

ASEN 4018 Senior Projects, Fall 2018 Preliminary Design Review (PDR)

Visual Approximation of Nanosat Trajectories to Augment Ground-based Estimation

Team: Aaron Aboaf, Dylan Bossie, Jerry Wang, Josh Kirby, Justin Fay, Lara Lufkin, Marshall Herr, Nicholas Renninger, Richard Moon, Sean Downs, Zach Talpas

Customer: Prof. Penina Axelrad (CCAR), John Gaebler (CCAR)

Advisor: Prof. Marcus Holzinger

Presenters

Project Description	Lara
Sensor System Feasibility	Sean
Software Feasibility	Justin
Avionics Feasibility	Jerry
Testing Feasibility	Zach
Status Summary	Nick

Project Description

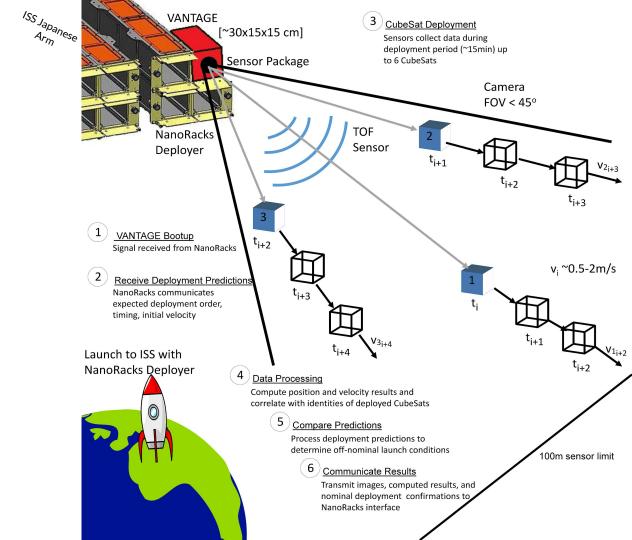
Project Objectives

Motivation:

With the constant increase in CubeSat launches, space traffic is becoming a real concern. Due to the limitations inherent to ground-based tracking systems, **tracking data for SmallSats is often not available until several minutes to several hours after SmallSat deployment**. The VANTAGE project's use-case will significantly reduce delays in obtaining orbital tracks by **associating relative trajectory measurements with specific CubeSats at close-range immediately after deployment**. These close-range measurements are of special interest to regulatory bodies like the FAA and JSpOC, both of which aim to better understand and regulate space traffic.

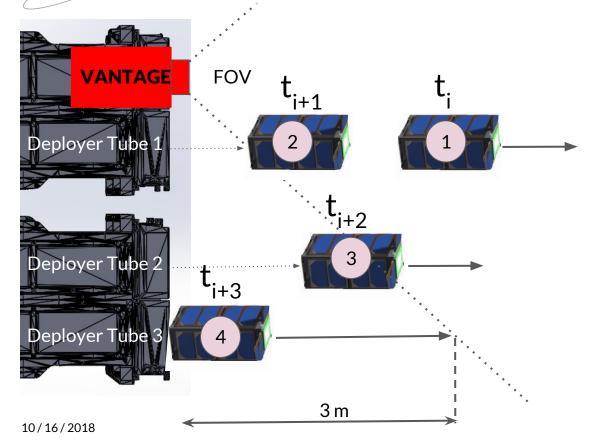
Mission Statement:

The **long term vision** of this project is to augment existing, ground-based CubeSat Space Situational Awareness (SSA) by observing CubeSat deployments from the perspective of the space-based deployer. **This year's** VANTAGE team will produce a **proof of concept** for this mission by developing a **ground based prototype** which will be tested using a simulated CubeSat deployment in a laboratory environment.


Project Stakeholders:

- Customer:
- Associated Company:

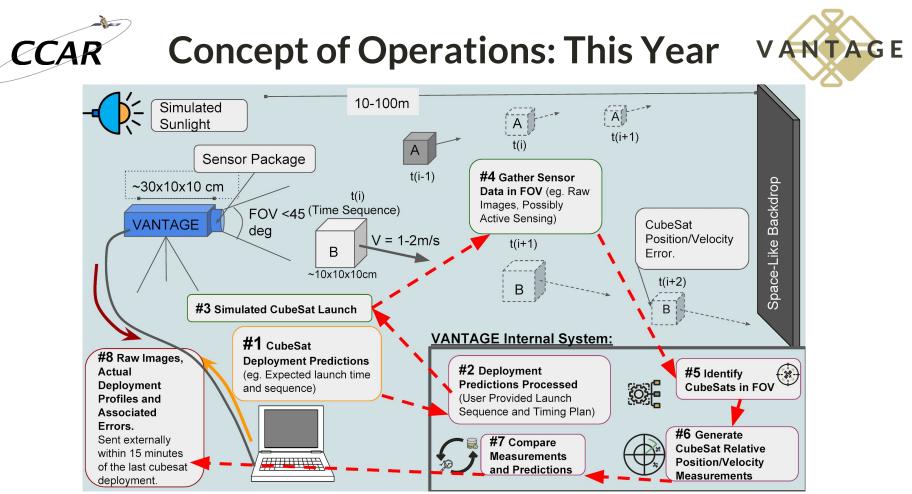
Prof. Axelrad and John Gaebler NanoRacks



Concept of Operations *Multi-Year Vision*

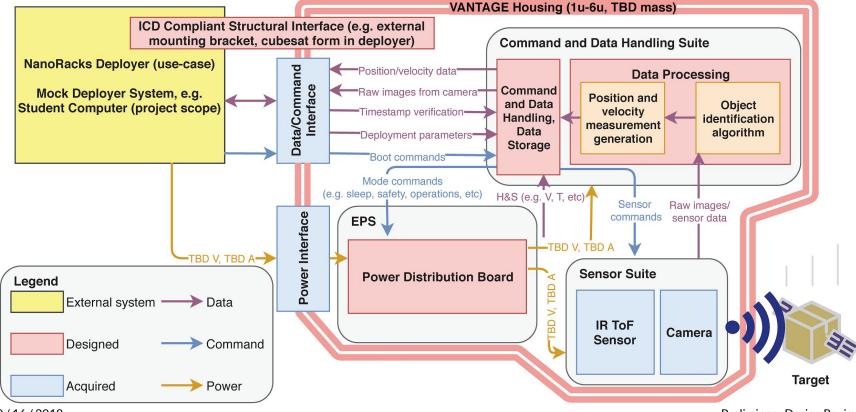
Vision for VANTAGE Use-Case FOV VANTAGE

Deployment Predictions


- Expected Deployer Tube
- Expected Velocity
- Commanded Launch Time

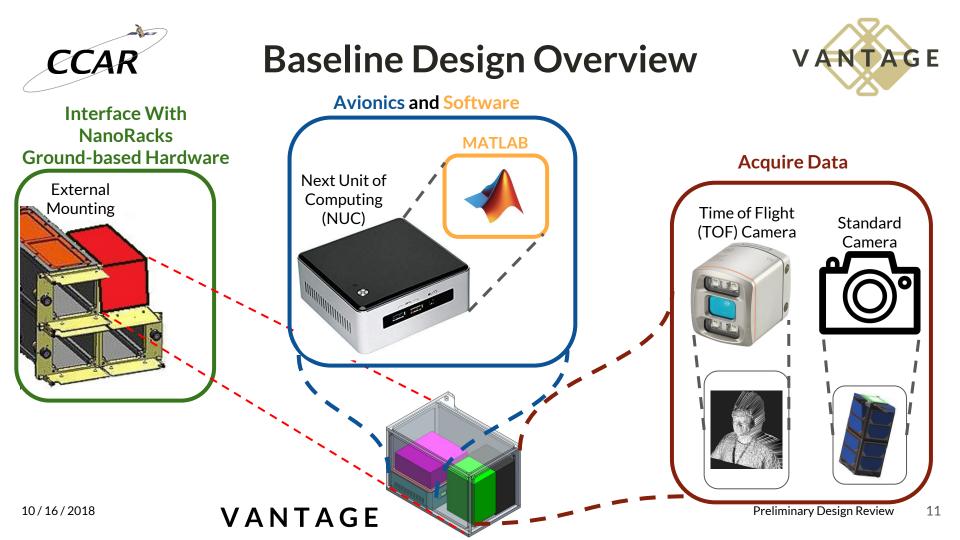
Measured Data

- Measured Positions
- Calculated Velocity
- Calculated Launch Time


NanoRacks System Verification

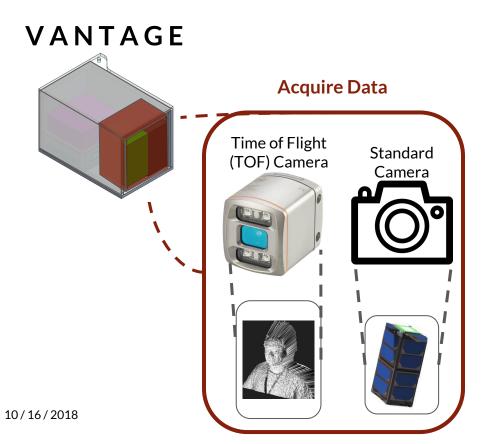
 Compare measured data to deployment predictions and report results.

10/16/2018

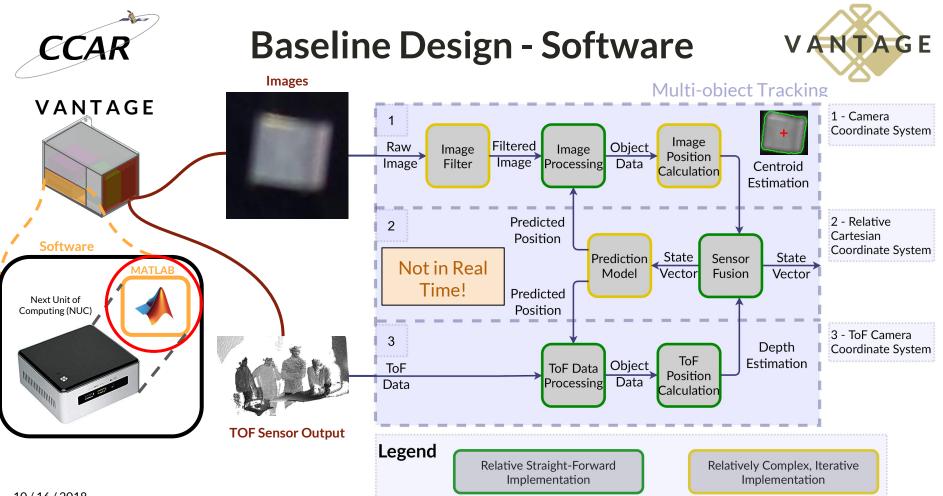


Functional Requirements

Req.	Description
FR.1	The system shall support in-focus imaging of at most 6 mock 1U CubeSats at some range between 3 and 100 meters from the VANTAGE payload.
FR.2	The system shall receive and interpret commands and the deployment manifest from a PC which simulates the NanoRacks use-case system.
FR.3	The system shall accept power analogous to that which is available from the NanoRacks use-case system.
FR.4	The system shall integrate mechanically with a structural interface which simulates the NanoRacks use-case system.
FR.5	The system shall uniquely detect and track up to 6 mock 1U-3U CubeSats while they remain between 3 and 100 m of the VANTAGE payload.
FR.6	The system shall estimate the position and velocity vectors of CubeSats between a distance of 3 and 100 m.
FR.7	The system shall recognize off-nominal deployment cases, which shall include off-nominal relative initial velocities and off-nominal deployment times from the test system.
FR.8	The system shall report position/velocity vector measurements, off-nominal deployment cases, and raw images from the current mock deployment to the PC which simulates the NanoRacks use-case system before the next NanoRacks CubeSat Deployer (NRCSD) tube deployment would normally occur in the use-case.


Baseline Design

Baseline Design - Sensors

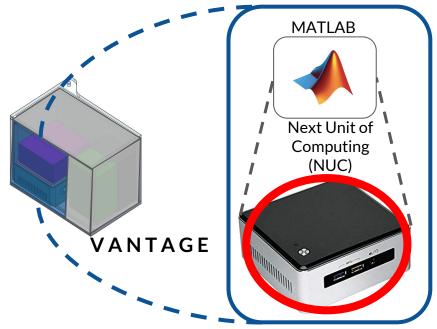

TOF Primary Function: *Range Measurement*

- IFM O3D313 IR Time of Flight (ToF) Camera
- \$1460
- 60° x 45° FOV
- 352 x 264 Resolution
- 8m Maximum Range
- 25 fps capability
- +/- 20mm range accuracy at 8 m range

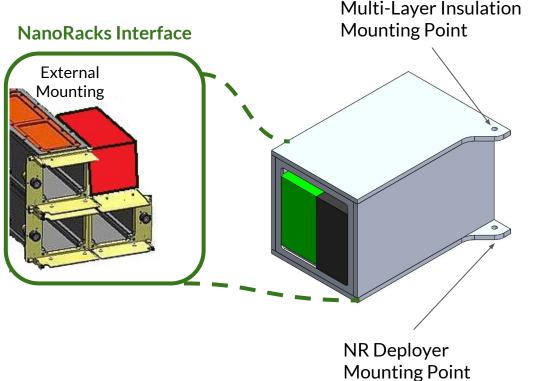
Standard Camera Primary Function:

Cross-Range Measurement

- Canon EOS 80D DSLR
- ~\$1200 for Camera+Lens
- 6000 x 4000 Resolution
- 7 fps capability



Baseline Design - Avionics


Process Data

NUC Component	Description
CPU	Intel Core I7 or Intel Core I5
RAM	Up to 32GB
Disk Memory	Up to 5TB
Interface	USB 3.0
Max Power	65 W
OS	Linux , Windows
Dimensions	11 .5 x 11. 1 x 0 .51 cm
Cost	~\$770.00

Baseline Design - Structural Interface VANTAGE

- 6 panel design
 - Based on QB50 satellite design
- Uses #4-40 fasteners for panel and internal component mounting
- Interface mounting to NR NRCSD using a single ¼"-28 bolt
- Has ¼"-28 threaded hole for MLI blanket mounting
- Front plate has sensor window
- Space remains internally for mounting bulkheads
- Limited forces expected in use case
 - $\circ \qquad \mathsf{NRCSDs} \ \mathsf{are} \ \mathsf{only} \ \mathsf{connected} \ \mathsf{with} \ \mathsf{two} \ \mathsf{fasteners}$
 - VANTAGE is ¹/₃ size of NRCSD
 - 5.43in x 5.67in x 8.66in
- Cost: ~\$100.00

Project Changes Since CDD

Baseline Design Sensor Change

• VANTAGE has made the decision to go with a Time of Flight (TOF) camera paired with an optical camera instead of just using an optical camera.

Reasons For the Change

- The TOF + Camera option scored second highest to the single camera option.
- TOF provides more easily obtained range measurements.
- Single camera range measurements are difficult to compute and require significant computation for accurate results.

