# **VORTEX**

## Vertically Optimized Research, Testing, & EXploration

# **Preliminary Design Review**



Customer: Steve Borenstein Advisor: Donna Gerren Project Manager: Bill Chabot

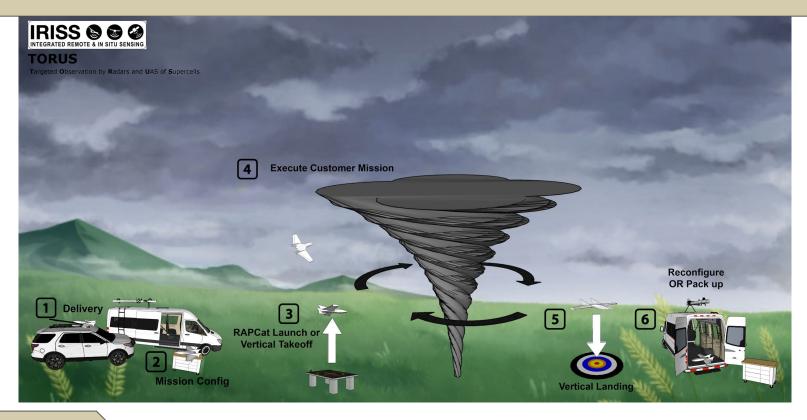
#### <u>Team</u>

Bill Chabot Colton Cline Joseph Rooney Delaney Jones Cameron Kratt Justin Troche

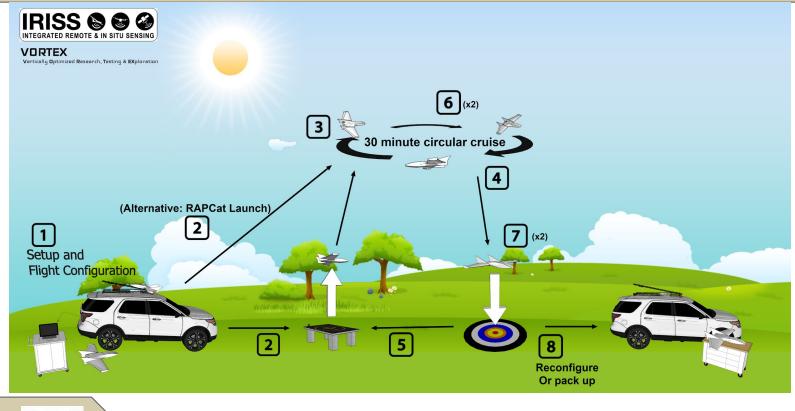
Michael Patterson Mohamed Aichiouene Joseph Buescher Roland Ilyes Brandon Cummings Stephen Albert

# **Project Overview**




In order to expand the capabilities of the IRISS center and TORUS project in gathering meteorological data and understanding the formation of supercell thunderstorms, the VORTEX team will bring Vertical Takeoff and Landing (VTOL) functionality and extended endurance to the RiteWing Drak airframe. By allowing IRISS to operate in previously inaccessible locations such as forest clearings or from the deck of a ship, the study of these storms will be accelerated, contributing to improved accuracy of

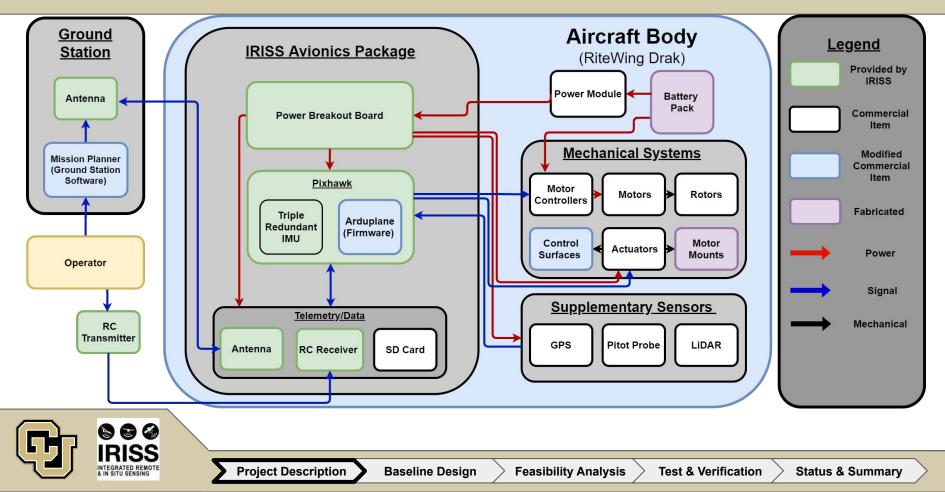



meteorological modeling and forecasts.

## **Use Case CONOPS**

666 IRISS INTEGRATED REMOTE & IN SITU SENSING



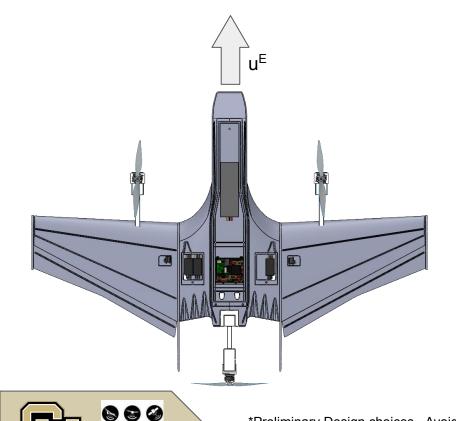

## **Verification CONOPS**



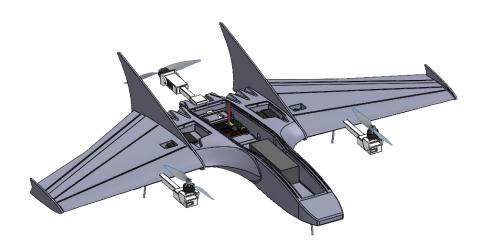


#### 6 6 3 IR INTEGRATED REMOTE & IN SITU SENSING

## **Functional Block Diagram**



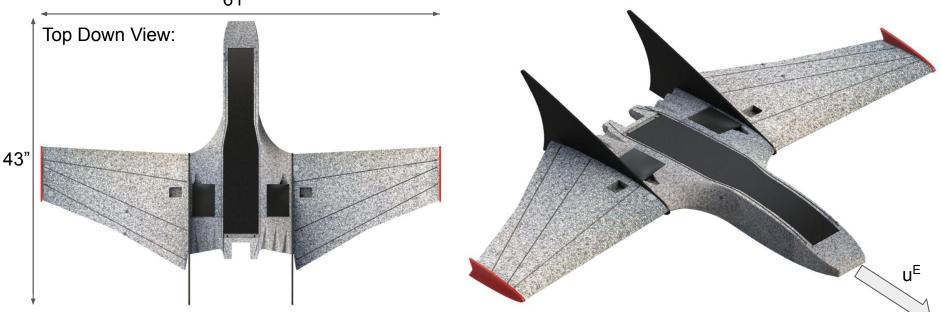

| FR1 | The aircraft shall be a VTOL conversion of the COTS Ritewing RC "Drak" airplane kit                                    |
|-----|------------------------------------------------------------------------------------------------------------------------|
| FR2 | The aircraft shall have an endurance of 1 hour with 2 takeoffs and landings                                            |
| FR3 | The aircraft shall be able to autonomously execute all aspects of its mission from first takeoff through final landing |
| FR4 | The aircraft shall maintain communication with the ground station up to a distance of 2km                              |
| FR5 | The aircraft shall be capable of carrying a 0.5kg payload                                                              |
| FR6 | The aircraft shall be capable of taking off from existing RAPCat launch system                                         |
| FR7 | The airframe, propulsion system, and required mounting hardware shall cost no more than \$1000 per aircraft            |




# **Baseline Design**

## **CAD Assembly with Preliminary Component Choices**




Project Description



- 3 tilt rotors
- Control surface motors
- Avionics package
- ESCs

\*Preliminary Design choices - Avoiding interference with RAPCat Launch system is considered in all aspects

## **Baseline RiteWing Drak Wing Kit**



FR1: The aircraft shall be a VTOL conversion of the COTS Ritewing RC "Drak" airplane kit



10

#### **Design Choices Considered**

| Tilt Rotors  | Tri tilt motor   Quad tilt motor  Quint tilt motor                                                           |
|--------------|--------------------------------------------------------------------------------------------------------------|
| Tail Sitters | Quad motor puller                                                                                            |
| Hybrids      | Quad lift motor <ul> <li>Single cruise motor</li> <li>Tri lift motor</li> <li>Single cruise motor</li> </ul> |
| Tilt Wings   | Inboard motors   Wingtip motors                                                                              |

FR1: The aircraft shall be a VTOL conversion of the COTS Ritewing RC "Drak" airplane kit

FR5: The aircraft shall be capable of carrying a 0.5 kg payload.

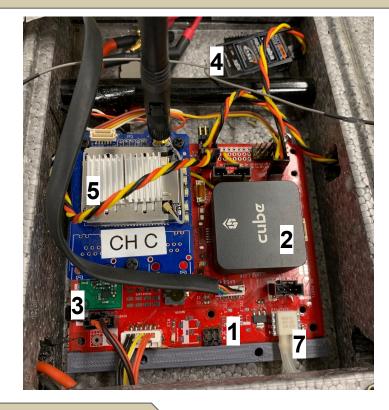
FR6: Aircraft shall be capable of taking off from existing RAPCat launch system.



## VTOL Configuration (cont.)

#### Selected Baseline Design: Tri Tilt Motor

#### **Design Choice Reasoning**


- Provides the necessary hover control and cruising efficiency
- Tilting motors can provide thrust in horizontal and vertical flight
- Minimizes added complexity and weight of additional motors
- Utilizes existing rear motor mounting capability



#### A tri-motor aircraft



## **Provided Avionics Package**



#### What's Included

- 1. IRISS custom PCB (red)
- 2. HexCube Black
- 3. Power conditioning circuits
- 4. S-bus receiver
- 5. Telemetry package
- 6. GPS (not pictured)
- 7. Pitot tube

FR4: The aircraft shall maintain communication with the ground station up to a distance of 2km (maintaining communication is indicated by <50% packet loss).



Project Description

## **Flight Controller Firmware**

#### **Design Choices Considered**

- Ardupilot
- PX4
- iNav
- PaparazziUAV



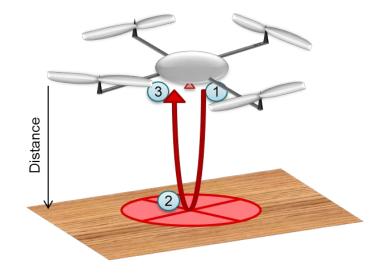
FR3: The aircraft shall be able to autonomously execute all aspects of its mission from takeoff through landing.



