

ASEN 4018 Senior Projects, Fall 2018 Conceptual Design Review (CDR)





#### Visual Approximation of Nanosat Trajectories to Augment Ground-based Estimation

Team: Aaron Aboaf, Dylan Bossie, Sean Downs, Justin Fay, Marshall Herr, Josh Kirby, Lara Lufkin, Richard Moon, Nicholas Renninger, Zach Talpas, Jerry Wang

Customer: Prof. Penina Axelrad (CCAR), John Gaebler (CCAR)

Advisor: Prof. Marcus Holzinger



#### Presenters



| Project Purpose and Objectives                | Lara Lufkin                                                        |  |  |
|-----------------------------------------------|--------------------------------------------------------------------|--|--|
| Design Solution                               | Marshall Herr                                                      |  |  |
| Critical Project Elements                     | Aaron Aboaf                                                        |  |  |
| Design Requirements and their<br>Satisfaction | Aaron Aboaf, Josh Kirby, Dylan Bossie,<br>Richard Moon, Jerry Wang |  |  |
| Project Risks                                 | Nick Renninger                                                     |  |  |
| Verification and Validation                   | Zach Talpas, Aaron Aboaf                                           |  |  |
| Project Planning                              | Nick Renninger                                                     |  |  |

# Project Purpose and Objectives



#### **Motivation**

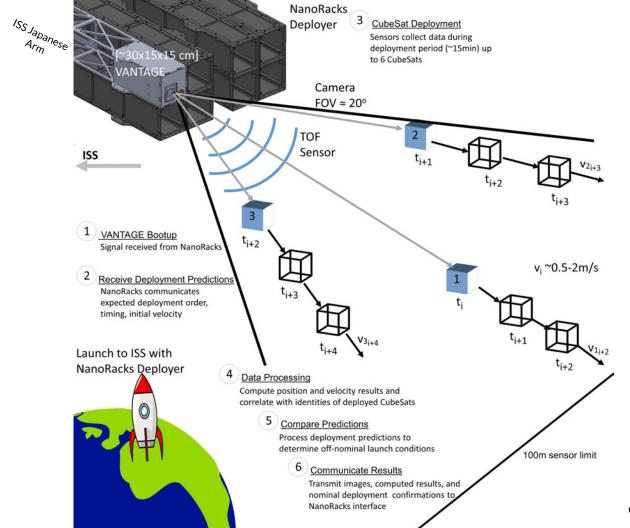


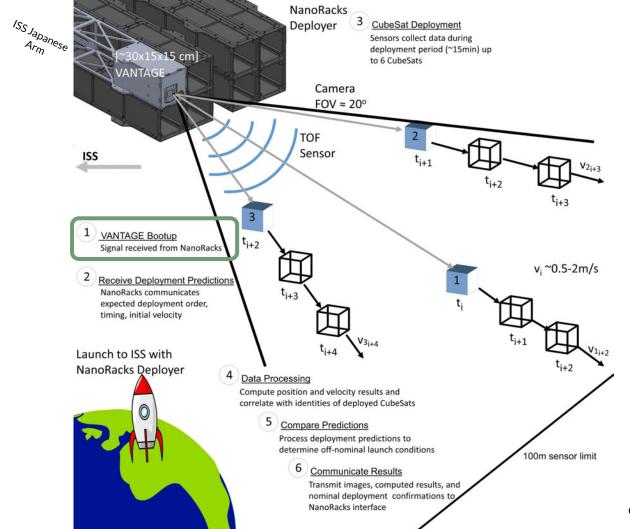


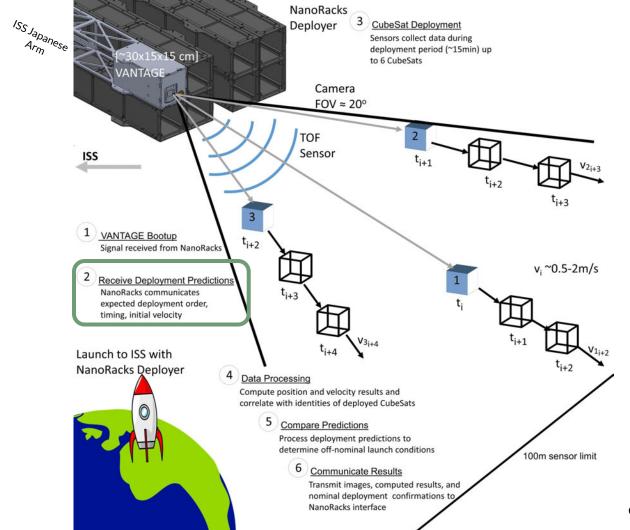
### **Project Objectives**

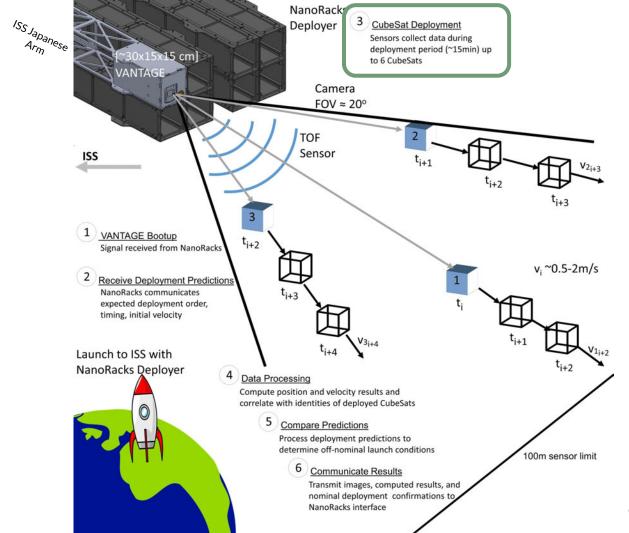


#### **Objectives:**

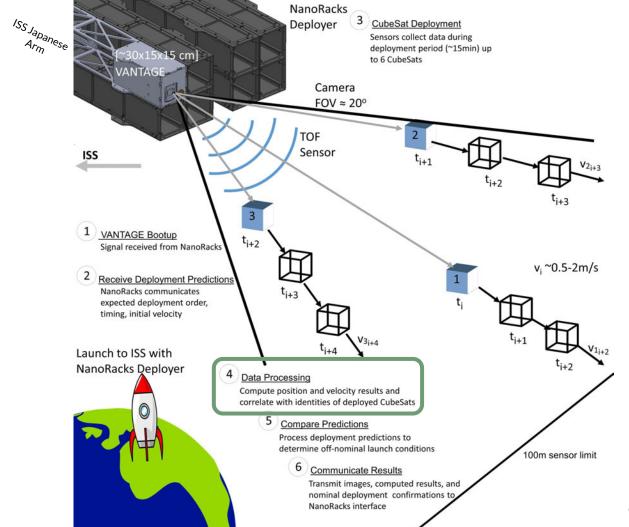

The **long term vision** of this project is to augment existing, ground-based CubeSat Space Situational Awareness (SSA) by observing CubeSat deployments from the perspective of the space-based deployer.


**This year's** VANTAGE team will produce a **proof of concept** for this mission by developing a **ground based prototype** which will be tested using a simulated CubeSat deployment in a laboratory environment.

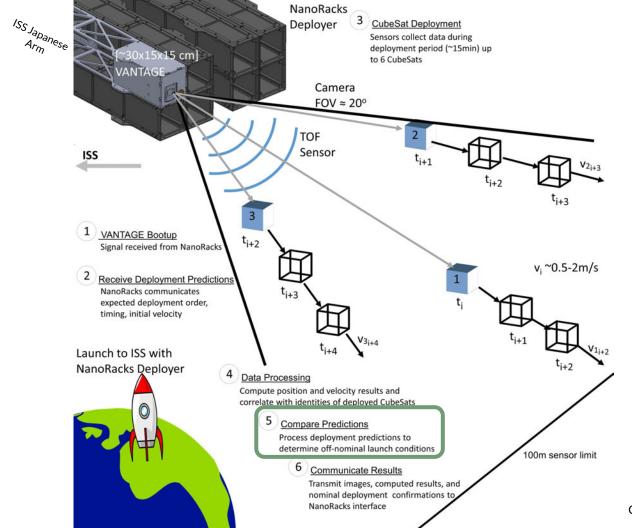

#### **Project Stakeholders:**

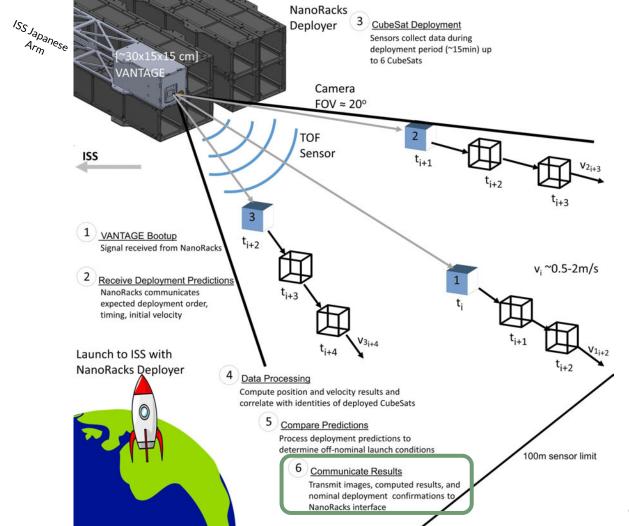

- Customer:
- Associated Company:

Prof. Axelrad and John Gaebler NanoRacks

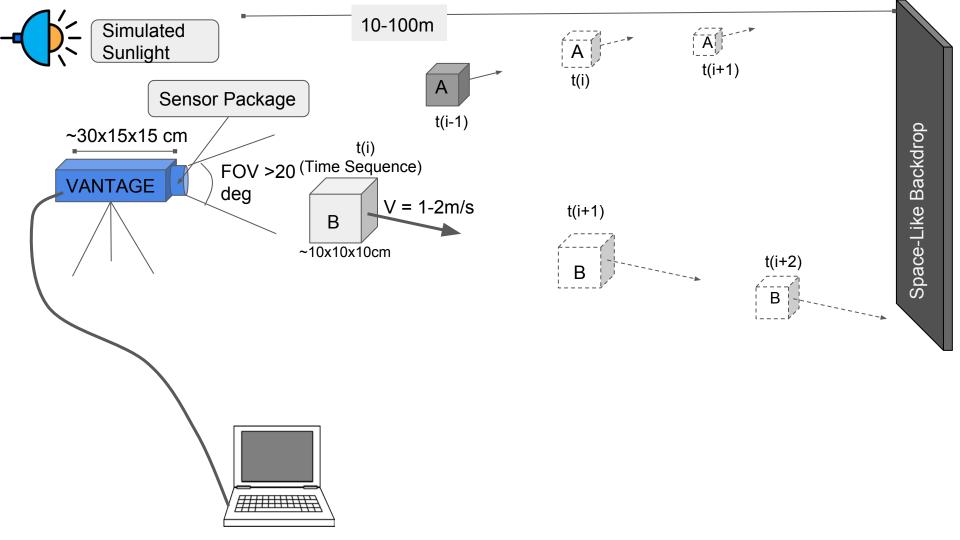


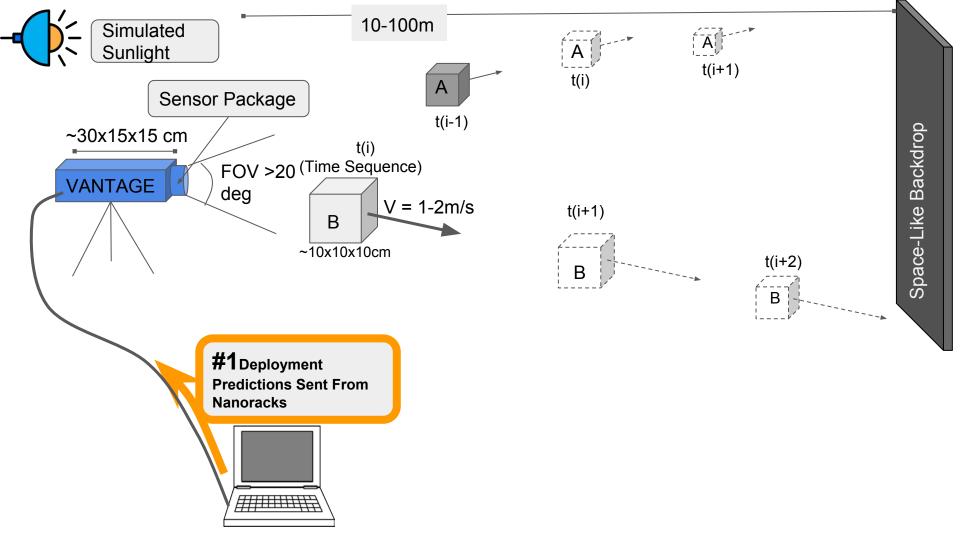


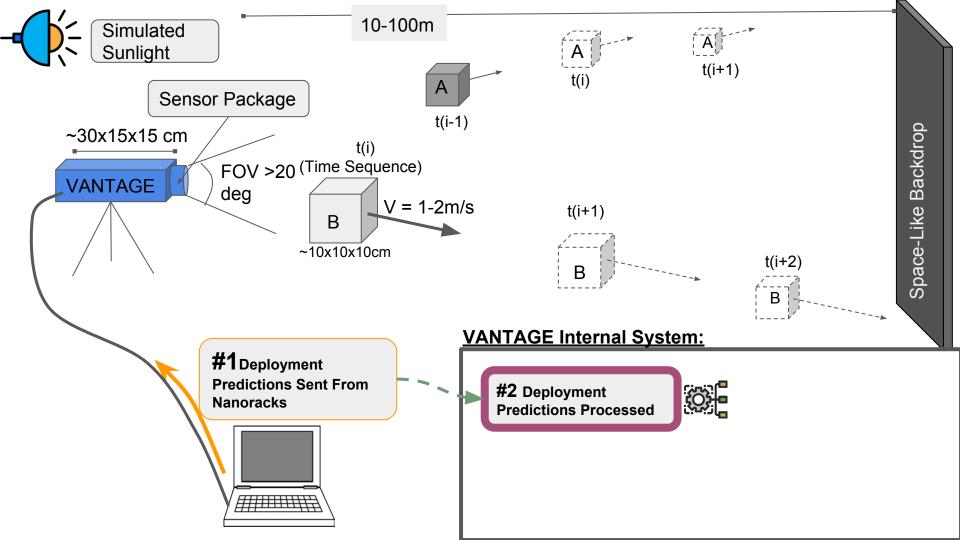



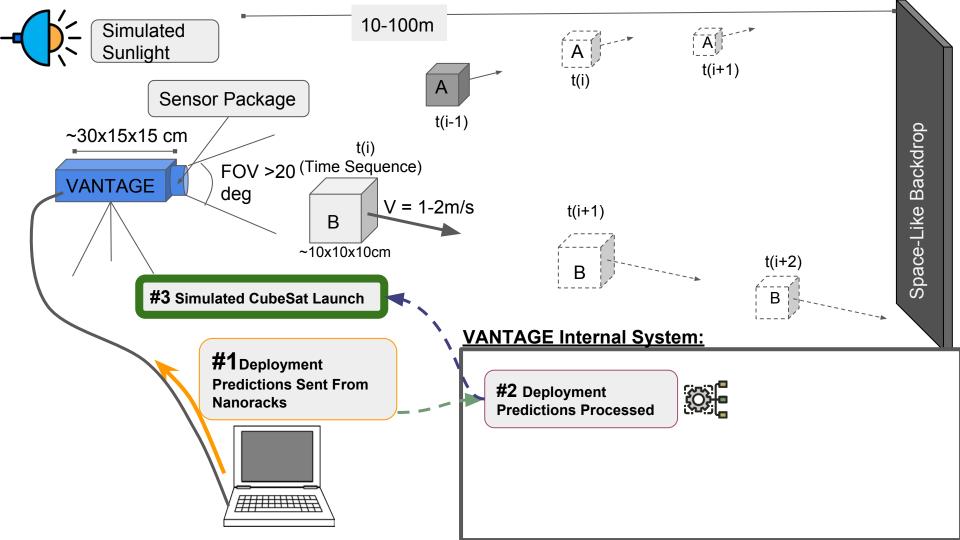



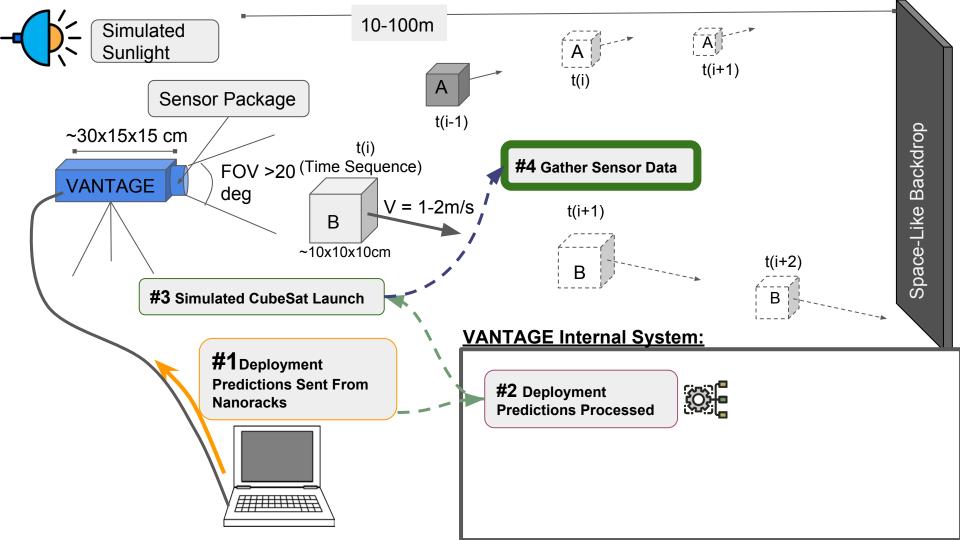

10/16/2018

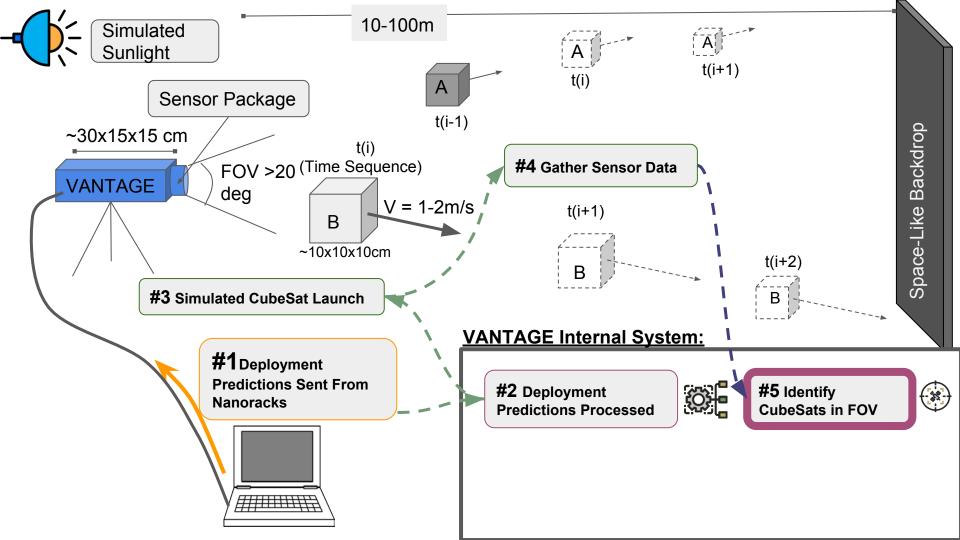


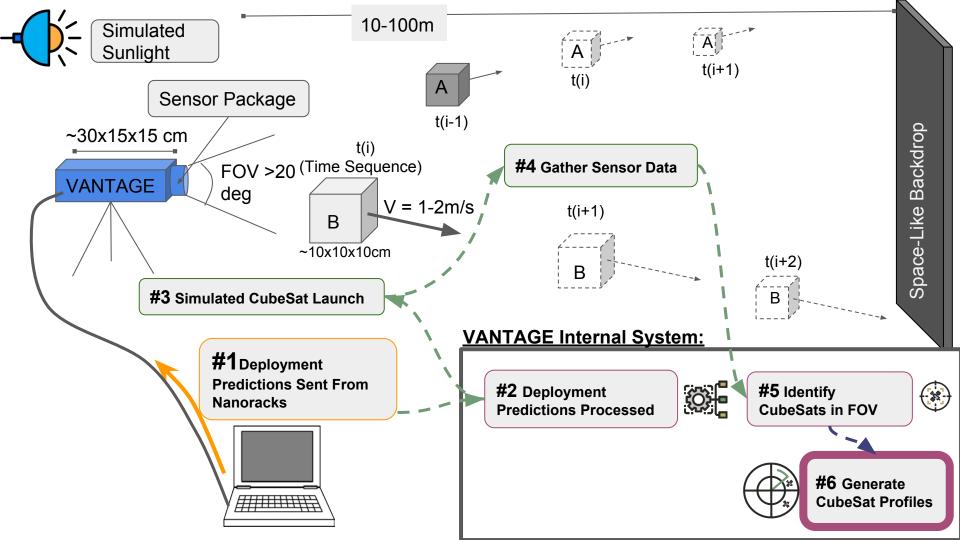


10/16/2018

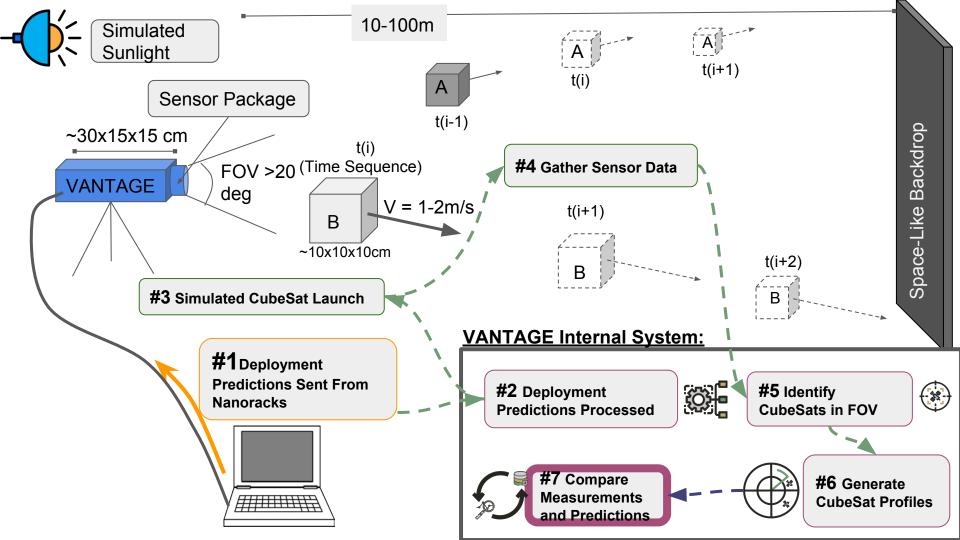


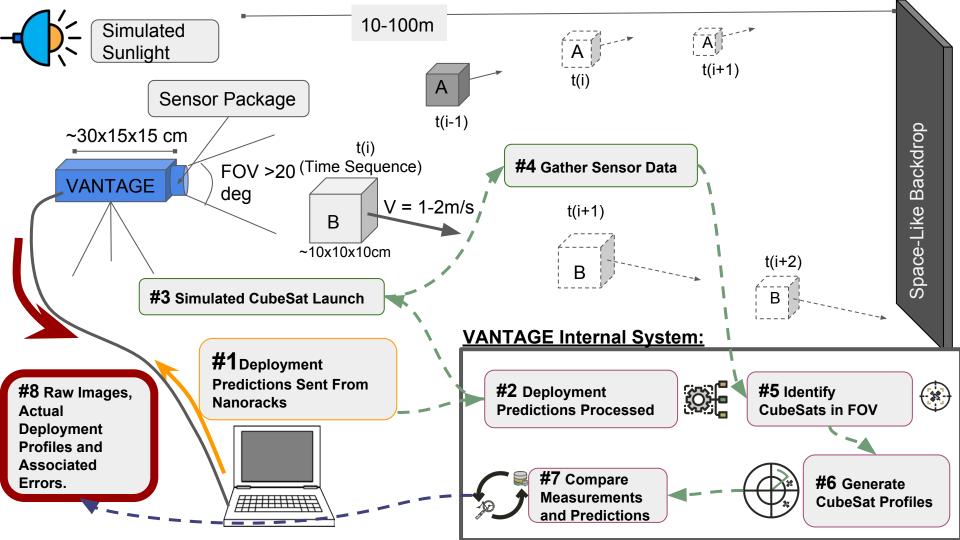





10/16/2018







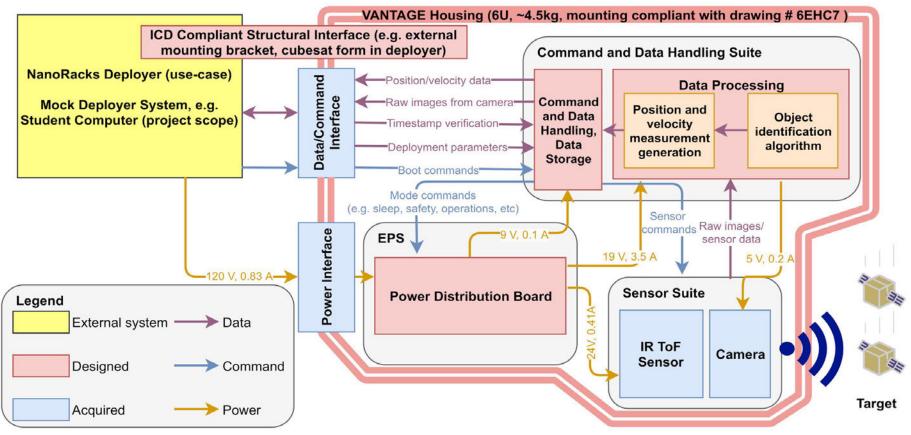






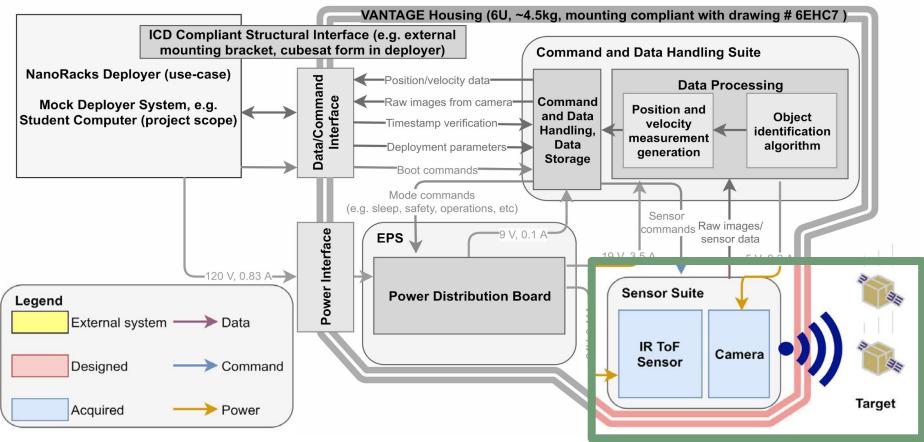



### **Functional Requirements**



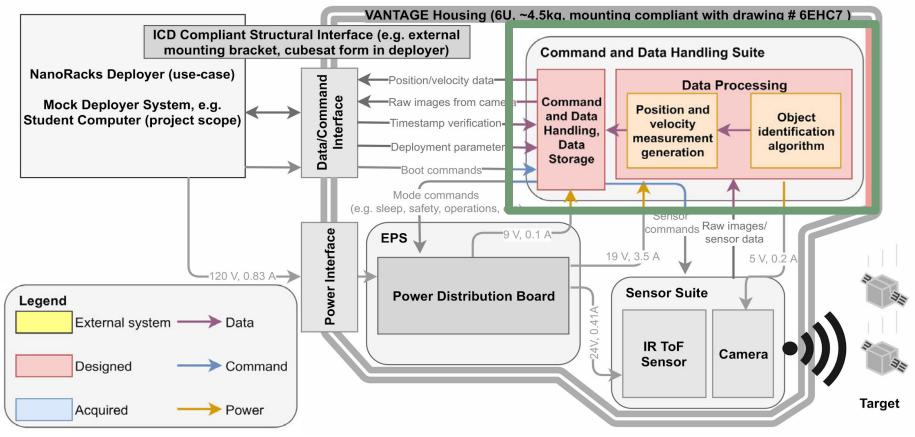

| Req. | Description                                                                                                                                                                                                                                                                                                   |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FR.1 | The system shall support in-focus imaging of at most 6 mock 1U CubeSats at some range between 3 and 100 meters from the VANTAGE payload.                                                                                                                                                                      |
| FR.2 | The system shall receive and interpret commands and the deployment manifest from a PC which simulates the NanoRacks use-case system.                                                                                                                                                                          |
| FR.3 | The system shall accept power analogous to that which is available from the NanoRacks use-case system.                                                                                                                                                                                                        |
| FR.4 | The system shall integrate mechanically with a structural interface which simulates the NanoRacks use-case system.                                                                                                                                                                                            |
| FR.5 | The system shall uniquely detect and track up to 6 mock 1U-3U CubeSats while they remain between 3 and 100 m of the VANTAGE payload.                                                                                                                                                                          |
| FR.6 | The system shall estimate the position and velocity vectors of CubeSats between a distance of 3 and 100 m.                                                                                                                                                                                                    |
| FR.7 | The system shall recognize off-nominal deployment cases, which shall include off-nominal relative initial velocities and off-nominal deployment times from the test system.                                                                                                                                   |
| FR.8 | The system shall report position/velocity vector measurements, off-nominal deployment cases, and raw images from the current mock deployment to the PC which simulates the NanoRacks use-case system before the next NanoRacks CubeSat Deployer (NRCSD) tube deployment would normally occur in the use-case. |

## **Design Solution**



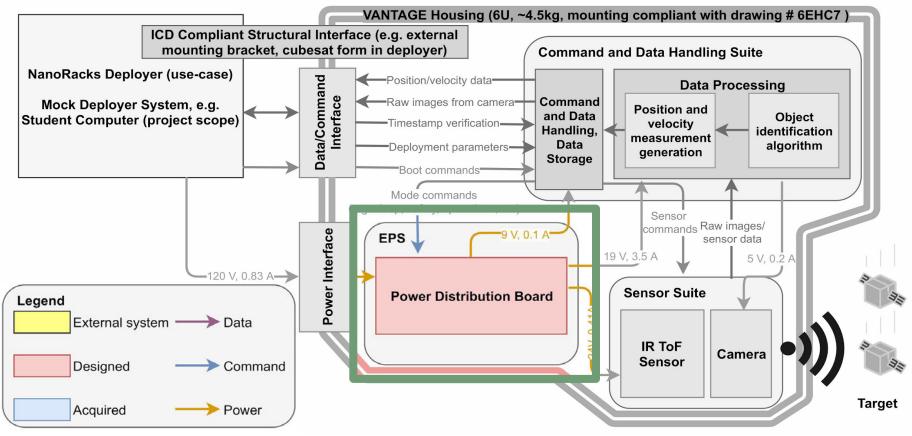




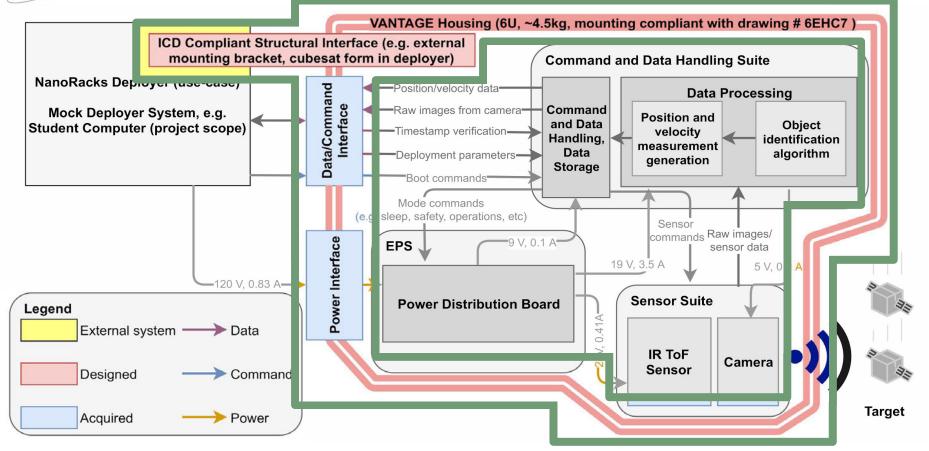




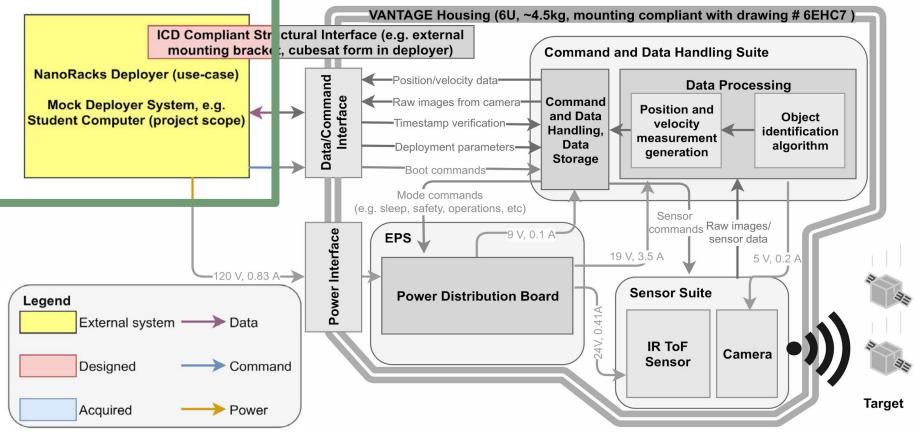








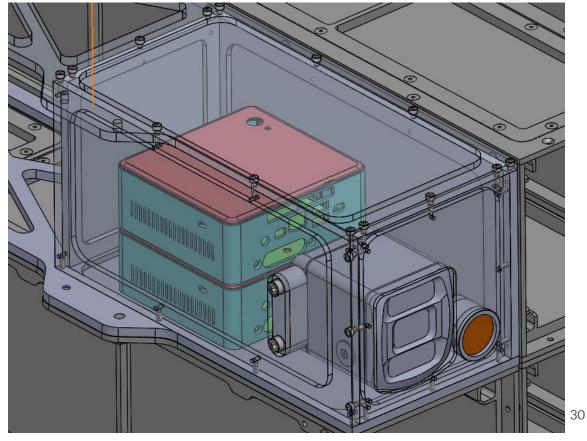



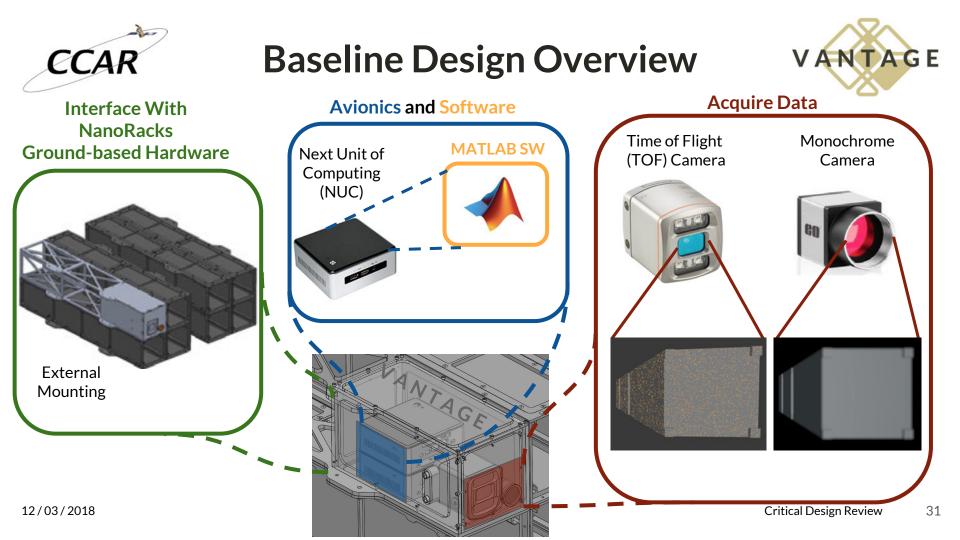


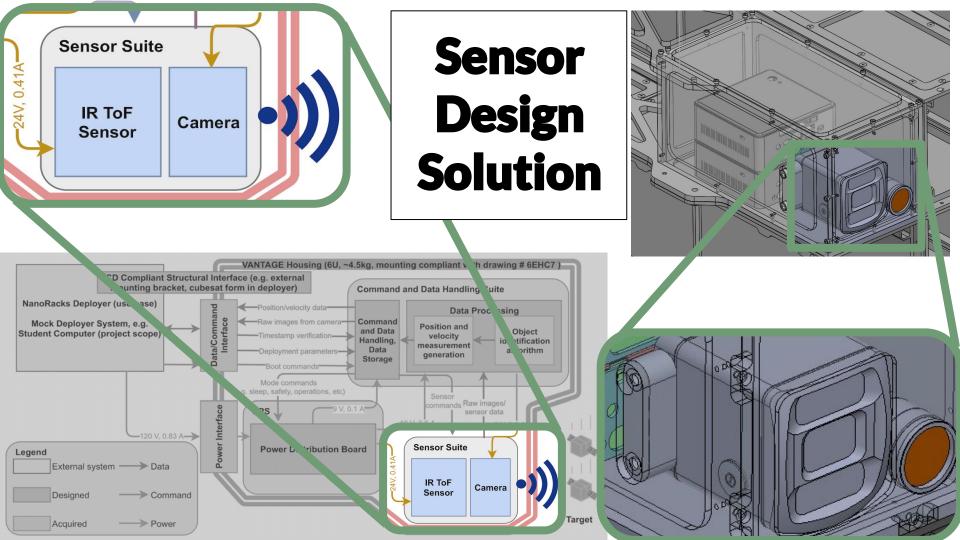








### **VANTAGE** Overview









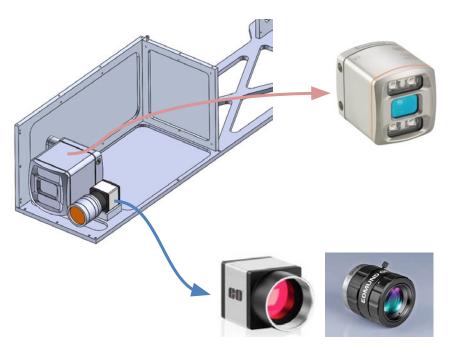




### **Sensor Design Solution**



IFM O3D313 IR Time of Flight (ToF) Camera Early Centroid Determination


| Description                    | Requirement | ToF Camera |
|--------------------------------|-------------|------------|
| Position Accuracy              | 10 cm       | 2 cm       |
| Inferred Velocity<br>Accuracy* | 1 cm/s      | 0.1 cm/s   |