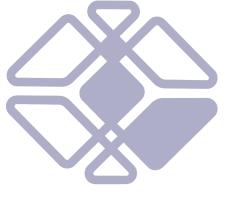
Evidence of Feasibility

Critical Project Elements

Sensors

• Error in position / velocity measurements as a function of range

Software


- Object Recognition
- Multi-object Tracking

Avionics

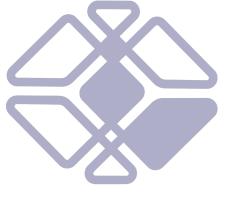
• Can we store, process and report on all of our data within 15 minutes?

Test Rig

- Creating the proper test environment
- Mock CubeSats Deployments properly simulate real CubeSats
- Truth data for position / velocity is sufficiently accurate

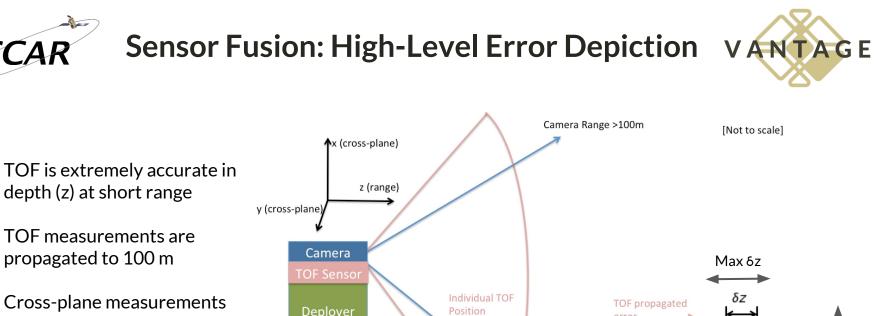
Sensors Feasibility

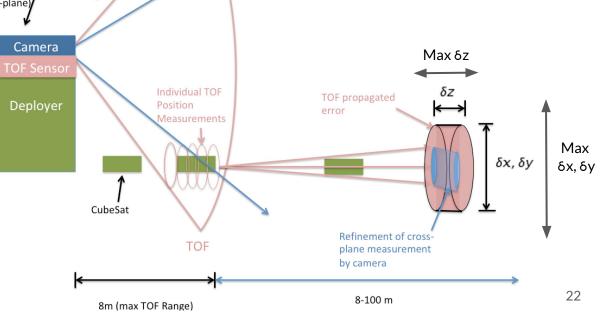
Overview


Sensors Feasibility Overview

Position and Velocity Accuracy

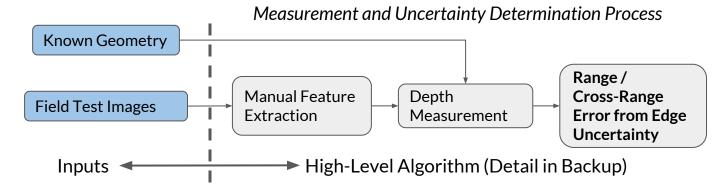
Subsystem CPEs	Governing Requirement(s)	Parent Functional Requirements	CPE Justification
Error in Position and Velocity Measurements	DR 6.1, 6.2	FR.6	Sensors record sensor data, and choosing the right ones will help us meet requirements.


Req.	Summary	Link to Slide(s)
DR 6.1	Position Accuracy (10 cm for 3-10m ,10% of range to 100 m)	<u>DR 6.1</u>
DR 6.2	Velocity Accuracy (1 cm/s to 10 m , 10cm/s to 100m)	<u>DR 6.2</u>


Sensors Feasibility

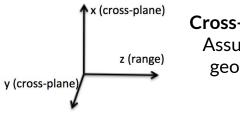
Error in Position and Velocity Measurements

 Cross-plane measurements (x,y) are refined over full range using camera



Camera-Only Accuracy Feasibility

Image from field test


	Actual Range	Mea Ran	isured ge	Range Uncertainty (1ơ)	Cross-Range Uncertainty	Error + Uncertainty		A camera <u>alone</u> does not	
	5.0m	5.12	!m	0.30m	0.22 cm	42 cm > 10cm		satisfy position measurement	
	100.0m	94.3	3m	4.76m	0.24 m	10.43 m >10 m	P	requirements	
40.4	4.4.400.4.0	Req.			Summary				
107	16/2018	DR 6.1		Position Accura	cy (10 cm for 3-10m	,10% of range to 100 n	n)	23	

TOF Camera: Error Analysis

TOF Sensor Error Figures (from Data Sheet)

Range	Depth Error
>3m	7 mm
3-5 m	10 mm
5-7 m	15 mm
7-8 m	20 mm

Cross-plane accuracy approach: Assumed sensor can measure geometric center to ½ pixel.

$$v = \frac{\Delta x}{\Delta t}$$
$$\delta v = \sqrt{\delta x^2 + \delta t^2}$$

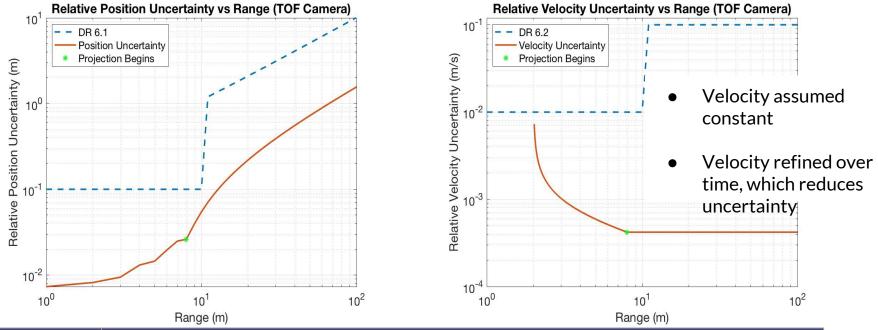
Electronic timing of measurements assumed to be very accurate.

Assuming constant velocity, the velocity estimate is refined by each position measurement.

$$\delta v_{refined} \propto \frac{\delta v}{\sqrt{N}}$$

N = Number of TOF Position Measurements - 1

Assumed conservative TOF measurement rate of 12 fps (max TOF FPS = 25 FPS)


 $\Rightarrow \delta t << \delta x$

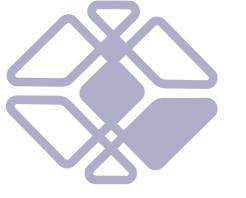
TOF Camera: Position/Velocity Accuracy

DR 6.1 and DR 6.2 Feasible? Yes:

Req.	Summary
DR 6.1	Position Accuracy (10 cm for 3-10 10m ,10% of range to 100 m)
DR 6.2	Velocity Accuracy (1 cm/s to 10 m , 10cm/s to 100m)

Software Feasibility

Overview



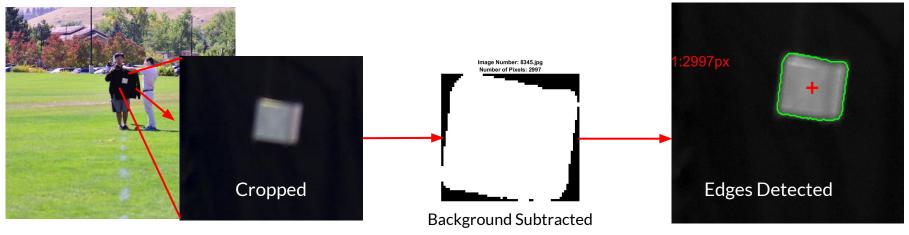
Software Feasibility Overview

Subsystem CPEs	Governing Requirement(s)	Parent Project Objective(s)	CPE Justification
Object Recognition	DR 5.2	FR.5	If the software is unable to identify mock CubeSats, it will be unable to measure and associate their trajectories.
Multi-object Tracking	DR 5.2, FR 1	FR.1, FR.5	CubeSats are deployed in clusters. VANTAGE will be unable to provide sufficient tracking in the use-case if it cannot track multiple objects in the FOV.

Req.	Summary	Link to Slide(s)
DR 5.2	Software shall detect mock CubeSats within FOV at a distance of 3-100m	<u>DR 5.2</u>

Software Feasibility

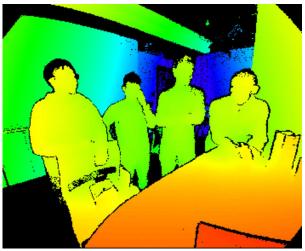
Object Recognition

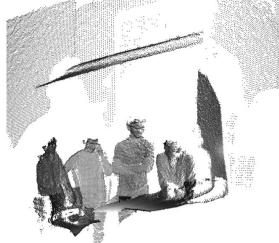

Camera Object Recognition

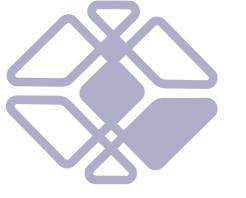
Feasible? Yes:

- Test Details: Nikon D800, 7360x4912, FOV 28.8°x19.5°, focal length 100 m
- Real mock CubeSat image at a range of 30 m, tests over full range given in backup

Resulting data includes centroid, pixel count, and object boundary pixels


Req.	Summary
DR 5.2	Software shall detect mock CubeSats within FOV at a distance of 3-100m


TOF Camera Feasibility Progress

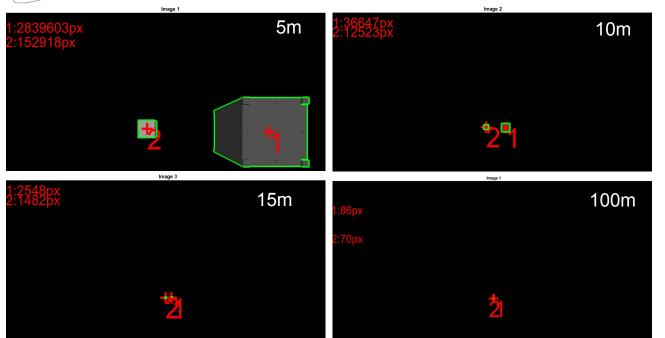

Prof. McMahon's TOF Camera Sensor Measurements (2D left, 3D right)

2D image from TOF Software Package

- TOF sensor provides depth measurements of all objects within its FOV at short range
- Images demonstrate team's ability to work with output from a TOF camera
- Path forward:
 - Perform open field-testing of object recognition with mock CubeSat
 - Not yet performed due to schedule constraints and limited access to the on-campus TOF camera

Software Feasibility

Multi-object Tracking


Multi-object Tracking Simulation

- Simulation done with a 3D graphics software
 - Cinema 4D R20
- Camera FOV seen is FOV 28.8°x19.5°
 - This is what what we use in real photo test. (Validate simulation work)
- Video is real time but cut
 - Expected deployment velocities are 1-2m/s (general NanoRacks predictions)
 - From start to finish expected to take between 50-100s for the full range test

Simplified analysis for determining feasibility:

- **Rectilinear Motion**
- Equal linear velocities for 1 and 2
- Thus the initially larger pixel cluster will always be larger through images
- Shows feasibility of differentiating realistic objects up to 100 m
- Can be extended to six objects for clear visibility (see backup)

R	Req.	Description
F	FR.5	The system shall uniquely detect and track up to 6 mock 1U-3U CubeSats while they remain between 3 and 100 m of the VANTAGE payload.
)/16/201	18	Preliminary Design Review

Avionics Feasibility

Avionics Feasibility Overview

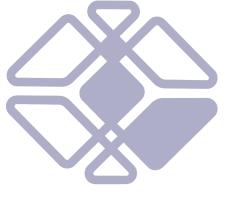
Subsystem CPEs	Governing Requirement(s)	Functional Requirements	CPE Justification
Data Storage and Processing Data	DR.8.1-EL DR.8.2-EL	FR.8	The selected avionics will limit VANTAGE's processing speed and maximum storage capacity, so these factors must be taken into account when selecting hardware.

Red	q. Label	Summary	Links to Slide(s)
DR	R 8.1 EL	The electronics subsystem shall transmit results within 15 minutes of final mock CubeSat deployment.	<u>DR.8.1</u>
DR	R 8.2 EL	The system shall store all images, sensor data, and estimates within an onboard data storage device.	DR.8.2

Data Storage and Processing Data

DR 8.1 and DR 8.2 Feasible? Yes:

Process	Time*
Data import from camera (USB3.0)	115.6 Sec
Processing Camera Necessary RAW Footage	300 Sec
Image Recognition	2.38 Sec
Estimate velocity and position	100 Sec
Output to Use-Case-System (USB2.0)	52 Sec
Total	569 Sec = 9.5Min


- Compatible with standard SSD drives (up to 5 TB possible, 64* GB is more than enough)
 - *Support for these numbers in Backup

NUC Image Processing Time Estimates

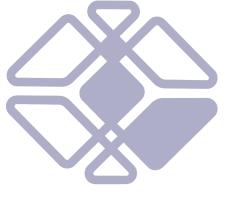
- Data input through and write from USB3.0
 25MB/s
- Processing CR2.RAW-DNG
 - \circ 5 Min based on experience
- Image Recognition
 0.0238 sec per image
- Estimate Velocity and Position
 - 1 sec per image
- Output USE-CASE two raw footage(500MB)

 10MB/S

Req.	Summary
DR 8.1	The electronics subsystem shall transmit results within 15 minutes of final mock CubeSat deployment.
DR 8.2	The system shall store all images, sensor data, and estimates within an onboard data storage device.

Testing Feasibility

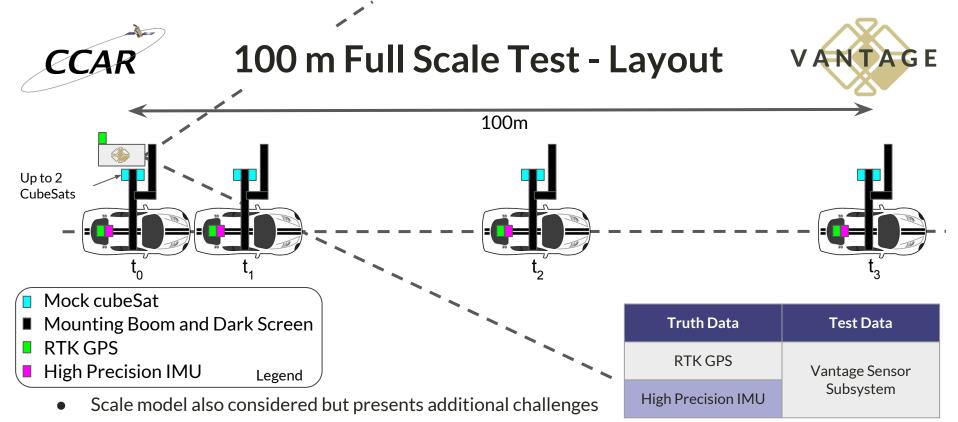

Overview



Testing Feasibility CPEs

Testing Feasibility

100m Full-Scale Test


100m Full Scale Test

Subsystem CPEs	Testable Requirement(s)	Parent Functional Requirements	CPE Justification
Testing & Verification	DR.3.1 DR.6.1 DR.6.2	FR.3, FR.6	The VANTAGE system must be tested in order to verify requirements. As a technology and concept ground based demonstration it is important to simulate the use case of the system accurately so that system requirements can be verified.