#### Selected Baseline Design: Ardupilot

#### **Design Choice Reasoning**

- Substantial documentation for flight control of various aircraft configurations
- Ardupilot forums contain abundant resources for handling VTOL aircraft and transitions
- Open source code using GPLv3
- Already used by the IRISS team
  - Easier to integrate the VTOL UAV into the existing fleet






## Landing Sensor Package

#### **Design Choices Considered:**

- LIDAR
- Micro Radar
- Sonar



# FR3: The aircraft shall be able to autonomously execute all aspects of its mission from takeoff through landing.



Selected Baseline Design: LeddarOne LiDAR\*

#### **Design Choice Reasoning**

- Ease of integration with current avionics package and ArduPilot
- Cost falls within budgetary constraints
- Provides reliable, accurate measurements that are less susceptible to environmental disturbances
- Satisfies the requirements of the project



| Accuracy         | 0 - 40m  |
|------------------|----------|
| Acquisition Rate | 140Hz    |
| Beam Diffusion   | 3-degree |
| Protocol         | UART     |



\*Preliminary Design choice ~ example of desired attributes

## **Battery Chemistry**

#### **Design Choices Considered**

- Li-lon
- Li-Po
- NiMH
- NiCd
- LiFePO<sub>4</sub>



#### FR2: The aircraft shall have an endurance of one hour in addition to two takeoffs and landings.



#### Selected Baseline Design: Lithium-Ion

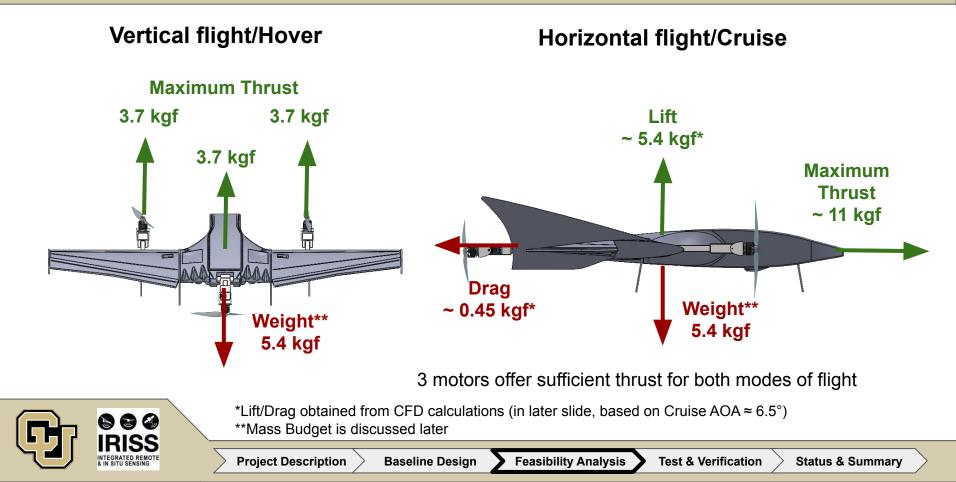
#### **Design Choice Reasoning**

- Readily available at a reasonable cost
- Provide a high energy density while maintaining the lowest weight
- Provides reasonable current discharge
- Industry standard. Large market (variability and customizability)
- Well tested and quantified, used in many applications



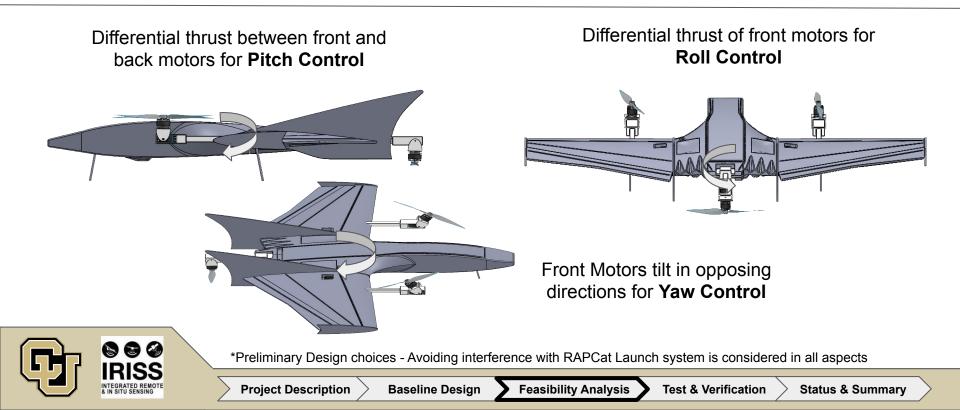
Lithium Ion Batteries



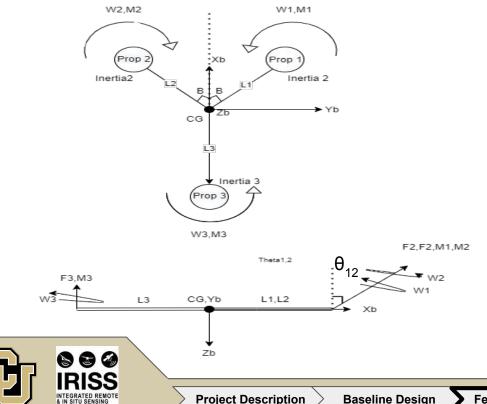

Project Description **Baseline Design** 

# **Feasibility Analysis**

## **Summary of Feasibility Analyses**


| System                        | Feasible | Reasoning                                                                                                                 |  |
|-------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------|--|
| VTOL<br>Configuration         | ?        | Configuration is modeled to be stable in both flight modes -<br>Manufacturing complexity is manageable                    |  |
| Flight Controller<br>Firmware | ?        | Capable of autonomous flight profiles using chosen VTOL configuration -<br>Interfaces with external sensors               |  |
| Mass                          | ?        | Propulsion system is capable of providing enough thrust for VTOL                                                          |  |
| Power                         | ?        | Battery pack provides enough power/current for motors -<br>Motor and propeller sizing is achievable and readily available |  |
| Endurance                     | ?        | Battery pack can provide required energy for flight time required in vertical and horizontal flight                       |  |
| Cost                          | ?        | Replication cost is within allotted budget                                                                                |  |



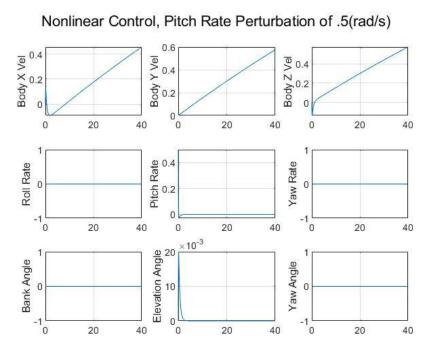



## **VTOL Configuration - Hover Stability**

The tri-tilt motor configurations needs to maintain steady-level hover when landing or taking off. A basic dynamic model was derived to prove its feasibility.



#### Creating the model using Aircraft Dynamics, trim condition is steady level hover.




#### The Process

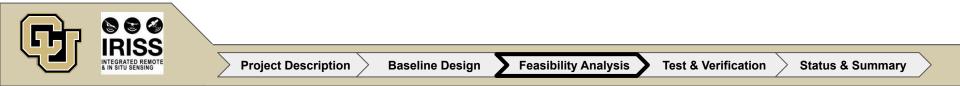
- Net moments and forces found from free body diagrams
- Thrust and tilt angle to achieve trim conditions
- Linear Proportional gain control applied to nonlinear equations
- Nonlinear Aircraft Dynamics equations solved using numerical integrator

## **VTOL Configuration: Hover Stability, Results and Verification**

#### <u>Results</u>



#### **Verification**


- Steady trim condition is met (L,M,N=0)
- Lack of derivative/integral control is apparent
- Analysis uses code taught by Professor Lawrence (ASEN 3128)
- Only difference was FBD forces/moments. Which were verified



#### **Conclusions:**

- <u>Capable of rotational stability</u> in the face of wind and other perturbations
- Two tilting motors is a valid method of controllability, and meets lift capability requirements
- Incapable of navigation without additional integral/navigation control
- ArduPilot can handle this, uses Kalman filters, PID control, guidance feedback loop

Hover Stability is feasible with this configuration, and the chosen flight controller is capable of controlling it.



## Flight Controller Firmware (Ardupilot) Feasibility

#### **Configuration Resources**

- Support for elevon control with gain calibration
- Tricopter motor tilting and frame setup
- Mode transition and integration support







Project Description > Baseline Design

Feasibility Analysis

y Analysis 💙 Test

**Test & Verification** 

Status & Summary

## Flight Controller Firmware (Ardupilot) Feasibility



#### Mission Resources

- Graphic User Interface (GUI) with waypoints and events called Mission Planner
- Autonomous Takeoffs & Landings at GPS coords.
- Includes Loiter function desired by customer

#### **Developer Resources**

- Open source code
- Assistance in learning, testing, and debugging code
- Integrating companion computers as well as a huge amount of additional hardware