\*Velocity inference model in backup

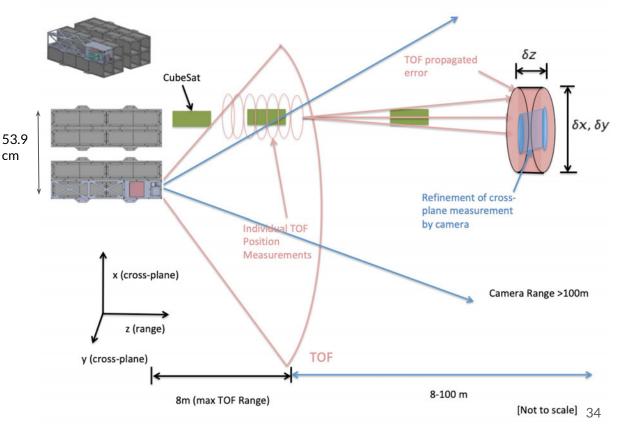
#### EO-6412 Monochrome CMOS Camera

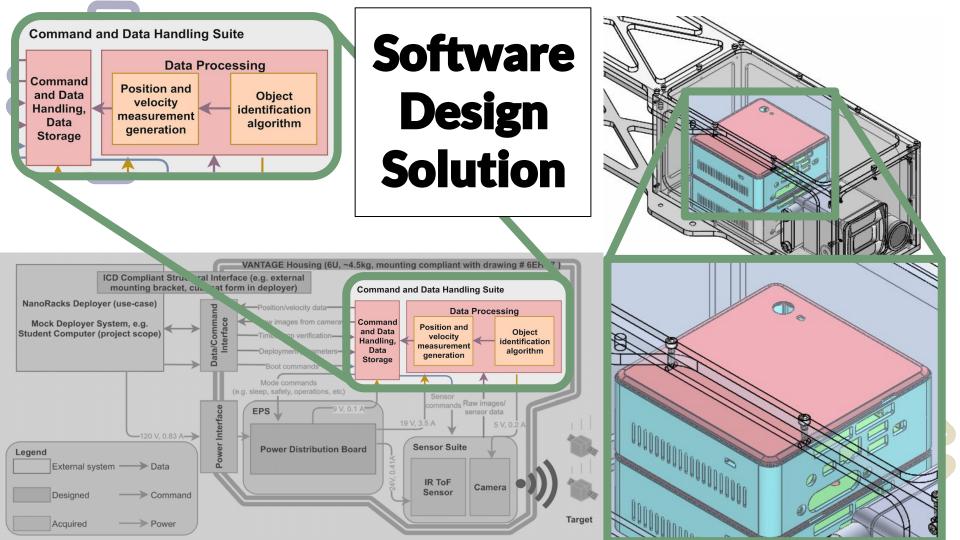
Cross-Range Tracking

| Description    | Requirement   | Optical Camera |
|----------------|---------------|----------------|
| Field of view  | > 20°         | 26°            |
| Image CubeSats | Need 2 images | 58.7 fps       |







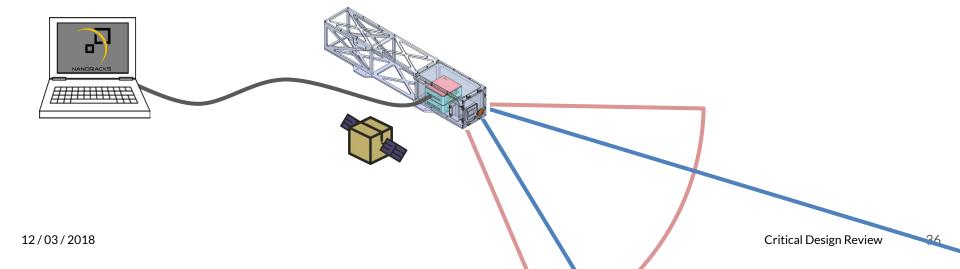


#### Primary Instrument: IR Time of Flight (ToF) Camera

- IR lamp continuously flashing
- "Echolocation with IR"
- Provides direct measurement <sup>53.</sup><sub>cm</sub> of depth / range
- Data extrapolated forward using linear motion assumption

### Secondary Instrument: Small, visual wavelength camera

• Provides long-range tracking and cross-range refinement of measurements.







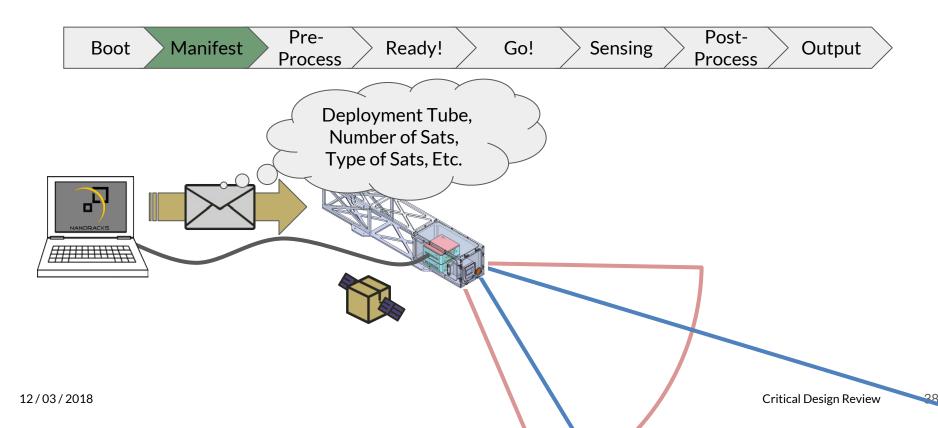

### **Overall System Software Solution** VANTAGE

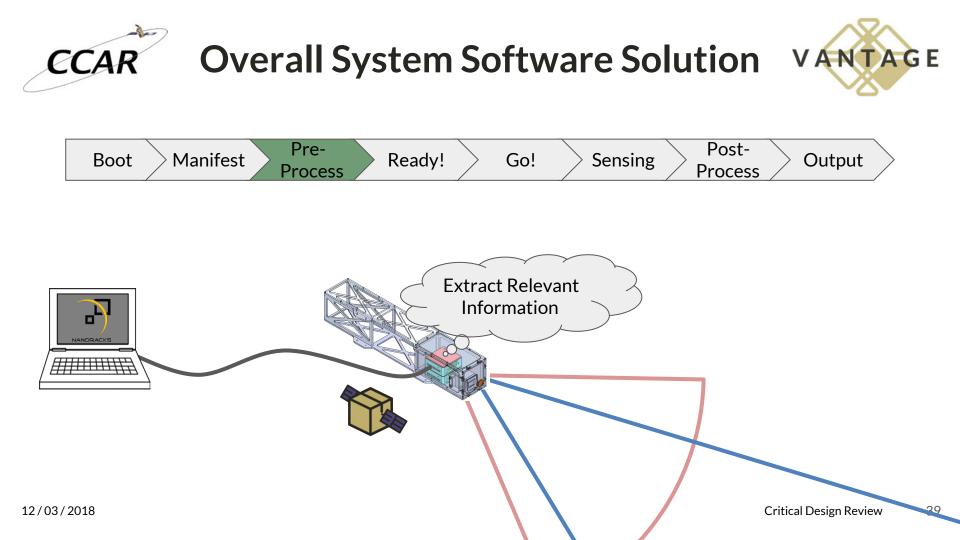


| Boot | Manifest | Pre-<br>Process | Ready! | Go! | Sensing | Post-<br>Process | Output |  |
|------|----------|-----------------|--------|-----|---------|------------------|--------|--|
|------|----------|-----------------|--------|-----|---------|------------------|--------|--|







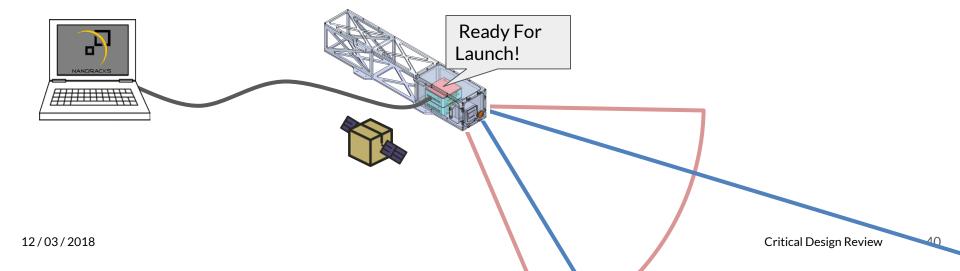














# **Overall System Software Solution** VANTAGE



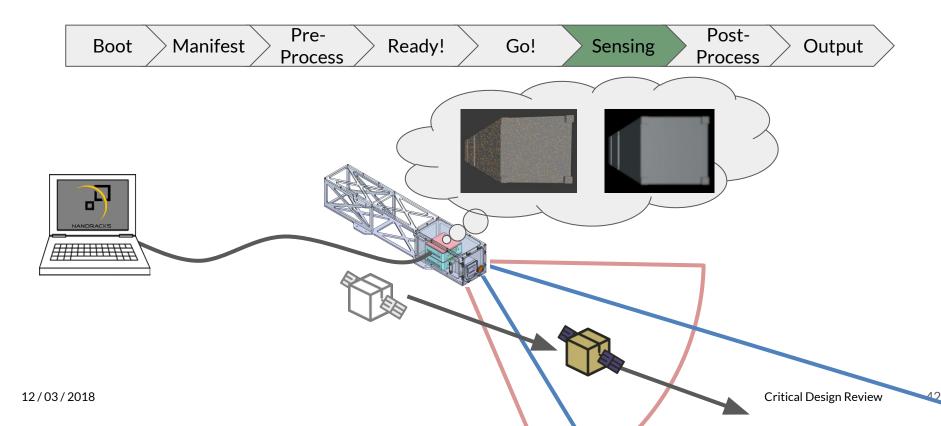






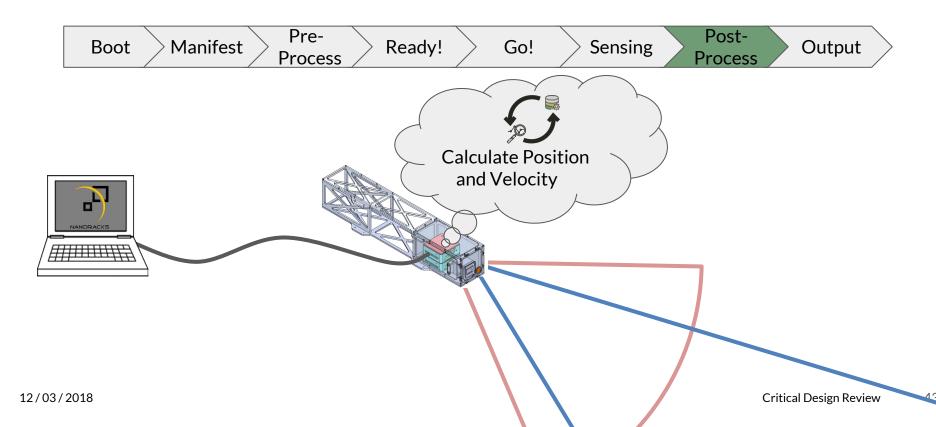
# **Overall System Software Solution** VANTAGE





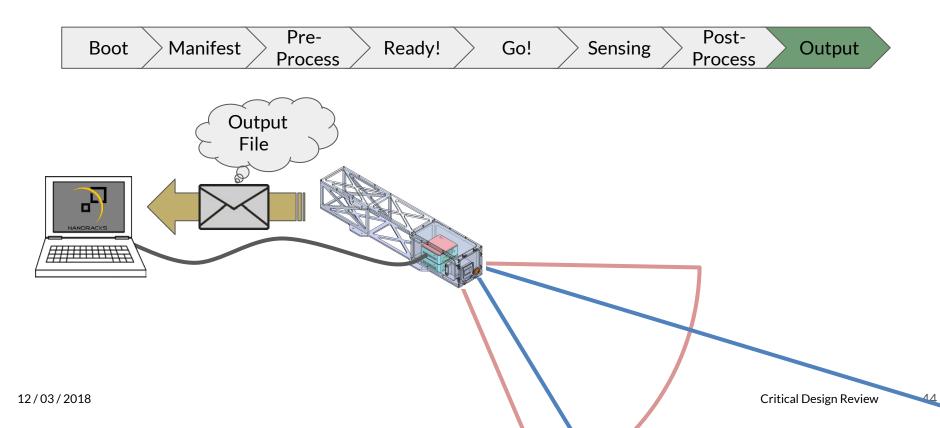


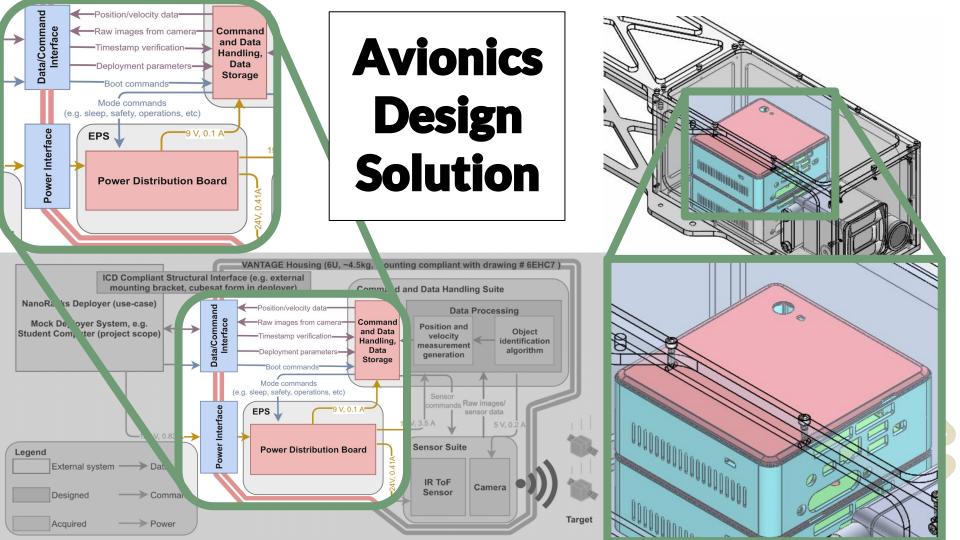


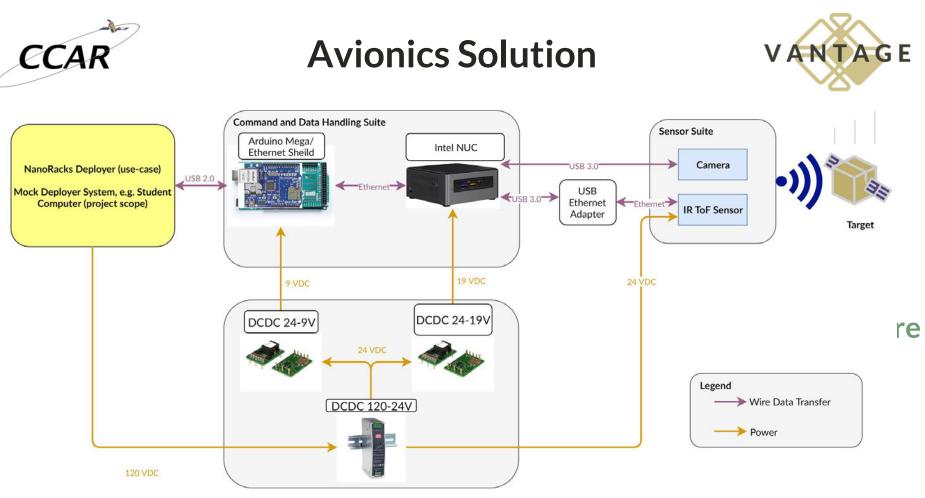


# **Overall System Software Solution** VANTAGE

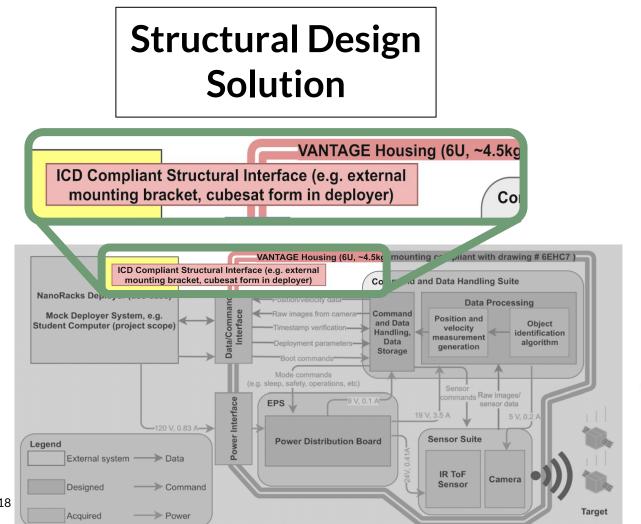


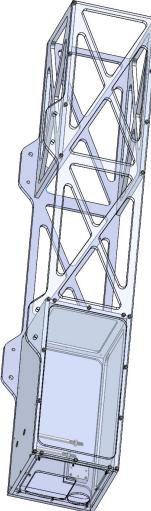




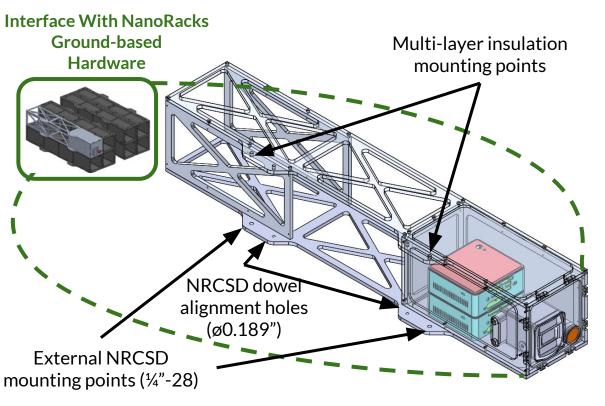












47



# Baseline Design - Structural Interface VANTAGE





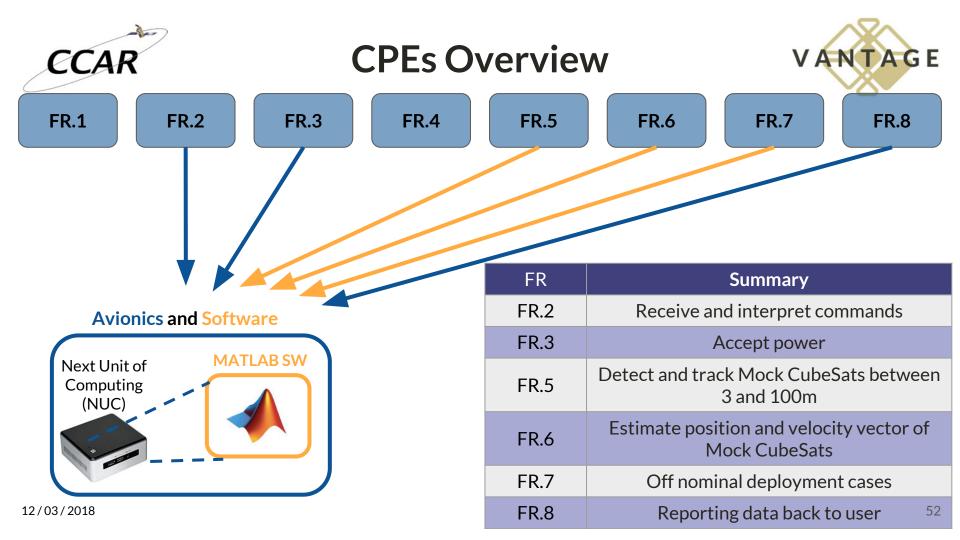
 Fills volume of NRCSD silo to interface properly with MLI blanket

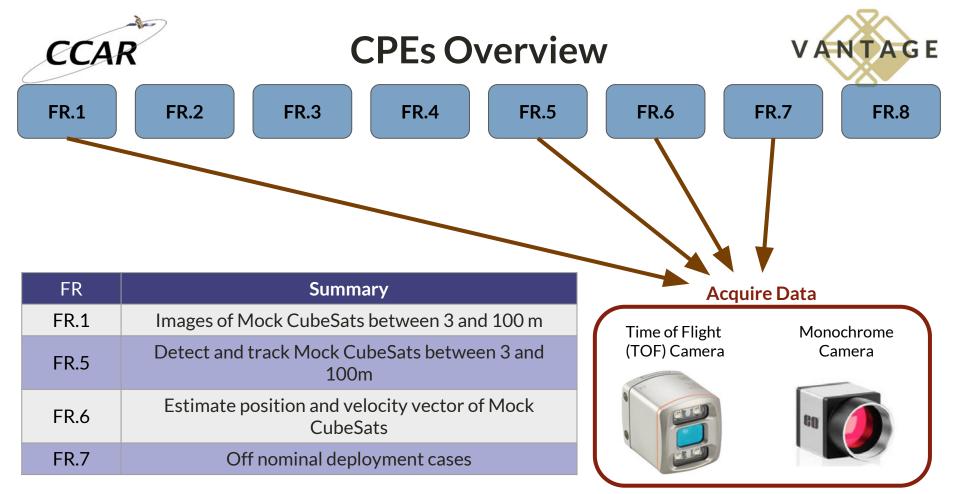
o 5.43"x5.67"x31.89"

