 10 | FR1                       | VTOL    | Hover                  | Verify stability in hover                                                          | Complete     |
| 11 | FR2                       | END     | Full Flight            | Verify that Drak can execute the mission                                           | Planned 4/21 |
| ٦  |                           | Project | Design                 | Testing Systems Project P.                                                         | ackun Slidas |

Systems Engineering

Management

## Wing Motor Stress Testing

#### What and Why:

- Verification of FEM simulations; ensuring requirements met
- Increasing load applied to end of motor arm / wing assembly
- Removes risk of failure during maximum loading in flight

**Project Overview** 

#### **Testing Procedure:**

Complete

- Wing spars clamped to table
- Weight incrementally added to the end of the motor arm in 0.5kg increments



Testina

Design

Description



|    | Requirement                   | Description                                         |  |  |  |  |
|----|-------------------------------|-----------------------------------------------------|--|--|--|--|
|    | FR 6                          | RAPCat Compatibility                                |  |  |  |  |
|    | DR 6.2                        | Withstand 5G acceleration during RAPCat launch      |  |  |  |  |
|    | DR 6.5                        | Withstand 10G during takeoff and landing operations |  |  |  |  |
| Er | Systems Project Backup Slides |                                                     |  |  |  |  |

## **Battery Endurance Testing**

#### What and Why:

- Verification of custom battery assembly functionality
- Reduces the risk of power capabilities for the aircraft

#### **Testing Procedure:**

Complete

- Verify battery cell balanced voltage
- Maintained a cruise condition current draw until battery voltage drops below 18V



Exposed battery view

**Project Overview** 

Description



Management

Engineering

## **Static Propulsion Test Stand**

#### What and Why:

- Test for thrust, power, and endurance requirements for the propulsion subsystem
- Using RC Benchmark software to track specific test properties:
  - Current draw
  - Thrust
  - RPM
- Motor and load cells contained in plexiglass & chicken wire box

#### **Testing Procedure:**

- Configure battery, motor, ESC, and propeller
- Use RC benchmark software to manually toggle throttle power input



|   | Requirement | Description                                          |
|---|-------------|------------------------------------------------------|
|   | FR2         | Endurance of one hour with two takeoffs and landings |
| - | Desig       | n System                                             |



Backup Slides

Project

Management

## **Avionics System Progress**

| <u>Component</u>     | <u>Progress</u> | Details                                                      |  |  |  |  |
|----------------------|-----------------|--------------------------------------------------------------|--|--|--|--|
| Servos               | Functional      | Actuating and Connecting, calibrated and trimmed.            |  |  |  |  |
| Telemetry            | Functional      | Mission Planner & Ground Station Communicating               |  |  |  |  |
| GPS                  | Functional      | GPS verified on Mission Planner, Showing position accurately |  |  |  |  |
| Pitot-Static<br>Tube | Functional      | Calibrated and Installed on VORTEX aircraft.                 |  |  |  |  |
| Lidar                | Functional      | Reporting data accurately.                                   |  |  |  |  |
| Battery              | Functional      | Powering system without issue.                               |  |  |  |  |
| ESC's/Motors         | Functional      | Driving motors as expected and producing sufficient thrust.  |  |  |  |  |
| Other                | Functional      | EKF & IMU calibration completed (Pre-flight check)           |  |  |  |  |



Project Overview

Design Description

Testing

Systems Engineering

 $\rightarrow$ 

Project Management

## **Avionics System**

INTEGRATED REMOTE & IN SITU SENSING



Testing

Systems

Engineering

Project

Management

**Backup Slides** 

Design

Description

**Project Overview** 



23

## **Telemetry Test Overview**

#### What and Why:

• Aircraft must to maintain communication with GS computer up to 2km with <50% packet loss

#### **Testing and Verification:**

- Acquire AC-DC auxiliary power outlet convertor
- Take plane and avionics out to road with 2km stretch
- Initialize powered avionics at ground station
- Drive powered avionics 2km away
- Check telemetry package connection



| Requirement | Description                                                                                        |
|-------------|----------------------------------------------------------------------------------------------------|
| FR 4        | The aircraft shall maintain<br>communication with the<br>ground station up to a<br>distance of 2km |



Complete

|                  |     |                       |   |         |           |                        |        | alotanoo              | . 21   |               |
|------------------|-----|-----------------------|---|---------|-----------|------------------------|--------|-----------------------|--------|---------------|
|                  |     |                       |   |         | -         |                        |        | -                     |        |               |
|                  |     |                       |   |         |           |                        |        |                       |        |               |
|                  |     |                       |   |         |           |                        |        |                       |        |               |
| Project Overview | v 🔪 | Design<br>Description | Σ | Testing | $\supset$ | Systems<br>Engineering | $\geq$ | Project<br>Management | $\geq$ | Backup Slides |

#### What and Why:

- All 5 servos need to be actuating within physical range
- Elevons and tilt servos need to be trimmed
- ESC's range and trim values need to be set
  - Values too high can damage the ESC's

#### **Prediction and Verification:**

6 8 3

- Find servo travel per ( $\mu$ s). Example:  $\Delta \theta$  = 0.085°/ $\mu$ sec
- Find the endstop of the servo: 0 angle
- Find angle of zero to flat with the wing mount. Example: 76°
- Program angles as PWM signals. Example:
  - Minimum: -7° from X-Y plane:  $69^{\circ}/\Delta \theta = 811.8 \mu s$

**Project Overview** 

• Maximum: 125° from X-Y plane:  $201^{\circ}/\Delta \theta = 811.8 \mu s$ 

Design

Description

- Set Trim angle. Example:  $76^{\circ}/\Delta \theta = 2364.7 \mu s$
- Trim expected output to physical output



#### Complete

| Requirement | Description                                   |  |  |
|-------------|-----------------------------------------------|--|--|
| FR 3        | Verify that control surfaces actuate properly |  |  |



Systems Engineering

Testina

Project Management

... >

## LiDAR Test Overview

#### What and Why:

- Needs to handle reflective, disjointed, high debris surfaces
- Height set using tape measure, static testing
- Measurements recorded on LeddarTech Configurator