Testable Requirements

Req. Label	Summary
DR.3.1	The system shall operate with up to 120 VDC with a ripple voltage of 3Vpp and less than 5 A, which simulates the power available from the NanoRacks use-case system.
DR.6.1	Software subsystem shall produce relative position vector estimates accurate up to 10 cm 1 σ to a distance of 10 m, changing to an accuracy of at least a tenth of the range 1 σ up to a distance of 100 m.
DR.6.2	Software subsystem shall provide relative velocity vector estimates accurate up to 1 cm/s 1 σ to a distance of 10 m, changing to an accuracy of 10 cm/s 1 σ up to a distance of 100 m.

- TOF and Camera sensor cannot be scaled down to generate similar area/pixel density at scaled range
- Full scale test gives opportunity to demonstrate complete system functionality

10/16/2018

100m Full Scale Test Simulation

- Simulation done with a 3D graphics software
 - Cinema 4D R20
- Camera FOV seen is 20°x20°
 - This is what we expect to see with the current FOV used in the baseline design
- Video is accelerated
 - Expected deployment velocities are 1-2m/s (general NanoRacks predictions)
 - From start to finish, expected to take between 50-100s for the full range test

100 m Test System - Feasibility

- Possible Locations
 - Boulder Airport Taxiway, Big parking lots (flatirons mall, etc.)
 - Expect limited traffic at night at both locations
- Manufacturing
 - Expect cutting and welding pipe to fabricate boom for mock cubesats
 - Personal welding resources available over Winter Break and at aero machine shop upon start of Spring semester
 - Less competition for welding resources than for milling
- Iteration and Modularity details in backup

100m Test Accuracy Feasibility

• Must measure velocity accurate up to 1 cm/s (DR 6.2), position up to 10 cm (DR 6.1)

GPS RTK (ublox C94-M8P) Receiver

Property	Description	
Velocity Accuracy	0.05m/s	
Timing Accuracy	5 Hz update rate	
Position Accuracy	0.025m	
Size	15.9mm x 12.1mm x 2.2mm	
Availability	Dr. Akos has the full C94-M8P package that he would be willing to lend to us for testing	

Analog Devices 3-axis IMU (ADIS16405BMLZ)

Property	Description
Accelerometer Accuracy	3.33 mg/LSB
Gyroscope Accuracy	0.0125 deg/s/LSB
Acceleration Accuracy	0.0000333 m/s^2
Size	319mm x 22.9mm x 23.5mm
Availability	Has been checked out from Trudy

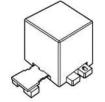
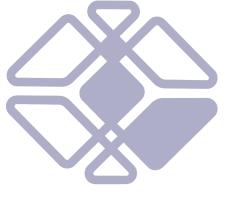



Image Credit: Analog Devices

Image Credit: ublox

Testing Feasibility

Modular Test System

Modular Test System

Subsystem CPEs	Testable Requirement(s)	Parent Functional Requirements	CPE Justification
Testing & Verification	DR.1.3; DR.1.4 DR.6.1; DR.6.2 DR.7.2; DR.7.3	FR.1 FR.6 FR.7	The VANTAGE system must be tested in order to verify requirements. As a technology and concept ground based demonstration it is important to simulate the use case of the system accurately so that system requirements can be verified.

Testable Requirements

Req. Label	Summary
DR.1.3	Imaging subsystem shall produce at least 2 images of each mock CubeSat deployed by the test system.
DR.1.4	Imaging subsystem shall produce in-focus images of mock CubeSats
DR.6.1	Software subsystem shall produce relative position vector estimates accurate up to 10 cm 1 σ to a distance of 10 m, changing to an accuracy of at least a tenth of the range 1 σ up to a distance of 100 m.
DR.6.2	Software subsystem shall provide relative velocity vector estimates accurate up to 1 cm/s 1 σ to a distance of 10 m, changing to an accuracy of 10 cm/s 1 σ up to a distance of 100 m.
DR.7.2	Software subsystem shall recognize if mock CubeSats exit the test system greater than 3 seconds before/after predicted with a tolerance of 0.5 seconds 3σ .
DR.7.3	Software subsystem shall recognize if initial relative velocities are less than 0.5m/s or greater than 2.0m/s with a tolerance of 0.1m/s 3σ .

Light

Source

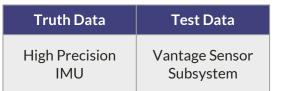
Motor

Top View Rail Cart IMU V

Rail

10 m

Mock CubeSat

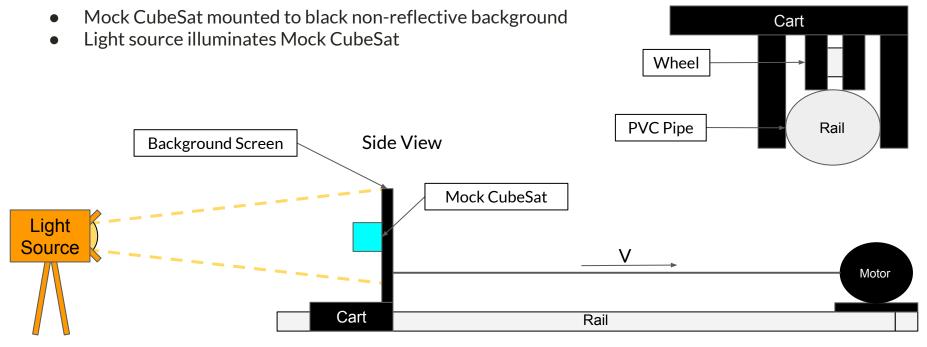

Modular Test System - Layout

10 m PVC pipe track

Vantage

- Mock CubeSat mounted to cart
- Cart moves along track on wheels, pulled by motor (see next slide)

High accuracy IMU (see 100m test) used for truth position measurements


CCAR

2 Wheels mounted to each side of cart

Modular Test System - Layout

Wheel Mounting (Front View)

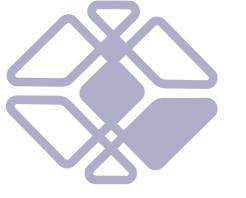
Modular Test System - Feasibility

• Possible Locations

- For 100m of testing (10 separate test iterations)
 - Balch Fieldhouse, Indoor Practice Facility
 - Precedent exists for Senior Projects groups to access
- For test workmanship and short range only
 - EC hallways are generally free of people after business hours
 - Set is designed to be easily broken down into components which can be stored in the Grad Projects work room

Manufacturing

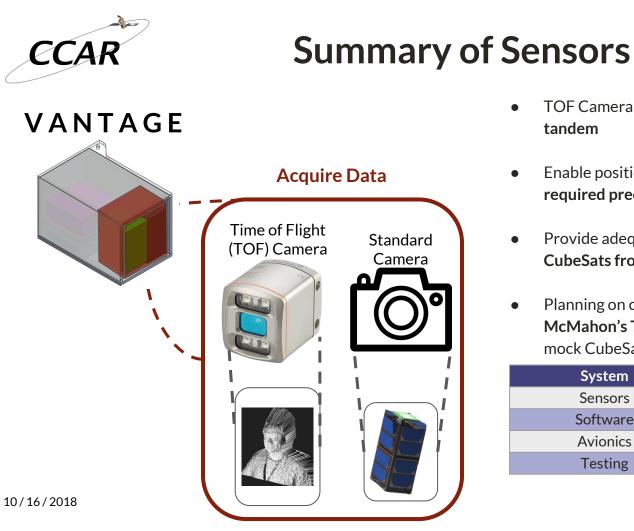
- PVC Pipe and Acrylic will need to be cut
 - Bandsaw availability


• Ability to Iterate

- Assembly necessary at beginning of each test
- Location will need to be reserved, likely only at night
- To mitigate risks several sessions will be planned in advance

• Modularity of Test

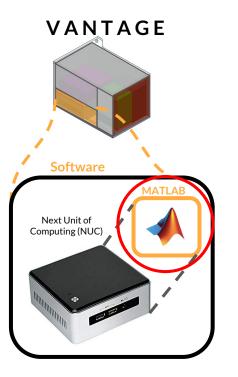
• Each requirement can be verified individually


Project Status Summary

Baseline Design Feasibility

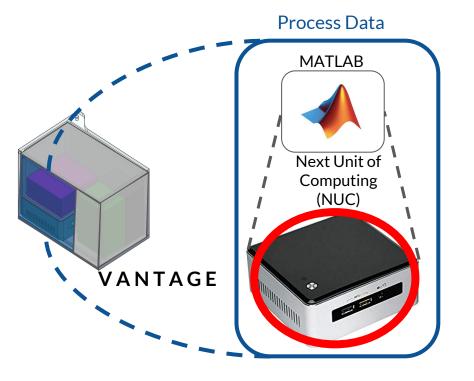
System Summaries

- TOF Camera & Standard Camera both work in tandem
- Enable position / velocity measurements within required precision
- Provide adequate ability to sense and track CubeSats from 3-100m
- Planning on conducting more field tests with Prof.
 McMahon's ToF Camera to get field data w/ our mock CubeSat models


Feasibility
FEASIBLE

ANTAGE

Summary of Software



- Edge detection algorithm **recognizes individual objects**
- Sensor data can related to individual CubeSat position & velocity
- Heuristic multi-object tracking algorithms keeps track of object identity

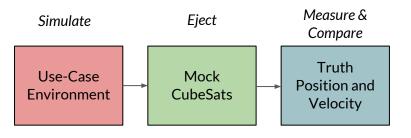
System	Feasibility
Sensors	FEASIBLE
Software	FEASIBLE
Avionics	
Testing	

Summary of Avionics

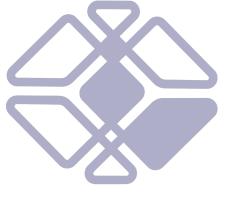
- Avionics system meets data storage requirements
- NUC processes data generated within required time limit

System	Feasibility
Sensors	FEASIBLE
Software	FEASIBLE
Avionics	FEASIBLE
Testing	

CCAR

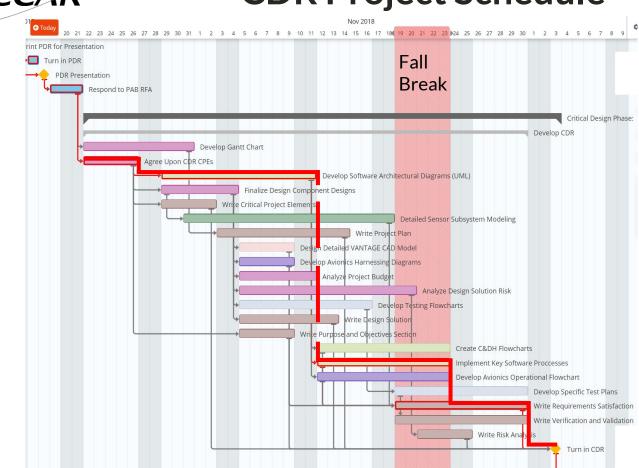


Summary of Testing


- Provides simulated interface **power and data to VANTAGE**
- Completely Simulates CubeSat Deployment Conditions
- 100m Full Scale Test provides high precision data over **full use-case range** with slow iteration
- Modular Test System provides high accuracy, precise **close range data** with rapid iteration

System	Feasibility
Sensors	FEASIBLE
Software	FEASIBLE
Avionics	FEASIBLE
Testing	FEASIBLE

Project Budget


Su	ıbsystems:	Structures	Sensors	Software	Electronics	Testing	Total	
То	tal Cost:	\$102.44	\$2,660.0	<mark>)0</mark> \$0.0	0 \$769.28	\$284.64		\$3,713.92
	Base Plate		1 \$14.74					
	Left Plate		1 \$14.74	3in OD P	/C Pipe for track		80	\$139.28
	Right Plate		1 \$14.74	3in PVC E	Elbow 90 degree		4	\$10.64
	Top Plate		1 \$14.74		t Acrylic Sheet			
	Front Plate		1 \$8.04		-		1	\$44.74
	Back Plate		1 \$8.04				1	\$3.97
	18-8 Stainless Steel Socket Head 1/4"-28 Thread Size, 5/8"		40 \$10.72	Encoder	V, 100:1 Gear Mot	or w/ 64 CPR	1	\$39.95
	18-8 Stainless Steel Helical Inser Right-Hand Thread, 0.168" Long	,	10 \$16.68		er x 1-1/4" Wide, 2		4	\$10.12
	O3D313 IR ToF Camera		1 \$1,460.00	3in PVC (Coupling Slip Inside	e	6	\$35.94
	Canon EOS 80D DSLR		1 \$1,200.00	Alloy, Arc	ong, 1/8 Inch Diam Welding Electrode		1	\$21.36
	MATLAB License Various external packages		1 \$0.00 1 \$0.00	1 in. x 10	ft. Electric Metallic	Tube (EMT)	6	\$62.40
	INTEL® NUC KIT NUC817BEH		1 \$484.30	18-8 Stair	less Steel Socket	Head Screw		
	500GB Solid State Drive		1 \$86.99	M4 x 0.7	mm Thread, 20 mn	n Long	25	\$8.24
	16 GB RAM		1 \$99.99	Zinc-Plate	ed Steel Hex Nut			
	DC/DC CONVERTER 24V 120W		1 \$63.00		Strength, Class 8, N	/14 x 0.7 mm		
	DC DC CONVERTER 3.3-24V 25	50W	1 \$35.00	Thread			25	\$2.35
				-				

Project Schedule

CDR Project Schedule

- All Tasks have built in 10% approximate <u>margin</u>
- **Software** is on the critical path
- Detailed Sensor Analysis is also expected to take a long time

LEGEND

Critical Path SysE / PM / Finance Avionics Software Sensors Structures Testing Document Creation

Questions?