## **Ardupilot Feasibility - Tilt Rotor Example**

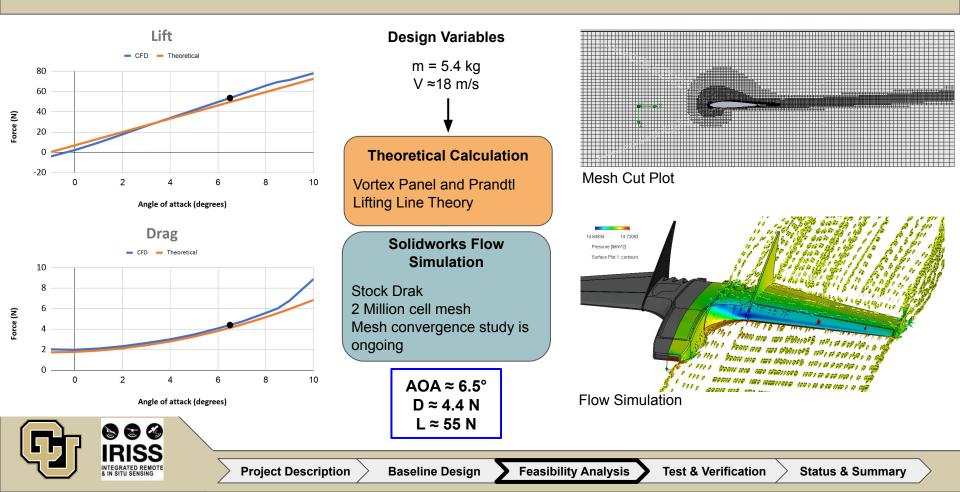


The firmware is feasible for the chosen flight configuration and mission profile

# **FFF**

#### Source: https://youtu.be/WMh8BiOLrns

Project Description > Bas


Baseline Design Feas

Feasibility Analysis

s **Y** Test & Verification

Status & Summary


## **Endurance Verification Part 1 - Drag Estimation**



## **Endurance Verification Part 2 - Propulsion Specifications**

|                      | SunnySky                                 | <b>&amp; Props (</b><br>/ X Series V3<br>(APC 14x)</th <th>3 X3520</th> <th>Samsung</th> <th><b>es (total)</b><br/>40T 21700<br/>Ah 35A*</th> <th>3.5</th> | 3 X3520             | Samsung           | <b>es (total)</b><br>40T 21700<br>Ah 35A* | 3.5                                                    |
|----------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------|-------------------------------------------|--------------------------------------------------------|
|                      |                                          |                                                                                                                                                            |                     | Based on          | 4s8p pack                                 | Y Y Y                                                  |
| Flight<br>Mode       | Thrust<br>Required                       | Power<br>Required                                                                                                                                          | Current<br>Required | Total<br>Capacity | Estimated<br>Life                         | (jg) 2.5<br>ts 2<br>H H 1.5                            |
| VTOL<br>flight       | 2.75 kgf**                               | 603.8 W                                                                                                                                                    | 40.8 A              | 32 Ah             | 15.6 min                                  | 0.5 Motor Data<br>Vertical Thrust<br>Horizontal Thrust |
| Horizontal<br>Cruise | 0.25 kgf**                               | 35 W                                                                                                                                                       | 2 A                 | 32 Ah             | 320 min                                   | 0 10 20 30 40 50 60 70<br>Current draw (A)             |
|                      | *Placeholder co<br>**Based on 1.5        |                                                                                                                                                            |                     | Сара              | acity [Ah]                                | Remaining Battery = 17%<br>8 minutes of VTOL flight    |
|                      |                                          | Endurance [h] =                                                                                                                                            |                     | [h] = Cur         | rent [A]                                  | 60 minutes of Horizontal Cruise                        |
|                      | RISS<br>EGRATED REMOTE<br>I SITU SENSING | Project Des                                                                                                                                                | cription B          | aseline Design    | Feasibility A                             | Analysis Test & Verification Status & Summary          |

Samsung 40T Lithium ion battery cell



- Customized battery pack
- Optimizable

6 6 3

#### 4 series 8 parallel battery pack

Meets expected motor voltage, current, and capacity

### **Battery Design and Estimations**

|                         | Per cell         | Total pack                               |  |  |  |  |
|-------------------------|------------------|------------------------------------------|--|--|--|--|
| Size<br>(L x W x Z)     | 21 x 21 x 70.0mm | 84 x 147 x 70.0mm<br>(3.3 x 5.8 x 2.7in) |  |  |  |  |
| Reviewed<br>Capacity    | 3800 mAh         | 30,400 mAh                               |  |  |  |  |
| Reviewed<br>Max Current | 25 A             | 200 A                                    |  |  |  |  |
| Weight                  | 67 g             | 2,144 g                                  |  |  |  |  |
| Cost                    | \$5.75           | \$184                                    |  |  |  |  |

## **VTOL Configuration: Mass Budget**

Grand total: 5391.7g

|            | Component        | Mass (grams) | Quantity | Total Mass<br>(grams) | Margin<br>(grams) |
|------------|------------------|--------------|----------|-----------------------|-------------------|
| Essentials | IRISS Board      | 70           | 1        | 70                    | 0.7               |
|            | Hex Cube         | 35           | 1        | 35                    | 0.35              |
|            | Telemetry Radio  | 58           | 1        | 58                    | 0.58              |
| Structure  | Drak Kit         | 1440         | 1        | 1440                  | 14.4              |
|            | Elevon Servos    | 11.2         | 2        | 22.4                  | 0.224             |
| Propulsion | Batteries        | 66.8         | 32       | 2137.6                | 21.376            |
|            | Front Motors     | 219          | 2        | 438                   | 4.38              |
|            | Back Motor       | 219          | 1        | 219                   | 2.19              |
|            | ESCs             | 60.1         | 3        | 180.3                 | 1.803             |
|            | Front Servos     | 61           | 2        | 122                   | 1.22              |
|            | Back servo       | 61           | 1        | 61                    | 0.61              |
|            | Front Propellers | 20           | 2        | 40                    | 0.4               |
|            | Back Propeller   | 20           | 1        | 20                    | 0.2               |
| Payload    |                  | 500          | 1        | 500                   |                   |
| Total      |                  |              |          | 5343.3                | 48.4              |

Mass Budget is below propulsion system capabilities, showing feasibility



 Initial

 Initial

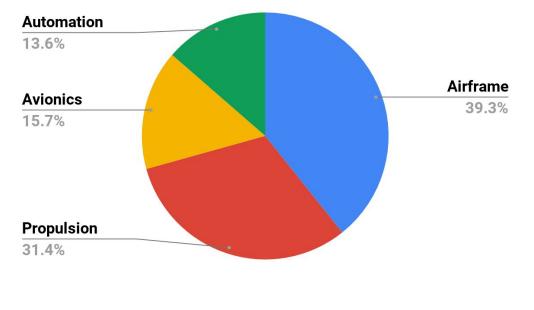
 Initial

 Initial

 Initial

 Initial

Project Description > Bas


Baseline Design Feasibility Analysis

alysis 🔰 Test & Verification

n > Status & Summary

| System     | Cost  |
|------------|-------|
| Airframe   | \$375 |
| Propulsion | \$300 |
| Avionics   | \$150 |
| Automation | \$130 |
| Total      | \$955 |
| Excess     | \$45  |

### Unit Cost Breakdown





## **Summary of Baseline Design and Feasibility**

| System                        | Feasible | Reasoning                                                                                                                 |  |  |
|-------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------|--|--|
| VTOL<br>Configuration         | Yes      | Configuration is modeled to be stable in both flight modes -<br>Manufacturing complexity is manageable                    |  |  |
| Flight Controller<br>Firmware | Yes      | Capable of autonomous flight profiles using chosen VTOL configuration -<br>Interfaces with external sensors               |  |  |
| Mass                          | Yes      | Propulsion system is capable of providing enough thrust for VTOL                                                          |  |  |
| Power                         | Yes      | Battery pack provides enough power/current for motors -<br>Motor and propeller sizing is achievable and readily available |  |  |
| Endurance                     | Yes      | Battery pack can provide required energy for flight time required in vertical and horizontal flight                       |  |  |
| Cost                          | Yes      | Replication cost is within allotted budget                                                                                |  |  |



## **Testing and Verification**

# **Testing and Verification**

| Functional Requirement | Test 1                                                                                                                                               | Test 2                                                                                                                                                              | Test 3                                                                                      |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| FR1: VTOL Conversion   | <u>Thrust Validation:</u> Show in static<br>testing that propulsion system can<br>produce sufficient thrust to lift<br>aircraft                      | Flight Test: Demonstrate<br>transition to horizontal mode<br>from takeoff and back to vertical                                                                      |                                                                                             |
| FR2: Endurance         | <u>Static Test:</u> Verify that the aircraft can run for 1 hour while statically mounted.                                                            | <u>Hover Endurance:</u> Perform a tethered hover for 4 minutes or until failure.                                                                                    | <u>Flight Endurance:</u> Perform a full mission demonstration as outlined in the CONOPS.    |
| FR3: Autonomy          | <u>Flight Controller Verification:</u><br>Verify that the flight controller can<br>command the aircraft's control<br>surfaces and propulsion system. | <u>Mission Verification:</u><br>While mounted, show that the<br>flight controller can execute full<br>mission profile including<br>transitions without pilot input. | <u>Vertical Accuracy Verification:</u><br>Show that the LiDAR data is<br>accurate to <10cm. |



| Functional Requirement | Test 1                                                                                                                                      | Test 2                                                                                                                                                          |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FR4: Communication     | <u>Ground Test:</u> Show that the Ground Station can receive telemetry data up to 2 km with <50% packet loss.                               | Data Verification: Verify that the received data matches the data stored on the onboard SD card.                                                                |
| FR5: Payload           | <u>Validation:</u> All verification tests involving<br>flight, power, or endurance will be performed<br>with and without the 0.5kg payload. |                                                                                                                                                                 |
| FR6: RAPCat            | <u>Compatibility Verification:</u> Without launching, show that the modified Drak is capable of interfacing with the RAPCat launch system.  | <u>Force Analysis:</u><br>Using models, show that the aircraft can<br>withstand axial loading of 5G and vertical<br>loading of 10G without plastic deformation. |