- All fasteners torqued and staked
- Mounts according to ICD drawing #63HC7

| Requirement | Context                           |
|-------------|-----------------------------------|
| DR.4.1      | VANTAGE Mounting Alignment        |
| DR.4.2      | VANTAGE Mounting<br>Demonstration |

# **Critical Project Elements**





### **FR Summary**



| FR   | Summary                                                |
|------|--------------------------------------------------------|
| FR.1 | Images of Mock CubeSats between 3 and 100 m            |
| FR.2 | Receive and interpret commands                         |
| FR.3 | Accept power                                           |
| FR.4 | Mechanical Integration                                 |
| FR.5 | Detect and track Mock CubeSats between 3 and 100m      |
| FR.6 | Estimate position and velocity vector of Mock CubeSats |
| FR.7 | Off nominal deployment cases                           |
| FR.8 | Reporting data back to user                            |









# Sensors Critical Project Elements VANTAGE



#### Position and Velocity Accuracy

| Subsystem CPEs                                 | Governing<br>Requirement(s) | Parent Functional Requirements                               | CPE Justification                                                                       |
|------------------------------------------------|-----------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Error in Position and<br>Velocity Measurements | DR.6.1, 6.2                 | FR.6: Estimate position and velocity vector of Mock CubeSats | Sensors record sensor data, and choosing the right ones will help us meet requirements. |

| Req.   | Summary                                                    |  |
|--------|------------------------------------------------------------|--|
| DR 6.1 | Position Accuracy (10 cm for 3-10m ,10% of range to 100 m) |  |
| DR 6.2 | Velocity Accuracy (1 cm/s to 10 m , 10cm/s to 100m)        |  |



# Software Critical Project Elements VANTAGE



| Subsystem CPEs        | Governing<br>Requirement(s) | Parent Project Objective(s)                                | CPE Justification                                                                                                                                                    |
|-----------------------|-----------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Object Recognition    | DR.5.2                      | FR.5: Detect and track Mock<br>CubeSats between 3 and 100m | If the software is unable to identify<br>mock CubeSats, it will be unable to<br>measure and associate their<br>trajectories.                                         |
| Multi-object Tracking | DR.5.2, FR.1                | FR.5: Detect and track Mock<br>CubeSats between 3 and 100m | CubeSats are deployed in clusters.<br>VANTAGE will be unable to provide<br>sufficient tracking in the use-case if it<br>cannot track multiple objects in the<br>FOV. |

| Req.   | Summary                                                                |
|--------|------------------------------------------------------------------------|
| DR 5.2 | Software shall detect mock CubeSats within FOV at a distance of 3-100m |
| DR 6.1 | Position Accuracy (10 cm for 3-10m ,10% of range to 100 m)             |
| DR 6.2 | Velocity Accuracy (1 cm/s to 10 m , 10cm/s to 100m)                    |



# Avionics Critical Project Elements VANTAGE

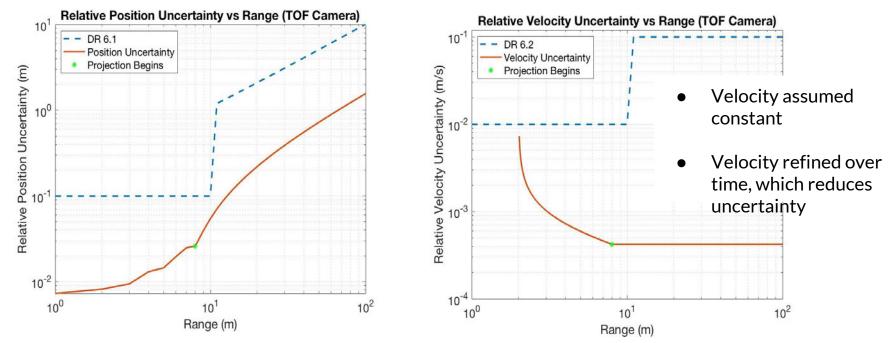


| Subsystem CPEs                      | Governing<br>Requirement(s) | Functional Requirements           | CPE Justification                                                                                                                                                          |
|-------------------------------------|-----------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Storage and<br>Processing Data | DR.8.1-EL<br>DR.8.2-EL      | FR.8: Reporting data back to user | The selected avionics will limit<br>VANTAGE's processing speed and<br>maximum storage capacity, so these<br>factors must be taken into account<br>when selecting hardware. |

|                                                                                       | Req. Label | Summary                                                                                              |
|---------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------|
| DR 8.1 EL The electronics subsystem shall transmit results within 15 minutes of final |            | The electronics subsystem shall transmit results within 15 minutes of final mock CubeSat deployment. |
|                                                                                       | DR 8.2 EL  | The system shall store all images, sensor data, and estimates within an onboard data storage device. |

# Design Requirements and their Satisfaction




# **Sensors CPE Satisfaction**





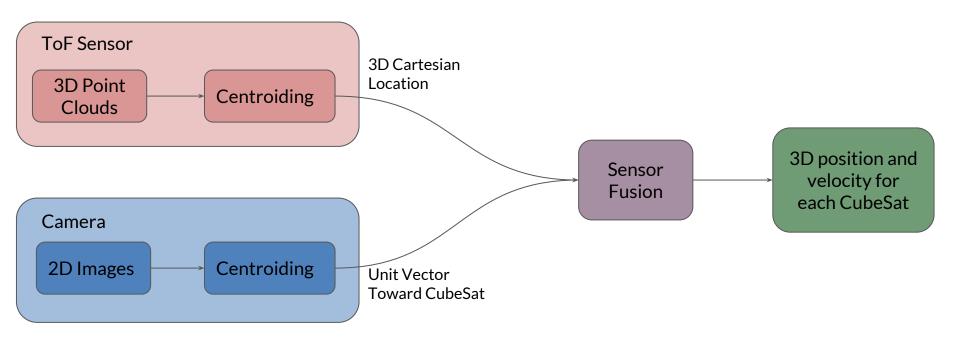
#### **<u>TOF Camera</u>**: Position/Velocity Accuracy





| Req.   | Summary                                                       |  |
|--------|---------------------------------------------------------------|--|
| DR 6.1 | Position Accuracy (10 cm for 3-10 10m ,10% of range to 100 m) |  |
| DR 6.2 | Velocity Accuracy (1 cm/s to 10 m , 10cm/s to 100m)           |  |




# **Software CPE Satisfaction**







## Producing Measurements from Sensor Data





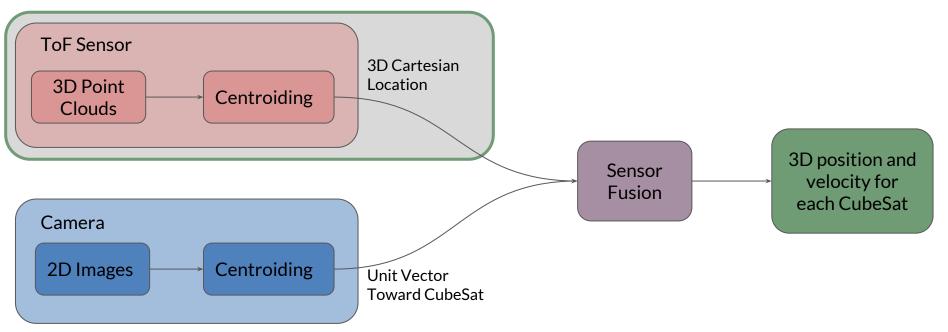
# **Sensor Simulation Overview**

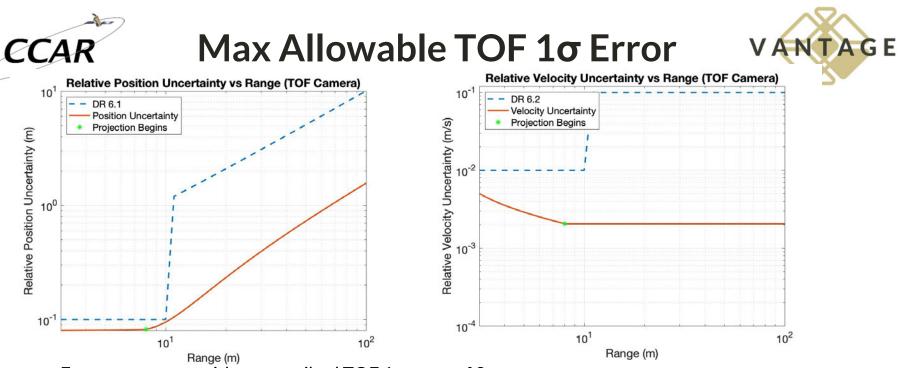


**Blensor TOF Camera Simulation** 

**Cinema 4D Optical Camera Simulation** 

Industry-standard rendering and animation


Simulation producing data representative of our TOF camera

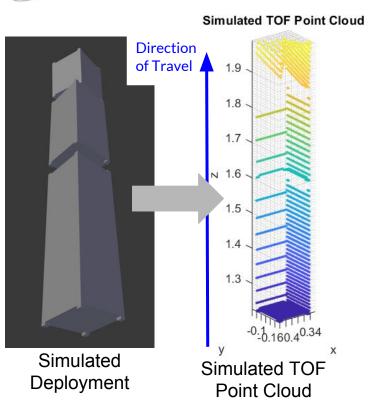

•





# Producing Measurements from Sensor Data





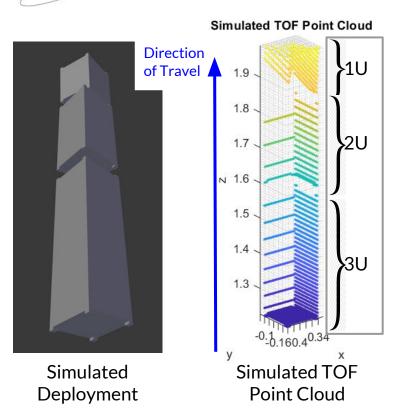

- Error over range with a prescribed TOF 1σ error of 8 cm
- Does satisfy requirements, so Max Allowable TOF Centroiding Error is 8 cm 1 \sigma

|    | Req.   | Summary                                                    |
|----|--------|------------------------------------------------------------|
|    | DR 6.1 | Position Accuracy (10 cm for 3-10m ,10% of range to 100 m) |
|    | DR 6.2 | Velocity Accuracy (1 cm/s to 10 m , 10cm/s to 100m)        |
| 03 | / 2018 | Critical Design Review                                     |

# **TOF Centroiding Code Suite**






- A major part of our project is the ability to:
   Receive a raw TOF point cloud
  - and deployment order (e.g. 1U 2U 3U)



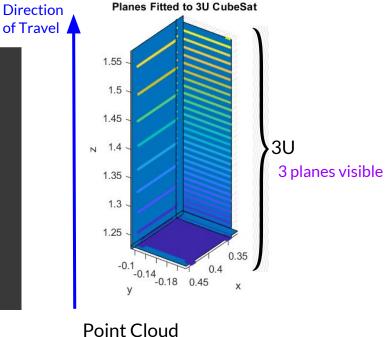
Identified

CubeSats





- A major part of our project is the ability to:
  - Receive a raw TOF point cloud and deployment order (e.g. 1U 2U 3U)
  - Identify separate CubeSats



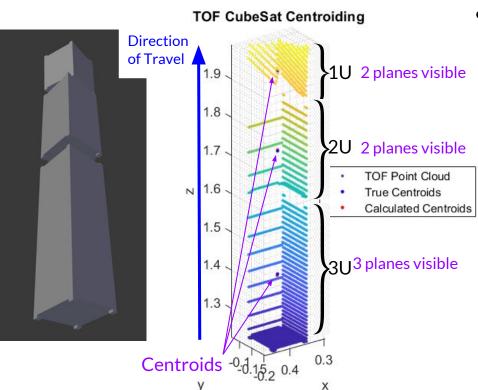

# **TOF Centroiding Code Suite**



- A major part of our project is the ability to:
  - Receive a raw TOF point cloud and deployment order (e.g. 1U 2U 3U)
  - Identify separate CubeSats
  - Identify visible CubeSat planes (shown here only for the 3U)

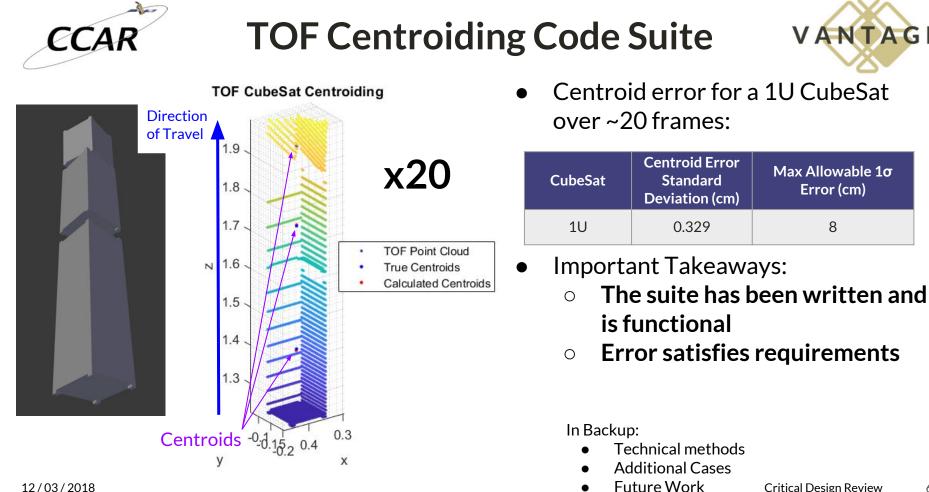
Simulated Deployment




showing Planes fit to 1U CubeSat

Critical Design Review 67




# **TOF Centroiding Code Suite**





- A major part of our project is the ability to:
  - Receive a raw TOF point cloud and deployment order (e.g. 1U 2U 3U)
  - Identify separate CubeSats
  - Identify visible CubeSat planes
  - Project inward from planes to calculate CubeSat centroids and compare to truth data

| CubeSat          | Centroid<br>Error (cm) | Max Allowable<br>Error (cm) |
|------------------|------------------------|-----------------------------|
| 1U<br>(tumbling) | 0.701                  | 8                           |
| 2U               | 0.268                  | 8                           |
| 3U               | 0.973                  | 8                           |



VANTAGE

Max Allowable  $1\sigma$ 

Error (cm)

8



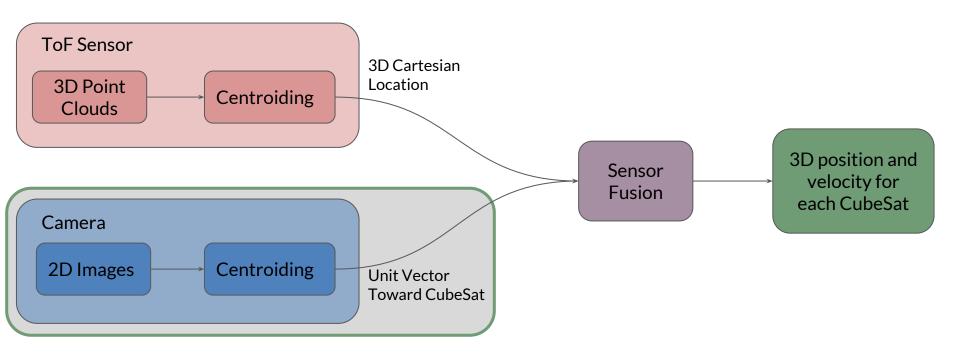
# Working with Real TOF Data



**Physical Test Setup** 

Raw Point Cloud from Physical Test Planes fitted to Raw Point Cloud and Calculated Centroid




12/03/2018

**Calculated Centroid** 

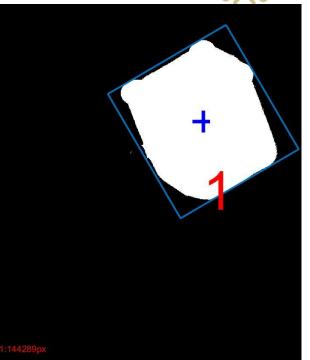




## Producing Measurements from Sensor Data






## **Object Detection**



• Ability to detect object centroids was demonstrated in PDR

• A boundary box method has been implemented to improve performance

• Centroid location is determined by the mean of the boundary box locations



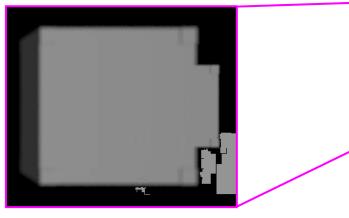
| Req.   | Summary                                                                |
|--------|------------------------------------------------------------------------|
| DR 5.2 | Software shall detect mock CubeSats within FOV at a distance of 3-100m |
| <br>   |                                                                        |

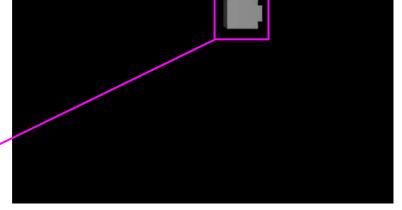




• When there is occlusion in the image, object detection must be able to ignore partially occluded cubesats from the centroid calculations We changed the requirements...

|                              | Summary                                    |
|------------------------------|--------------------------------------------|
| Software shall detect mock C | ubeSats within FOV at a distance of 3-100m |

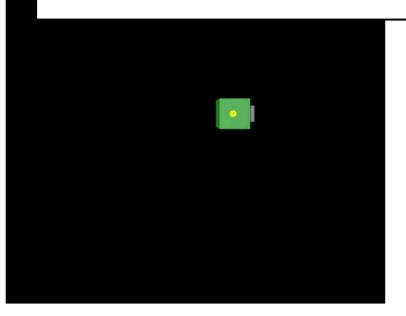

Req.






• When there is occlusion in the image, object detection must be able to ignore partially occluded cubesats from the centroid calculations ...but it can still happen.

#### So what now?



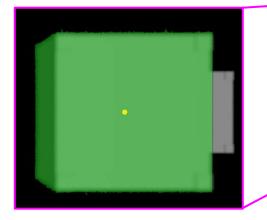








• Using geometric properties such as boundary concavity, we are able to exclude the partially obfuscated cubesat from the centroid calculation for the cubesat in front We use the concavity of the boundary to fix it!

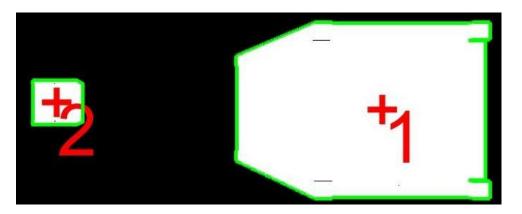






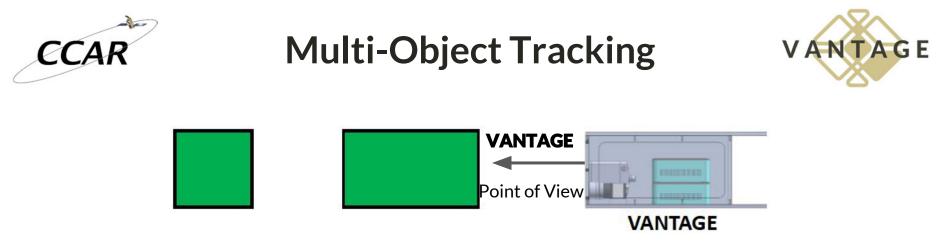

• Using geometric properties such as boundary concavity, we are able to exclude the partially obfuscated cubesat from the centroid calculation for the cubesat in front








# **Multi-Object Tracking**



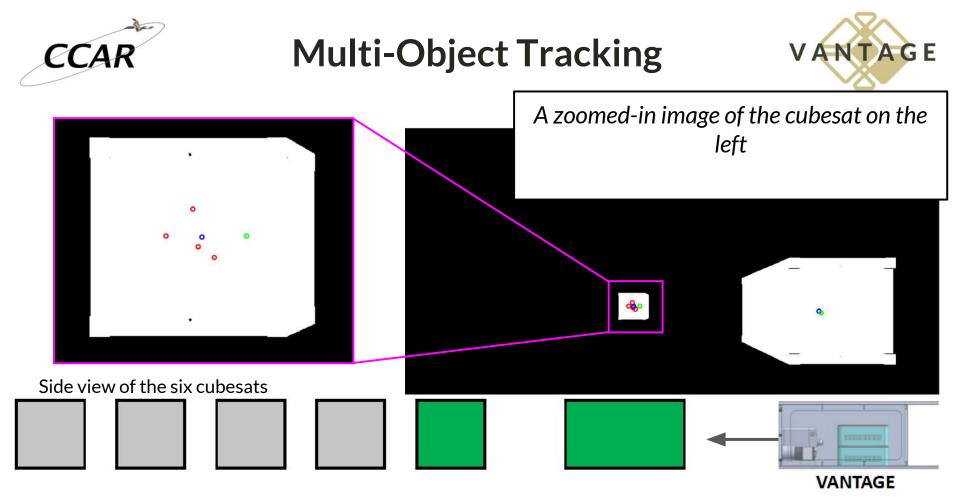

- We use a heuristic 1-nearest neighbor approach for centroid association.
- When there is no occlusion we use a nearest neighbor algorithm with the camera projection as the feature space.