Table of Contents

Project Overview	Baseline Design	Feasibility Studies	Summary
Motivation & Mission	<u>Overview</u>	<u>CPEs Overview</u>	Baseline Design
CONOPS - Multi-Year	<u>Sensors</u>	Sensors Overview	Budget
VANTAGE Use-Case FOV	<u>Software</u>	Sensors - Error	Schedule
CONOPS - This Year	<u>Avionics</u>	Software Overview	Req Links Table
FBD	<u>Structures</u>	Software - Object Recognition	
Functional Regs.	Changes Since CDD	Software - Multi-object Tracking	
		Avionics Overview	
		Avionics - Data Storage and Processing	
		Testing - CPEs	
		Testing - 100m Full-Scale Test	
		Testing - Modular Test System	

Backup Table of Contents

Overview	Software	Structures	Avionics	Sensors	Testing
Project Description	Detailed Flowchart	More D.R. Satisfaction	<u>More D.R.</u> <u>Satisfaction</u>	Sensors Trade	<u>100 m Test</u>
Budget Link	Object Recognition Algorithm	<u>Overview</u>	Avionics Trade	More D.R. Satisfaction	<u>Modular Test</u>
<u>Schedule</u>	Object Recognition Real Images	Structures CAD		<u>Calculations</u>	
	Multi-object Tracking Alg.	Structures Trade		<u>Miscellaneous</u>	
	Close-objects Identification	CAD Drawings			
	Tumbling Objects				
	More D.R. Satisfaction				
	Camera Uncertainty				

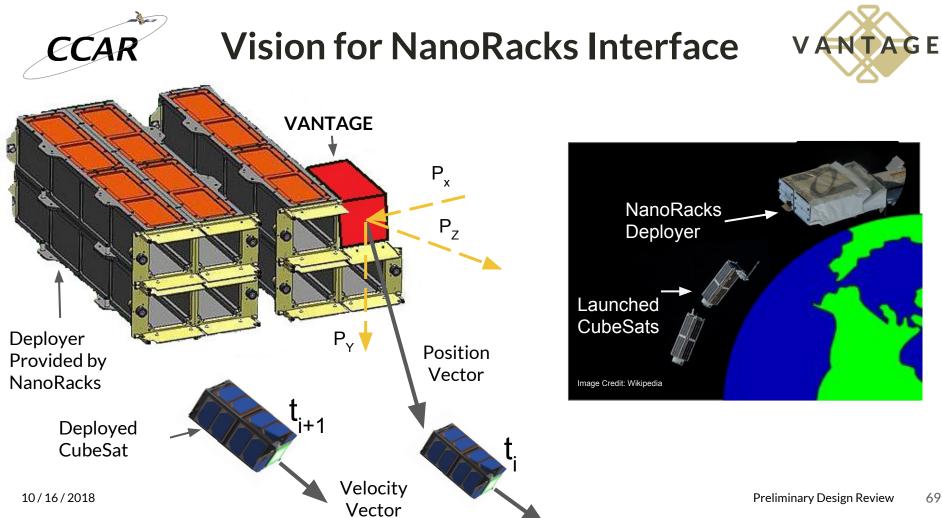
Req.	Full Description	Link to Slide(s)
FR.1	The system shall support in-focus imaging of at most 6 mock 1U CubeSats at some range between 3 and 100 meters from the VANTAGE payload.	Supported by DRs
DR.1.1	The system shall use a camera to capture images of mock CubeSats.	<u>DR.1.1</u>
DR.1.2	Imaging subsystem shall have a FOV greater than 20°x20°.	<u>DR.1.2</u>
DR.1.3	Imaging subsystem shall produce at least 2 images of each mock CubeSat deployed by the test system.	<u>DR.1.3</u>
DR.1.4	Imaging subsystem shall produce in-focus images of mock CubeSats.	<u>DR.1.4</u>
FR.2	The system shall receive and interpret commands and the deployment manifest from a PC which simulates the NanoRacks use-case system.	Supported by DRs
DR.2.1	The electronics subsystem shall interface with the PC which simulates the NanoRacks use-case system via a USB2.0 Port for all data communication needs.	<u>DR.2.1</u>
DR.2.2	Software subsystem shall interpret a deployment manifest file sent from the PC which simulates the NanoRacks use-case system.	<u>DR.2.2</u>

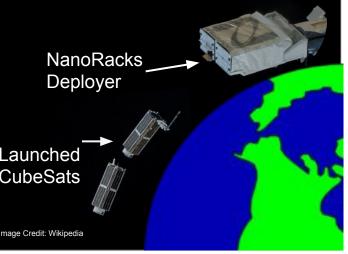
Req.	Full Description	Link to Slide(s)
FR.3	The system shall accept power analogous to that which is available from the NanoRacks use-case system.	Supported by DRs
DR.3.1	The system shall operate with up to 120 VDC with a ripple voltage of 3Vpp and less than 5 A, which simulates the power available from the NanoRacks use-case system.	<u>DR.3.1</u>
DR.3.2	The system shall draw less than 520 Watts.	<u>DR.3.2</u>
DR.3.3	The electronics subsystem shall enter a low power mode when not performing any operations (i.e. before a final test has been started, after a final test has been completed and all post-processing and communications have completed).	<u>DR.3.3</u>
FR.4	The system shall integrate mechanically with a structural interface which simulates the NanoRacks use-case system.	Supported by DRs
DR.4.1	The system shall meet the structural requirements listed in NanoRacks Interface Control Documents.	<u>DR.4.1</u>
DR.4.2	The VANTAGE team shall build a structural interface that simulates the NanoRacks Deployer structural interface use-case system accurate up to 0.005 in.	<u>DR.4.2</u>

Req.	Full Description	Link to Slide(s)
FR.5	The system shall uniquely detect and track up to 6 mock 1U-3U CubeSats while they remain between 3 and 100 m of the VANTAGE payload.	Supported by DRs
DR.5.1	Sensor subsystem shall have a sensing FOV of at least 20°x20°.	<u>DR 5.1</u>
DR.5.2	The system shall detect whether a mock CubeSat is within its FOV 99% of the time while the mock cubesat remains between 3 and 100 m of the VANTAGE payload.	<u>DR 5.2</u> <u>Backup</u>
FR.6	The system shall estimate the position and velocity vectors of CubeSats between a distance of 3 and 100 m.	Supported by DRs
DR.6.1	Software subsystem shall produce relative position vector estimates accurate up to 10 cm 1 σ to a distance of 10 m, changing to an accuracy of at least a tenth of the range 1 σ up to a distance of 100 m.	DR.6.1 Backup
DR.6.2	Software subsystem shall provide relative velocity vector estimates accurate up to 1 cm/s 1 σ to a distance of 10 m, changing to an accuracy of 10 cm/s 1 σ up to a distance of 100 m.	<u>DR.6.2</u>

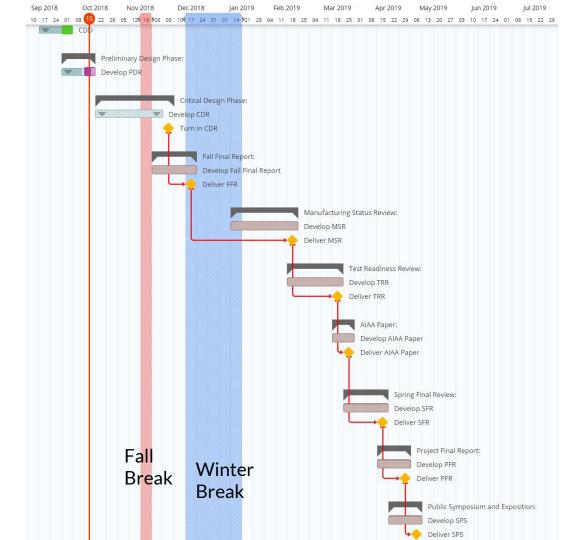


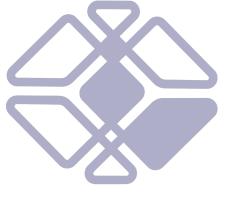
10/16


Req.	Full Description	Link to Slide(s)
FR.7	The system shall recognize off-nominal deployment cases, which shall include off-nominal relative initial velocities and off-nominal deployment times from the test system.	Supported by DRs
DR.7.1	Software subsystem shall maintain current time, synchronized with global time UTC, from the PC which simulates the NanoRacks use-case system with an accuracy of at least ± 1 ms.	<u>DR.7.1</u>
DR.7.2	Software subsystem shall recognize if mock CubeSats exit the test system greater than 3 seconds before/after predicted with a tolerance of 0.5 seconds 3σ.	<u>DR.7.2</u>
DR.7.3	Software subsystem shall recognize if initial relative velocities of mock CubeSats are less than 0.5m/s or greater than 2.0m/s with a tolerance of 0.1m/s 3σ .	<u>DR.7.3</u>
FR.8	The system shall report position/velocity vector measurements, off-nominal deployment cases, and raw images from the current mock deployment to the PC which simulates the NanoRacks use-case system before the next NanoRacks CubeSat Deployer (NRCSD) tube deployment would normally occur in the use-case.	Supported by DRs
DR.8.1	The electronics subsystem shall transmit all relative position and velocity vector estimates and uncertanties, as well as mock CubeSat deployment images back to the PC which simulates the NanoRacks use-case system within 15 minutes of final mock CubeSat deployment.	<u>DR.8.1</u> <u>Backup</u>
DR.8.2	The system shall store all images, sensor data, and estimates within an onboard data storage device.	<u>DR.8.2</u> Backup


Backup Slides

Backup Project Description

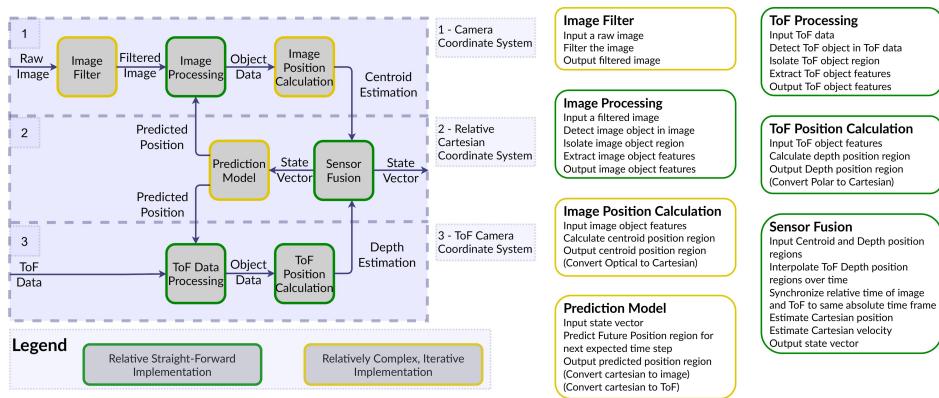


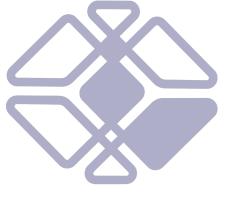


Backup Budget

Subsystems:	Structure	Sensors	Software	Electronics	Testing	Total	
Total Cost:	\$102.44	\$2,660.00	\$0.00	\$769.28	\$284.64	\$3,713.92	2
Verified By:							
Item Description	Quantity	Quantity per P	Pkg Req	Cost per Pkg	Total Cost	Extra Notes	Link
Base Plate	1	1	1	1 \$14.74	\$14.74		https://www.mcmaster.com/8975k561
Left Plate	1	1	1	1 \$14.74	\$14.74		https://www.mcmaster.com/8975k561
Right Plate	1	1	1	1 \$14.74	\$14.74		https://www.mcmaster.com/8975k561
Top Plate	1	1	1	1 \$14.74	\$14.74		https://www.mcmaster.com/8975k561
Front Plate	1	1	1	\$8.04	\$8.04		https://www.mcmaster.com/8975k436
Back Plate	1	1	1	\$8.04	\$8.04		https://www.mcmaster.com/8975k437
18-8 Stainless Steel Socket Head Screw							
1/4"-28 Thread Size, 5/8"	40	50	1	1 \$10.72	\$10.72		https://www.mcmaster.com/92196a319
18-8 Stainless Steel Helical Insert. 4-40						Expected to need about 40. We may need slightly	
Right-Hand Thread, 0.168" Long	40	10	4	\$4.17	\$16.68		https://www.mcmaster.com/91732a285
O3D313 IR ToF Camera	1	1	1	1 \$1,460.00			https://www.ifm.com/us/en/product/O3D313
						Expected to need different	
Canon EOS 80D DSLR	1	1	1	1 \$1,200.00	\$1,200.00	lense cost slightly more	
MATLAB License	1	1	1	1 \$0.00	\$0.00		https://oit.colorado.edu/software-hardware/software-downloads-and-licensing/matlab
Various external packages	1	1	1	1 \$0.00	\$0.00		https://oit.colorado.edu/software-hardware/software-downloads-and-licensing/matlab
INTEL® NUC KIT NUC8I7BEH	1	1	1	\$484.30	\$484.30		https://www.intel.com/content/www/us/en/products/boards-kits/nuc/kits/nuc8i7beh.html
500GB Solid State Drive	1	1	1	\$86.99	\$86.99		https://www.amazon.com/Samsung-500GB-Internal-MZ-76E500B-AM/dp/B0781Z7Y3S/ref=sr_1_3/141-8500920-922514
16 GB RAM	1	1	1	1 \$99.99	\$99.99		https://www.newegg.com/Product/Product.aspx?Item=N82E16820231489&ignorebbr=1&nm_mc=KNC-GoogleAdwords-
DC/DC CONVERTER 24V 120W	1	1	1	\$63.00	\$63.00		https://www.digikey.com/products/en?keywords=1866-5036-nd
DC DC CONVERTER 3.3-24V 250W	1	1	1	\$35.00	\$35.00		https://www.digikey.com/product-detail/en/tdk-lambda-americas-inc/I6A24014A033V-002-R/285-2857-ND/5604255
3in OD PVC Pipe for track	80	10	8	\$17.41	\$139.28		https://www.homedepot.com/p/JM-eagle-3-in-x-10-ft-PVC-Schedule-40-DWV-Plain-End-Pipe-531095/100161921
3in PVC Elbow 90 degree	4	1	4	\$2.66	\$10.64		https://www.homedepot.com/p/3-in-PVC-DWV-90-Degree-Hub-x-Hub-Elbow-C4807HD3/100346018
Clear Cast Acrylic Sheet					\$44.74		https://www.marship.com/0500/000
24" x 48" x 1/8"	1	2		1 \$44.74 1 \$3.97			https://www.mcmaster.com/8560k262 https://www.homedepot.com/p/Rust-Oleum-Painter-s-Touch-2X-12-oz-Semi-Gloss-Black-General-Purpose-Sprav-Paint-2
Black spray paint	1	2		53.97	\$3.97		nups://www.nomedepol.com/p/Rust-Oleum-Painter-s-Touch-zX-T2-oz-Semi-Gloss-black-General-Purpose-Spray-Paint-
Pololu 12V, 100:1 Gear Motor w/ 64 CPR Encoder	1	1	1	\$39.95	\$39.95		https://www.robotshop.com/en/pololu-12v-1001-gear-motor-64-cpr-encoder.html?gclid=EAIalQobChMI68SRiruB3glVhipi
Rubber Wheel							
3" Diameter x 1-1/4" Wide, 270 lb. Capacity	4	1	4	\$2.53	\$10.12		https://www.mcmaster.com/2337t13
3in PVC Coupling Slip Inside	6	1	6	\$5.99	\$35.94		https://www.acehardware.com/departments/plumbing/pipe-fittings/plastic-fittings/4512331?x429=true&utm_source=goog
14 Inch Long, 1/8 Inch Diameter, Steel Alloy, Arc Welding Electrode	1	1	1	1 \$21.36	\$21.36		https://www.mscdirect.com/browse/Inpla/598039999?cid=ppc-google-New+-+Welding+%26+Soldering+-+PLA_sqHmEEE
1 in. x 10 ft. Electric Metallic Tube (EMT) Conduit	6	1	6	5 \$10.40	\$62.40		https://www.homedepot.com/p/1-in-x-10-ft-Electric-Metallic-Tube-EMT-Conduit-101568/100400409?MERCH=RECPIF
18-8 Stainless Steel Socket Head Screw M4 x 0.7 mm Thread, 20 mm Long	25	100	1	1 \$8.24	\$8.24		https://www.mcmaster.com/91292a121
Zinc-Plated Steel Hex Nut Medium-Strength, Class 8, M4 x 0.7 mm Thread	25	100	1	1 \$2.35	\$2.35		https://www.mcmaster.com/90591a255