#### **Testing Procedure:**

- Set LiDAR at known distance
- Test distances read off
- Verify accuracy is within range
- Perform test over multiple surfaces





Testing

Systems

Engineering

Project

Management

Design

Description

**Project Overview** 



## **LiDAR Test Overview**

#### **Readings Over Water**



#### **Highly Reflective Surfaces**



#### Testing in variable conditions

- Branches/bushes
- Water
- Aluminum foil

#### LeddarOne LiDAR





Project Overview

Design Description

Testing

Ene

Systems Engineering Project Management

## **Dynamic Motor Testing Overview**

#### Summary:

- Test thrust requirements in dynamic cruise conditions (loss in efficiency)
- Using RC Benchmark software to track specific test properties
- Motor and load cells elevated on car top test stand traveling at cruise speeds (40 mph)

#### **Testing Procedure:**

- Similar to static test stand: configure battery, motor, ESC, and propeller
- Use RC benchmark software to manually toggle throttle power input





## **Aerodynamic Test Stand Overview**

#### What and Why:

- Lift and drag produced from aircraft need verified
- Dynamic testing data is crucial without wind tunnel testing
- Accelerometer on roof for imparted vibration data

#### Calibration and Testing:

- 4-Load cells & accelerometer connected to ArduinoMega
- Testing:
  - AoA is set on structure
  - Load cells and Accelerometer are tared before
  - Test is run at nominal speed; Data is saved

| Requirement | Description                               |
|-------------|-------------------------------------------|
| FR 2        | 1 Hour endurance, 2 Takeoffs and Landings |
| DR 2.7      | Cruise speed shall be at least 18 m/s     |





## **Aerodynamic Test Stand Overview**





\*Car behind test vehicle is designated chase car with additional team members



## **RAPCat Integration Overview**

#### FR6

The aircraft shall be capable of taking off from existing RAPCat launch system

#### What and Why:

- Rapid Acceleration Pneumatic Catapult
- RAPCat hook incorporated into the bottom of the fuselage

#### **Testing and Verification:**

- Complete one RAPCat launch directly into horizontal flight
  - Alternate: Complete a bungee launch into horizontal flight







| Project Overview | Design<br>Description | Σ | Testing | $\rightarrow$ | Systems<br>Engineering | > |
|------------------|-----------------------|---|---------|---------------|------------------------|---|
| - /              | Description           |   |         |               | Engineering            |   |

Project Management

## **Hover Testing Overview**

#### What and Why:

- Ensure stability in hover modes
- Show motors are capable of providing enough thrust
- Test various PID parameters to optimize hover stability

#### **Verification Methods:**

- Data logs saved by GCS
- Visual inspection, watch for oscillations
- Pilot input How well does it respond?
- Demonstrate hover stability in QStabilize/QHover modes



## **Full Test Flight**

#### What and Why:

- **Full Planned Mission**
- Check Endurance/Autonomy Requirements
- Shortened Schedule due to Weather/Scheduling

| Requirement | Description                                                                                                      |  |  |
|-------------|------------------------------------------------------------------------------------------------------------------|--|--|
| FR 2        | The aircraft shall have an<br>endurance of one hour in addition<br>to two takeoffs and landings.                 |  |  |
| FR 3        | Aircraft shall be able to<br>autonomously execute all aspects<br>of its mission from takeoff through<br>landing. |  |  |
| DR 3.2      | On-board flight controller shall<br>control propulsion system and<br>flight surfaces                             |  |  |

#### Google Maps view of first full flight test More on this later



#### **Test Schedule**





Design Systems **Project Overview** Testing Description Engineering

Project Management

## **Full Flight & Future Tests**



#### **RAPCat Integration**

- Verify the connector fits correctly
- Execute launch procedure

#### **Hover Test**

- Execute static full mission profile
- Show stability in hover

#### **Full Flight Test**

• Execute realistic full mission profile similar to CONOPS

Planned 4/19-4/23

Complete

Planned 4/21-4/30



## **Test Results**
# Wing Stress Testing Results

#### Downward Stress (Landing):

- 10G requirement is 1.9kg (18.65N)
  - Tested to 2.1kg (20.5N)
  - No FOS calculation
- Small bending in arm and wing

#### Upward Stress (Takeoff):

- Requirement of 2.5kg (24.5N)
  - Tested incrementally to 6.6kg (64.7N)
  - 2.6 FOS
- Extreme bending in arm and wing
- Only small (<1mm) plastic deformation after test



#### **RAPCat Launch/Compatibility**

Design

Description

Upcoming

**Project Overview** 



Systems Engineering

Testina

Project Management

Backup Slides

# **Battery Endurance Testing Results**

- Endurance Test:
  - Manually maintained expected cruise current draw of ~8A
  - Run time of 110 minutes
  - Capacity of 15Ah compared to ideal 16Ah
- Conclusion:

6 8 3

Requirement

FR 2

 Battery capacity meets expected performance for 1 hour cruise flight and the manufacturing data are satisfactory

Description

Endurance of one hour with

two takeoffs and landings

**Project Overview** 

Description



Management

Engineering

38

## **Static Propulsion Test Stand Results**



**Conclusion:** For our selected design size and conditions, the APC props offer more thrust for the same power as well as lower cost and lead time



 
 Project Overview
 Design Description
 Testing
 Systems Engineering
 Project Management
 Backup Slides

# **Static Propulsion Test Stand Results**

|                                   |                                                                  | Thrust VS Power                                                                                                                                       |
|-----------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Propeller Style                   | Tested Sizes<br>[Diameter x Pitch]                               | Measured variables:<br>(limited by max motor power)<br>> Torque3013x8<br>$- \ominus - 13x8 \mod e$ > Torque25                                         |
| Aeronaut Electric<br>Carbon Light | 9x5 9x6<br>10x5 10x6 10x7<br>11x5 11x7<br>12x5 12x7<br>13x7 13x8 | <ul> <li>Thrust</li> <li>Voltage</li> <li>Current</li> <li>RPM (optical sensor)</li> <li>Power</li> <li>Prop Efficiency</li> <li>FOO input</li> </ul> |
| APC Thin Electric                 | 11x4.5 11x5.5<br>13x8                                            | Final Design:                                                                                                                                         |
|                                   | Complete                                                         | Front Props: 13x8 APC Electric [2820 550KV motor]<br>Rear Prop: 11x5.5 APC Electric [2820 860KV motor]* <i>new</i>                                    |
|                                   | Project Overview                                                 | Design<br>Description         Testing         Systems<br>Engineering         Project<br>Management         Backup Slides                              |