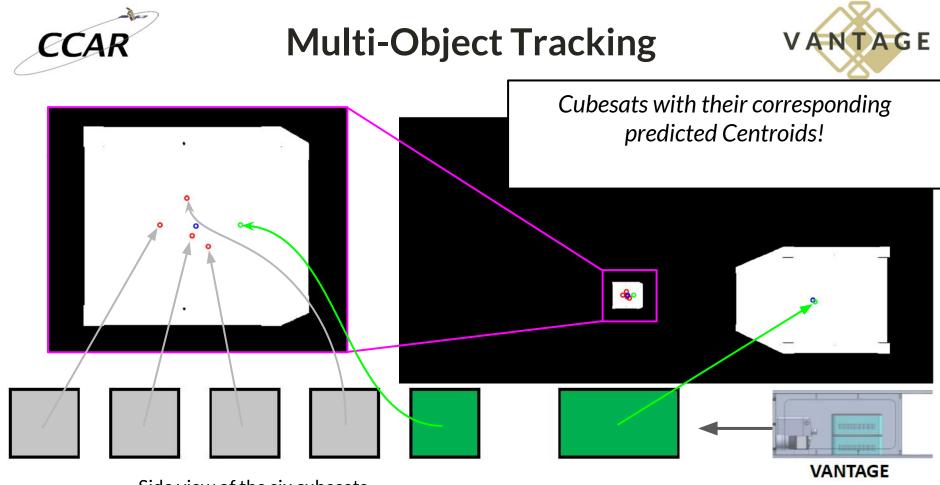


#### Side view of the two cubesats



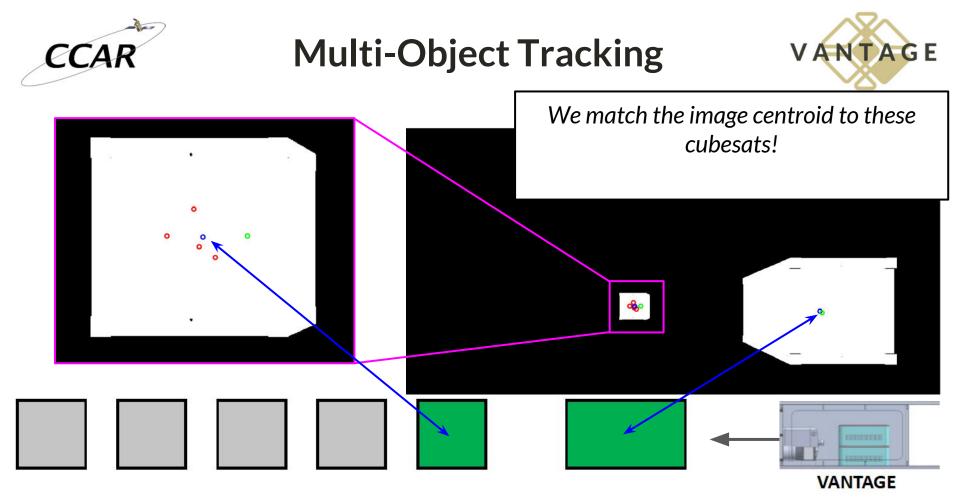



### Why track two, when we can track six?


Gray CubeSats are occluded and not visible to Vantage.





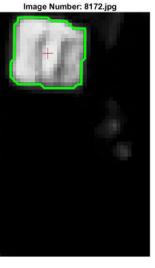

12/03/2018





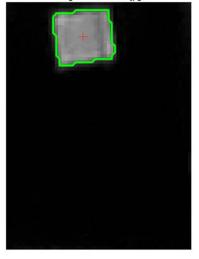
12/03/2018 Side view of the six cubesats

Critical Design Review 81






### **Camera Tracking**




- Optical camera data processing has successfully detected mock CubeSats in both simulations and field data from 5-100m in all cases
- CubeSat detection operates well above requirements for given ideal conditions



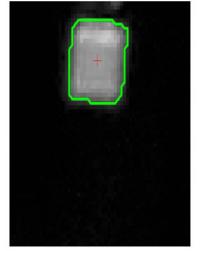
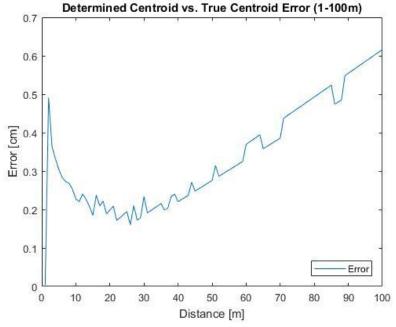

100m

Image Number: 8196.jpg



95m


Image Number: 8207.jpg

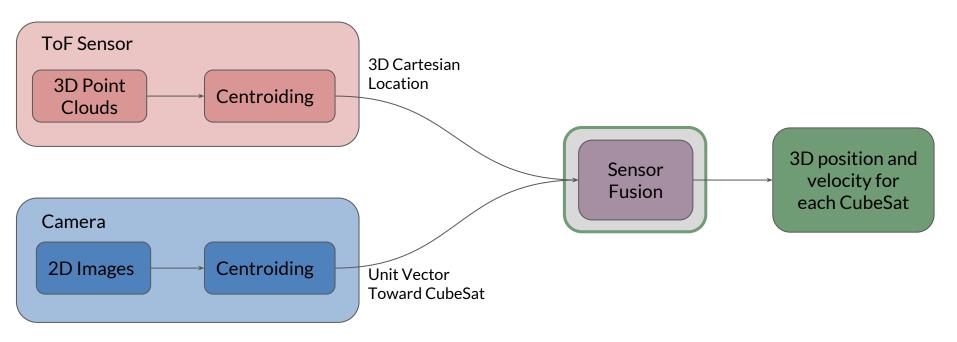


| Req.   | Summary                                                                |
|--------|------------------------------------------------------------------------|
| DR 5.2 | Software shall detect mock CubeSats within FOV at a distance of 3-100m |
| <br>   |                                                                        |

### **Optical Camera Ideal Simulation Accuracy**

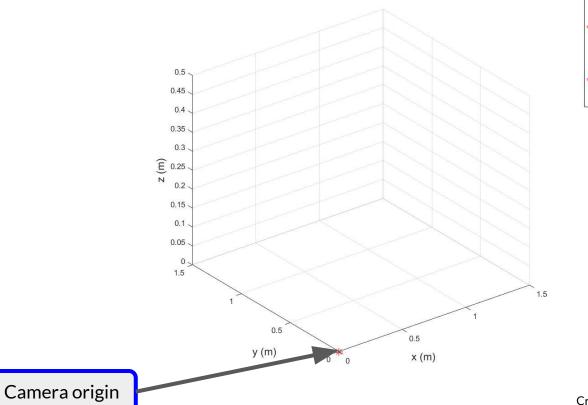
- Simulated data collected under ideal conditions
  - No blur, 1-D, linear velocity
- 2-D In-plane error at 100m < 1.0cm




| Req.   | Summary                                                                |
|--------|------------------------------------------------------------------------|
| DR 5.2 | Software shall detect mock CubeSats within FOV at a distance of 3-100m |
| 10040  |                                                                        |







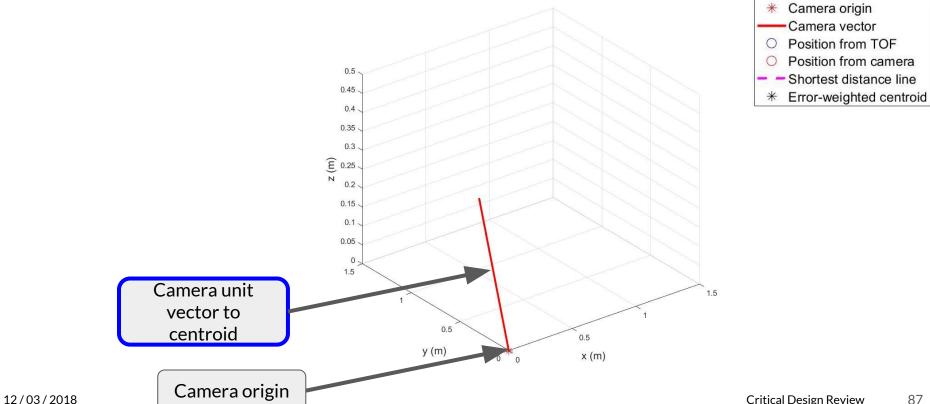

### Producing Measurements from Sensor Data



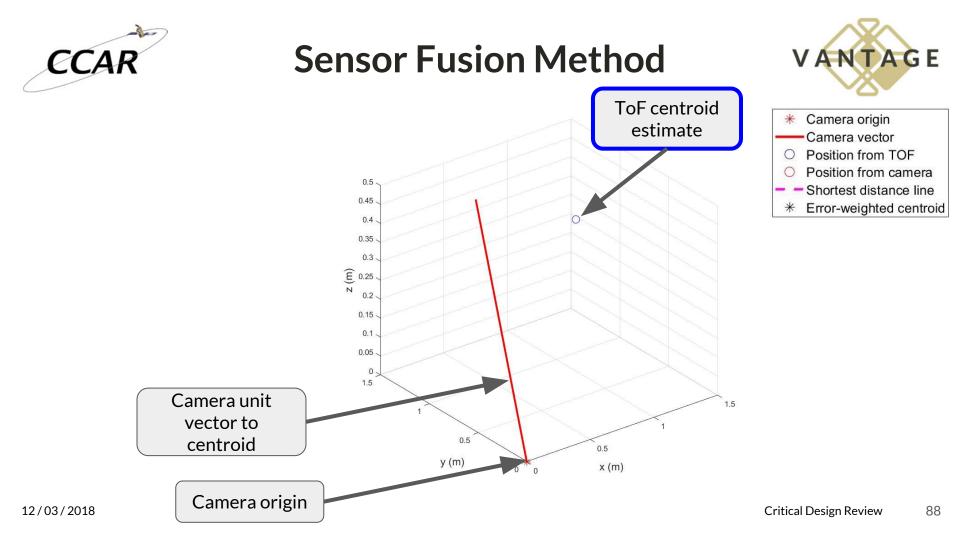


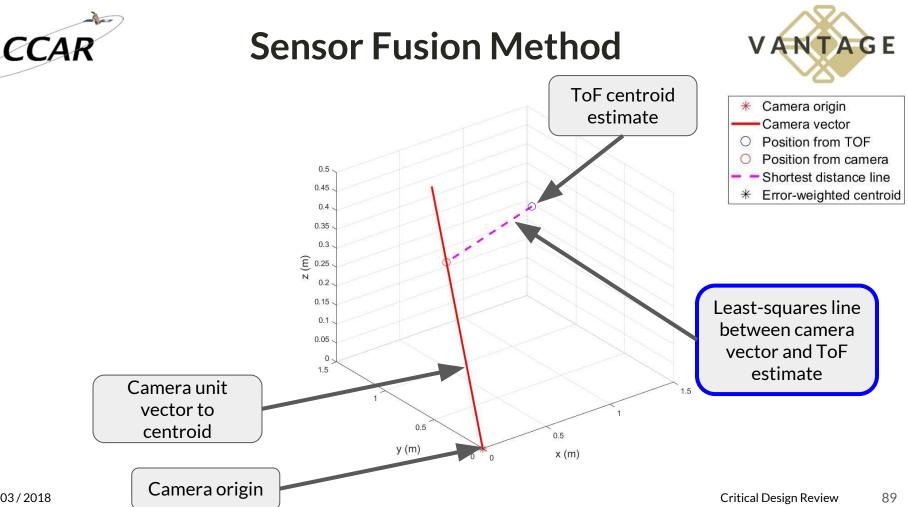
### **Sensor Fusion Method**



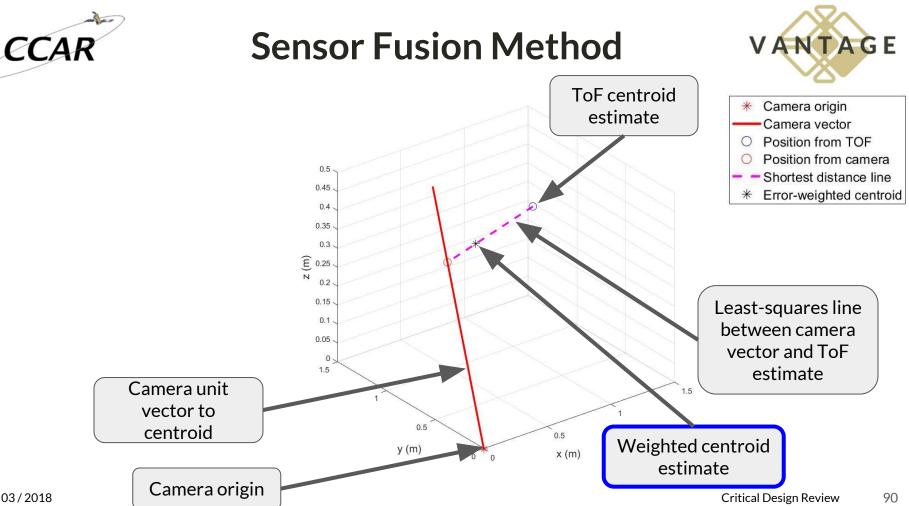



Camera origin
 Camera vector
 Position from TOF
 Position from camera
 Shortest distance line
 Error-weighted centroid





### **Sensor Fusion Method**





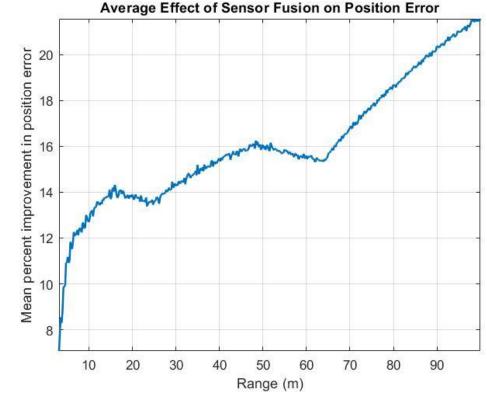

**Critical Design Review** 87

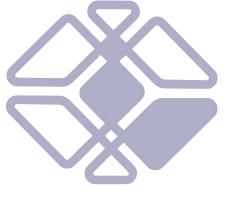




12/03/2018




12/03/2018




### **Sensor Fusion Effectiveness**



| Distance (m)                      | 100   | 50    |
|-----------------------------------|-------|-------|
| Propagated ToF Mean<br>Error (cm) | 20.68 | 10.34 |
| Sensor Fusion Mean Error<br>(cm)  | 16.21 | 8.68  |
| Error Requirement (cm)            | 1000  | 500   |





# **Avionics CPE Satisfaction**





# Data Storage and Processing Data



#### Our Software Benchmarks on our NUC

| Process                 | Time*                       |
|-------------------------|-----------------------------|
| Data import form ToF    | 6.54 Sec                    |
| Data import from Camera | 11.65 Sec                   |
| ToF Centroiding         | 80 Sec                      |
| Image Processing        | 103.33 Sec                  |
| Camera Distortion       | 52.8 Sec                    |
| Sensor Fusion           | 0.1 Sec                     |
| Data Output to NR       | 52.08 Sec                   |
| Total                   | 306.5 Sec = <b>5:06 Min</b> |
| Requirement             | 15:00 Min                   |

#### Electronic system time test on NUC

- **ToF** camera frame rate: **30 hz**
- Camera frame rate: 2 hz
- All runtimes produced from NUC testing
- Data Output to NR is **500 KB over USB2.0**
- Data storage:
  - We require 40 GB < 500 GB (NUC Storage)

| Req.   | Summary                                                                                              |
|--------|------------------------------------------------------------------------------------------------------|
| DR 8.1 | The electronics subsystem shall transmit results within 15 minutes of final mock CubeSat deployment. |
| DR 8.2 | The system shall store all images, sensor data, and estimates within an onboard data storage device. |

 $^*$ Support for these numbers in Backup



### **Pre-Mitigation Risk Matrix**



|          | Likelihood of Occurrence                                      |                                                                    |                                                                                  |                         |                        |          |  |  |  |  |  |
|----------|---------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------|------------------------|----------|--|--|--|--|--|
|          |                                                               | Very Unlikely                                                      | Remote                                                                           | Occasional              | Probable               | Frequent |  |  |  |  |  |
|          | Catastrophic                                                  | SENS SN 2, STR<br>HW 2                                             | SW CMP 4, SW<br>CMP 6, SW<br>CMP 5                                               |                         |                        |          |  |  |  |  |  |
| Severity | Significant                                                   | STR HW 3, TST<br>MOD 4, SW<br>CMP 3                                | AVI DEV 1,<br>SENS SN 1,<br>SENS TST 1,<br>SENS TST 2,<br>TST MOD 1,<br>SW TST 1 | AVI COMM 1,<br>STR HW 1 | SW CMP 1, TST<br>MOD 2 |          |  |  |  |  |  |
|          | Moderate AVI PWR 1, AVI<br>PWR 2, AVI<br>PWR 3, TST<br>100M 2 | TST MOD 5,<br>TST 100M 1,<br>SW CMP 2, TST<br>MOD 3, AVI<br>COMM 2 | SENS SN 3                                                                        |                         |                        |          |  |  |  |  |  |
|          | Minimal                                                       |                                                                    |                                                                                  | AVI DEV 2               | TST 100M 3             |          |  |  |  |  |  |
|          | Insignificant                                                 |                                                                    |                                                                                  |                         |                        |          |  |  |  |  |  |