Backup Software


Flowchart



Software Functional Flowchart

Backup Object Recognition

Algorithm for the PDR

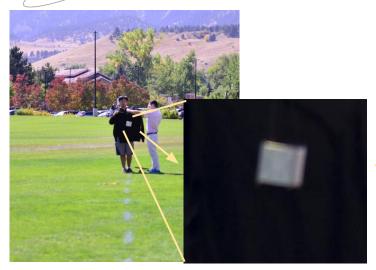
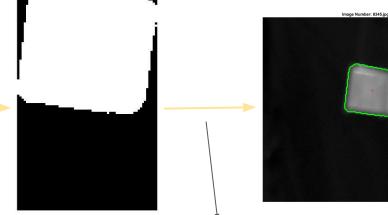



Image Number: 8345.jpg Number of Pixels: 3153

Binarize image to define exact pixels as object border

- Trace exterior boundaries of objects
- Determine boundaries corresponding to object edge
- Count pixels within boundary to • determine object properties

ECA

Binarization Filter

- Takes in a grayscale image
- Checks the shade of each pixel
- Compares each shade value to a threshold value
- Values above this $\rightarrow 1$
- Values below this $\rightarrow 0$
- Outputs logical matrix

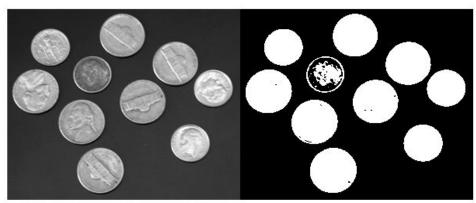


Image Source: Mathworks Imbinarize documentation

Edge Detection Algorithm

- Takes in a binarized image
- Detects transitions from 0 to 1
- Marks adjacent transitions as edge
- Ignores transitions contained by complete edges
- Returns separate lists of complete edges as well as the corresponding body pixels

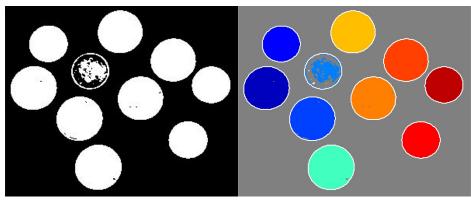
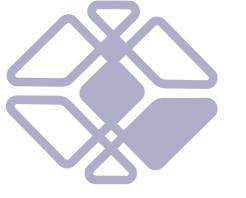
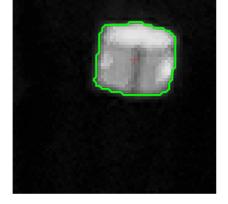



Image Source: Mathworks Imbinarize documentation

Backup Object Recognition

Detection of mock CubeSats in real images over the full range

95 m


90 m

CCAR

Full Range Object Recognition

Image Number: 8223.jpg

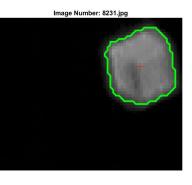
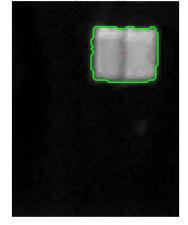
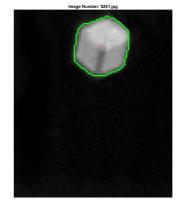



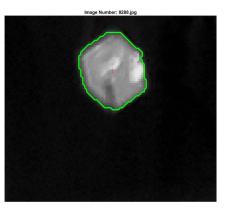
Image Number: 8238.jpg

+

Image Number: 8254.jpg

80 m


70 m



Full Range Object Recognition

+

Image Number: 8319.jpg

60 m

40 m

30 m

Full Range Object Recognition

Image Number: 8377.jpg

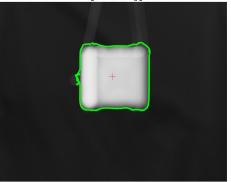


Image Number: 8391.jpg

5 m

5 m

Backup Multi-object Tracking

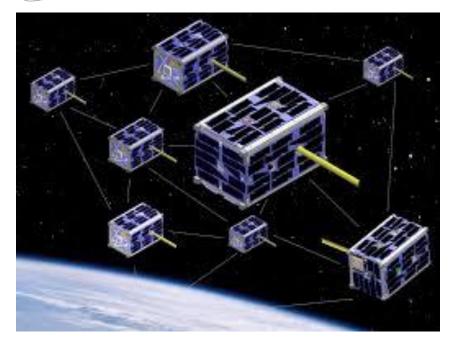
Algorithm

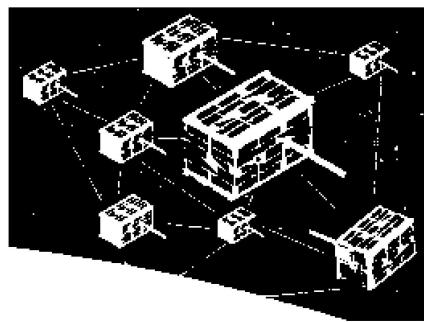


Multi-object Tracking Algorithm

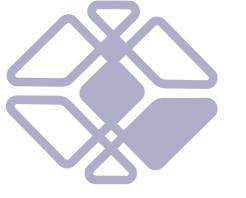
- 1. Perform image processing, binarization, and edge detection algorithm
- 2. Set a boundary pixel count threshold based on the largest boundary
 - a. Assumption made here is that the largest boundary will always pertain to a CubeSat
- 3. Iterate through each boundary, if the boundary size exceeds the pixel count threshold, consider that object as a CubeSat
 - a. Assumption made here is that objects within the FOV will be primarily CubeSats, with small noise-related boundaries scattered throughout
- 4. Perform analysis on objects that pass the threshold check

Backup Multi-object Tracking

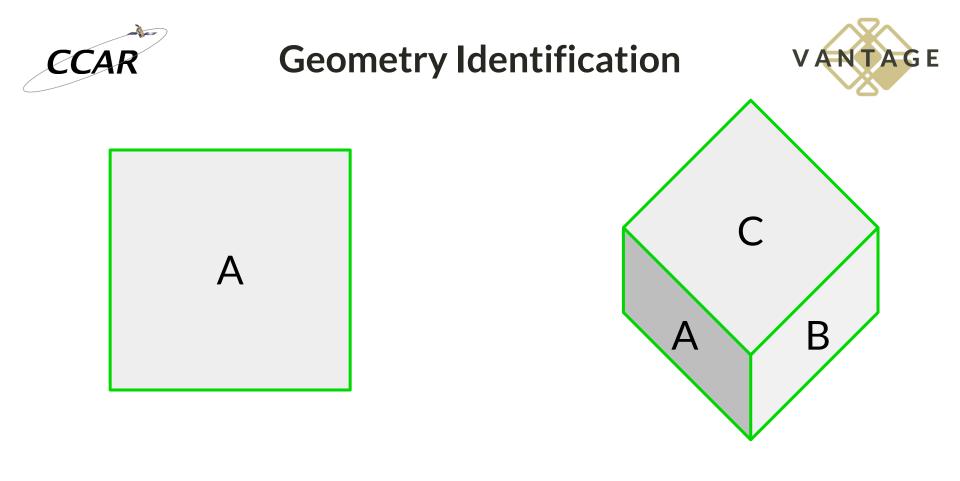

Close-objects Identification



Close-object Identification

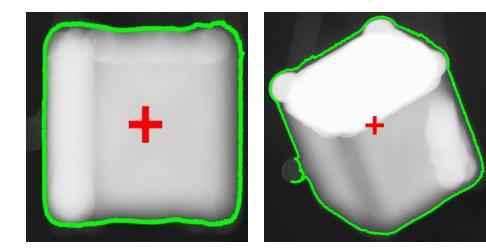


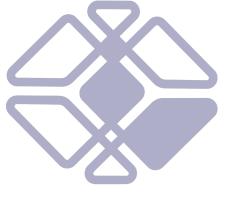
Petro, A., "Small Spacecraft Technology"


• Feasible with more development on edge detection

Backup Satellite Tumbling

Geometry Identification





Geometry Identification

- Borders will have clear geometric distinctions in straight-on vs. tumbling images
 - Cube edges within border may be inferred based on outside border angle
- Visual magnitude across the image will vary grayscale values for each visible side
 - With further grayscale processing, edges within border may be detected based on sharp gradient between cube sides

Backup Software

Satisfying Requirements

Feasibility of DR 2.2

Req.	Full Description				
DR.2.2	Software subsystem shall interpret a deployment manifest file sent from the PC which simulates the NanoRacks use-case system.				

Feasible? Yes:

- The team possesses a great deal of experience in parsing text files with complex formats.
- NanoRacks has informed the team that VANTAGE will largely be able to define the format of this manifest text file, further making the requirement feasible.

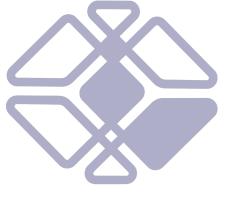
Feasibility of DR 7.1

Req.	Full Description
DR.7.1	Software subsystem shall maintain current time, synchronized with global time UTC, from the PC which simulates the NanoRacks use-case system with an accuracy of at least ±1 ms.

Feasible? Yes:

- Team PC will be synchronized to UTC over the internet and used as the baseline time, since in the use-case the NR deployer time will be treated as exact
- The PC will be connected to the VANTAGE NUC over USB 2.0, which can be used to synchronize the NUC internal clock with the PC's time
- The NUC processor will be either an Intel I5 or I7, whose clocks do not lose 1 ms over a 90 minute period (maximum full test duration)

Feasibility of DR 7.2 and 7.3



- **DR 7.2 Feasible? Yes:** • Time before launch, $t = \frac{r_z}{v_z}$ for r_z , v_z at the same point, so $\delta t = t \left(\frac{\delta r_z}{|r_z|} + \frac{\delta v_z}{|v_z|} \right)$
 - Ex (with maximum allowable errors):

t (s)	r _z (m)	v _z (m/s)	ðr _z (m)	ðv _z (m/s)	δ t (s)
5	10	2	0.1	0.01	0.06 < 0.5

- If calculated launch time ($\pm 0.5 \sec 3\sigma$) is greater than 3 seconds off of predicted launch time, it is off-nominal as defined by team requirements.
- DR 7.3 Feasible? Yes:
 - If calculated mock CubeSat speed is less than 0.5 m/s or greater than 2.0 m/s, it is off-nominal as defined by NanoRacks CubeSat ICD.

	Req.	Summary
	DR 7.2	Software shall recognize if mock CubeSats exit test system at abnormal time (with a tolerance of 0.5 seconds 3σ)
DR 7.3		Software shall recognize if mock CubeSats exit test system at abnormal velocity (within a tolerance of velocity accuracy requirements: DR 6.2)
16	2018	Preliminary Design Review

Backup Software

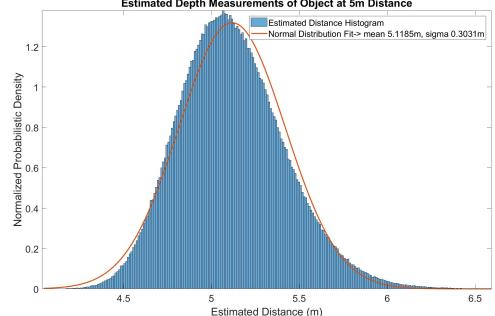
Miscellaneous

Software Trade Study

Table 4. Programming Languages Trade Study

	Weight	Python	C++	С	MATLAB
Quality and Availability of Packages/Libraries	55%	1	1	1	1
Implementation Difficulty (Learning, Manhours)	30%	2	2	3	1
Speed/Runtime		3	3	3	2
Total/Result	100%	1.6	1.6	1.9	1.15

Calculating Uncertainty for Camera Estimation

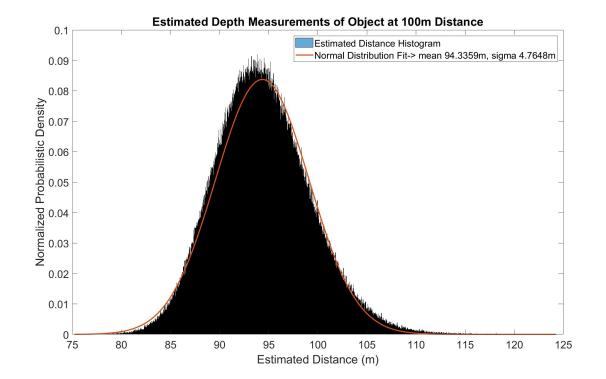


Using the field test images, we found the general region of pixels that the mock Cubesat edge could actually exist in.

This region is assumed to be caused by the lack of focus the camera has for the mock Cubesat in the images. These values were manually extracted, to demonstrate a rough approximation of the Camera's limitation, before any software error is introduced.

Assuming that this region is normally distributed, with a 1σ being half the maximum distance of the blurry region, we propagate the pixel edge uncertainty outwards to derive depth estimation uncertainty.

Using a Monte Carlo simulation where the variance comes from the uncertainty in the location of the edges of the mock Cubesat, we simulate 10⁶ trials and assume a normal distribution for the result.



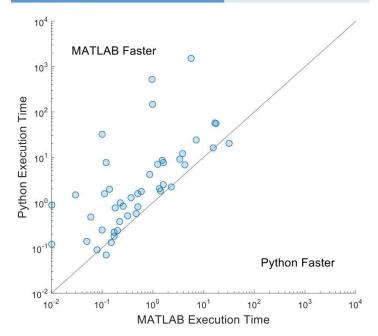
Estimated Depth Measurements of Object at 5m Distance

Calculating Uncertainty for Camera Estimation

We used a pinhole camera first order approximation model to convert the image pixels into a depth estimation model.

At 100m, using these assumptions, the mean of the simulation was found to be around 94m, with a standard deviation of around 5m.

Given that the data used to calculate these rough approximations were ideal images with a 10cm square pointing directly to the camera lens, these results were treated as a best case camera uncertainty bound.