# **Controls Test Results**

| Control<br>Input | RC<br>Response | Autonomous<br>Response |
|------------------|----------------|------------------------|
| Ailerons         | 1              | 1                      |
| Elevator         | 1              | ✓                      |
| Tilt-Servos      | 1              | ✓                      |
| ESCs             | 1              | Planned                |

| Requirement | Description                                   |
|-------------|-----------------------------------------------|
| DR 3.3      | Verify that control surfaces actuate properly |

Complete

**Project Overview** 

Design

Description

Testing





• Servo's stop at correct angles: preventing servo burnout

Project

Management

**Backup Slides** 

- PWM calculations were correct
- Servo's are all actuating correct directions
- Control surfaces are trimmed with airfoil

Systems

Engineering

## **Telemetry Verification**







## **Telemetry Results**

#### FR4

The aircraft shall maintain communication with the ground station up to a distance of 2km with less than 50% packet loss

#### **Design Aspects:**

- Radio package with receiver and transmitter
- One end interfaces directly with avionics package
- Connects directly to a laptop for real time data gathering and control

#### **Requirement Satisfaction:**

 Successful communication with less than 3% packet loss





**Concrete Surface, Daylight** 

| Trial<br># | Set<br>Height(cm) | Set LiDAR<br>leight(cm) Reading(cm) |  |   |  |
|------------|-------------------|-------------------------------------|--|---|--|
| 1          | 180.3             | 183.489 <b>+/-</b> 0.25             |  | 1 |  |
| 2          | 175.3             | 174.981 <b>+/-</b> 0.25             |  | 2 |  |
| 3          | 132.1             | 135.509 <b>+/-</b> 0.35             |  | 3 |  |
| 4          | 81.3              | 84.074 <b>+/-</b> 0.20              |  | 2 |  |
| 5          | 10.0              | 13.183 <b>+/-</b> 0.20              |  | 5 |  |

**Over Aluminum Foil** 

| Trial # | Set Height(cm) | LiDAR<br>Reading(cm)    |
|---------|----------------|-------------------------|
| 1       | 160.0          | 166.294 <b>+/-</b> 0.25 |
| 2       | 109.2          | 114.776 <b>+/-</b> 0.25 |
| 3       | 88.9           | 94.742 <b>+/-</b> 0.15  |
| 4       | 27.94          | 33.274 <b>+/-</b> 0.20  |
| 5       | 11             | 13.732 <b>+/-</b> 0.10  |

#### **Mimicking High Reflective Surfaces**



Description

Vertical accuracy of <10cm is

desired in takeoff and landing

when below GPS altitude of

Requirement

DR 3.4

- Maintains a maximum difference of about 7.5 cm from set height
- Meets requirement of 10cm accuracy
- Ready to be used for landing, will add to accuracy of firmware



# Lidar vs Barometer

#### Data Logs, LiDAR(red) and Barometer(green) data



#### Field Testing the LiDAR

- Much less noisy and accurate compared to barometer
- Redundant altitude sensing for landings and takeoffs
- Barometer starts to fail due to ground effect/prop wash

| Requirement | Description                                                                                         |  |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|
| DR 3.4      | Vertical accuracy of <10cm is<br>desired in takeoff and landing<br>when below GPS altitude of<br>5m |  |  |  |  |
| DR 3.5      | Complete mission profile<br>without pilot input                                                     |  |  |  |  |
|             |                                                                                                     |  |  |  |  |
| 3.4 Comple  | ete 35                                                                                              |  |  |  |  |

Project

Management

**Backup Slides** 

3.4 Complete, 3 in progress

# **Dynamic Motor Test Results**

#### Summary of Results:

- Our propulsion model (Based on aerodynamic data) estimated a cruise flight <u>Thrust</u> of 4N
- Approximate <u>Power</u> value for Cruise flight
  - Model: 77.5W
  - Experiment: 150W

| Requirement | Description                               |
|-------------|-------------------------------------------|
| FR 2        | 1 Hour endurance, 2 Takeoffs and Landings |
| DR 2.7      | Cruise speed shall be at least 18 m/s     |

#### Partially Complete





**Conclusion:** The test results hold several large sources of error such as wind and vibration, but give us ballpark estimates of power requirements. This 150W requirement

 
 Project Overview
 Design Description
 Testing
 Systems Engineering
 Project Management
 Backup Slides

# **Aerodynamic Test Stand Results**

#### Summary of Results:

- Weather conditions significantly affected data
- AoA fluctuations from angle of road changed data
- Drag was much higher than expected
  - Load cells not isolated from moving air
  - Airspeed measurement not precise enough

#### **Reasons for Moving to Hover:**

- Schedule and cost impacts in mitigating conditions
- Cost/Benefit additional testing not worth pursuing

#### Mitigation Strategies:

- Large FOS in propulsion system
  - Ardupilot allows for VTOL assisted level flight

**Project Overview** 

Design

Description

Testina

• Flight speed can be increased -> Increased lift

#### Partially Completed





Management

Engineering

Backup Slides



# **RAPCat Integration Status**

FR6

The aircraft shall be capable of taking off from existing RAPCat launch system

#### Status:

- RAPCat hook incorporated into the bottom of the fuselage
- Printed part fits on the RAPCat

#### Plans for Requirement Satisfaction:

• Obtain flight approval from CU flight director

**Project Overview** 

• Launch off bungee or RAPCat with IRISS

Partially Complete



STMLF3257

## **Hover Test Results**



#### Analyzing data from Ground Station Data Logs

- Results from Qhover, (pilot input only to adjust position in case of emergency)
- Pitch/Roll Maintaining Position with Slight Error
- Yaw Oscillations Still Prevalent, but will be damped out with more tuning

| Requirement | Description                                                                                                                      |
|-------------|----------------------------------------------------------------------------------------------------------------------------------|
| DR 3.2      | On-board flight controller shall control propulsion system and flight surfaces.                                                  |
| DR 3.5      | The aircraft shall be capable of<br>completing the<br>mission profile without pilot input after<br>initial flight configuration. |