### **Pre-Mitigation Risk Matrix**



|          | Likelihood of Occurrence                                     |                                     |                                                                                  |                         |                        |          |  |  |  |  |
|----------|--------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------|-------------------------|------------------------|----------|--|--|--|--|
|          |                                                              | Very Unlikely                       | Remote                                                                           | Occasional              | Probable               | Frequent |  |  |  |  |
|          | Catastrophic                                                 | SENS SN 2, STR<br>HW 2              | SW CMP 4, SW<br>CMP 6, SW<br>CMP 5                                               |                         |                        |          |  |  |  |  |
| Severity | Significant                                                  | STR HW 3, TST<br>MOD 4, SW<br>CMP 3 | AVI DEV 1,<br>SENS SN 1,<br>SENS TST 1,<br>SENS TST 2,<br>TST MOD 1,<br>SW TST 1 | AVI COMM 1,<br>STR HW 1 | SW CMP 1, TST<br>MOD 2 |          |  |  |  |  |
|          | Moderate AVI PWR 1, AV<br>PWR 2, AVI<br>PWR 3, TST<br>100M 2 | PWR 3, TST                          | TST MOD 5,<br>TST 100M 1,<br>SW CMP 2, TST<br>MOD 3, AVI<br>COMM 2               | SENS SN 3               |                        |          |  |  |  |  |
|          | Minimal                                                      |                                     |                                                                                  | AVI DEV 2               | TST 100M 3             |          |  |  |  |  |
|          | Insignificant                                                |                                     |                                                                                  |                         |                        |          |  |  |  |  |





| RISK ID       | IF                                                                            | THEN                                           | ORIGINAL<br>SEVERITY | ORIGINAL<br>PROBABILITY | RISK SCORE | MITIGATION<br>STRATEGIES                                                                                                                  | POST-MITIGATION<br>SEVERITY | POST-MITIGATION<br>PROBABILITY | POST-MITIGATION<br>RISK SCORE |
|---------------|-------------------------------------------------------------------------------|------------------------------------------------|----------------------|-------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------|-------------------------------|
| SW CMP<br>1   | Software team<br>encounters blocks<br>during development.                     | Significant man hours invested to fix issues.  | 4                    | 4                       | 16         | Extensive Architecture<br>Simulation of sensors<br>for unit testing                                                                       | 3                           | 2                              | 6                             |
| TST<br>MOD 2  | Test structure<br>interferes with data<br>measurement.                        | Modular test unable to produce usable data.    | 4                    | 4                       | 16         | Use IR black paint to<br>obscure test rig to TOF<br>and optical sensor<br>Use Stop motion and<br>simulation to verify all<br>requirements | 1                           | 3                              | 3                             |
| AVI<br>COMM 1 | Arduino fails to remotely turn on NUC                                         | NUC is never booted,<br>mission entirely fails | 4                    | 3                       | 12         | Multiple methods of<br>booting the NUC<br>developed                                                                                       | 3                           | 2                              | 6                             |
| STR HW<br>1   | Competition for<br>machine shop time<br>prevents structural<br>manufacturing. | VANTAGE structure is not produced.             | 4                    | 3                       | 12         | PHYS water jet -> rapid<br>manufacturing<br>Manufacturing of simple<br>rigs over break                                                    | 2                           | 1                              | 2                             |





| RISK ID       | IF                                                                            | THEN                                             | ORIGINAL<br>SEVERITY | ORIGINAL<br>PROBABILITY | RISK SCORE | MITIGATION<br>STRATEGIES                                                                                                                  | POST-MITIGATION<br>SEVERITY | POST-MITIGATION<br>PROBABILITY | POST-MITIGATION<br>RISK SCORE |
|---------------|-------------------------------------------------------------------------------|--------------------------------------------------|----------------------|-------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------|-------------------------------|
| SW CMP<br>1   | Software team<br>encounters blocks<br>during development.                     | Significant man hours<br>invested to fix issues. | 4                    | 4                       | 16         | Extensive Architecture<br>Simulation of sensors<br>for unit testing                                                                       | 3                           | 2                              | 6                             |
| TST<br>MOD 2  | Test structure<br>interferes with data<br>measurement.                        | Modular test unable to produce usable data.      | 4                    | 4                       | 16         | Use IR black paint to<br>obscure test rig to TOF<br>and optical sensor<br>Use Stop motion and<br>simulation to verify all<br>requirements | 1                           | 3                              | 3                             |
| AVI<br>COMM 1 | Arduino fails to<br>remotely turn on NUC                                      | NUC is never booted,<br>mission entirely fails   | 4                    | 3                       | 12         | Multiple methods of<br>booting the NUC<br>developed                                                                                       | 3                           | 2                              | 6                             |
| STR HW<br>1   | Competition for<br>machine shop time<br>prevents structural<br>manufacturing. | VANTAGE structure is not produced.               | 4                    | 3                       | 12         | PHYS water jet -> rapid<br>manufacturing<br>Manufacturing of simple<br>rigs over break                                                    | 2                           | 1                              | 2                             |





| RISK ID       | IF                                                                            | THEN                                          | ORIGINAL<br>SEVERITY | ORIGINAL<br>PROBABILITY | RISK SCORE | MITIGATION<br>STRATEGIES                                                                                                                  | POST-MITIGATION<br>SEVERITY | POST-MITIGATION<br>PROBABILITY | POST-MITIGATION<br>RISK SCORE |
|---------------|-------------------------------------------------------------------------------|-----------------------------------------------|----------------------|-------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------|-------------------------------|
| SW CMP<br>1   | Software team<br>encounters blocks<br>during development.                     | Significant man hours invested to fix issues. | 4                    | 4                       | 16         | Extensive Architecture<br>Simulation of sensors<br>for unit testing                                                                       | 3                           | 2                              | 6                             |
| TST<br>MOD 2  | Test structure<br>interferes with data<br>measurement.                        | Modular test unable to produce usable data.   | 4                    | 4                       | 16         | Use IR black paint to<br>obscure test rig to TOF<br>and optical sensor<br>Use Stop motion and<br>simulation to verify all<br>requirements | 1                           | 3                              | 3                             |
| AVI<br>COMM 1 | Arduino fails to<br>remotely turn on NUC                                      | NUC is never booted, mission entirely fails   | 4                    | 3                       | 12         | Multiple methods of<br>booting the NUC<br>developed                                                                                       | 3                           | 2                              | 6                             |
| STR HW<br>1   | Competition for<br>machine shop time<br>prevents structural<br>manufacturing. | VANTAGE structure is not produced.            | 4                    | 3                       | 12         | PHYS water jet -> rapid<br>manufacturing<br>Manufacturing of simple<br>rigs over break                                                    | 2                           | 1                              | 2                             |





| RISK ID       | IF                                                                            | THEN                                             | ORIGINAL<br>SEVERITY | ORIGINAL<br>PROBABILITY | RISK SCORE | MITIGATION<br>STRATEGIES                                                                                                                  | POST-MITIGATION<br>SEVERITY | POST-MITIGATION<br>PROBABILITY | POST-MITIGATION<br>RISK SCORE |
|---------------|-------------------------------------------------------------------------------|--------------------------------------------------|----------------------|-------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------|-------------------------------|
| SW CMP<br>1   | Software team<br>encounters blocks<br>during development.                     | Significant man hours<br>invested to fix issues. | 4                    | 4                       | 16         | Extensive Architecture<br>Simulation of sensors<br>for unit testing                                                                       | 3                           | 2                              | 6                             |
| TST<br>MOD 2  | Test structure<br>interferes with data<br>measurement.                        | Modular test unable to produce usable data.      | 4                    | 4                       | 16         | Use IR black paint to<br>obscure test rig to TOF<br>and optical sensor<br>Use Stop motion and<br>simulation to verify all<br>requirements | 1                           | 3                              | 3                             |
| AVI<br>COMM 1 | Arduino fails to<br>remotely turn on NUC                                      | NUC is never booted, mission entirely fails      | 4                    | 3                       | 12         | Multiple methods of<br>booting the NUC<br>developed                                                                                       | 3                           | 2                              | 6                             |
| STR HW<br>1   | Competition for<br>machine shop time<br>prevents structural<br>manufacturing. | VANTAGE structure is not produced.               | 4                    | 3                       | 12         | PHYS water jet -> rapid<br>manufacturing<br>Manufacturing of simple<br>rigs over break                                                    | 2                           | 1                              | 2                             |



### **Pre-Mitigation Risk Matrix**



|          | Likelihood of Occurrence |                                                      |                                                                                  |                         |                        |          |  |
|----------|--------------------------|------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------|------------------------|----------|--|
|          |                          | Very Unlikely                                        | Remote                                                                           | Occasional              | Probable               | Frequent |  |
|          | Catastrophic             | SENS SN 2, STR<br>HW 2                               | SW CMP 4, SW<br>CMP 6, SW<br>CMP 5                                               |                         |                        |          |  |
| Severity | Significant              | STR HW 3, TST<br>MOD 4, SW<br>CMP 3                  | AVI DEV 1,<br>SENS SN 1,<br>SENS TST 1,<br>SENS TST 2,<br>TST MOD 1,<br>SW TST 1 | AVI COMM 1,<br>STR HW 1 | SW CMP 1, TST<br>MOD 2 |          |  |
|          | Moderate                 | AVI PWR 1, AVI<br>PWR 2, AVI<br>PWR 3, TST<br>100M 2 | TST MOD 5,<br>TST 100M 1,<br>SW CMP 2, TST<br>MOD 3, AVI<br>COMM 2               | SENS SN 3               |                        |          |  |
|          | Minimal                  |                                                      |                                                                                  | AVI DEV 2               | TST 100M 3             |          |  |
|          | Insignificant            |                                                      |                                                                                  |                         |                        |          |  |



**Post-Mitigation Risk Matrix** 



|          | Likelihood of Occurrence |                                                                                                        |                                       |                         |          |          |  |
|----------|--------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------|----------|----------|--|
|          |                          | Very Unlikely                                                                                          | Remote                                | Occasional              | Probable | Frequent |  |
|          | Catastrophic             | SW CMP 4                                                                                               |                                       |                         |          |          |  |
|          | Significant              | SENS TST 2                                                                                             |                                       |                         |          |          |  |
| Severity | Moderate                 | SW CMP 6,<br>SENS SN 3, SW<br>TST 1, SENS SN<br>2                                                      | SW CMP 1, AVI<br>COMM 1, AVI<br>DEV 1 |                         |          |          |  |
|          | Minimal                  | STR HW 1, STR<br>HW 2, STR HW<br>3, TST MOD 4,<br>AVI PWR 1, AVI<br>PWR 2, AVI<br>PWR 3, TST<br>100M 2 | SENS SN 1,<br>SENS TST 1,             |                         |          |          |  |
|          | Insignificant            | SW CMP 5, AVI<br>COMM 2, SW<br>CMP 3                                                                   | TST 100M 3,<br>SW CMP 2, TST<br>MOD 3 | TST MOD 2,<br>AVI DEV 2 |          |          |  |

# **Verification and Validation**



# **VANTAGE's Three Test Systems**



Test

Order

**Simulation Test** 

| Functional<br>Req. | Summary                                                   | Simulation T <sub>est</sub> | Modular T <sub>est*</sub> | <sup>100n Test**</sup> |
|--------------------|-----------------------------------------------------------|-----------------------------|---------------------------|------------------------|
| FR.1               | Images of Mock CubeSats between 3 and 100 m               |                             |                           |                        |
| FR.2               | Receive and interpret commands                            | ✓                           |                           |                        |
| FR.3               | Accept NanoRacks DC power                                 |                             |                           |                        |
| FR.5               | Detect and track Mock CubeSats between 3 and 100m         | ✓                           |                           |                        |
| FR.6               | Estimate position and velocity vector of Mock<br>CubeSats | 1                           |                           |                        |
| FR.7               | Off nominal deployment cases                              | $\checkmark$                |                           |                        |
| FR.8               | Reporting data back to user                               | $\checkmark$                |                           |                        |
|                    | *Real world sensor data produced                          |                             |                           |                        |

Real world sensor data produced

\*\*Real world sensor data produced + beginning to end system verification



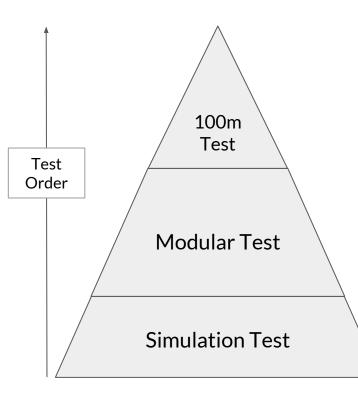
# **VANTAGE's Three Test Systems**



Test Order

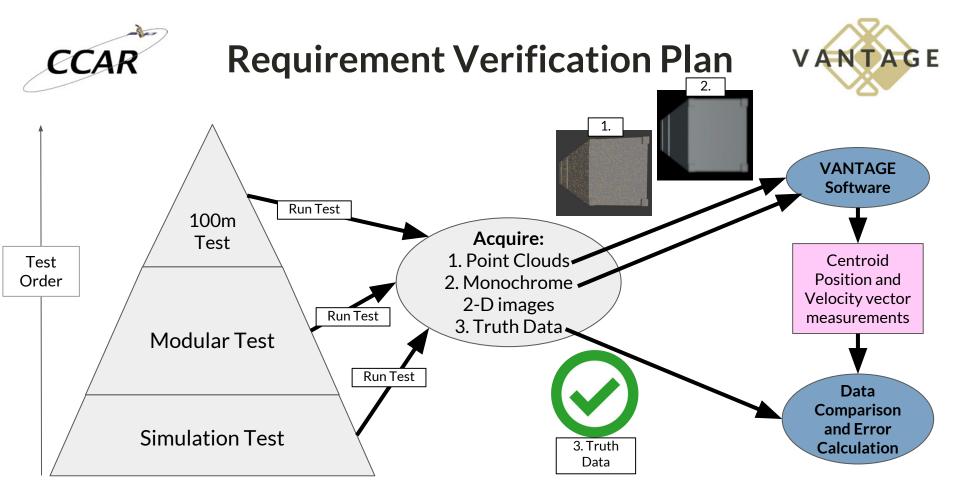
Modular Test **Simulation Test** 

| Functional<br>Req. | Summary                                                   | Simulation T <sub>est</sub> | Modular T <sub>est*</sub> | <sup>100</sup> m Test** |
|--------------------|-----------------------------------------------------------|-----------------------------|---------------------------|-------------------------|
| FR.1               | Images of Mock CubeSats between 3 and 100 m               |                             | $\checkmark$              |                         |
| FR.2               | Receive and interpret commands                            | ✓                           | $\checkmark$              |                         |
| FR.3               | Accept NanoRacks DC power                                 |                             |                           |                         |
| FR.5               | Detect and track Mock CubeSats between 3 and 100m         | ✓                           | ✓                         |                         |
| FR.6               | Estimate position and velocity vector of Mock<br>CubeSats | $\checkmark$                | ✓                         |                         |
| FR.7               | Off nominal deployment cases                              | $\checkmark$                | $\checkmark$              |                         |
| FR.8               | Reporting data back to user                               | $\checkmark$                | $\checkmark$              |                         |
|                    | *Real world sensor data produced                          |                             |                           |                         |


\*\*Real world sensor data produced + beginning to end system verification

105



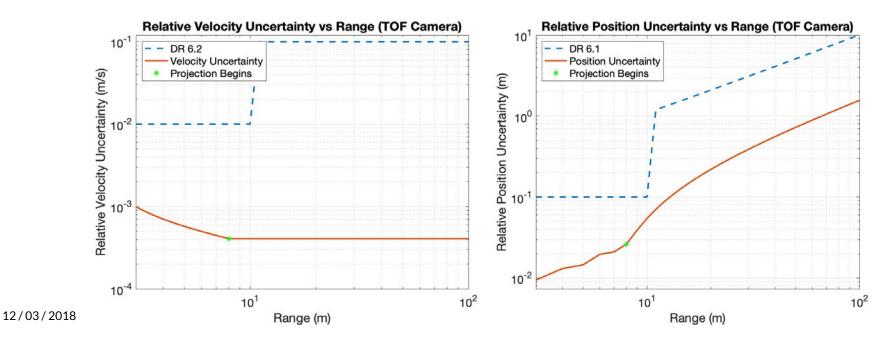

# VANTAGE's Three Test Systems





| Functional<br>Req. | Summary                                                   | Simulation T <sub>est</sub> | Modular T <sub>est*</sub> | <sup>100</sup> n T <sub>est**</sub> |
|--------------------|-----------------------------------------------------------|-----------------------------|---------------------------|-------------------------------------|
| FR.1               | Images of Mock CubeSats between 3 and 100 m               |                             | ✓                         | $\checkmark$                        |
| FR.2               | Receive and interpret commands                            | 1                           | $\checkmark$              | $\checkmark$                        |
| FR.3               | Accept NanoRacks DC power                                 |                             |                           | $\checkmark$                        |
| FR.5               | Detect and track Mock CubeSats between 3 and 100m         | ✓                           | ✓                         | ✓                                   |
| FR.6               | Estimate position and velocity vector of Mock<br>CubeSats | $\checkmark$                | ✓                         | ✓                                   |
| FR.7               | Off nominal deployment cases                              | $\checkmark$                | $\checkmark$              |                                     |
| FR.8               | Reporting data back to user                               | $\checkmark$                | $\checkmark$              | $\checkmark$                        |
|                    | *Real world sensor data produced                          |                             |                           |                                     |

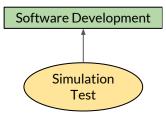
\*\*Real world sensor data produced + beginning to end system verification





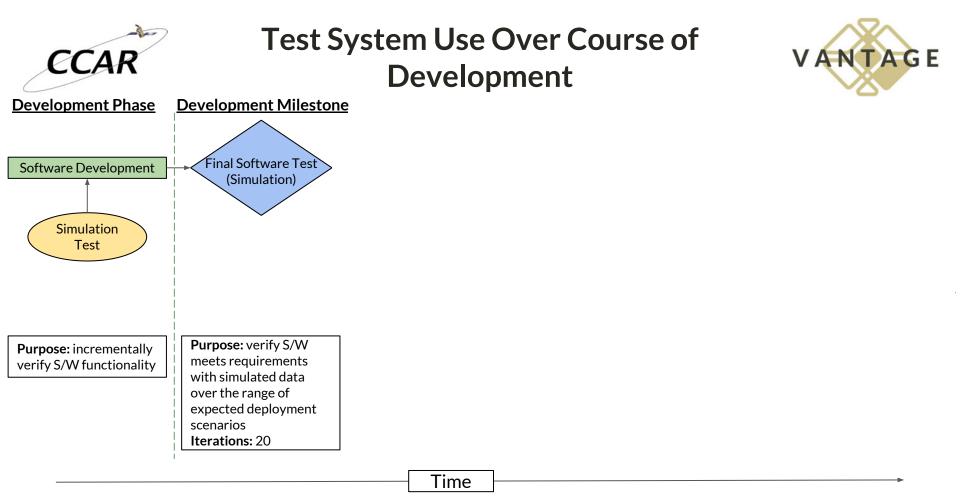

# **Requirement Validation Plan**

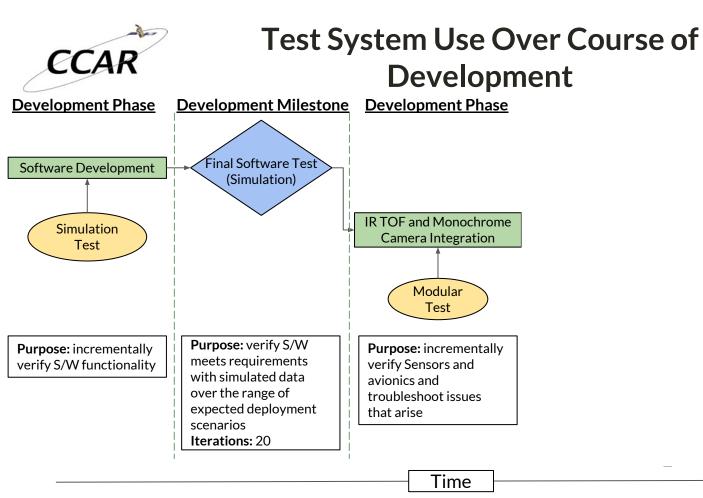



• After data comparison and error calculation, plots similar to the following are generated to verify that the VANTAGE system produces measurements which meet or exceed requirements