These results lead us to look into using another sensor for depth measurements.

MATLAB vs. Python

MATLAB Performance over Python	Average	Best
Engineering	3.2x	64x
Statistics	2.7x	52x
Graphics	31x	540x
Nested for loops	64x	64x

Backup Structures

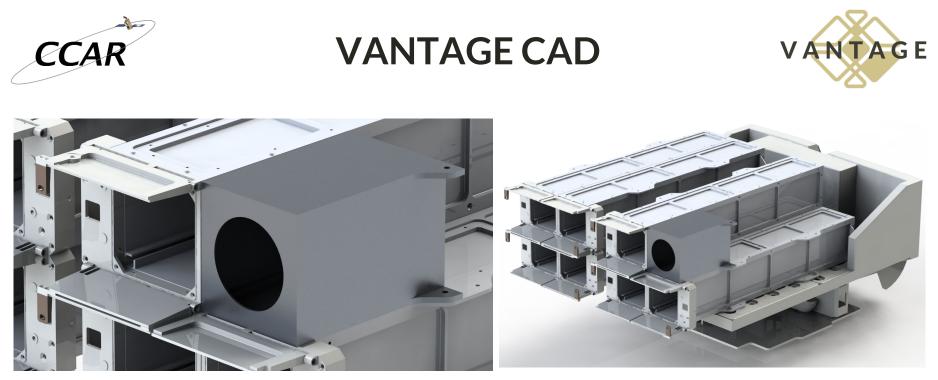
Structure Requirements (DR 4.1 and DR 4.2)

Req.	Description
DR.4.1-STR	The system shall meet the structural requirements listed in NanoRacks Interface Control Documents.
DR.4.2-STR	The VANTAGE team shall build a structural interface that simulates the NanoRacks Deployer structural interface use-case system accurate up to 0.005 in.

- No CPEs associated with the VANTAGE structure
- Considered non-critical for the project
 - Does not serve a critical purpose
 - Primary level of success does is a flat-sat system demonstration so no hardware integration needed
- Feasibility? YES
 - Similar requirements designed for and met on MAXWELL and CUE3 projects
 - Plenty of contact with NR to be able to confirm interface by CDR

VANTAGE Structure Overview

- Traded three interface options: Internal w/ Payloads, Internal Alone, and External
 - External configuration settled on based on trade study conducted
- External configuration replaces a single NRCSD tube in the NR deployer assembly
 - Configuration can be used in NR launch cases with \leq 42U of payloads
 - Takes one 6U payload tube out of the NR deployer assembly
 - Approximately 50% of launches based on conversation with NR
- External configuration uses same mounting scheme as the NRCSD
 - Based on CAD of the NR deployment assembly this is a single bolt interface
 - \circ Held in place by $\frac{1}{4}$ "*28 bolt and fits snugly against other NRCSDs
- External configuration needs to include interface for NR MLI blanket
 - A single ¼"-28 threaded hole will need to be positioned to emulate current interface on the NRCSD

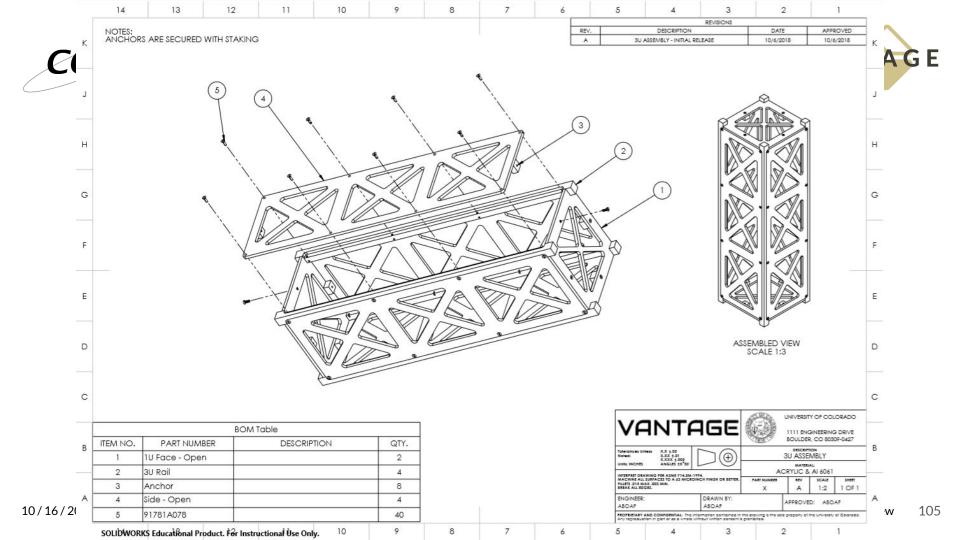


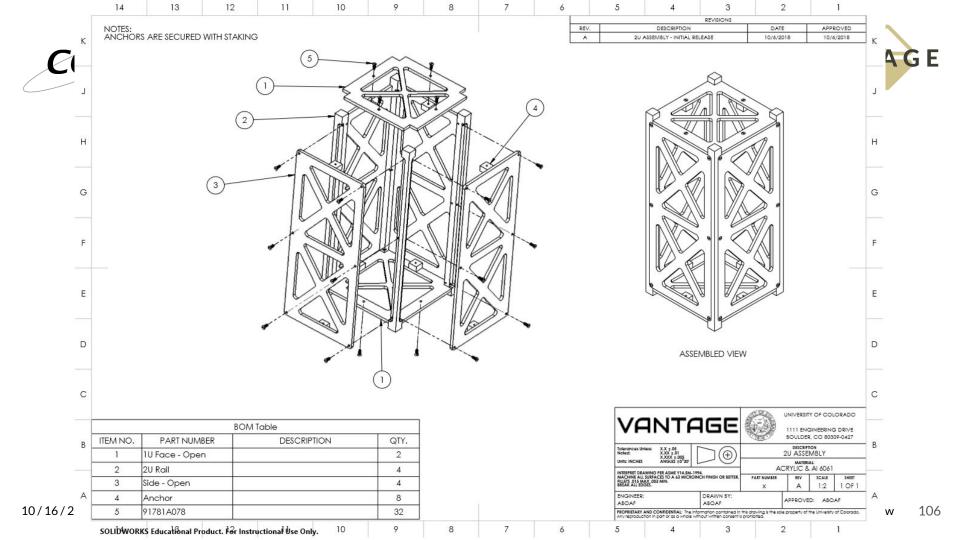
NR Deployment Assembly

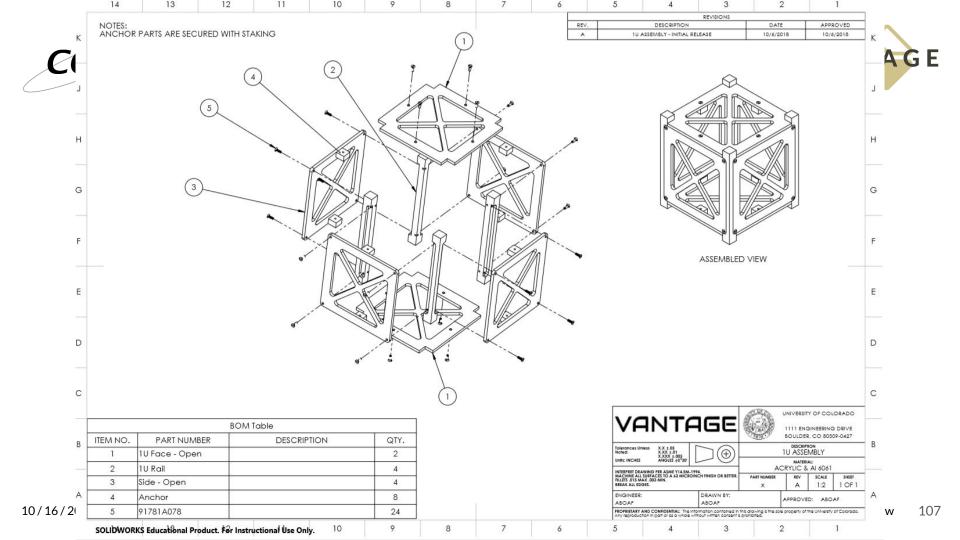
- Exists in multiple configurations
 - 8x1U; 6x1U+1x2U; 4x1U+2x2U; 2x1U+3x2U; 4x2U
- VANTAGE will always take up a 1U cross section space

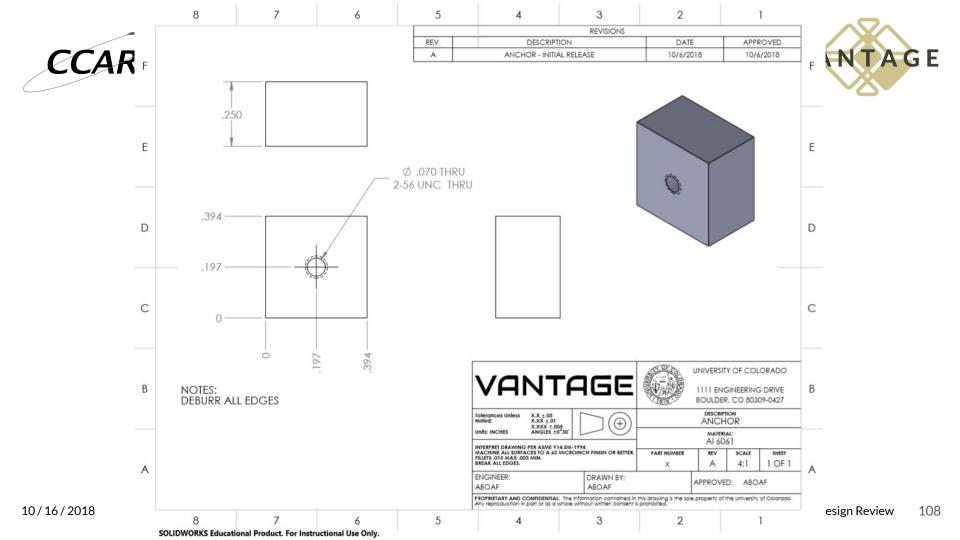
NR NRCSD Mounting Points

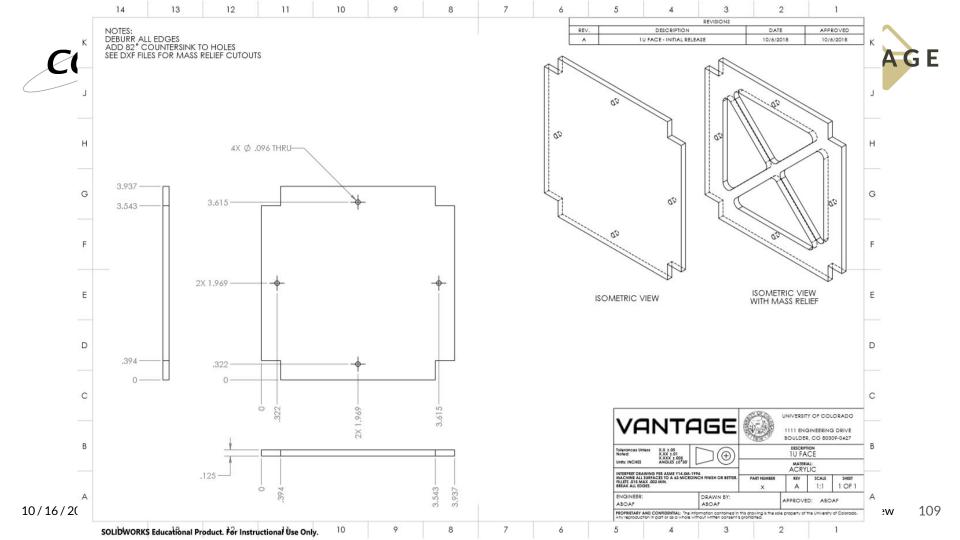
- Feasible? Yes
 - Interfacing is trivial
 - Will be able to identify sizes required of space ready components that exist or need to be developed