# **Status Summary and Strategy**

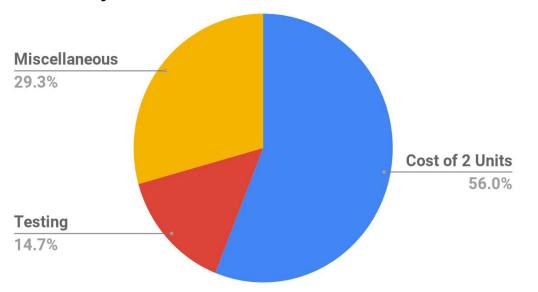
#### **Schedule and Gantt Chart**

INTEGRATED REMOTE & IN SITU SENSING

**Project Description** 

VORTEX Gantt Chart

| Task name                             | Task<br>Number | Start<br>date | Finish<br>date | Owner   | Dependency |            |        |               | ct 5 | Oct 12 | Oct 19 | Oct 26 | Nov 2 | Nov 9  | Nov 16 | Nov 23 |
|---------------------------------------|----------------|---------------|----------------|---------|------------|------------|--------|---------------|------|--------|--------|--------|-------|--------|--------|--------|
| •                                     |                |               |                |         |            | MTWR       | FMT    | WRFMT         | WRF  | MTWRF  | MTWR   | FMTWRF | MTWRE | FMTWRF | MTWRF  | MTWR   |
| Aerodynamics                          |                | 9/16          | 11/23          | Delaney |            |            |        |               |      |        | _      |        |       |        |        |        |
| Initial CFD Model Development         | 1              | 9/16          | 9/21           | Michael | 1          | 4          |        |               |      |        |        |        |       |        |        |        |
| Preliminary Lift/Drag Estimates       | 2              | 9/21          | 9/28           | Michael |            |            |        |               |      |        |        |        |       |        |        |        |
| CFD Refinement                        | 3              | 9/28<br>9/16  | 11/18<br>11/23 | Delaney | 2          | -          | 6      |               |      |        |        |        |       |        |        |        |
| Autonomy/Controls                     |                |               |                | Roland  |            |            |        |               |      |        | _      |        |       |        |        |        |
| Firmware Selection                    | 4              | 9/16          | 9/25           | Joe     |            |            |        |               |      |        |        |        |       |        |        |        |
| Sensor Selection                      | 5              | 9/16          | 9/25           | Roland  |            |            |        |               |      |        |        |        |       |        |        |        |
| Sensor Testing                        | 6              | 10/16         | 11/23          | Mo      | 5          |            |        |               |      |        |        |        |       |        |        |        |
| Firmware Configuration/Simulation     | 7              | 10/16         | 11/23          | Joe B   | 4          |            |        |               |      | >      |        |        |       |        |        |        |
| Avionics                              |                | 9/16          | 11/23          | Cam     |            |            |        |               |      |        |        |        |       |        |        |        |
| IRISS Board Testing                   | 8              | 10/16         | 11/23          | Joe     |            |            |        |               |      |        |        |        |       |        |        |        |
| Servo Selection                       | 9              | 10/13         | 11/3           | Cam     |            |            |        |               |      |        |        |        |       |        |        |        |
| Propulsion                            |                | 9/23          | 11/23          | Brandon |            |            |        |               |      |        |        |        |       |        |        |        |
| Endurance Estimation                  | 10             | 9/23          | 9/25           | Michael |            |            |        |               |      |        |        |        |       |        |        |        |
| Preliminary Motor/Propeller Selection | 11             | 9/25          | 10/7           | Brandon | 10         |            |        |               |      |        |        |        |       |        |        |        |
| Preliminary Battery Selection         | 12             | 9/25          | 10/7           | Brandon | 10         | 6          | •      |               |      |        |        |        |       |        |        |        |
| Structures                            |                | 9/30          | 11/23          | Stephen |            |            |        |               |      |        |        |        |       |        |        |        |
| CAD Model                             | 13             | 9/30          | 10/9           | Michael |            |            |        |               |      |        |        |        |       |        |        |        |
| Motor Mount Design                    | 14             | 10/5          | 11/16          | Stephen |            |            |        |               |      |        |        |        |       |        |        |        |
| Tilt Mechanism Design                 | 15             | 10/7          | 11/16          | Joe R   |            |            |        |               |      |        |        |        |       |        |        |        |
| Landing Gear Design                   | 16             | 10/9          | 11/9           | Joe R   |            |            |        |               |      |        |        |        |       |        |        |        |
| Safety & Testing                      |                | 10/7          | 11/23          | Colton  |            |            |        |               |      |        |        |        |       |        |        |        |
| Test Development and Scheduling       | 17             | 10/7          | 11/23          | Colton  |            |            |        |               |      |        |        |        |       |        |        |        |
| Full Team                             |                | 9/16          | 12/7           |         |            |            |        |               |      |        |        |        |       |        |        |        |
| CDD Due                               |                |               | 9/28           |         |            |            | •      |               |      |        |        |        |       |        |        |        |
| PDR Due                               |                |               | 10/12          |         |            |            |        |               |      | •      |        |        |       |        |        |        |
| CDR Due                               |                |               | 11/23          |         |            |            |        |               |      |        |        |        |       |        |        | •      |
|                                       |                |               |                |         |            |            | Legend |               |      |        |        |        |       |        |        | •      |
|                                       |                |               |                |         |            | Complete   | -      | Needs immedia | te   |        |        |        |       |        |        |        |
|                                       |                |               |                |         |            | Complete   |        | attention     |      |        |        |        |       |        |        |        |
|                                       |                |               |                |         |            | On track   | •      | Milestone     |      |        |        |        |       |        |        |        |
|                                       |                |               |                |         |            | In trouble |        |               |      |        |        |        |       |        |        |        |
| 60                                    |                |               |                |         |            |            |        |               |      |        |        |        |       |        |        |        |
|                                       |                |               |                |         |            |            |        |               |      |        |        |        |       |        |        |        |


**Baseline Design** 

**Feasibility Analysis** 

**Test & Verification** 

| System        | Cost    |
|---------------|---------|
| Unit Cost x2  | \$1,910 |
| Testing       | \$500   |
| Miscellaneous | \$1,000 |
| Total         | \$3,410 |
| Excess        | \$1,590 |

#### **Total Project Cost Breakdown**





#### Acknowledgements

- VORTEX would like to thank Dr. G for her support and advice through the design development process.
- Thanks to Dakota Labine, Colin Claytor, and the WASP team for their feedback during PDR.
- Thanks to Danny Liebert, Dr Argrow, and Chris Klick for feedback on modeling and CFD.
- Thanks to Chris Choate and Michael Rhodes for meeting with us, providing a Drak kit for VORTEX to have on-hand, and answering dozens of questions about the Drak and RAAVEN.



"Archived: Advanced MultiCopter Design." *Archived: Advanced MultiCopter Design - Copter Documentation,* ardupilot.org/copter/docs/advanced-multicopter-design.html.

"ArduPilot." ArduPilot Documentation - ArduPilot Documentation, ardupilot.org/ardupilot/.

"BudgetLightForum.com." *Test/Review of Samsung INR21700-40T 4000mAh (Cyan)* | *BudgetLightForum.com*, budgetlightforum.com/node/62458.

"New Photo by Mark Whitehorn." *Google Photos*, Google, photos.google.com/share/AF1QipMJug81BLY1Wxtn136p5vZDixWOVy9ZMj3QAJvK4bMcUXS4gH5L69HPNeyROhdlbA ?key=alVqYlZrVmlTZVVWNTdSQ1BtVjl4QlJ0aDBGZV9B.

"Pixhawk 2." ProfiCNC, www.proficnc.com/.

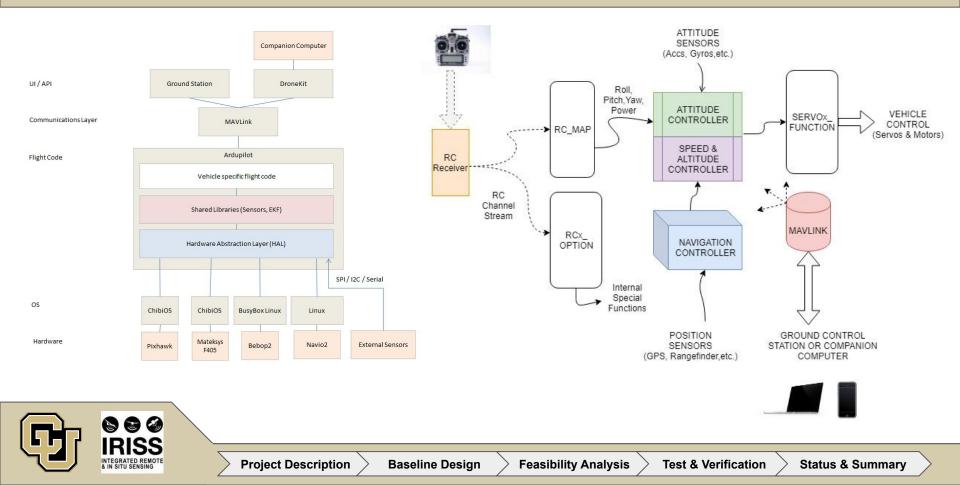
"QuadPlane Support." QuadPlane Support - Plane Documentation, ardupilot.org/plane/docs/quadplane-support.html.



"Samsung 40T 21700 4000mAh 35A Battery - INR21700-40T." *18650BatteryStore.Com*, www.18650batterystore.com/21700-p/samsung-40t.html.

"SunnySky X Series V3 X3520 V3 Brushless Motors." *SunnySky USA*, sunnyskyusa.com/collections/x-v3-motors/products/sunnysky-x3520.

VTOL, gregcovey.com/vtol.html.


"What's the Best Battery?" Advantages and Limitations of the Different Types of Batteries - Battery University, batteryuniversity.com/learn/archive/whats\_the\_best\_battery.



# **Thank You**

# **Backup Slides**

#### **Ardupilot Feasibility- FBD**



# **Backup Slides - VTOL Configuration Trade Study A**

| Criteria                   | Weight |      | Option | s     |
|----------------------------|--------|------|--------|-------|
| Criteria                   | Weight | Tri  | Quad   | Quint |
| Risk                       | 20     | 2.5  | 2.5    | 2     |
| Manufacturing / Complexity | 15     | 4    | 3      | 2     |
| Weight                     | 10     | 4    | 3      | 1     |
| Hover Controllability      | 20     | 5    | 5      | 4     |
| Cruise Efficiency          | 30     | 4    | 3      | 2     |
| Cost                       | 5      | 3    | 2      | 1     |
| Total                      | 100    | 3.85 | 3.25   | 2.25  |









**Project Description** 

**Baseline Design** 

**Feasibility Analysis** 

# **Backup Slides - VTOL Configuration Trade Study B**

| Criteria                   | Weight | Options |             |             |        |  |  |  |  |
|----------------------------|--------|---------|-------------|-------------|--------|--|--|--|--|
| Criteria                   | weight | Quad    | Double Push | Double Pull | Single |  |  |  |  |
| Risk                       | 20     | 2       | 1.5         | 4           | 1      |  |  |  |  |
| Manufacturing / Complexity | 15     | 1.5     | 1           | 4           | 5      |  |  |  |  |
| Weight                     | 10     | 2.5     | 2.5         | 4           | 5      |  |  |  |  |
| Hover Controllability      | 20     | 3.5     | 1           | 2           | 1      |  |  |  |  |
| Cruise Efficiency          | 30     | 2.5     | 4           | 4.5         | 5      |  |  |  |  |
| Cost                       | 5      | 2       | 4           | 4           | 3      |  |  |  |  |
| Total                      | 100    | 2.43    | 2.30        | 3.75        | 3.30   |  |  |  |  |





Project Description > Base

Baseline Design

**Feasibility Analysis** 

lysis > Test &

Test & Verification > St

Status & Summary

# **Backup Slides - VTOL Configuration Trade Study C**

| Criteria                   | Weight | Options                            |      |  |
|----------------------------|--------|------------------------------------|------|--|
| Criteria                   | weight | 4L1Ĉ<br>4<br>2<br>1<br>5<br>1<br>1 | 3L1C |  |
| Risk                       | 20     | 4                                  | 4    |  |
| Manufacturing / Complexity | 15     | 2                                  | 3    |  |
| Weight                     | 10     | 1                                  | 2    |  |
| Hover Controllability      | 20     | 5                                  | 5    |  |
| Cruise Efficiency          | 30     | 1                                  | 2    |  |
| Cost                       | 5      | 1                                  | 2    |  |
| Total                      | 100    | 2.55                               | 3.15 |  |