Backup Slides

Project

Management

Systems

Engineering



**Project Overview** 

Design

Description

Testing

#### Hover Thrusting

- Tests show that aircraft can produce enough thrust
- Capable of handling hard inputs
- Motor/Propeller Combinations are successful
- Note Yaw Oscillations but steady behavior

| Requirement            | Description                                                                   |  |  |  |  |
|------------------------|-------------------------------------------------------------------------------|--|--|--|--|
| DR 1.1                 | The aircraft shall be able to<br>sustain hover using its own<br>thrust system |  |  |  |  |
| Complete               |                                                                               |  |  |  |  |
| Systems<br>Engineering | Project<br>Management Backup Slides                                           |  |  |  |  |







**Project Overview** 

Des

- First flight test ended in tragedy
- Flight logs are a huge source of information
- Detailed Crash Analysis followed by major takeaways
- Ready to fly again!



| Design Test | ting Systems<br>Engineering | Project<br>Management | Backup Slides |
|-------------|-----------------------------|-----------------------|---------------|
|             |                             |                       |               |

# **Test Flight Analysis, Continued**



#### Analysis

- Steady wind and takeoff location too close to boundary
- Transitioned too quickly, not enough altitude,airspeed
- Ignored pilot input to reach transition state

6 2 3

• Seen in thrust curves from data logs



# **Test Flight Analysis, Continued**



# Test Flight Analysis, Takeaways

# Major Takeaways Configure Pitot Probe as digital sensor Alter transition parameters (transition time & servo transition tilt-rate) Additional pre-flight checklist

**Project Overview** 

DISCORDIA

Systems

Engineering

Project

Management

Be Boulder.

Testina

Design

Description

- Additional pre-flight checklist procedures
  - Calibrate the airspeed sensor
  - Let plane rest for >15s after arming (Settles EKF)
- Improve hover tune reduce yaw oscillation
- Include LiDAR for precise altitude information
- Improve battery restraint system

# R.I.P. Discordia [Left]

 (Currently Unnamed) VORTEX ready to go [Below]

Backup Slides



54



# **Systems Engineering**



# **Scope Refinement / Functional Requirements**

**Project Overview** 





\* original project scope taken directly from customer proposal presentation

Testina

Design

Description

Project

Management

Backup Slides

Systems

Engineering

57





Project Overview

Design Description

Testing

ing

Systems Engineering Project Management

Backup Slides

58

# **Trade Studies**

|                              | Configuration Trade Study |      |            |       |      |                |                |                |      |      |                   |                   |
|------------------------------|---------------------------|------|------------|-------|------|----------------|----------------|----------------|------|------|-------------------|-------------------|
|                              |                           |      | Tilt Rotor |       |      | Tail S         | Sitter         |                | Hy   | brid | Tilt Wing         |                   |
| Option                       | Weight                    | Tri  | Quad       | Quint | Quad | Double<br>Push | Double<br>Pull | Single<br>Push | 4L1C | 3L1C | Inboard<br>Motors | Wingtip<br>Motors |
| Risk                         | 0.2                       | 2.5  | 2.5        | 2     | 2    | 1.5            | 4              | 1              | 4    | 4    | 1                 | 1                 |
| Manufacturing/<br>Complexity | 0.15                      | 4    | 3          | 2     | 1.5  | 1              | 4              | 5              | 2    | 3    | 1                 | 1                 |
| Weight                       | 0.1                       | 4    | 3          | 1     | 2.5  | 2.5            | 4              | 5              | 1    | 2    | 3                 | 2.5               |
| Hover<br>Controllability     | 0.2                       | 5    | 5          | 4     | 3.5  | 1              | 2              | 1              | 5    | 5    | 2.5               | 3                 |
| Cruise<br>Efficiency         | 0.3                       | 4    | 3          | 2     | 2.5  | 4              | 4.5            | 5              | 1    | 2    | 5                 | 5                 |
| Cost                         | 0.05                      | 3    | 2          | 1     | 2    | 4              | 4              | 3              | 1    | 2    | 2                 | 2                 |
| Total                        | 1                         | 3.85 | 3.25       | 2.25  | 2.43 | 2.30           | 3.75           | 3.30           | 2.55 | 3.15 | 2.75              | 2.80              |

| Material Trade Study |                          |             |          | Battery Chemistry Trade Study |                |       |        |      |      |         |     |
|----------------------|--------------------------|-------------|----------|-------------------------------|----------------|-------|--------|------|------|---------|-----|
| Ontion               |                          | A           | Carbon   | Option                        | Weight         | Li-Po | Li-ion | NiMH | NiCd | LiFePO4 |     |
| Option               | Option weight so Printin | 3D Printing | Aluminum | Fiber Rods                    | Discharge Rate | 0.2   | 5      | 2    | 2    | 3       | 3   |
| Weight               | 0.35                     | 3           | 1        | 5                             | Energy Density | 0.25  | 2      | 5    | 2    | 1       | 2   |
| Strength             | 0.2                      | 3           | 4        | 5                             | Cost           | 0.2   | 3      | 2    | 4    | 3       | 2   |
| Cost                 | 0.3                      | 5           | 2        | 1                             | Lifespan       | 0.2   | 1      | 4    | 3    | 4       | 5   |
| Manufacturability    | 0.15                     | 5           | 2        | 1                             | Safety         | 0.15  | 2      | 3    | 4    | 3       | 4   |
| Total                | 1                        | 3.9         | 2.05     | 3.2                           | Total          | 1     | 2.6    | 3.3  | 2.9  | 2.7     | 3.1 |