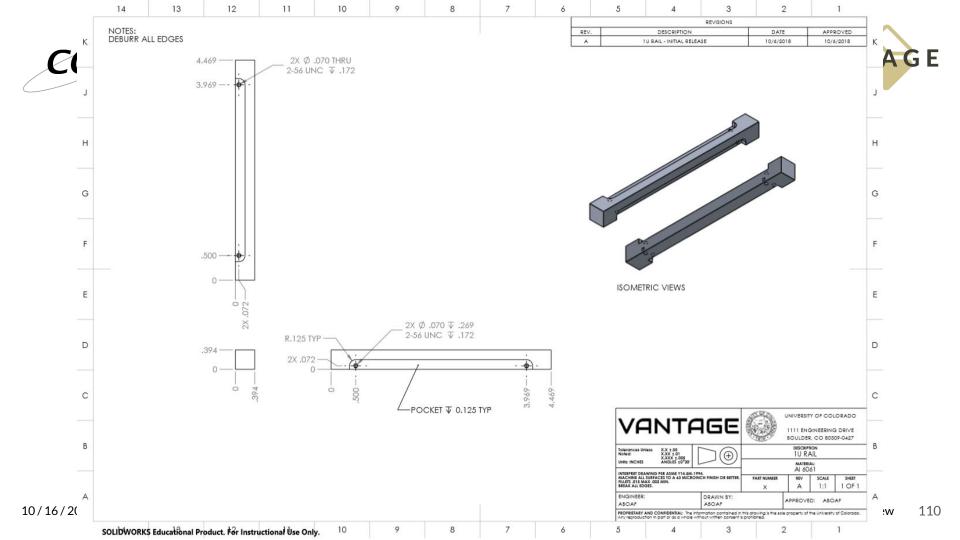


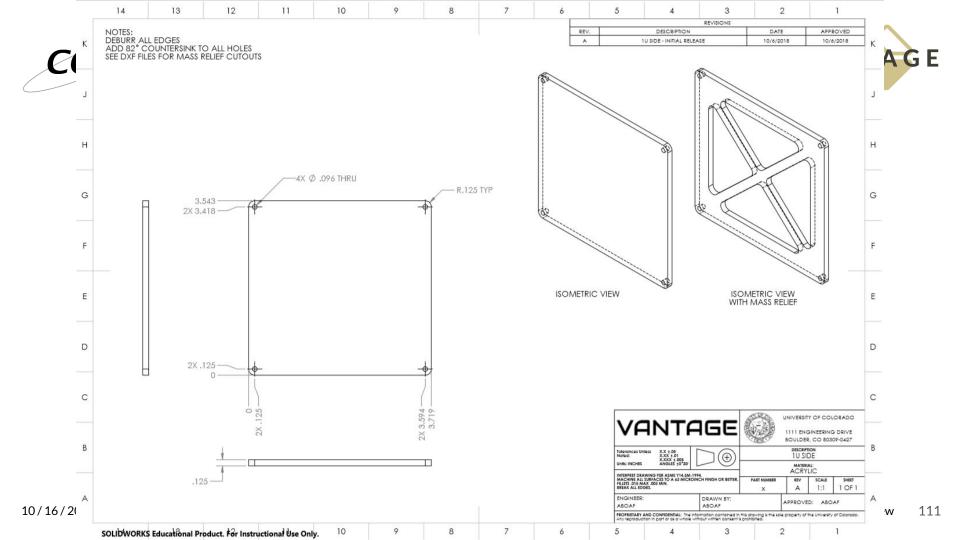

Structures Trade Study

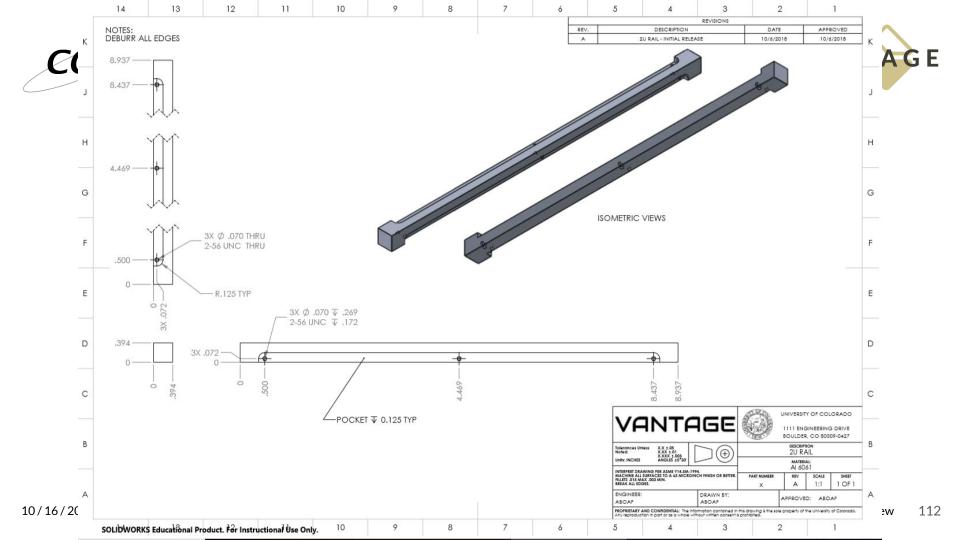


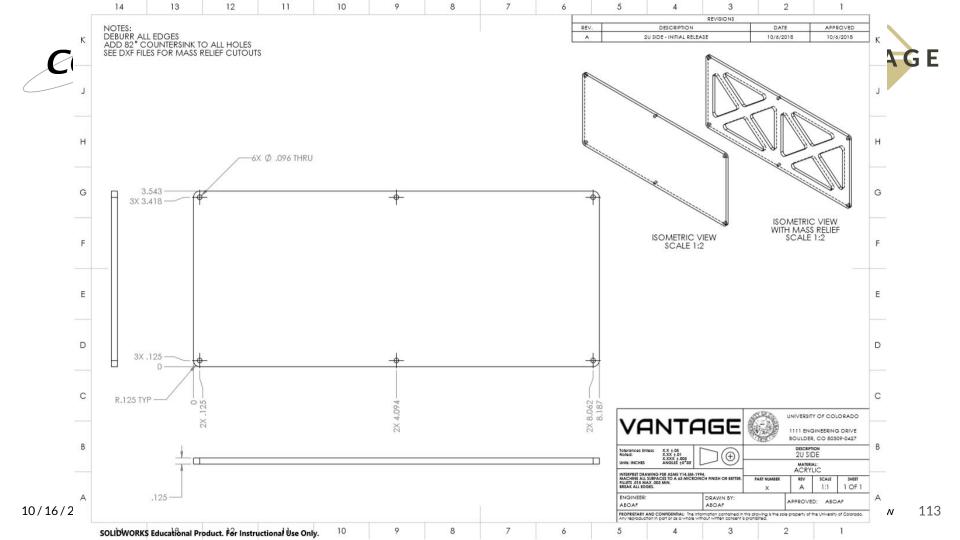

Table 13. Structural Interface Trade Study

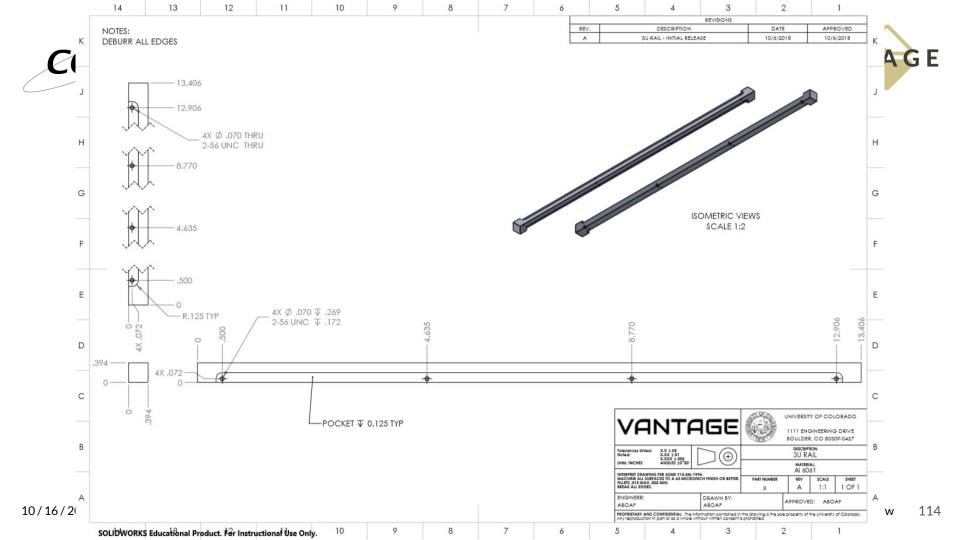

	Weight	Inside NRCSD	Inside NRCSD	External to
		Behind CubeSats	Alone	NRCSD
Algorithm Implications	60%	4	3	3
Development Time	20%	3	5	5
Cost	10%	3	3	4
Available Volume	5%	5	3	1
Maximum Tolerance	5%	5	5	1
Total/Result	100%	3.80	3.50	3.30

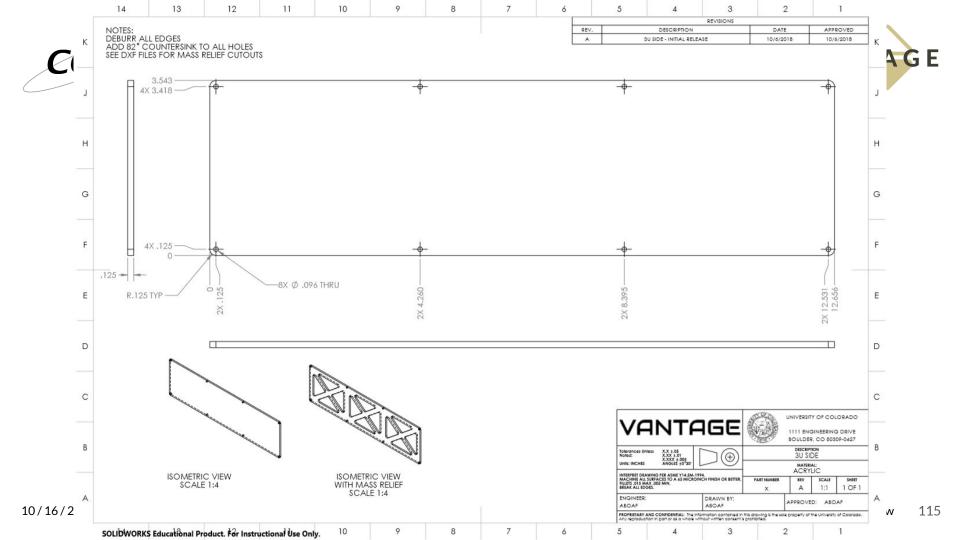


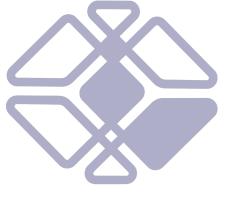










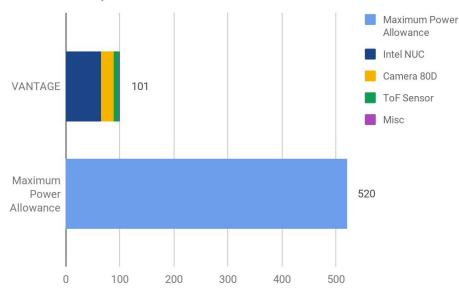


Backup Avionics

Feasible? Yes

Avionics - Power Consumption (DR 3.2)

Power Consumption


VANTAGE power usage below maximum power allowance Power Break Down

- NUC MAX 60W 0
- Camera Canon 80D MAX 24W 0
- ToF Sensor MAX 10W 0

2W

101W

- Misc (Power Up signal) -0
- 0 Total

Req.	Summary
DR 3.2	The system shall draw less than 520 Watts.

Power Budget Reference

Material	Link
Intel Nuc	https://www.intel.com/content/dam/www/public/us/en/documents/guides/one-pagers-nuc -specs-guide.pdf
Camera Canon 80D	https://www.adorama.com/icadre6.html?gclid=CjwKCAjwjlHeBRAnEiwAhYT2h2ynNb9OF txuG8hJu1of5e92HTI2wYU0qvLgK4ekX-dQWfHsHA4EWRoCD88QAvD_BwE
ToF sensor	https://www.acehardware.com/departments/plumbing/pipe-fittings/plastic-fittings/45123 31?x429=true&utm_source=google&utm_medium=cpc&gclid=CjwKCAjwjIHeBRAnEiwAhY T2h9GIKj3KliNmM9DI6pKYmgw8BpviMn5Z7QXAz4J7MAXcVI2DVcuefBoCaZQQAvD_B wE https://www.ifm.com/cn/en/product/O3D313
Arduino board	https://www.homedepot.com/s/black%2520spray%2520paint?NCNI-5

Backup Avionics DR 2.1

Req.	Summary
DR 2.1	The electronics subsystem shall interface with the PC which simulates the NanoRacks use-case system via a USB2.0 Port for all data communication needs.

Feasible? Yes, NUC is USB 2.0 compatible.

Data Processing Time Calculations (DR 8.1)

- Calculation back up
 - 100 raw footage taken (1 m/s CubeSat) Total Image Size > 2890 MB
- Data import from camera (USB3.0)
 - 2890 MB footage use USB3.0 (base on experience 25MB /Sec average write speed) -> 115.6 Sec -> 2MIN
- Processing Camera Necessary RAW Footage CR2.RAW -> DNG
 - MATLAB can't read CR2.RAW footage it need process to DNG file. (base on DXO non correction export 100 images roughly take up 300Sec)
- Image Recognition
 - Base on the code one image need average 0.0238 sec to process.
- Estimate velocity and position
 - 1 sec per picture
- Output to Use-Case-System (USB2.0)
 - 2 RAW footage (520MB) with 10MB/S read time 52 Sec write time

Command Window

Elapsed time is 0.357411 seconds. Number of images processed: 15 fx >> |

Req.	Summary	Addressed in Slide(s)
DR 8.1	VANTAGE shall have ability to store and processing large amount data in 15 Min	

Data Storage Calculations (DR 8.2) VANTAGE

	Normal Size	Number of useage	Total
Camera CR2 footage	28.9 MB	100	2890 MB
DNG raw footage	250 MB	100	25000 MB
Windows Size	20GB	1	20480 MB
Matlab Size	6GB	1	6144 MB
Total			55014 MB = 53.7GB

Feasible? Yes

Req.	Summary
DR 8.2	The system shall store all images, sensor data, and estimates within an onboard data storage device.

Avionics - Sleep mode (DR 3.3)

Feasible? Yes:

- Avionics will enter a low power mode when not performing any operations
- An Arduino UNO (0.35 W power draw) will be capable of awaiting power-on command from controller PC and sending boot up signal to NUC.

Image Credit: http://anywiki.csc.

Req. Label	Summary
DR.3.3-EL	The electronics subsystem shall enter a low power mode when not performing any operations (i.e. before a final test has been started, after a final test has been completed and all post-processing and communications have completed).

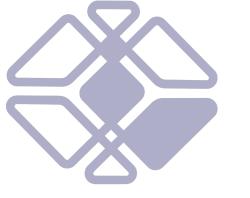
Feasible? Yes:

- Need ability to step down 120VDC to 24VDC and 19VDC
- 120V to 24V DCDC Converter
 - MEAN WELL USA Inc. 1866-5036-ND
 - **\$63.00**
 - 120W max (~20 W more than expected max power draw)
- 24 V to 19 V DCDC Converter
 - TDK-Lambda Americas Inc. 285-2857-ND
 - **\$**35.00
 - 250W max

Image Credit: DigiKey

	Req. Label	Summary
	DR.3.1-EL	The system shall operate with up to 120 VDC with a ripple voltage of 3Vpp and less than 5 A, which
		simulates the power available from the NanoRacks use-case system.
16/2	018	Preliminary Design Review

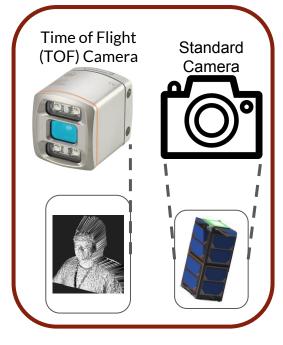
Avionics-Power Supply (DR 3.1)


VANTAGE

Avionics Trade Study

	Weight	MPSoC	SoC	Cell Phone	NUC	Raspberry Pi
Space Certifiable	30%	1	1	4	3	2
Performance*	30%	2	3.3*	1.7*	1	3.3*
Processor Memory (RAM)		1	3	3	1	4
Data Memory Size (ROM)	N/A	1	4	1	1	2
Processor Speed	IN/A	1	3	1	1	5
Supported Languages		5	3	2	1	2
Development Time	25%	5	5	1	1	3
Cost	10%	4	3	3	3	1
Power	5%	2	1	1	3	1
Total/Result	100%	2.65	2.88	2.32	1.90	2.48

Backup Sensors



Baseline Design (Sensor Package)

Acquire Data

	Weight	1 Camera	Stereoscopic	Cam+IR ToF	Cam + Diffuse LIDAR	Cam+Scan LIDAR
Accuracy	23%	5	4	1	4	3
Software Development Time	20%	2	5	3	3	4
Cost	18%	2	5	4	4	4
Power	16%	1	2	4	3	3
Hardware Development Time	13%	2	3	3	2	4
Size	10%	1	2	4	3	4
Total/Result	100%	1.46	2.76	1.95	2.24	2.64

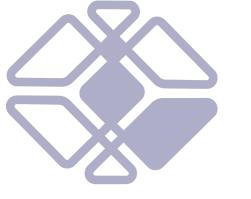
Satisfaction of Other Reqs

DR 1.1- System shall use a camera to capture images of CubeSats

• We chose a camera as part of the baseline design.