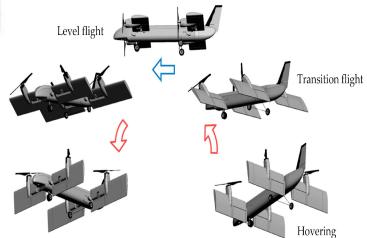




**Project Description** 

**Baseline Design** 

**Feasibility Analysis** 


**Test & Verification** 

Status & Summary

# **Backup Slides - VTOL Configuration Trade Study D**

| Criteria                   | Weight | Options        |                |  |  |  |  |
|----------------------------|--------|----------------|----------------|--|--|--|--|
| Criteria                   | Weight | Inboard Motors | Wingtip Motors |  |  |  |  |
| Risk                       | 20     | 1              | 1              |  |  |  |  |
| Manufacturing / Complexity | 15     | 1              | 1              |  |  |  |  |
| Weight                     | 10     | 3              | 2.5            |  |  |  |  |
| Hover Controllability      | 20     | 2.5            | 3              |  |  |  |  |
| Cruise Efficiency          | 30     | 5              | 5              |  |  |  |  |
| Cost                       | 5      | 2              | 2              |  |  |  |  |
| Total                      | 100    | 2.75           | 2.80           |  |  |  |  |







**Project Description** 

**Baseline Design** 

**Feasibility Analysis** 

**Test & Verification** 

**Status & Summary** 

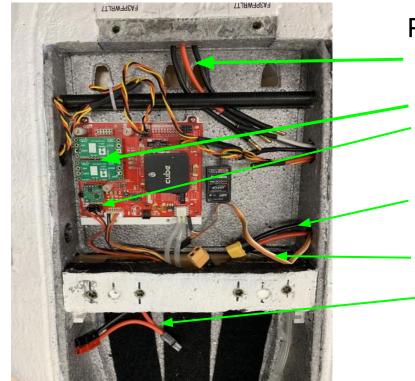
# **Backup Slides - VTOL Configuration Trade Study E**

| Options | Tri Tilt Rotor | Double Pull Tail-sitter | 3L1C Hybrid | Wingtip Motor Tilt Wing |
|---------|----------------|-------------------------|-------------|-------------------------|
| Score   | 3.85           | 3.75                    | 3.15        | 2.80                    |





**Project Description** 


**Baseline Design** 

**Feasibility Analysis** 

**Test & Verification** 

Status & Summary

#### **Provided Avionics Package (cont.)**



# **POWER Distribution**

- Power cables to motor from ESC 3-phase power
- 12V-0 and 3.3 V convertors on supplied board
- Power going into the board: stock Power module from PixHawk to provided avionics board
- Power to ESC from PixHawk Power Module; we will want to Consider a Power Distribution Board(PDB)
- ESC communication and control from PixHawk(More)
- Cables for 2 batteries in series going PixHawk Power Module

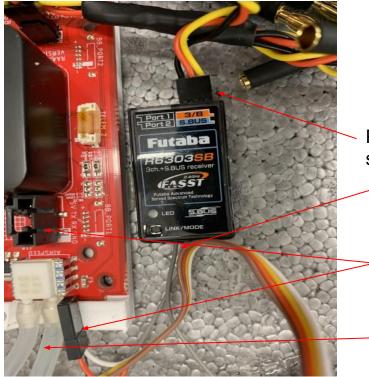




6 6 6

# **Provided Avionics Package (cont.)**

#### HexCube Black Features:


- 3x Inertial measurement unit (IMU)
- 2x Internal Barometer
- 14 PWM / Servo outputs (8 with failsafe and manual override, 6 auxiliary, high-power compatible)
- Many options for additional peripherals using UART, I2C, CAN
- 32bit STM32F427 Cortex-M4F® core with FPU



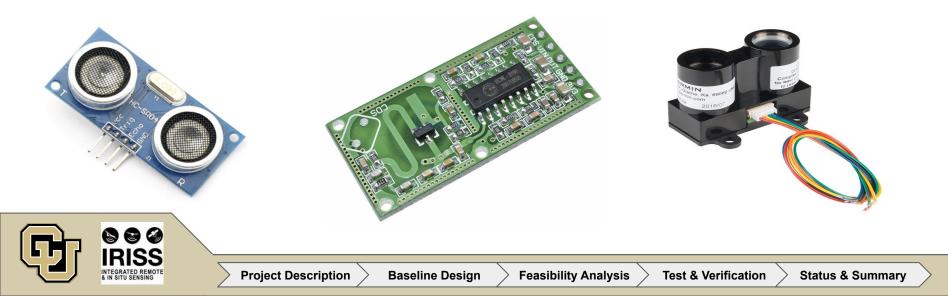


| Project Description | $\geq$ | Bas |
|---------------------|--------|-----|
|---------------------|--------|-----|

#### **Provided Avionics Package (cont.)**



- Power to Receiver and output for conventional system to distribution Board
  - Antennas Again


Cable to Singular ESC

Pitot Probe tubes and interface to board, not valuable during flight; Used for validation of data in post processing



# **Backup Slides - Landing Sensor Trade Study**

| Criteria                 | $\mathbf{W}_{\alpha}$ : whet $(07)$ | Options |             |       |  |  |  |  |
|--------------------------|-------------------------------------|---------|-------------|-------|--|--|--|--|
| Criteria                 | Weight (%)                          | LiDAR   | Micro Radar | Sonar |  |  |  |  |
| Complexity               | 25                                  | 3       | 3           | 3     |  |  |  |  |
| Accuracy and Consistency | 25                                  | 4       | 5           | 2     |  |  |  |  |
| Size & Weight            | 20                                  | 5       | 3           | 5     |  |  |  |  |
| Resiliency               | 15                                  | 4       | 5           | 2     |  |  |  |  |
| Cost                     | 15                                  | 5       | 3           | 5     |  |  |  |  |
| Total                    | 100                                 | 4.1     | 3.8         | 3.3   |  |  |  |  |



| Critaria                    | Wainlet | Options |        |      |      |         |  |  |  |
|-----------------------------|---------|---------|--------|------|------|---------|--|--|--|
| Criteria                    | Weight  | Li-Po   | Li-ion | NiMH | NiCd | LiFePO4 |  |  |  |
| Discharge Rate (per cell)   | 25      | 5       | 2      | 2    | 3    | 3       |  |  |  |
| Energy Density              | 25      | 2       | 4      | 2    | 1    | 2       |  |  |  |
| Cost battery (per cell)     | 20      | 3       | 2      | 4    | 3    | 2       |  |  |  |
| Lifespan (discharge cycles) | 20      | 1       | 4      | 3    | 4    | 5       |  |  |  |
| Safety                      | 15      | 2       | 4      | 5    | 3    | 4       |  |  |  |
| Total                       | 100     | 2.85    | 3.3    | 3.15 | 2.85 | 3.25    |  |  |  |



# **Backup Slides - Flight Controller Firmware Trade Study**

| Criteria                     | Weight | Options   |     |      |              |  |  |  |  |  |
|------------------------------|--------|-----------|-----|------|--------------|--|--|--|--|--|
| Criteria                     | Weight | Ardupilot | PX4 | iNav | PaparazziUAV |  |  |  |  |  |
| Functionality                | 30     | 4         | 4   | 3    | 5            |  |  |  |  |  |
| Resources and User Interface | 30     | 5         | 5   | 3    | 3            |  |  |  |  |  |
| Customer Preference          | 25     | 5         | 3   | 1    | 1            |  |  |  |  |  |
| Hardware/Software Interface  | 15     | 5         | 4   | 3    | 3            |  |  |  |  |  |
| Total                        | 100    | 4.7       | 4.1 | 2.5  | 3.1          |  |  |  |  |  |



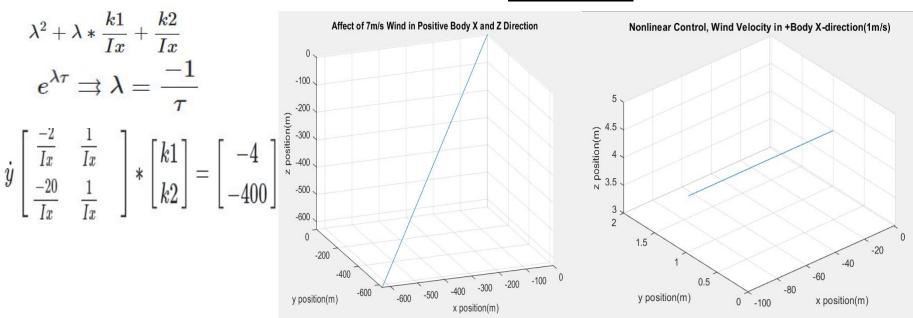






**Project Description** 

n 〉 🛛 Baseline Design


> Feasibility Analysis

alysis > Test &

Test & Verification > Statu

Status & Summary

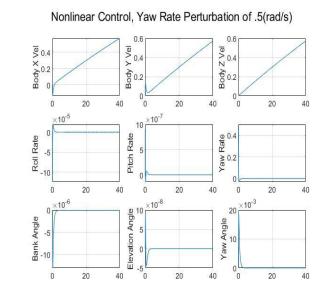
#### **Backup Slides: VTOL Configuration, Hover Stability**