| Altitude Sensor Trade Study |        |       |                | Firmware Trade Study |                                 |        |           |     |      |                  |
|-----------------------------|--------|-------|----------------|----------------------|---------------------------------|--------|-----------|-----|------|------------------|
| Option                      | Weight | Lidar | Micro<br>Radar | Sonar                | Option                          | Weight | Ardupilot | PX4 | iNAV | Paparazzi<br>UAV |
| Complexity                  | 0.25   | 3     | 3              | 3                    | Functionality                   | 0.30   | 4         | 5   | 3    | 5                |
| Accuracy and<br>Consistency | 0.25   | 4     | 5              | 2                    | Resources and User<br>Interface | 0.3    | 5         | 5   | 3    | 3                |
| Size & Weight               | 0.2    | 5     | 3              | 5                    | Customer Preference             | 0.25   | 5         | 3   | 1    | 1                |
| Resiliency                  | 0.15   | 4     | 5              | 2                    | Hardware / Software             | 0.45   | E         | 4   | 2    | 2                |
| Cost                        | 0.15   | 5     | 3              | 5                    | Interface                       | 0.15   | 5         | 4   | 3    | 3                |
| Total                       | 1      | 4.1   | 3.8            | 3.3                  | Total                           | 1      | 4.7       | 4.1 | 3.2  | 3.1              |



**Project Overview** 

Design Description

Testing

Project Management

Backup Slides

# **Risk Assessment - Key Risks Identified from CDR**

| #  | Category      | Description                                               | Consequence                                                                                                          | Probability | Impact | Risk<br>Level | Risk Modification Plan                                                                                                                            | Residual<br>Risk |
|----|---------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------|--------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 5  | Supply/Struct | Drak kit backordered,<br>potential supply<br>difficulties | Would not be able to produce second<br>deliverable for customer, may not have<br>backup parts in case of destruction | High        | Medium | High          | Utilize IRISS' existing connection<br>with RiteWing to obtain wing kits<br>outside of standard commercial<br>production                           | Medium           |
| 8  | Propulsion    | Battery damage<br>during pack assembly                    | Fire/explosion in battery cells, injury to personnel                                                                 | Low         | High   | High          | Ensure spot welder is only used<br>by properly trained individuals,<br>follow strict safety protocols<br>when working with battery cells          | Medium           |
| 11 | Testing       | Car-top safety considerations                             | Damage to vehicles, test equipment,<br>citations issued for property damage<br>or other unknown reasons (?)          | Low         | High   | High          | Coordinate with department to<br>create safe testing procedures<br>and equipment, research local<br>laws to ensure legality of test<br>operations | Medium           |
| 12 | Structures    | Inaccurate FEM<br>model                                   | Possible material failure, could need to redesign parts                                                              | Medium      | Medium | Medium        | Compare FEM to known models<br>and research minimizing FEM<br>error, continually refine models                                                    | Low              |



Project Overview

Design Description

Testing

Management

Project

Systems

Engineering

Backup Slides

60

## **Risk Assessment - Mitigation Summary**



| Risk       | Description                                   | Encountered?                                                                              | Result                                                                                       |  |  |
|------------|-----------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|
| Supply     | Backorder of Drak and other components        | Yes - Drak was obtainable but some other<br>components required obtaining<br>replacements | Project proceeded according to schedule with no significant delays due to component sourcing |  |  |
| Propulsion | Risk of injury during battery use/manufacture | No - Safety protocols were followed and no dangerous situations were encountered          | Battery and propulsion system safely performed to expectations                               |  |  |
| Testing    | Car-top testing safety considerations         | No - Safety protocols were followed and no dangerous situations were encountered          | Dynamic testing was performed safely and data was obtained                                   |  |  |
| Structures | Material failure during operation             | No - components proved stronger than expected under normal loading                        | Components only required replacement when subjected to abnormal forces                       |  |  |



| Challenges                    | Lessons Learned                                                                                                 |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Clear requirement breakdown   | Clear requirements would help individuals work on components with less guidance from other team members         |
| Cross system requirements     | Would help individuals understand better how individual subsystems and components affect the project as a whole |
| Subsystem testing dependances | Parallel subsystem testing could help reduce the risk of schedule creep when a subsystem test runs long         |
| Biased assumptions            | Greater care should be taken when making assumptions early on the project.                                      |



# **Project Management**

#### Key concepts/guidelines:

- Morale
  - Lead by example and stick to your word
  - Set achievable short-term goals to maintain the sense of progress moving forward
  - Don't take things *too* seriously
- Minimize micromanagement
  - Trust in team members' skills and competence
  - Assign reasonable tasks and ensure support is available where needed
- Organization
  - Ensure team members are aware of schedules, assignments, deadlines, etc.
  - Prepare resources/plans for meetings ahead of time whenever possible



# **Per Unit Budget**

Unit Budget Breakdown: Target Budget: \$1,000.00

Avionics: \$125.00 Controls: \$246.96 Endurance/Propulsion: \$183.55 Structures: \$409.86

Final Cost Per Unit: \$965.37

**Project Overview** 



# **Financial Status/ Budget**

VORTEX Budget Breakdown: Total Budget: \$5,000.00

Confirmed Purchases: \$4,683.58 Pilot Lab Deposit: -\$200.00 (assuming is returned)

Initially Planned Budget Total Expenses: \$4,483.58

Remaining Balance: \$516.42



| Total Hours<br>Worked | Cost Per Hr (\$65k Salary) | Total Salary Cost | Materials  | Overhead  | Total Cost   |
|-----------------------|----------------------------|-------------------|------------|-----------|--------------|
| 4822                  | \$31.25                    | \$150,687.50      | \$4,483.58 | \$301,375 | \$456,546.08 |



# Acknowledgements

Dr. Donna Gerren - Advising, Guidance, and Moral Support

Steve Borenstein, Michael Rhode, Chris Choate -General guidance and answers to numerous questions

Devesh Sharma - Autonomy, Piloting, PCB Soldering, Component Troubleshooting, and being an all-around champion