DR 1.2- Imaging subsystem shall have a FOV greater than 20°x20°

• TOF Sensor has FOV of 60°x45°, Camera Lens will be selected such that there is a FOV greater than 20°x20°


DR 1.3- Imaging subsystem shall produce at least 2 images of each mock CubeSat deployed by the test system

• The Camera can take pictures at a rate of 7 fps, so this will be easily satisfied.

DR 1.4- Imaging subsystem shall produce in-focus images of mock CubeSats.

• Camera will be focused at a relatively close range so that high-quality, in focus images can be produced.

DR 5.1 (same as 1.2)

Backup Sensors

Calculations

Cross-Range Accuracy

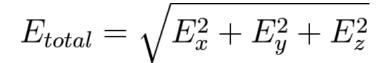
Given a sensor with a FOV (x and y) and resolution(nx,ny), we can estimate the angular resolution by:

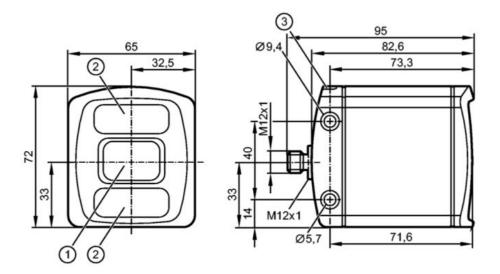
$$lpha = rac{FOV_x}{n_x}$$
 Assumes square pixels

The cross-plane dimension a of a certain pixel at a distance d, where alpha is in radians:

$$a = d\alpha$$

And the dimensional accuracy of a measurement can be given as an accuracy in pixels, r:


$$Accuracy = dr\alpha$$


Sub-pixel precision is typically possible for objects that take up as little as 10 pixels. ½ pixel accuracy was chosen as a conservative estimate of the possible precision

Composition of Total Errors

10/16/2018

dt < dx

$$V_z = \frac{z_2 - z_1}{t_2 - t_1}, \qquad \Delta t = t_2 - t_1, \qquad \Delta z = z_2 - z_1$$

$$\delta_{V_z} = \sqrt{\left(\frac{\partial V_z}{\partial z_2}\delta_{z_2}\right)^2 + \left(\frac{\partial V_z}{\partial z_1}\delta_{z_1}\right)^2 + \left(\frac{\partial V_z}{\partial t_2}\delta_{t_2}\right)^2 + \left(\frac{\partial V_z}{\partial t_1}\delta_{t_1}\right)^2}$$

$$\delta_{V_z} = \sqrt{\left(\frac{1-z_1}{\Delta t}\delta_z\right)^2 + \left(\frac{z_2-1}{\Delta t}\delta_z\right)^2 + \left(\frac{\Delta z}{\Delta t^2}\delta_t\right)^2 + \left(\frac{\Delta z}{\Delta t^2}\delta_t\right)^2}$$

Using: $\Delta t = 0.05s \ (20Hz), \quad \Delta z = V \Delta t = 0.1m, \quad z_1 = 3m, \quad z_2 = 3.1m$ With uncertainties: $\delta z = 10mm, \qquad \delta t = 0.002ms$

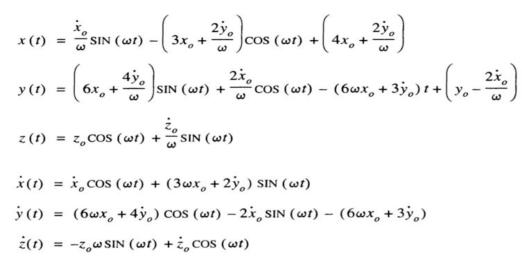
$$\delta_{V_z} = \sqrt{\left(-0.04\right)^2 + \left(0.042\right)^2 + \left(6.4 \times 10^{-9}\right)^2 + \left(-6.4 \times 10^{-9}\right)^2}$$

Determination of N

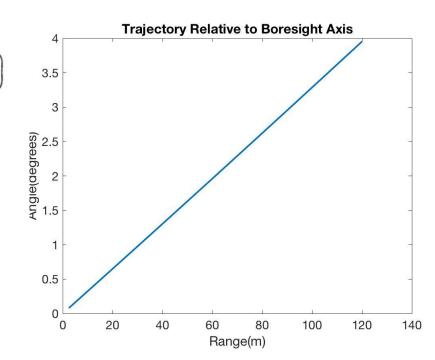
N is the total number of position measurements made

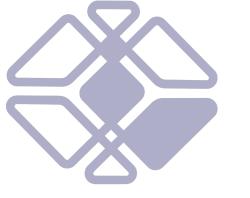
 $\delta v_{refine} = \frac{\delta v}{\sqrt{N}}$

Detailed Analysis Steps


- Determining when a CubeSat will enter the FOV
 - \circ Assuming worst case
 - VANTAGE set up as far away as possible
 - CubeSat Moving at max. (Expected velocity of 2 m/s)
- Determine when the CubeSat leaves the effective range of the TOF sensor
- (Multiply the difference by the fps of the measurement)-1=N

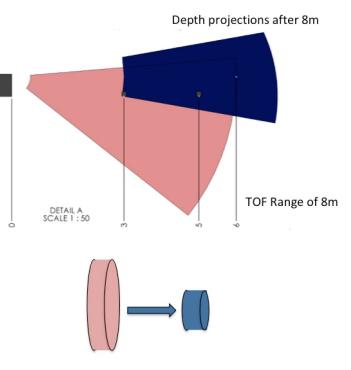
FPS Conservatively chosen to be 5 fps, resolution and range tend to worsen with high fps. *The max for this sensor is 25 fps*.

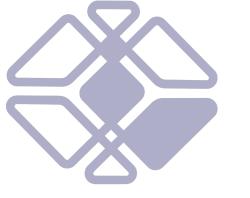



Relative Motion Model

Position and Velocity errors will propagate similarly to a rectilinear assumption (x,y,z,xdot,ydot, zdot all to first power)

Backup Sensors

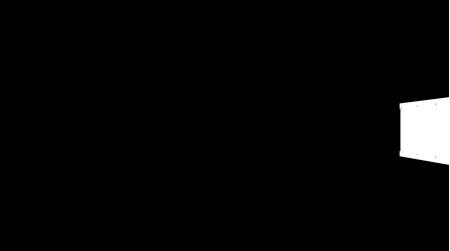

Miscellaneous



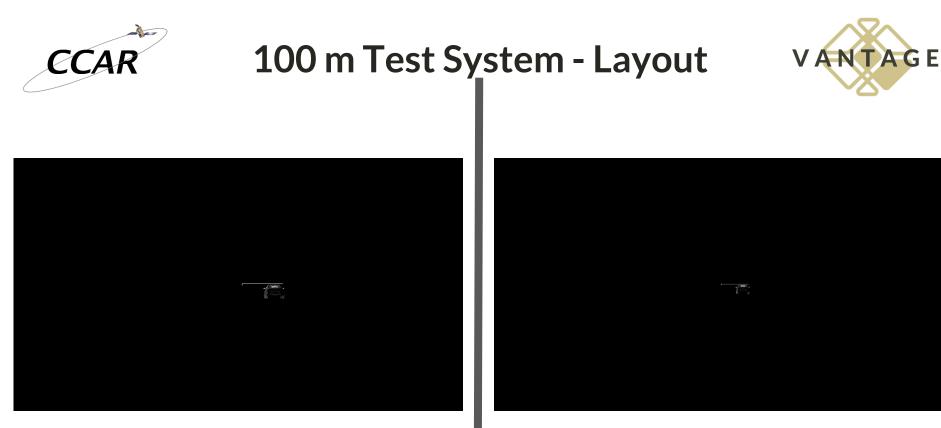
Backup Sensor Fusion

Refinement of TOF Predictions by Camera

Backup Testing 100 m Test



100 m Test System - Layout



Start of ejection sequence Time t_0 : Mock cubesats are not in view

Time t_1 :mock cubesat comes into view for the first time

Time t_2 : mock cubesats are midway down range (~50m)

Time t_3 : mock cubesats are at end of range (~100m)

100 m Test System - Materials

Material	Link
Welding Rods	https://www.mscdirect.com/browse/tnpla/59803999?cid=ppc-google-New+-+Welding+%26+Soldering+-+PLA_sqHmEEE1d16412444940 5_c_S&mkwid=sqHmEEE1d dc&pcrid=164124449405&rd=k&product_id=59803999&gclid=Cj0KCQjwl9zdBRDgARIsAL5Nyn0Y5Zi0HllPsANI D-Acp1AI-pzSXkmXILU9ipiw27O-nHhQlt-BvloaAnsEEALw_wcB
Steel Tubing	https://www.homedepot.com/s/electric%2520metallic%2520tubing?NCNI-5
Mounting & Fasteners	https://www.mcmaster.com/standard-socket-head-screws
Black Spray Paint	https://www.homedepot.com/s/black%2520spray%2520paint?NCNI-5

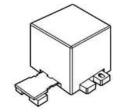
100 m Test System - Feasibility

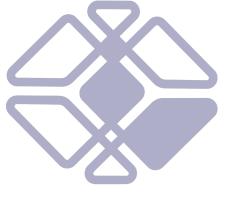
- Ability to Iterate
 - Some difficulty to iterate full system test
 - Requires logistics to arrange test timing with VANTAGE team and location
 - Planning for multiple test windows on the front end should mitigate this risk
 - Will be a quick build which can even be done over winter break so that testing can begin early in Spring
 - Estimate 1 full days to cut material to required lengths
 - Estimate 2 full days to weld in shop
- Concept Modularity
 - Can test various parts of system independently before moving to full scale test
 - Boom and car mechanical validation
 - Cubesats and car
 - RTK GPS & IMU with car and portable power systems
 - Vantage power and functionality bench tests with portable power system

100m Full Scale Test Simulation

- Simulation done with a 3D graphics software
 - Cinema 4D R20
- Boom will be painted black
- Black screen behind payloads is not visible on the render
- Light source will shine on payloads from car

100m Test Accuracy Feasibility




GPS RTK Alternative (OEM729)

- Velocity Accuracy: 0.03 m/s RMS
- Timing Accuracy: 20 ns RMS
- Position Accuracy: 1 cm
- Availability: Dr. Axelrad (VANTAGE Customer) is willing to lend this device to the team for testing purposes. Dr. Akos is willing to lend another OEM6 receiver to pair with what Dr. Axelrad has.
- Data Sheet: <u>https://www.novatel.com/assets/Documents/Papers/OEM729-Product-Sheet.pdf</u>

Analog Devices 3-axis IMU and magnetometer (ADIS16405BMLZ):

- Sensor accuracy: 0.0125 deg/s/LSB
- Sensor availability: Has been checked out from Trudy.
- Data Sheet: http://www.analog.com/media/en/technical-documentation/data-sheets/ADIS16400_16405.pdf

Backup Testing

Modular Test

Modular Test System - Motor

1. Assumptions:

 $\begin{aligned} \rho_{acrylic} &= 1180 \ [kg/m^3] \\ \rho_{cardboard} &= 700 \ [kg/m^3] \\ V_{acrylic} &= 0.00277 \ [m^3] \\ V_{cardboard} &= 0.000249 \ [m^3] \\ m_{cubesat} &= 0.2 \ [kg] \\ m_{wheels} &= 0.4 \ [kg] \\ \mu_{plastic} &= 0.4 \ R_{motor} &= 0.0075 \ [m] \end{aligned}$

2. Total mass of the cart :

$$m_i = \rho_i V_i$$

$$m_{total} = \sum m_i = 5.12 \ [kg]$$

3. Maximum frictional force acting on the cart :

 $F_{friction} \leq \mu_{plastic} F_N = \mu_{plastic} M_{total} g = 22.033 \ [N]$

4. Initially will need to accelerate to 0.5-2 m/s in 3m :

$$a_{max} = \frac{V_{max}^2}{2} = 0.667 \ [m/s^2]$$

5. Requiring a force from the motor :

 $\sum_{i} F = m_{total} a_{max} = F_{motor} - F_{friction}$ $F_{motor} = 25.779 [N]$ 6. With a corresponding torque :

$$T_{motor} = R_{motor} \times F_{motor} = 0.193 \ [N \cdot m]$$

This is a reasonable max torque value, as the current selected motor has a stall torque of 1.024 [N*m]

Image Credit: BEMONOC Preliminary Design Review 144

Modular Test System - Locations

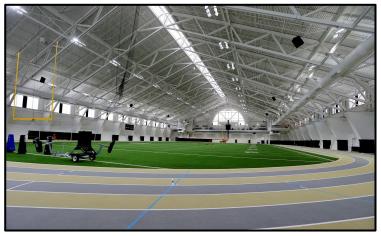


Image Credit: Colorado Buffaloes

- Indoor Practice Facility
 - **108,000 sq. ft.**
 - Football team uses year round
 - \circ Feasible to gain access
 - Testing will occur at night

- Balch Fieldhouse
 - 37,050 sq. ft.
 - Used for storage in Spring
 - Easy to gain access
 - Testing will occur at night

Modular Test System - Materials VANTAGE

Material	Link
PVC Pipe	https://www.homedepot.com/p/JM-eagle-3-in-x-10-ft-PVC-Schedule-40-DWV-Plain-End- Pipe-531095/100161921
PVC Corner Piece	https://www.homedepot.com/p/3-in-PVC-DWV-90-Degree-Hub-x-Hub-Elbow-C4807HD3 /100346018
PVC Pipe Inside Connector	https://www.acehardware.com/departments/plumbing/pipe-fittings/plastic-fittings/45123 31?x429=true&utm_source=google&utm_medium=cpc&gclid=CjwKCAjwjIHeBRAnEiwAhY T2h9GIKj3KliNmM9DI6pKYmgw8BpviMn5Z7QXAz4J7MAXcVI2DVcuefBoCaZQQAvD_B wE
Black Spray Paint	https://www.homedepot.com/s/black%2520spray%2520paint?NCNI-5
Acrylic Sheet	https://www.mcmaster.com/acrylic
Wheels	https://www.amazon.com/Rolland-Office-Chair-Caster-Replacement/dp/B002TTR74M
Motor	https://www.amazon.com/BEMONOC-Small-DC-Motor-Torque/dp/B01DVHAW6A/ref=p d_sim_60_5? encoding=UTF8&pd_rd_i=B01DVHAW6A&pd_rd_r=f32f3091-ce7d-11e8-9a8 b-017d633f01ef&pd_rd_w=8VaY6&pd_rd_wg=rpF90&pf_rd_i=desktop-dp-sims&pf_rd_m= ATVPDKIKX0DER&pf_rd_p=18bb0b78-4200-49b9-ac91-f141d61a1780&pf_rd_r=TF7KYV 628BAKE08FAPEE&pf_rd_s=desktop-dp-sims&pf_rd_t=40701&psc=1&refRID=TF7KYV62 8BAKE08FAPEE