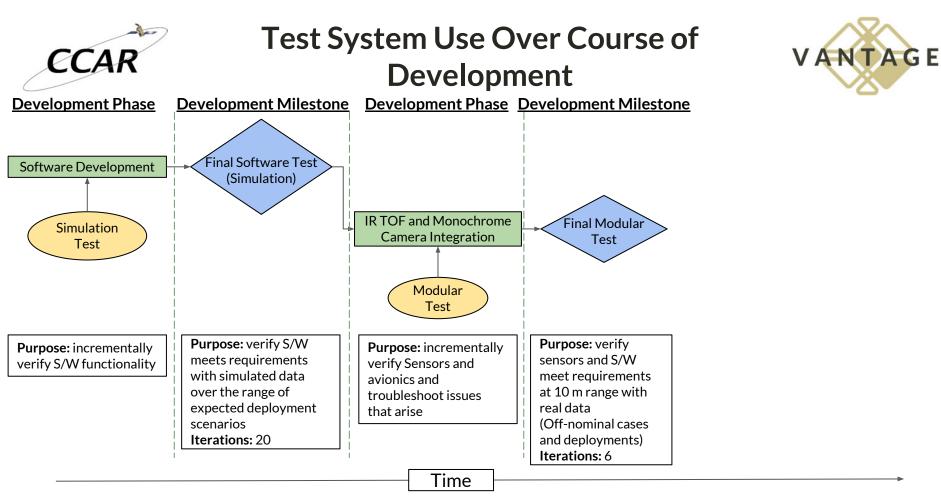


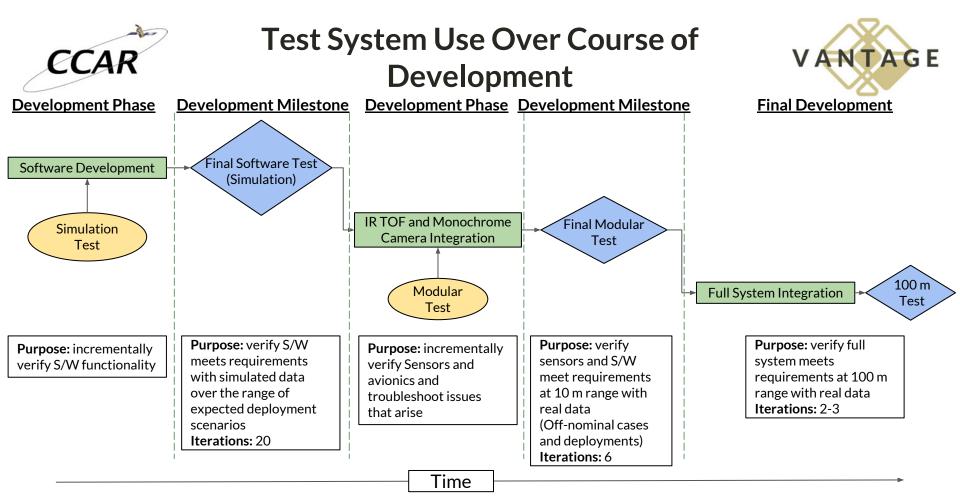


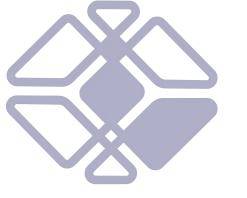

#### Test System Use Over Course of Development





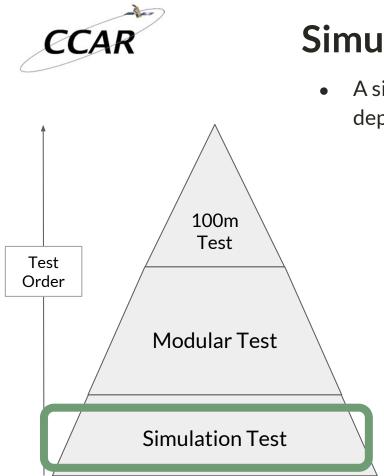


**Purpose:** incrementally verify S/W functionality


Time






VANTAGE

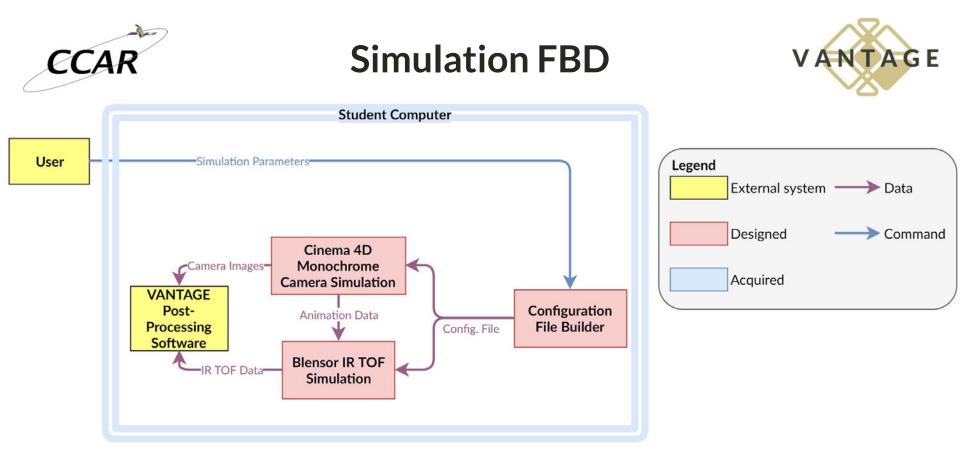


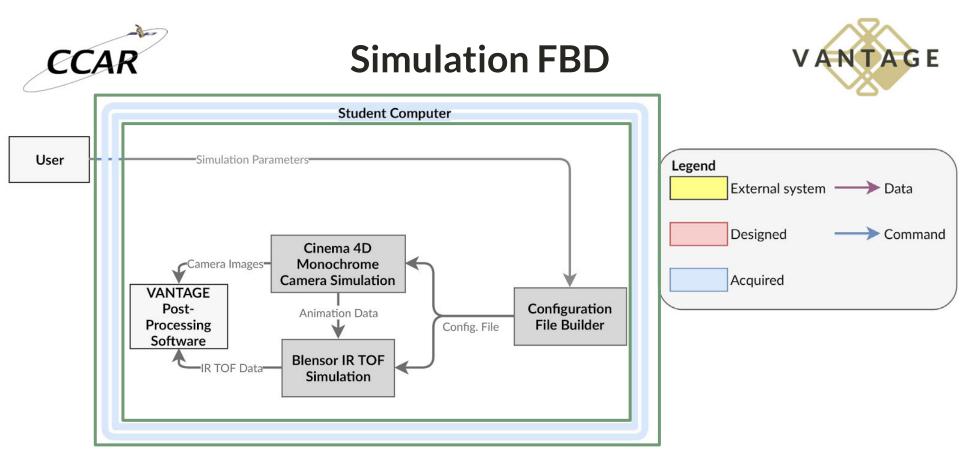


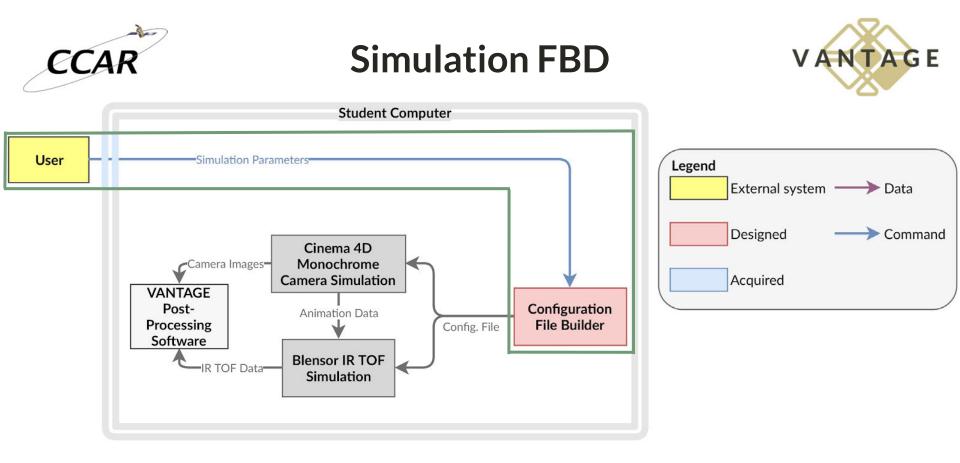


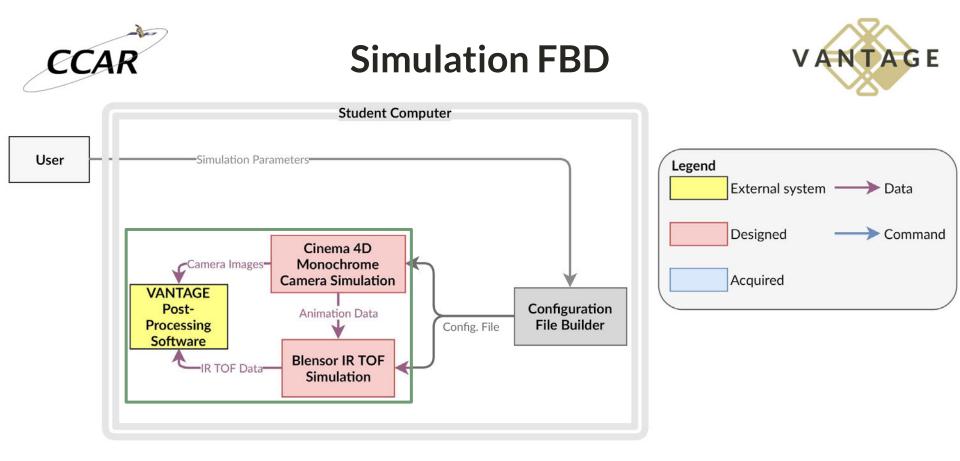

# **VANTAGE Simulation**







### **Simulation Overview**





• A simulated test of VANTAGE's software system in all required deployment scenarios in a virtual environment

| Relevant FR's: FR.5, FR.6, FR.7 |                                                                          |  |
|---------------------------------|--------------------------------------------------------------------------|--|
| Relevant<br>DR's                | Summary                                                                  |  |
| DR.2.2                          | Interpret deployment manifest                                            |  |
| DR.5.2                          | Mock cubesat detection                                                   |  |
| DR.6.1<br>DR.6.2                | Position vector and velocity vector measurements are within error bounds |  |
| DR.7.2<br>DR.7.3                | Off-nominal ejection times and velocities                                |  |
| DR.8.1                          | Report data back to the user                                             |  |











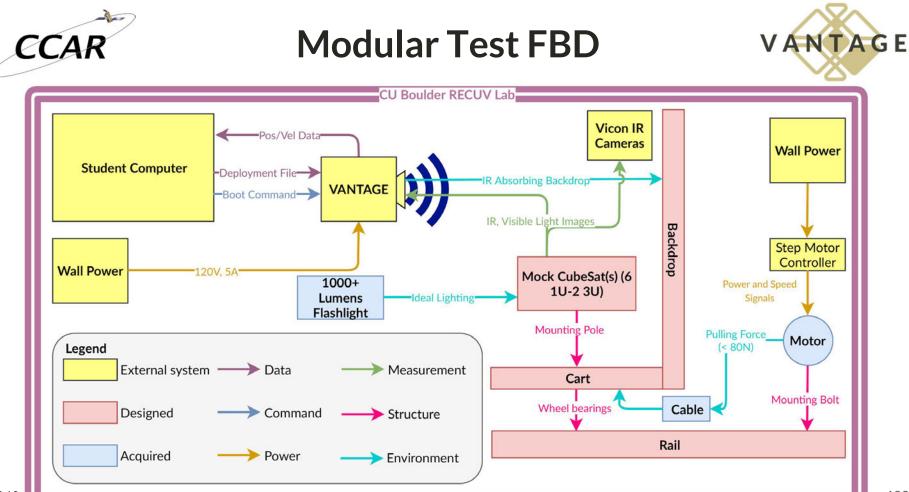
#### **Simulation Overview**



| Necessary Capability/<br>Measurement          | Software Used                                                  | Simulation Capability                          | Relevant<br>Requirements                                                     |
|-----------------------------------------------|----------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------|
| Truth Data (Position &                        | Inputs to the simulation                                       | Absolute accuracy                              | DR.6.1: Position Accuracy<br>(10 cm for 3-10 10m ,10%<br>of range to 100 m). |
| Velocity)                                     |                                                                | Absolute accuracy                              | DR.6.2: Velocity Accuracy<br>(1 cm/s to 10 m , 10cm/s to<br>100m)            |
| Test Data <b>(Position &amp;</b><br>Velocity) | VANTAGE Post-Processing<br>Software ( <b>Unit Under Test</b> ) | N/A                                            | DR.6.1 & DR.6.2                                                              |
| Various Deployment Scenarios                  | Cinema 4D/Blensor                                              | Capable of simulating all deployment scenarios | FR.5: Mount up to 6 1U to<br>2 3U Mock CubeSats                              |
| Mock CubeSat Motion                           | Cinema 4D                                                      | Capable of simulating motion                   | FR.6, FR.7: Mock Cubesats<br>move with velocities<br>between 0 and 3 [m/s].  |

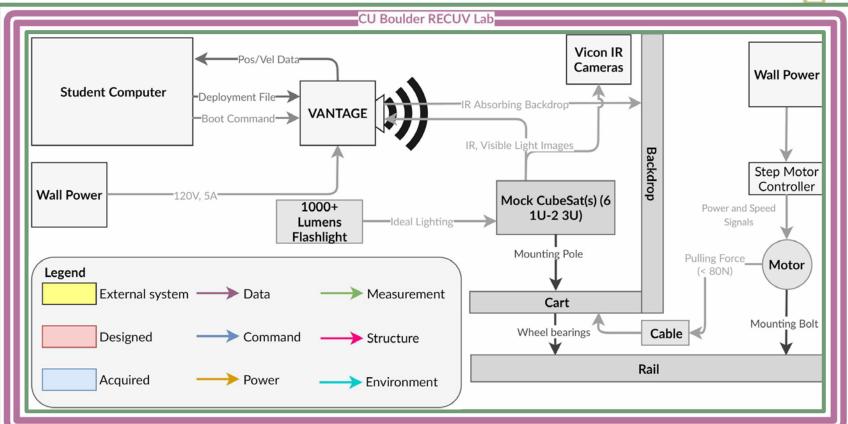


# **Modular Test System**

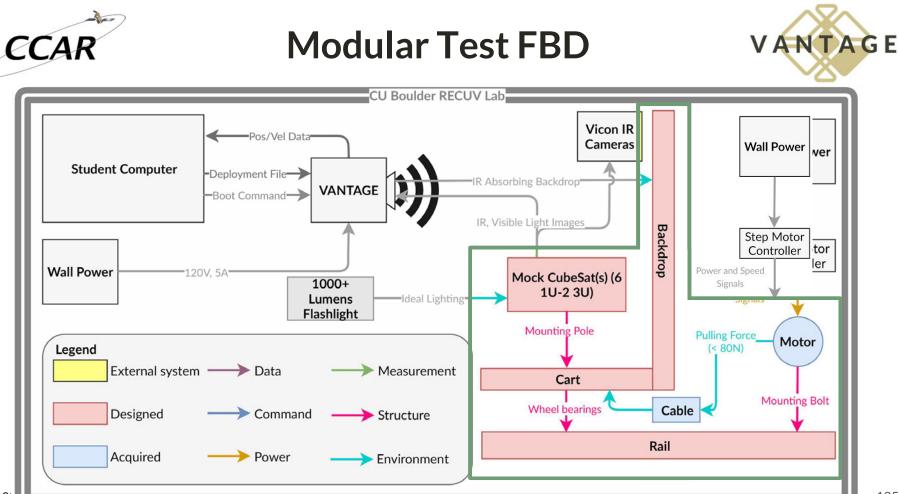



## Modular Test Overview



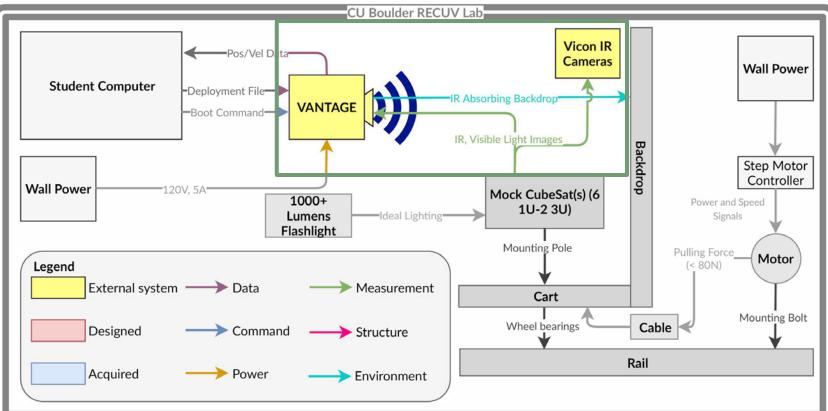

 A 10 m test of VANTAGE's sensor and software systems in all required deployment scenarios in a ground based deployment simulated environment

|                 | 0                                     | . ,                                                                      |  |
|-----------------|---------------------------------------|--------------------------------------------------------------------------|--|
|                 | Relevant FR's: FR.1, FR.5, FR.6, FR.7 |                                                                          |  |
|                 | Relevant<br>DR's                      | Summary                                                                  |  |
| 100m<br>Test    | DR.1.1<br>DR.1.3<br>DR.1.4            | Camera system functionality and single infocus image return              |  |
| Order           | DR.2.2                                | Interpret deployment manifest                                            |  |
|                 | DR.5.2                                | Mock cubesat detection                                                   |  |
| Modular Test    | DR.6.1<br>DR.6.2                      | Position vector and velocity vector measurements are within error bounds |  |
|                 | DR.7.2<br>DR.7.3                      | Off-nominal ejection times and velocities                                |  |
| Simulation Test | DR.8.1                                | Report data back to the user                                             |  |
|                 |                                       |                                                                          |  |




#### Modular Test FBD






CCAR



#### **Modular Test FBD**





12/03

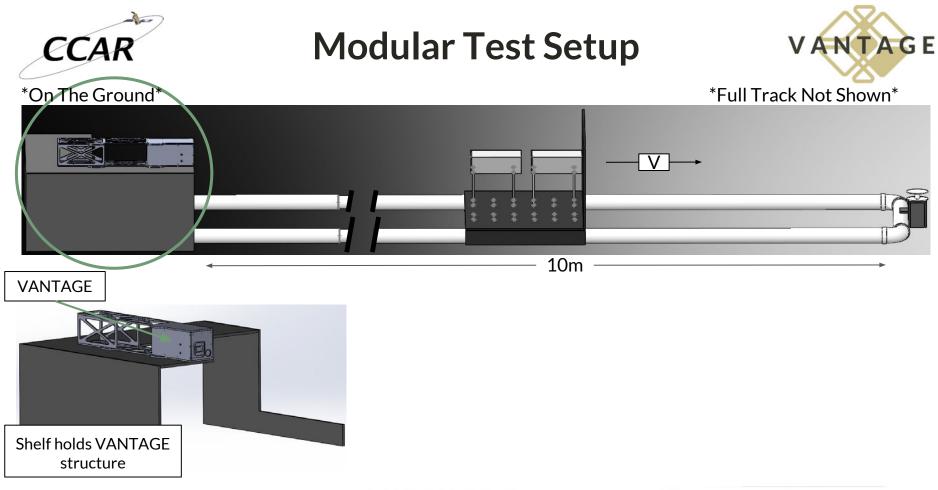


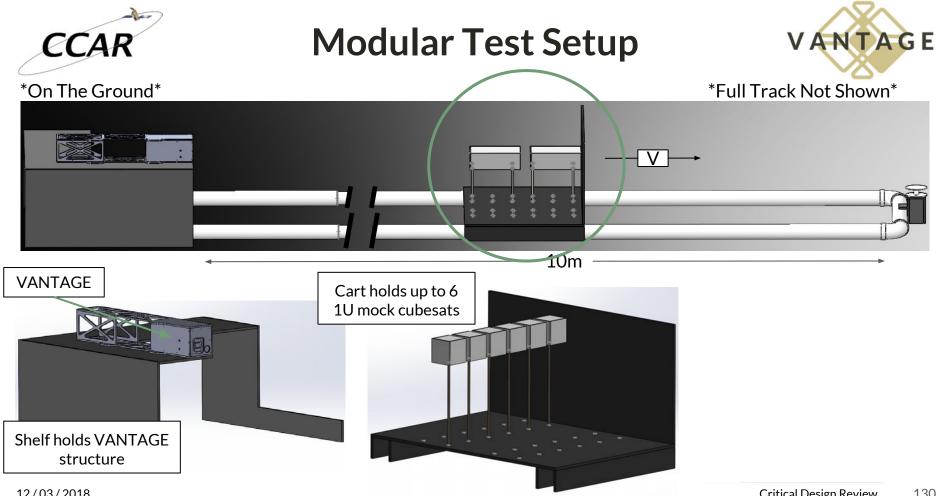
#### **Modular Test Overview**



| Necessary Capability/<br>Measurement           | Hardware Used                                             | Hardware Capability                                                  | Relevant<br>Requirements                                                                    |
|------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Truth Data <b>(Position &amp;</b><br>Velocity) | Vicon System                                              | Position Error of <b>0.0775 mm</b><br>at <b>100 Hz</b>               | <b>DR.6.1:</b> Position Accuracy<br>( <b>10 cm</b> for 3-10 10m ,10%<br>of range to 100 m). |
|                                                |                                                           | Velocity Error of <b>0.0775 mm/s</b>                                 | DR.6.2: Velocity Accuracy<br>(1 cm/s to 10 m , 10cm/s to<br>100m)                           |
| Test Data <b>(Position &amp;</b><br>Velocity)  | TOF & Optical Camera ( <b>Unit</b><br><b>Under Test</b> ) | N/A                                                                  | DR.6.1 & DR.6.2                                                                             |
| Imaging Targets                                | Mock CubeSat Models                                       | Simulates the appearance of a<br>CubeSat                             | FR.1: Images of Mock<br>CubeSats                                                            |
| Various Deployment Scenarios                   | Mock CubeSat Cart                                         | Capable of mounting all<br>deployment scenarios                      | FR.5: Mount up to 6 1U to<br>2 3U Mock CubeSats                                             |
| Mock CubeSat Motion                            | Nema 34 Step Motor                                        | Capable of the required<br>torque and rpm to produce<br>this motion. | FR.6, FR.7: Mock Cubesats<br>move with velocities<br>between 0 and 3 [m/s].                 |