# **Team Contact Information**



| Name               | Role                                    | Contact Information           |
|--------------------|-----------------------------------------|-------------------------------|
| Mohamed Aichiouene | Controls Lead                           | moai1674@colorado.edu         |
| Stephen Albert     | Manufacturing Lead                      | salbert97@gmail.com           |
| Joseph Buescher    | Autonomy Lead                           | jobu7780@colorado.edu         |
| Bill Chabot        | Project Manager                         | william.chabot@colorado.edu   |
| Colton Cline       | Safety and Testing Lead                 | colton.cline@colorado.edu     |
| Brandon Cummings   | Propulsion and Endurance Lead           | brandon.cummings@colorado.edu |
| Roland Ilves       | Software Lead                           | roil9298@colorado.edu         |
| Delanev Jones      | Aerodynamics Lead                       | delanev@dkranch.net           |
| Cameron Kratt      | Avionics Lead                           | cameron kratt@colorado.edu    |
| Michael Patterson  | Systems Engineer / Chief Technical Lead | mipa0115@colorado.edu         |
| Joseph Rooney      | Structures and FEAL ead                 | iosephroonev98@gmail.com      |
| Justin Troche      | Finance Lead                            | justin.troche@colorado.edu    |

# **Backup Slides**
## Aerodynamic Test Stand Adjustable Angle Bracket

- Internal bracket allows spar to slide forwards and backwards to change angle
- Horizontal carbon fiber rod slides inside internal bracket
- Internal bracket will be 3D printed out of PETG





## **More Hover Test Results**



The purpose of the early manufacturing stages with regards to the VORTEX project is to both build and test individual subsystems.

- 1. Assemble basic functioning subsystems
- 2. Assemble testing apparatuses
- 3. Test and simulate realistic performance against modeled performance

Moving forward, each subsystem will be iteratively improved to meet desired performance. Full system testing can begin.

| Subsystem  | Testing Equipment                                                                               |
|------------|-------------------------------------------------------------------------------------------------|
| Autonomy   | <ul><li>Ardupilot</li><li>Pixhawk</li><li>LIDAR Test Stand</li></ul>                            |
| Structures | Dynamic Test Stand                                                                              |
| Propulsion | <ul> <li>Static Test Stand</li> <li>Construction Battery</li> <li>Dynamic Test Stand</li> </ul> |

Key Software (in-house) Custom Hardware (in-house) Borrowed Hardware



| Project Overview | Design<br>Description | Testing | Systems<br>Engineering | Project<br>Management | Backup Slides |
|------------------|-----------------------|---------|------------------------|-----------------------|---------------|
|------------------|-----------------------|---------|------------------------|-----------------------|---------------|

## **LiDAR** Data

## Testing the purchased LiDAR sensor to verify 10cm accuracy

## LeddarTech Configurator

- Exports data to .txt file
- USB to UART cable to laptop

#### LeddarOne Sensor



& IN SITU SENSING

| 🛄 Leo | ddar™ C  | onfig  | gurat | tor - | Ledo | lar™ | One  | Sen | sing | M  |    |    |    | x  |
|-------|----------|--------|-------|-------|------|------|------|-----|------|----|----|----|----|----|
| File  | Device   | V      | iew   | Set   | ting | s H  | lelp |     |      |    |    |    |    |    |
|       | ] 🗸      |        | 2     |       |      |      |      |     |      |    |    |    |    |    |
| Dista | ince Gau | ige (n | neter | s)    |      |      |      |     |      |    |    |    |    |    |
| P     | 1 2      | 3      | 4     | 5     | 6    | 7    | 8    | 9   | 10   | 11 | 12 | 13 | 14 | 15 |
|       |          |        |       |       |      |      |      |     |      |    |    |    |    |    |
|       |          |        |       |       |      |      |      |     |      |    |    |    |    |    |
|       | 1        |        |       |       | 1    | 1    | 1    |     | \ _  | _  |    |    |    |    |
|       |          |        |       |       |      | /    | 1    |     |      |    | r  | ٦  |    |    |
|       | _        |        |       |       |      |      | 1    | J   | /    |    |    | L  |    |    |
|       |          |        |       |       |      |      |      |     |      |    |    |    |    |    |
|       |          |        |       |       |      |      |      |     |      |    |    |    |    |    |
| LED-S | G (\\.\C | OM1    | 6)    |       |      |      |      |     |      |    |    |    |    |    |

## LeddarTech Configurator





## **Empennage Design**

**Static Equilibrium of Forces** 

$$\sum F = C_{L_c} q_\infty S_c + C_{L_{wb}} q_\infty S - W$$

## **Static Equilibrium of Moments**

(about wing/body neutral point)

$$\sum M = C_{m_c} q_{\infty} S_c \bar{c}_c + C_{L_c} q_{\infty} S_c (d_{wb} - d_c) + C_{m_{wb_{ac}}} q_{\infty} S \bar{c} - W (d_{wb} - d)$$

# Static Stability $K = \frac{1}{\bar{c}} \left[ \frac{C_{L_{c_{\alpha}}} \frac{S_{c}}{S} d_{c} + C_{L_{wb_{\alpha}}} d_{wb}}{C_{L_{c_{\alpha}}} \frac{S_{c}}{S} + C_{L_{wb_{\alpha}}}} \right]$



# Canard vs Tail Trade Study

|                                                                                                            | Criteria                     | Things to Consider                                                                                                                                                                                                                                                               | Criteria Weight |
|------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| <ul> <li>Options Considered</li> <li>Static Canard</li> <li>Static Tail</li> </ul>                         | Llft and Drag<br>Performance | <ul> <li>Trim Lift Deficit Calculations</li> <li>Estimate Drag, NACA airfoil, Parasite, Induced, etc.</li> <li>Effect on Elevon deflection at trim</li> </ul>                                                                                                                    | 25%             |
| <ul> <li>Tail with Elevator</li> </ul>                                                                     | Stability                    | <ul> <li>Static Margin Calculations</li> <li>Trim Moment Deficit Calculations</li> <li>Stall performance</li> <li>Static, dynamic stability</li> </ul>                                                                                                                           | 30%             |
| <ul> <li>Tail with Elevator won out</li> <li>Reduces elevon<br/>deflection</li> </ul>                      | Weight                       | <ul> <li>Weight of supplementary components         <ul> <li>Servos, Spars, Foam</li> </ul> </li> <li>Shift in center of gravity</li> </ul>                                                                                                                                      | 15%             |
| <ul> <li>Used by IRISS</li> <li>Heavier than<br/>Canard though</li> <li>Easy to<br/>manufacture</li> </ul> | Complexity                   | <ul> <li>Supplementary Components</li> <li>Electronics</li> <li>Structure required</li> <li>Manufacturability         <ul> <li>Materials and Methods</li> </ul> </li> <li>Design Optimization             <ul> <li>Expected effort to optimize the design</li> </ul> </li> </ul> | 30%             |



| _                |        |                       |             |                            |        |                       |   |               |   |
|------------------|--------|-----------------------|-------------|----------------------------|--------|-----------------------|---|---------------|---|
| Project Overview | $\geq$ | Design<br>Description | <br>Testing | <br>Systems<br>Engineering | $\geq$ | Project<br>Management | Σ | Backup Slides | 2 |