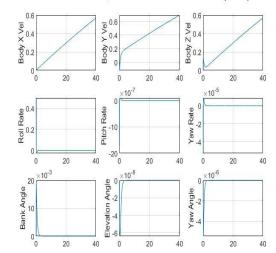
Effect of Wind

Heavy winds greatly affect inertial position of the craft




# **Backup Slides: VTOL Configuration, Hover Stability**

$$\begin{array}{c} X_{0} + \Delta X - mg(\sin\theta_{0} + \Delta\theta\cos\theta_{0}) = m\Delta u & (a) \\ Y_{0} + \Delta Y + mg(\cos\theta_{0} - \omega_{0}) = m(b + u_{0}r) & (b) \\ Z_{0} + \Delta Z + mg(\cos\theta_{0} - \Delta\theta\sin\theta_{0}) = m(b + u_{0}r) & (c) \\ I_{0} + \Delta H - I_{1}\rho - I_{2}r' & (a) \\ N_{0} + \Delta N - I_{n}\rho + I_{1}r' & (c) \\ \theta = q & (a) \\ \varphi = p + r \tan\theta_{0} \quad p = \phi - \psi \sin\theta_{0} & (b) \\ \psi = r \sec\theta_{0} & (c) \\ Z_{n} = (u_{0} + \Delta u) \sin\theta_{0} + u_{0}\Delta\theta \sin\theta_{0} + w \sin\theta_{0} & (c) \\ Z_{n} = (u_{0} + \Delta u) \sin\theta_{0} - u_{0}\Delta\theta \cos\theta_{0} + w \cos\theta_{0} & (c) \\ Z_{n} = (u_{0} + \Delta u) \sin\theta_{0} - u_{0}\Delta\theta \cos\theta_{0} + w \cos\theta_{0} & (c) \\ Z_{n} = (u_{0} + \Delta u) \sin\theta_{0} - u_{0}\Delta\theta \cos\theta_{0} + w \cos\theta_{0} & (c) \\ Z_{n} = (u_{0} + \Delta u) \sin\theta_{0} - u_{0}\Delta\theta \cos\theta_{0} + w \cos\theta_{0} & (c) \\ Z_{n} = (u_{0} + \Delta u) \sin\theta_{0} - u_{0}\Delta\theta \cos\theta_{0} + w \cos\theta_{0} & (c) \\ Z_{n} = (u_{0} + \Delta u) \sin\theta_{0} - u_{0}\Delta\theta \cos\theta_{0} + w \cos\theta_{0} & (c) \\ Z_{n} = (u_{0} + \Delta u) \sin\theta_{0} - u_{0}\Delta\theta \cos\theta_{0} + w \cos\theta_{0} & (c) \\ Z_{n} = (u_{0} + L u) \sin\theta_{0} - U_{0}\Delta\theta \cos\theta_{0} + w \cos\theta_{0} & (c) \\ Z_{n} = (u_{0} + L u) \sin\theta_{0} - U_{0}\Delta\theta \cos\theta_{0} + w \cos\theta_{0} & (c) \\ Z_{n} = (u_{0} + L u) \sin\theta_{0} - u_{0}\Delta\theta \cos\theta_{0} + w \cos\theta_{0} & (c) \\ Z_{n} = (u_{0} + L u) \sin\theta_{0} - U_{0}\Delta\theta \cos\theta_{0} + w \cos\theta_{0} & (c) \\ Z_{n} = (u_{0} + L u) \sin\theta_{0} - U_{0}\Delta\theta \cos\theta_{0} + w \cos\theta_{0} & (c) \\ Z_{n} = (u_{0} + L u) \sin\theta_{0} - U_{0}\Delta\theta \cos\theta_{0} + w \cos\theta_{0} & (c) \\ Z_{n} = (u_{0} + L u) \sin\theta_{0} - U_{0}\Delta\theta \cos\theta_{0} + w \cos\theta_{0} & (c) \\ Z_{n} = (u_{0} + L u) \sin\theta_{0} - U_{0}\Delta\theta \cos\theta_{0} + w \cos\theta_{0} & (c) \\ Z_{n} = (u_{0} + L u) \sin\theta_{0} - U_{0}\Delta\theta \cos\theta_{0} + w \cos\theta_{0} & (c) \\ Z_{n} = (u_{0} + L u) \sin\theta_{0} - U_{0}\Delta\theta \cos\theta_{0} + w \cos\theta_{0} & (c) \\ Z_{n} = (u_{0} + L u) \sin\theta_{0} - U_{0}A\theta \cos\theta_{0} + w \cos\theta_{0} & (c) \\ Z_{n} = (u_{0} + L u) \sin\theta_{0} - U_{0}A\theta \cos\theta_{0} + w \cos\theta_{0} & (c) \\ Z_{n} = (u_{0} + L u) \sin\theta_{0} - U_{0}A\theta \cos\theta_{0} + (u_{0} + U_{0} + U_{0}) & (u_{0} + U_{0} + U_{$$


# Backup Slides: VTOL Configuration, Hover Stability(More Graphs)

<sup>ه</sup>.٥ < <sup>10</sup>∧ 20.4 NO.4 X 0.2 N Apog 0 Apog 0.2 0 20 40 0 20 40 0 20 40 P'0 Rate Rate Roll Rate Pitch 0.2 ME 20 40 20 40 0 20 40 0 0 ×10<sup>-3</sup> angle Angle Bank Angle Angle vation . MB > 20 40 20 40 20 40 0 0 0

Nonlinear Control, Pitch Rate Perturbation of .5(rad/s)



Nonlinear Control, Roll Rate Perturbation of .5(rad/s)





Project Description > Baselin

#### **Replication Cost**

|                                                       | Per Unit |          |       |    |        |    |          |         |         |       |
|-------------------------------------------------------|----------|----------|-------|----|--------|----|----------|---------|---------|-------|
|                                                       | Materia  | als      | Fixed |    |        |    |          |         |         |       |
|                                                       | Units    | \$/Unit  | Costs |    | Actual |    | Budget   | Margin  | Under/( | Over) |
| Task                                                  |          |          |       | \$ | 955.00 | \$ | 1,000.00 | -4.50%  | \$ 4    | 5.00  |
| Airframe                                              |          |          |       | \$ | 25.00  | \$ | 30.00    | -16.67% | \$      | 5.00  |
| 3D printing materials                                 | 0.3      | \$75.00  |       |    | 25.00  |    | 30.00    | -16.67% |         | 5.00  |
| Manufacturing?                                        | 0.0      | \$0.00   |       |    | -      |    |          |         |         | -     |
| Propulsion                                            |          |          |       | \$ | 156.00 | \$ | 170.00   | -8.24%  | \$ '    | 14.00 |
| Li-ion battery cells                                  | 0.0      | \$0.00   |       |    |        |    | ¥        |         |         |       |
| RC Brushless Motors                                   | 3.0      | \$47.00  |       |    | 141.00 |    | 150.00   | -6.00%  |         | 9.00  |
| Propellers                                            | 3.0      | \$5.00   |       |    | 15.00  |    | 20.00    | -25.00% |         | 5.00  |
| Testing                                               |          |          |       | \$ |        | \$ |          |         | \$      |       |
| Testing (Propellers, batteries, structure, materials) |          |          |       |    | 72-    |    |          |         |         | 12    |
| Aerodynamics                                          |          |          |       | \$ | 500.00 | \$ | 510.00   | -1.96%  | \$      | 10.00 |
| Tilt + Control Surface Servos                         | 5.0      | \$30.00  |       |    | 150.00 |    | 160.00   | -6.25%  |         | 10.00 |
| Ritewing Drak Kit                                     | 1.0      | \$350.00 |       |    | 350.00 |    | 350.00   | 0.00%   |         | -     |
| Automation                                            |          |          |       | \$ | 274.00 | \$ | 290.00   | -5.52%  | \$      | 16.00 |
| LIDAR Sensor                                          | 1.0      | \$130.00 |       |    | 130.00 |    | 140.00   | -7.14%  |         | 10.00 |
| ESCs                                                  | 3.0      | \$48.00  |       |    | 144.00 |    | 150.00   | -4.00%  |         | 6.00  |
| Miscellaneous                                         |          |          |       | \$ |        | \$ |          |         | \$      | -     |
| Contingencies and Complications                       | 0.0      | \$0.00   |       |    | -      |    | -        |         |         | -     |



#### Project Name: VORTEX

Vertically Optimized Research, Testing & EXploration

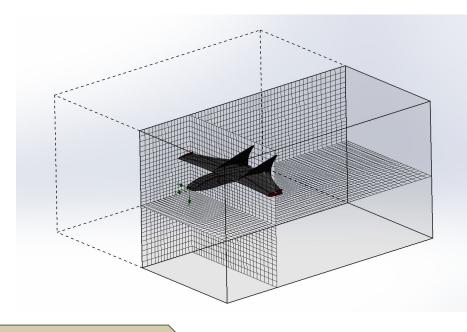
Project Manager: Bill Chabot

Systems Engineer: Michael Patterson

|     |                                                        |         | Per Unit |       |           |          |                     |                  |    | Total   |          |       |                |    |          |          |              |
|-----|--------------------------------------------------------|---------|----------|-------|-----------|----------|---------------------|------------------|----|---------|----------|-------|----------------|----|----------|----------|--------------|
|     |                                                        | Materia | als      | Fixed |           |          |                     |                  |    | Materia | als      | Fixed |                |    |          |          |              |
|     |                                                        | Units   | \$/Unit  | Costs | Actual    | Budge    | Margin              | Under/(Ove       | r) | Units   | \$/Unit  | Costs | Actual         | В  | ludget   | Margin L | Under/(Over) |
| WBS | Task                                                   |         |          |       | \$ 955.00 | \$ 1,000 | .00 -4.50           | <b>% \$</b> 45.0 | 0  |         |          |       | 2,695.00       | \$ | 5,000.00 | -46.10%  | \$ 2,305.00  |
| 1   | Airframe                                               |         |          | \$    | 25.00     | \$ 3     | .00 -16.67          | % \$ 5.0         | 0  |         |          | \$    | 75.00          | \$ | 550.00   | -86.36%  | \$ 475.00    |
| 1.1 | 3D printing materials                                  | 0.3     | \$75.00  |       | 25.00     | 3        | -16.67              | % 5.0            | 00 | 1.0     | \$75.00  |       | 75.00          |    | 150.00   | -50.00%  | 75.00        |
| 1.2 | Manufacturing?                                         | 0.0     | \$0.00   |       | -         |          | -                   | -                |    | 0.0     | \$0.00   |       | -              |    | 400.00   | -100.00% | 400.00       |
| 2   | Propulsion                                             |         |          | \$    | 156.00    | \$ 17    | -8.24               | <b>% \$ 14.0</b> | 0  |         |          | \$    | 812.00         | \$ | 1,000.00 | -18.80%  | \$ 188.00    |
| 2.1 | Li-ion battery cells                                   | 0.0     | \$0.00   |       | -         |          | 2                   | -                |    | 100.0   | \$5.00   |       | 500.00         |    | 500.00   | 0.00%    | -            |
| 2.2 | RC Brushless Motors                                    | 3.0     | \$47.00  |       | 141.00    |          | 0.00 -6.00          | % 9.0            | 00 | 6.0     | \$47.00  |       | 282.00         |    | 400.00   | -29.50%  | 118.00       |
| 2.3 | Propellers                                             | 3.0     | \$5.00   |       | 15.00     | 2        | -25.00              | % 5.0            | 00 | 6.0     | \$5.00   |       | 30.00          | _  | 100.00   | -70.00%  | 70.00        |
| 3   | Testing                                                |         |          | \$    | -         | \$       | -                   | \$-              |    |         |          | \$    | -              | \$ | 500.00   | -100.00% | \$ 500.00    |
| 3.1 | Testing (Propellers, batteries, structure, materials)? |         |          |       |           |          |                     | -                |    |         |          |       | -              |    | 500.00   | -100.00% | 500.00       |
| 4   | Aerodynamics                                           |         |          | \$    | 500.00    | \$ 51    | ).00 <b>-1.9</b> 6° | % \$ 10.0        | 0  |         |          | \$    | 1,000.00       | \$ | 1,000.00 | 0.00%    | \$ -         |
| 4.1 | Tilt + Control Surface Servos                          | 5.0     | \$30.00  |       | 150.00    | 16       | 0.00 -6.25          | % 10.0           | 00 | 10.0    | \$30.00  |       | 300.00         |    | 300.00   | 0.00%    | -            |
| 4.2 | Ritewing Drak Kit                                      | 1.0     | \$350.00 |       | 350.00    | 35       | 0.00                | ~ -              |    | 2.0     | \$350.00 |       | 700.00         | _  | 700.00   | 0.00%    | -            |
| 5   | Automation                                             |         |          | \$    | 274.00    | \$ 29    | .00 -5.52°          | % \$ 16.0        | 0  |         |          | \$    | 808.00         | \$ | 950.00   | -14.95%  | \$ 142.00    |
| 5.1 | Sensors                                                | 1.0     | \$130.00 |       | 130.00    | 14       | 0.00 -7.14          | % 10.0           | 00 | 4.0     | \$130.00 |       | 520.00         |    | 600.00   | -13.33%  | 80.00        |
| 5.2 | ESCs                                                   | 3.0     | \$48.00  |       | 144.00    | 15       | 0.00 -4.00          | % 6.0            | 00 | 6.0     | \$48.00  |       | 288.00         |    | 350.00   | -17.71%  | 62.00        |
| 6   | Miscellaneous                                          |         |          | \$    | -         | \$       |                     | \$ -             |    |         |          | \$    | 1 . <u></u> (1 | \$ | 1,000.00 | -100.00% | \$ 1,000.00  |
| 6.1 | Contingencies and Complications                        | 0.0     | \$0.00   |       | -         |          | -                   | -                |    | 0.0     | \$0.00   |       | -              |    | 1,000.00 | -100.00% | 1,000.00     |