# **LiDAR Test Stand**



# **LiDAR Test Stand**



## Aerodynamic Test Stand - 3D Printed





## **Custom Battery Progress**

- On Hand:
  - Insulator rings
  - XT90 connectors
  - XT60 connectors
  - MT60 connectors
  - 10 AWG Wire
  - Wire Kapton tape
  - 100x LiPo battery cells

Waiting on R2R approval and balancing cable to begin manufacturing

- Barriers to Progress
  - Balancing cable not delivered
  - Waiting on R2R
  - Spot welding to connect cells
  - Spot welder supplied by IRISS







| Project Overview  |   |
|-------------------|---|
| i roject overview | / |

•

Design Description

Testing

Systems Engineering Project Management

# Manufacturing Extra Control Surfaces

- **Control Surface** 
  - Same material and 0 manufacturing method as horizontal tail
  - Mounted using Z-Tape Ο
- Servo
  - Mounted inset into the 0 horizontal tail
  - Connected to control surface Ο same as wing
- Foam and servo still need to be purchased



Mounting example from the wing

Manufacturing of horizontal tail and control surfaces is scheduled to be completed by Feb 11th



**Project Overview** Description

Design

Testina

Systems Engineering

Project Management

# Manufacturing the Tail

- Cut Foam Horizontal Tail
  - CNC Hot Wire Foam Cutter
  - XPS foam

6 6 3



**Project Overview** 

Design

Description

Testina

- Tail Booms
  - Laser Cut Coroplast
  - 8 mm thick



Project

Management

**Backup Slides** 

Systems

Engineering



## **Aerodynamic Test Stand: Load Cells**

## **Manufacturing Sufficient Brackets**

## Solution:

• Nylon Alloy 3D print bracket for cell to carbon fiber rod

**Project Overview** 

• 90° inner and outer brackets milled from a low carbon ste

Design

Description

Testina

Engineering



Management







## **Aerodynamic Test Stand**



# **Static Propulsion Test Stand**

- Will be assembled by us
- Main Parts
  - Aluminum Extrusion
    - Cut to length/thread ourselves
  - - Cut to size ourselves
  - $\circ$  1" wire screen for front/rear
  - Load Cell/Motor Mount Assembly
    - Lent by DBF

Cutting aluminum extrusion and assembling this week





| Project Overview | $\rightarrow$ | Design      |
|------------------|---------------|-------------|
| ,                | /             | Description |

> Testing

 $\geq$ 

Systems Engineering Project Management

## **Custom Battery Progress**

Still waiting for procurement on 1 major part

- Charging pin (delivery eta: unknown)
- 1. Single simple parallel cell testing (4 cells) Estimated time (1 hour)
- 2. 1st iteration full battery pack (24 cells) Estimated time (1 day)

Waiting on R2R approval to begin manufacturing

### Inventory





# **LiDAR Test Stand**



## **Motor Arm**

- Arm mounts printed out of PETG
  - ~10 hours each
  - Hollow to allow for wire channeling
- Motor arm attaches to wing mount by two horizontal 3mm bolts

To be 3D printed by Feb 5th

S S S IRISS



# Wing Mounting



- Wing mounts printed out of PETG ~12 hours total
- Wing mounts held together by glue and forward & rear 3mm bolts in the wing

One set is printed and ready to begin wing load testing



## **Overview and Scope**

| Component                   | Purchased or<br>Manufactured | Manufacture<br>Time | Completion<br>Date | Status                          |
|-----------------------------|------------------------------|---------------------|--------------------|---------------------------------|
| Drak Wing Kit               | Purchased/Assembled          | ~ 3 days            | Feb 5th-8th        | Waiting on Adhesive             |
| Wing & Motor Mounts         | Manufactured/Printed         | 12 hours            | Jan 30th           | Printed                         |
| Lidar Test Stand            | Purchased/Printed            | 1 hour              | Feb 5th            | Printed, Waiting on<br>Delivery |
| Custom Battery Manufactured |                              | 6 hours             | Feb 3rd            | Waiting on R2R                  |
| Static Test Stand           | Manufactured                 | 3 hours             | Feb 4th            | Waiting on R2R                  |
| Dynamic Test Stand          | Manufactured                 | 4 hours             | Feb 3rd            | Waiting on Delivery             |



Project Overview

Design Description

Testing

Systems Engineering Project Management

## Drak

- Three Drak kits purchased and in our p
  - Backups in case of damage durin Ο
- Extra wing set
  - Test wing mount loading Ο
- Kit includes EPP foam body, coro-plast
- Additional assembly tools
  - Adhesive 0
  - Tape for control surfaces Ο

All Drak kits procured, waiting on adhesive to be delivered To be assembled by Feb 5th-8th





| Project Overview |   | Design      |
|------------------|---|-------------|
| Project Overview | / | Description |

Design

Testina

Engineering

Systems

Project Management

**B B Ø** IRISS

INTEGRATED REMOTE & IN SITU SENSING

| <u>Category</u>                   | <u>Concern</u> | Notes                                                                                          |
|-----------------------------------|----------------|------------------------------------------------------------------------------------------------|
| Dynamic Test Stand                | High           | Primarily safety, Milling and cutting metal, Organizing testing space, Intense data processing |
| Static Test Stand                 | Medium         | Safety, Experience with DBF propulsion testing, Shop work                                      |
| Custom Battery Packs              | Medium         | Shipping parts. Battery pack performance after manufacturing. Safety                           |
| Motor Mounts, and Loading<br>Test | Low            | Uncertainty in FEM causing failure before the required loading.                                |
| Extra Control Surface             | Low            | Tail booms approx. 40 in, Hot wire foam cutting,<br>Optimization Sizing, Ardupilot parameters  |