## **Solidworks Flow Simulation**


Basic Mesh and Computational Domain:

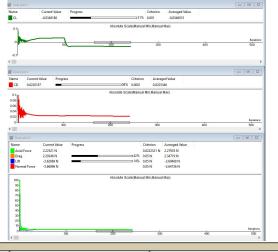
• Takes advantage of symmetry

6 6 3

INTEGRATED REMOTE

& IN SITU SENSING

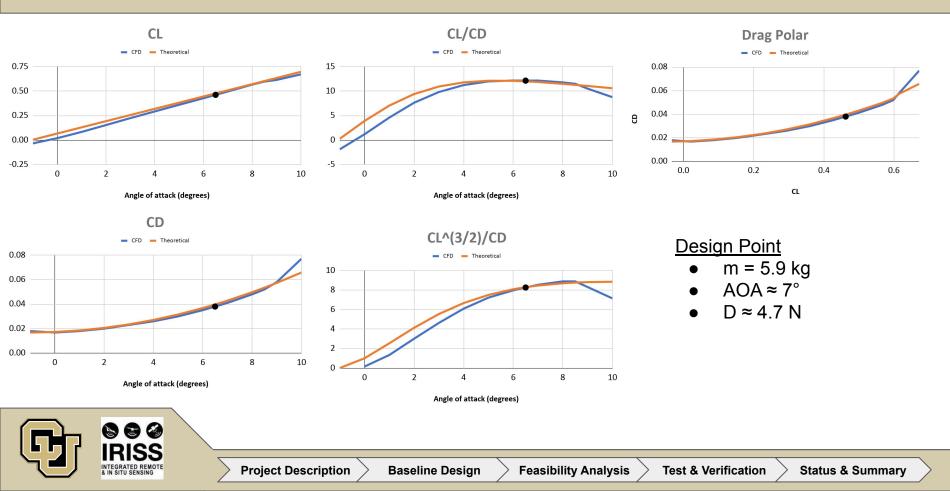



**Project Description** 

**Baseline Design** 

|                     | Parameter                | Value                 |   |  |  |  |
|---------------------|--------------------------|-----------------------|---|--|--|--|
| Initial Conditions: | Parameter Definition     | User Defined          | ~ |  |  |  |
|                     | Thermodynamic Parameters |                       |   |  |  |  |
|                     | Parameters               | Pressure, temperature | ~ |  |  |  |
|                     | Pressure                 | 83277.5 Pa            |   |  |  |  |
|                     | Temperature              | 277.594 K             |   |  |  |  |
|                     | Velocity Parameters      |                       |   |  |  |  |
|                     | Parameter                | Velocity              | ~ |  |  |  |
|                     | Defined by               | Aerodynamic angles    | ~ |  |  |  |
|                     | Velocity                 | -18 m/s               |   |  |  |  |
|                     | Longitudinal plane       | ZX                    | ~ |  |  |  |
|                     | Longitudinal axis        | х                     | ~ |  |  |  |
|                     | Angle of attack          | 0.5 °                 |   |  |  |  |
|                     | Angle of sideslip        | 0 *                   |   |  |  |  |
|                     | Turbulence Parameters    |                       |   |  |  |  |

#### Results Convergence at AoA = -1° at ~300,000 cells

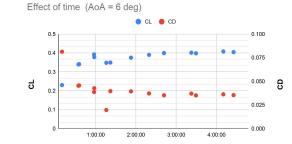

**Test & Verification** 



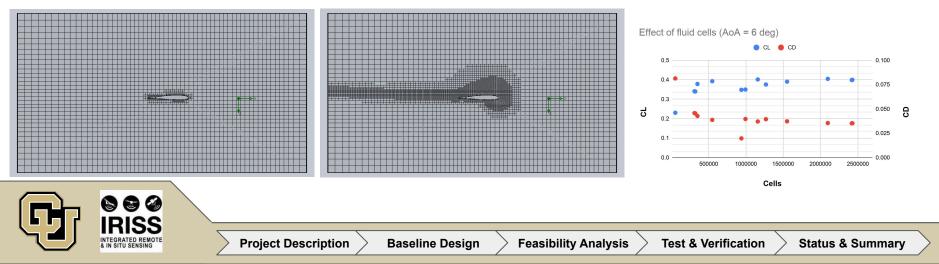
**Feasibility Analysis** 

Status & Summary

#### **Stock Drak CFD Results**

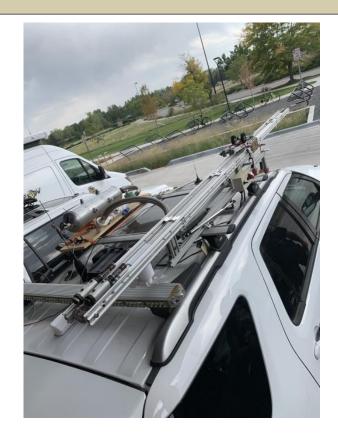



#### Mesh convergence study


Motivation:

- Mesh creation is critical to CFD simulation
- Balance computational time and accuracy Procedure
  - 1. Run meshes at different sizes and degree of refinement
- 2. Compare results and computational time

Using SolidWorks' built in mesh refinement system Before: After:








#### **RAPCat Launch System Images**







Project Description

tion **Baseline Design** 

> Feasibility Analysis

Analysis > Tes

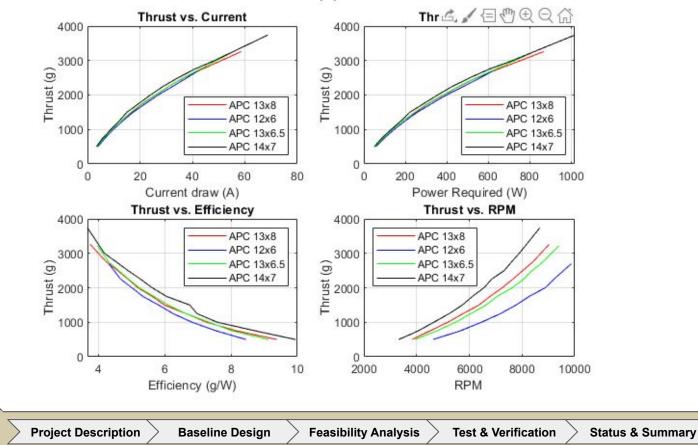
Test & Verification > S

Status & Summary

# **Objectives & Levels of Success**

|           | Level 1                                                                                    | Level 2                                  | Level 3                                                                                 |  |  |
|-----------|--------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------|--|--|
| Flight    | Static test stand TWR > 1                                                                  | Steady hover for 30 sec                  | Takeoff from RAPCat                                                                     |  |  |
|           |                                                                                            | Static test stand flight mode transition | Full flight mode transition                                                             |  |  |
| Budget    | Replication cost <\$1250                                                                   | Replication cost <\$1000                 | Replication cost <\$900                                                                 |  |  |
| Endurance | Static thrust for 1 hour<br>cruise, 2 takeoffs/<br>landings with >15%<br>battery remaining | N/A                                      | Full flight 1 hour cruise<br>with 2 takeoffs/landings<br>with >15% battery<br>remaining |  |  |

**Safety:** Autonomous return-to-loiter function if telemetry lost for 90 seconds. Ability to terminate flight immediately upon ground station command.




## **Objectives & Levels of Success Cont.**

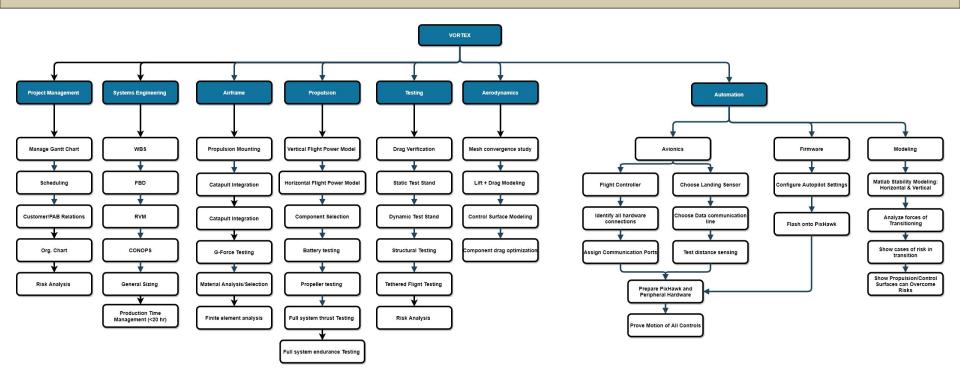
|          | Level 1                                                                              | Level 2                                                                                     | Level 3                                                                                              |
|----------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Airframe | FEM analysis of modified<br>airframe for RAPCat<br>launch (~10g)                     | Compatibility with RAPCat launch system                                                     | Survival of physical load testing of aircraft up to 10g                                              |
| Avionics | Motors and actuators<br>integrate with flight<br>controller hardware and<br>firmware | Non-native sensors and<br>MCUs integrate with flight<br>controller hardware and<br>firmware | N/A                                                                                                  |
| Autonomy | Models show stability for<br>VTOL and fixed wing<br>flight modes                     | Executes VTOL without further pilot input                                                   | Executes full mission<br>profile with transition<br>between flight modes<br>Lands within 1.5m radius |



#### **Power Budget**



#### Motor and Prop performance




## **Battery Study**

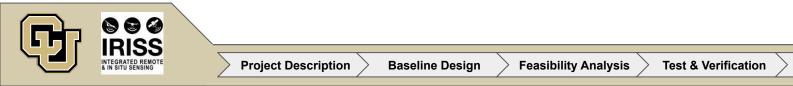
| Battery Name 🔻      | attery cell weight ( = | attery cell voltage ('= | attery cell capacity (mA T | ax current draw (/ | = attery cell cost (: = | st. min lifetime (mii 7 | = otal pack weight ({ | = otal max current (/ | = otal capacity (mA | 🗧 otal voltage (\ 🗟 | otal cost (\$ | E Link           |
|---------------------|------------------------|-------------------------|----------------------------|--------------------|-------------------------|-------------------------|-----------------------|-----------------------|---------------------|---------------------|---------------|------------------|
| Panasonic NCR18650  | 47.5                   | 3.6                     | 3400                       | 4.9                | 4.5                     | 41.63                   | 1140                  | 29.4                  | 20400               | 14.4                | 108           | https://www.186  |
| Efest 18650         | 47                     | 3.7                     | 3500                       | 20                 | 7                       | 10.50                   | 1128                  | 120                   | 21000               | 14.8                | 168           | https://www.186  |
| Samsung 35E 18650   | 50                     | 3.6                     | 3500                       | 8                  | 4                       | 28.25                   | 1200                  | 48                    | 21000               | 14.4                | 96            | https://www.1865 |
| Sanyo NCR18650GA    | 48                     | 3.6                     | 3500                       | 10                 | 4.25                    | 21.00                   | 1152                  | 60                    | 21000               | 14.4                | 102           | https://www.1865 |
| Samsung 35E 18650   | 48.5                   | 3.6                     | 3500                       | 8                  | 5.5                     | 26.25                   | 1164                  | 48                    | 21000               | 14.4                | 132           | https://www.1865 |
| Samsung 35E 18650   | 51                     | 3.6                     | 3500                       | 8                  | 5.5                     | 26.25                   | 1224                  | 48                    | 21000               | 14.4                | 132           | https://www.1865 |
| Panasonic NCR18650  | 47.5                   | 3.6                     | 3550                       | 8                  | 5.75                    | 26.63                   | 1140                  | 48                    | 21300               | 14.4                | 138           | https://www.1865 |
| Panasonic NCR18650  | 46                     | 3.6                     | 3400                       | 4.9                | 5.5                     | 41.63                   | 1104                  | 29.4                  | 20400               | 14.4                | 132           | https://www.1865 |
| MXJO 18650          | 47.1                   | 3.7                     | 3500                       | 10                 | 7.5                     | 21.00                   | 1130.4                | 60                    | 21000               | 14.8                | 180           | https://www.1865 |
| Panasonic NCR 1865( | 48.1                   | 3.6                     | 3400                       | 4.9                | 6                       | 41.63                   | 1154.4                | 29.4                  | 20400               | 14.4                | 144           | https://www.1865 |
| Imren 18650         | 46.9                   | 3.7                     | 3500                       | 30                 | 6.5                     | 7.00                    | 1125.6                | 180                   | 21000               | 14.8                | 156           | https://www.1865 |
| Samsung 36G 18650   | 46                     | 3.6                     | 3600                       | 10                 | 6                       | 21.60                   | 1104                  | 60                    | 21600               | 14.4                | 144           | https://www.1865 |
| Vapcell 18650       | 46                     | 3.7                     | 3500                       | 10                 | 7.35                    | 21.00                   | 1104                  | 60                    | 21000               | 14.8                | 176.4         | https://www.1865 |
| Sanyo NCR18650GA    | 46                     | 3.6                     | 3500                       | 10                 | 6                       | 21.00                   | 1104                  | 60                    | 21000               | 14.4                | 144           | https://www.1865 |
| Sanyo NCR18650GA    | 46                     | 3.6                     | 3500                       | 10                 | 7                       | 21.00                   | 1104                  | 60                    | 21000               | 14.4                | 168           | https://www.1865 |
| Vapcell M34 18650   | 46                     | 3.7                     | 3400                       | 10                 | 8                       | 20.40                   | 1104                  | 60                    | 20400               | 14.8                | 192           | https://www.1865 |
| Epoch 18650         | 46                     | 3.7                     | 3500                       | 10                 | 7.25                    | 21.00                   | 1104                  | 60                    | 21000               | 14.8                | 174           | https://www.1865 |
| Epoch 18650         | 46                     | 3.7                     | 3500                       | 8                  | 7.25                    | 26.25                   | 1104                  | 48                    | 21000               | 14.8                | 174           | https://www.1865 |
| Samsung 40T 21700   | 66.8                   | 3.6                     | 4000                       | 35                 | 5.25                    | 6.86                    | 1603.2                | 210                   | 24000               | 14.4                | 126           | https://www.1865 |
| Samsung 50E 21700   | 69                     | 3.6                     | 5000                       | 9.8                | 5.1                     | 30.61                   | 1656                  | 58.8                  | 30000               | 14.4                | 122.4         | https://www.1865 |
| Molicel 21700 P42A  | 67.8                   | 3.6                     | 4200                       | 45                 | 5.3                     | 5.60                    | 1627.2                | 270                   | 25200               | 14.4                | 127.2         | https://www.1865 |
| Epoch 21700         | 68.2                   | 3.7                     | 5000                       | 10                 | 5.5                     | 30.00                   | 1636.8                | 60                    | 30000               | 14.8                | 132           | https://www.1865 |
| Sony   Murata VTC6A | 68.2                   | 3.6                     | 4000                       | 30                 | 7.49                    | 8.00                    | 1636.8                | 180                   | 24000               | 14.4                | 179.76        | https://www.1865 |
| Epoch 21700         | 68                     | 3.6                     | 5000                       | 10                 | 7.25                    | 30.00                   | 1632                  | 60                    | 30000               | 14.4                | 174           | https://www.1865 |
| Molicel 21700 M504  | 88                     | 2.8                     | 5000                       | 15                 | 7                       | 20.00                   | 1832                  | on                    | 30000               | 14.4                | 188           | https://www.1865 |



#### **Work Breakdown Structure**






Analysis > Te

Test & Verification > \$

Status & Summary

#### Nomenclature

**IRISS** - Integrated Remote & In Situ Sensing **TORUS** - Targeted Observation by Radars and UAS of Supercells **VTOL** - Vertical Takeoff and Landing **RAPCat** - Rapid Aircraft Pneumatic Catapult **IMU** - Inertial Measurement Unit **ESC** - Electronic Speed Controller **Li-lon** - Lithium Ion Li-Po - Lithium Polymer **NiMH** - Nickel Metal Hydride NiCd - Nickel Cadmium LiFePO4 - Lithium Iron Phosphate



Status & Summary

# Directory

| 1  | Title                      | 12 | VTOL Configuration (2)            | 24 | VTOL Config Hover Stability (2)              |           |
|----|----------------------------|----|-----------------------------------|----|----------------------------------------------|-----------|
| 2  | Project Overview           | 13 | Provided Avionics Package         | 25 | VTOL Config Hover Results                    |           |
| 3  | Mission Statement          | 14 | Flight Controller Firmware (1)    | 26 | VTOL Config - Hover Stability Conclusions    |           |
| 4  | Use Case CONOPS            | 15 | Flight Controller Firmware (2)    | 27 | Flight Controller Firmware Feasibility       |           |
| 5  | <u>CONOPS</u>              | 16 | Landing Sensor Package (1)        | 28 | Flight Controller Firmware Feasibility (2)   |           |
| 6  | <u>FBD</u>                 | 17 | Landing Sensor Package (2)        | 29 | Tilt Rotor Example Video                     |           |
| 7  | Functional Requirements    | 18 | Battery Chemistry (1)             | 30 | Endurance Verification - Drag Estimation     |           |
| 8  | Baseline Design            | 19 | Battery Chemistry (2)             | 31 | Endurance Verification: Propulsion Specifics |           |
| 9  | Baseline CAD w/ Components | 20 | Feasibility Analysis              | 32 | Endurance Verification: Batteries            |           |
| 10 | Baseline Ritewing Drak Kit | 21 | Feasibility Chart                 | 33 | Mass Budget                                  |           |
| 11 | VTOL Configuration (1)     | 22 | VTOL Flight Lift Capability       | 34 | Cost per Unit Breakdown                      |           |
|    |                            | 23 | VTOL Config - Hover Stability (1) | 35 | Summary of Baseline Design and Feasibility   | Next Page |



# **Directory II**

| 36 | 36 <u>Testing and Verification</u>                                                                                                            |    | Ardupilot FBD                          | 59 | Hover Stability Equations            |  |  |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------|----|--------------------------------------|--|--|--|--|
| 37 | 37 Testing and Verification (1)                                                                                                               |    | VTOL Trade Studies (1)                 | 60 | Hover Stability MATLAB Graphs        |  |  |  |  |
| 38 | Testing and Verification (2)                                                                                                                  | 48 | VTOL Trade Studies (2)                 | 61 | Replication Cost                     |  |  |  |  |
| 39 | Status Summary and Strategy                                                                                                                   | 49 | VTOL Trade Studies (3)                 | 62 | Cost Budget                          |  |  |  |  |
| 40 | Schedule and Gantt Chart                                                                                                                      | 50 | VTOL Trade Studies (4)                 | 63 | Solidworks Flow Simulation           |  |  |  |  |
| 41 | Total Project Cost Budget                                                                                                                     | 51 | VTOL Trade Studies (5)                 | 64 | Stock Drak CFD Results               |  |  |  |  |
| 42 | 42 Acknowledgements                                                                                                                           |    | Provided Avionics Package FBD          | 65 | Mesh Convergence Study               |  |  |  |  |
| 43 | References and Resources                                                                                                                      | 53 | Provided Avionics: Hex Cube            | 66 | RAPCat Launch System Images          |  |  |  |  |
| 46 | Backup Slides                                                                                                                                 | 54 | Provided Avionics: ESC and Interface   | 67 | Objectives and Levels of Success (1) |  |  |  |  |
|    |                                                                                                                                               | 55 | Landing Sensor Trade Study             | 68 | Objectives and Levels of Success (2) |  |  |  |  |
|    | Previous                                                                                                                                      |    | Battery Chemistry Trade Study          | 69 | Power Budget                         |  |  |  |  |
|    |                                                                                                                                               | 57 | Flight Controller Firmware Trade Study | 70 | Battery Study                        |  |  |  |  |
|    |                                                                                                                                               | 58 | Hover Stability Backup                 | 71 | Work Breakdown Structure             |  |  |  |  |
|    | IRISS           Project Description         Baseline Design         Feasibility Analysis         Test & Verification         Status & Summary |    |                                        |    |                                      |  |  |  |  |