Testing

Systems

Engineering

Project

Management

Backup Slides

Design

Description

**Project Overview** 



## **Risk Breakdown**

| # | Category      | Description                                                                        | Consequence                                                                                                        | Probability | Impact | Risk Level | Risk Modification Plan                                                                                                                | Residual Risk<br>Level |
|---|---------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------|--------|------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 1 | Autonomy      | Data rate from sensor exceeds pixhawk's<br>capabilities                            | Data overload sent to flight controller, could cause crash on<br>landing or other unpredictable flight performance | Medium      | Medium | Medium     | Simulate sensors and mission aspects, model computing power<br>using desktop hardware, use companion computing device if<br>necessary | Low                    |
| 2 | Endurance     | Accurate model not finished or model results are incorrect to a significant margin | Battery needs are not fully met resulting in reduced<br>endurance or potential failure during flight               | Medium      | Low    | Medium     | Test models against experimental data, refine model to reflect observations to ensure accuracy                                        | Low                    |
| 3 | Structures    | RAPCat integration design                                                          | Structural damage to aircraft/launch vehicle                                                                       | Low         | Medium | Medium     | Ensure clearance of aircraft with regards to RAPCat structure, low intensity test of compatibility                                    | Low                    |
| 4 | Testing       | Scheduling conflicts with pilot                                                    | Less flight testing than desired, unfinished testing                                                               | Low         | Medium | Medium     | Plan flights as far ahead as possible and maintain clear<br>communincation with pilot regarding expectations                          | Low                    |
| 5 | Supply/Struct | Drak kit backordered, potential supply<br>difficulties                             | Would not be able to produce second deliverable for<br>customer, may not have backup parts in case of destruction  | High        | Medium | High       | Utilize IRISS' existing connection with RiteWing to obtain wing kits<br>outside of standard commercial production                     | Medium                 |
| 6 | Autonomy      | Failure to obtain avionics hardware from IRISS                                     | Inability to test computational speeds and fully functional avionics package in first semester                     | Medium      | Low    | Medium     | Simulate sensor output in MissionPlanner, utilize desktop<br>capabilities to ensure functionality                                     | Low                    |
| 7 | Structures    | Material Failure                                                                   | Flight failure, damage to property, personnel injury                                                               | Low         | Medium | Medium     | Ensure accurate materials simulation by obtaining experimental test results to validate design specs                                  | Low                    |

 Design
 Systems
 Project

 Project Overview
 Design
 Testing
 Systems

 Description
 Testing
 Management

# **Risk Breakdown**

| # | Category     | Description                                      | Consequence                                                                                                                      | Probability | Impact | Risk Level | Risk Modification Plan                                                                                                                      | Residual Risk<br>Level |
|---|--------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------|--------|------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|   | Propulsion   | Battery damage during pack assembly              | fire/explosion in battery cells, injury to personnel                                                                             | Low         | High   | High       | Ensure spot welder is only used by properly<br>trained individuals, follow strict safety<br>protocols when working with battery cells       | Medium                 |
|   | Propulsion   | testing safety considerations                    | improper charging, overdrawing current, or<br>undervolting cells may cause permanent<br>damage to cells                          | Medium      | Medium | Medium     | Design test procedures within margin of safety<br>of battery capabilities to ensure they are not<br>exceeding capacity                      | Low                    |
|   | Supply/Prop  | Motors or propellers on backorder/hard to obtain | alternatives may need to be selected that are not ideal component choices                                                        | Medium      | Low    | Medium     | Design margin into propulsion system to allow<br>for varied component selection                                                             | Low                    |
|   | Testing      | Car-top safety considerations                    | Damage to vehicles, test equipment, citations<br>issued for property damage or other unknown<br>reasons (?)                      | Low         | High   | High       | Coordinate with department to create safe<br>testing procedures and equipment, research<br>local laws to ensure legality of test operations | Medium                 |
|   | Structures   | Inaccurate FEM model                             | Possible material failure, could need to redesign parts                                                                          | Medium      | Medium | Medium     | Compare FEM to known models and research<br>minimizing FEM error, continually refine models                                                 | Low                    |
|   | Aerodynamics | Inaccurate CFD                                   | Less performance than predicted from vehicle,<br>additional energy expenditure or increased<br>flight velocity would be required | Medium      | Low    | Medium     | Model CFD against known experimental data,<br>ensure mesh convergence, account for variance<br>between CFD and known data                   | Low                    |



## **Interface Control Overview**

| Hardware                              | Software                         | Electronics                      |
|---------------------------------------|----------------------------------|----------------------------------|
| Tilt Servo must lift motor            | LiDAR RS-232 to Avionics         | Battery to Power Module          |
| Design tail around existing structure | Servo Rail PWM to Servos & ESC's | Power Module to Avionics         |
| RAPCat interfacing                    | Digital Pitot Probe measurement  | Power Module to 3 - ESC's        |
|                                       |                                  | Avionics Servo Rail to Servo/ESC |
|                                       |                                  | Avionics to Pitot-Probe          |
|                                       |                                  |                                  |
|                                       |                                  |                                  |



# Interface Control Overview

#### Battery, Power Module, & ESC

- Battery must provide enough burst current to ESC's
  - Below continuous 100A limit of Power Module
  - Wires must sufficiently carry large current
- Power module output must be split to 3 ESC's
  - Special wiring harness created
- Battery and ESC must interface to Power Module

#### Avionics Board, Servo's, & ESC's

- Servo and ESC PWM signal must run off 5V
- Avionics Servo Rail must match physical wiring
  - Servo Rail output set in Mission Planner
  - Aircraft wiring is labeled for rail outputs 1-8

#### Avionics Board & LiDAR

- LiDAR Required RS-232 Communication W/ 5V
  - Designate COM-5 in MissionPlanner Setup

**Project Overview** 

Design

Description

Testina

Systems

Engineering

Project

Management