#### **Modular Test Setup**



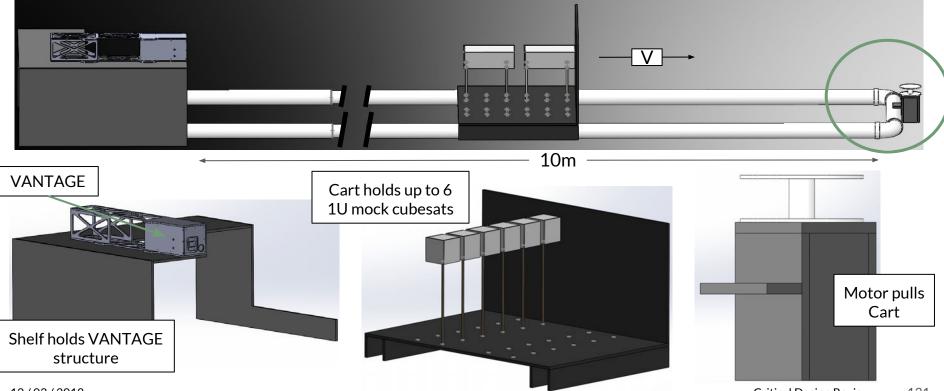

#### \*Full Track Not Shown\*

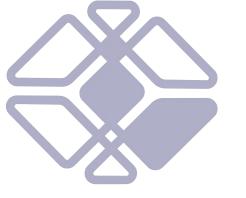


#### \*On The Ground\*









\*On The Ground\*

#### **Modular Test Setup**



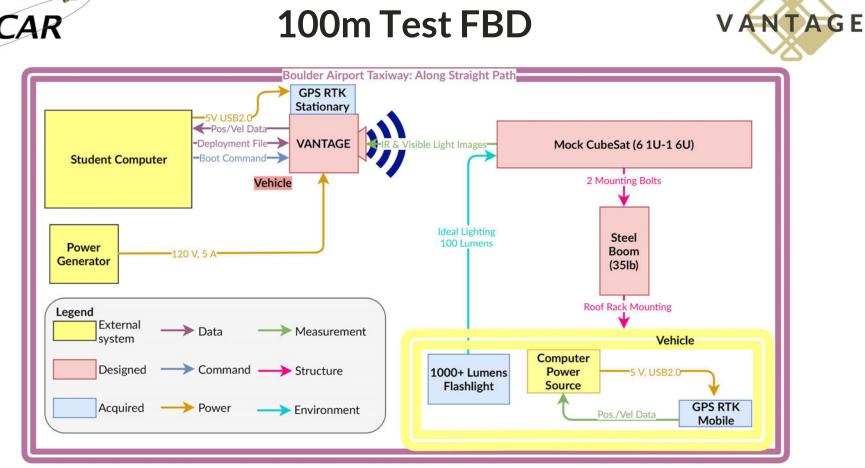
#### \*Full Track Not Shown\*





## **100 m Test System**

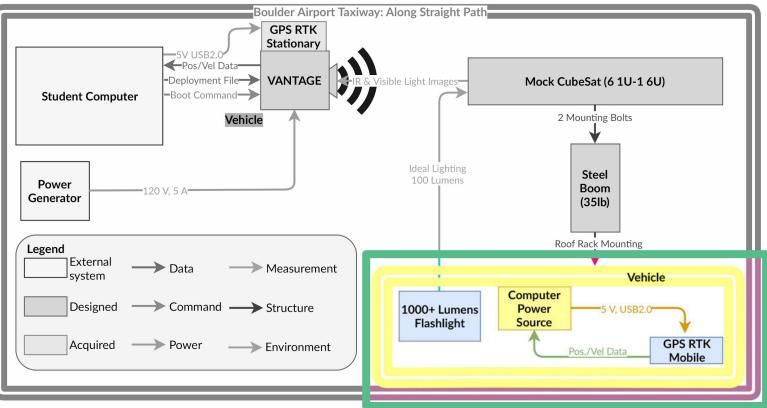





### 100m Test Overview

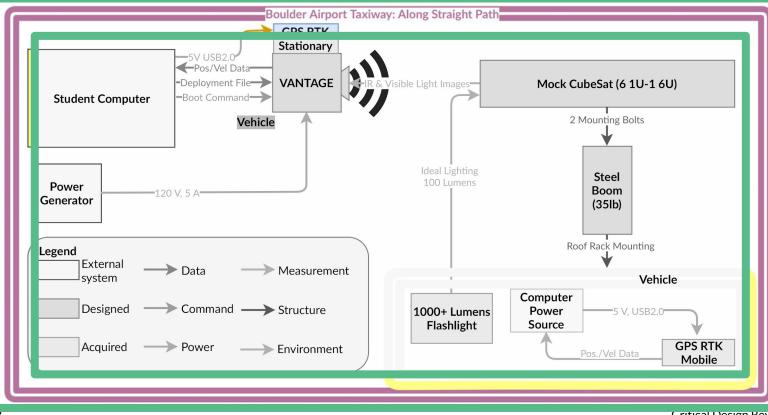


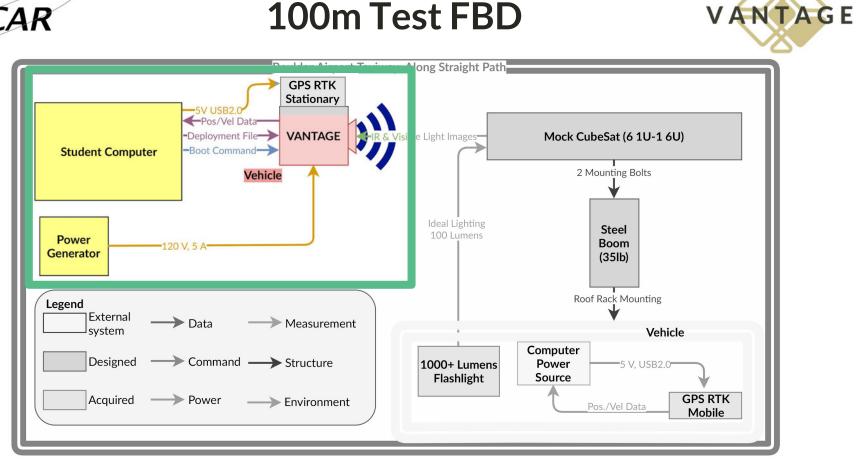
 A full scale system test of VANTAGE from power on to data return in a ground based deployment simulated environment

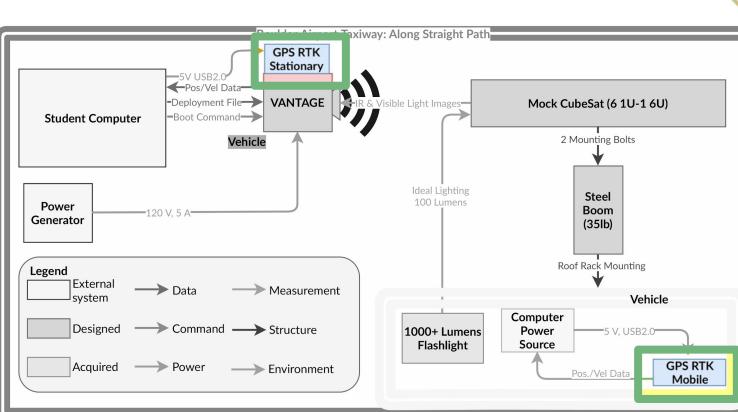

|                 | Relevant FR's: FR.1, FR.3, FR.5, FR.6 |                                                                          |  |
|-----------------|---------------------------------------|--------------------------------------------------------------------------|--|
|                 | Relevant<br>DR's                      | Summary                                                                  |  |
| Test 100m       | DR.1.1<br>DR.1.3<br>DR.1.4            | Camera system functionality and single infocus image return              |  |
| Order           | DR.1.2                                | Imaging system field of view                                             |  |
|                 | DR.2.2                                | Interpret deployment manifest                                            |  |
| Modular Test    | DR.3.1<br>DR.3.2                      | System power draw and low power mode functionality                       |  |
|                 | DR.5.1                                | Sensor subsystem                                                         |  |
|                 | DR.5.2                                | Mock cubesat detection                                                   |  |
| Simulation Test | DR.6.1<br>DR.6.2                      | Position vector and velocity vector measurements are within error bounds |  |
| 12/03/2018      | DR.8.1                                | Report data back to the user                                             |  |






#### 100m Test FBD







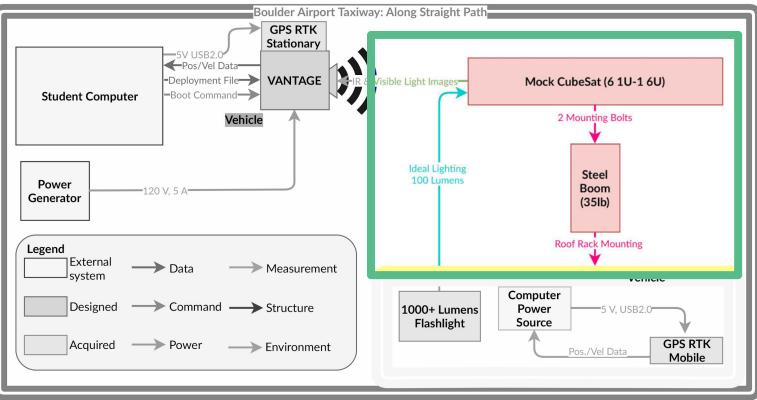







100m Test FBD

# CCAR

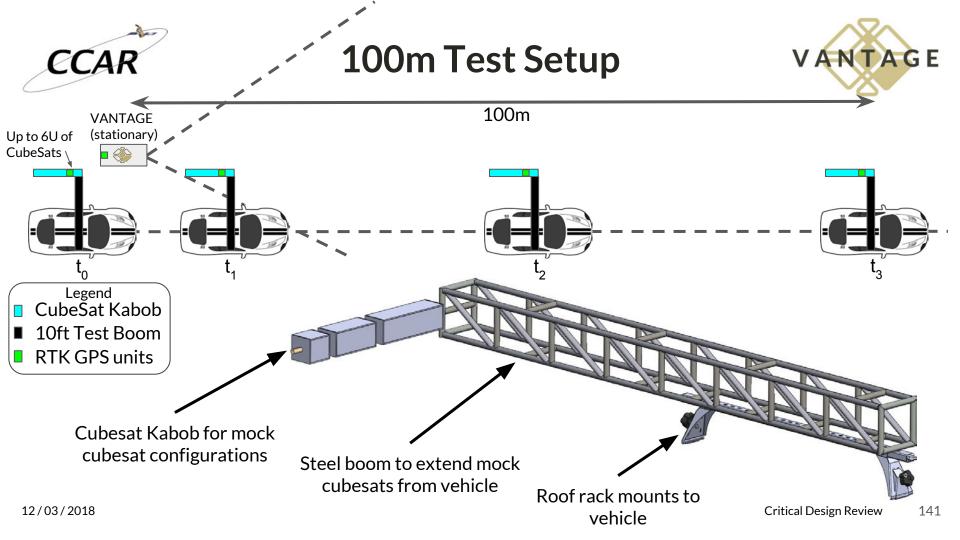

12/03/2018

VANTAGE



#### 100m Test FBD

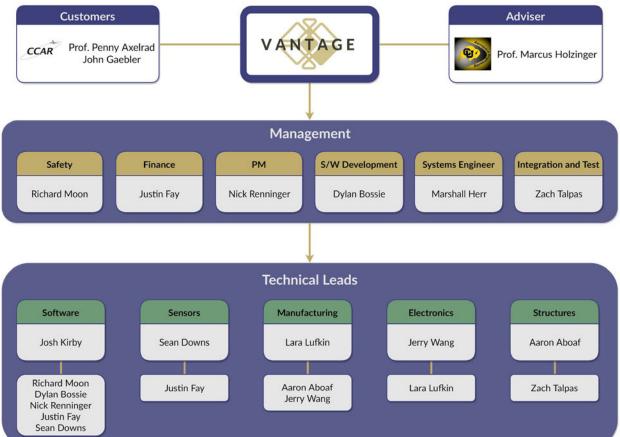






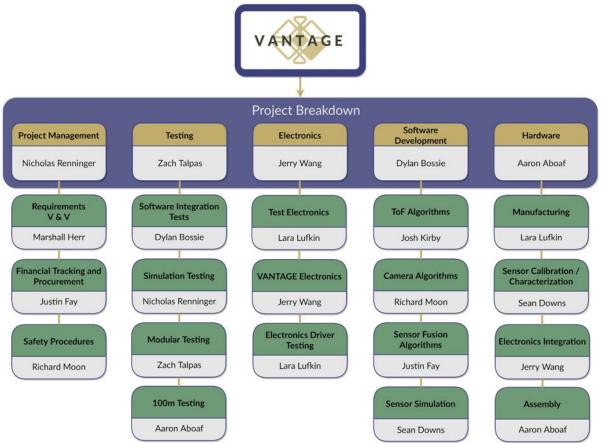

#### **100m Test Overview**




| Necessary Capability/<br>Measurement           | Hardware Used                                             | Hardware Capability                             | Relevant<br>Requirements                                                                    |
|------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------|
| Truth Data <b>(Position &amp;</b><br>Velocity) | GPS RTK<br>(Real time not required, just<br>timestamps)   | Position accuracy to 2cm                        | <b>DR.6.1:</b> Position Accuracy<br>( <b>10 cm</b> for 3-10 10m ,10%<br>of range to 100 m). |
|                                                |                                                           | Velocity accuracy to 2cm/s                      | DR.6.2: Velocity Accuracy<br>(1 cm/s to 10 m , 10cm/s to<br>100m)                           |
| Test Data <b>(Position &amp;</b><br>Velocity)  | TOF & Optical Camera ( <b>Unit</b><br><b>Under Test</b> ) | N/A                                             | DR.6.1 & DR.6.2                                                                             |
| Imaging Targets                                | Mock CubeSat Models                                       | Simulates the appearance of a CubeSat           | FR.1: Images of Mock<br>CubeSats                                                            |
| Power Source                                   | Gas powered generator                                     | 600+W                                           | DR.3.1 & DR.3.2: 120 V<br>power source                                                      |
| Various Deployment Scenarios                   | Cubesat Kabob                                             | Capable of mounting all<br>deployment scenarios | FR.5: Mount up to 6 1U to<br>2 3U Mock CubeSats                                             |
| Mock CubeSat Motion                            | Cubesat Test Boom and<br>Automobile                       | 5mph cruise control<br>Boulder airport taxiway  | FR.6: Mock Cubesats move<br>with velocities between<br>0 and 2 [m/s].                       |



# **Project Planning**


#### **Organizational Chart**



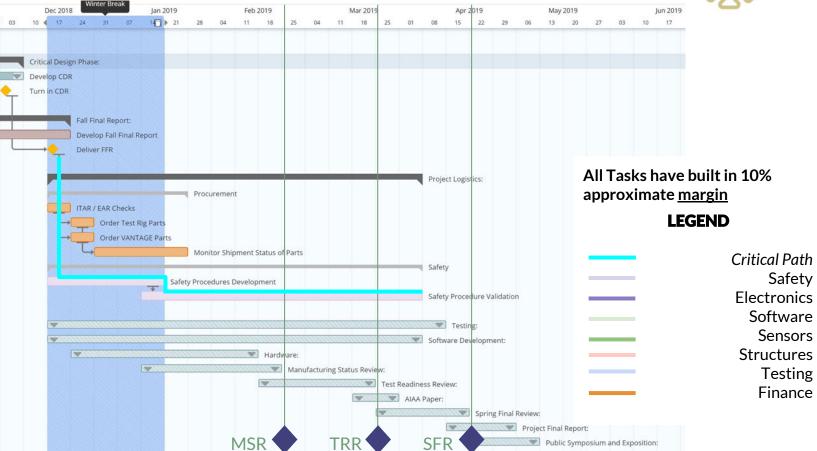


#### Work Breakdown Structure



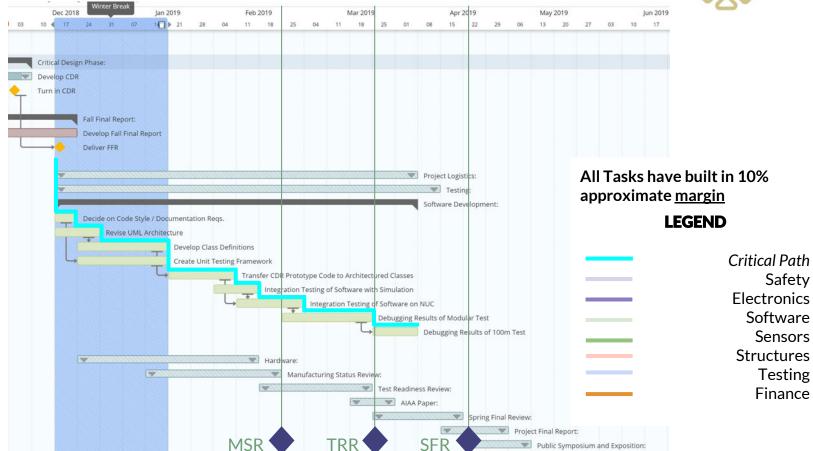





## Work Plan: Overview

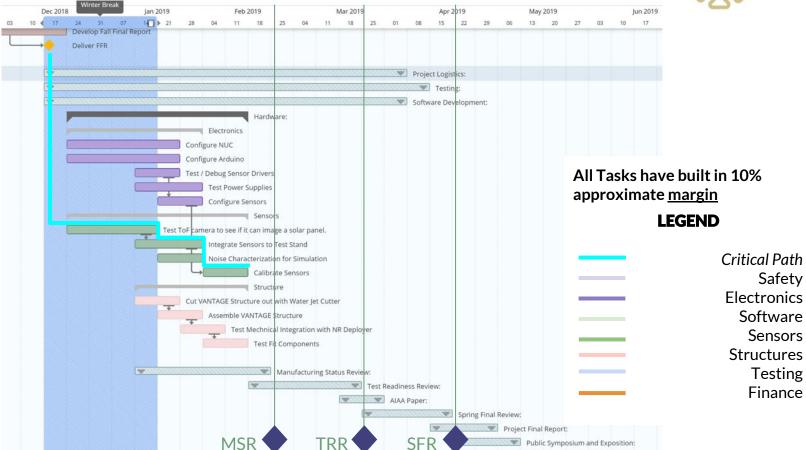


|      | ſ      | Dec 2018 | winte     | r Break    | Jan    | 2019 |        |        | Feb   | 2019   |        |          |         | Mar 201  | 9     |         |         | Apr      | 2019   |          |        | May       | 2019   |         |         |         | Jun 2019 |
|------|--------|----------|-----------|------------|--------|------|--------|--------|-------|--------|--------|----------|---------|----------|-------|---------|---------|----------|--------|----------|--------|-----------|--------|---------|---------|---------|----------|
| 03   | 10 ┥   | 17       | 24        | 31 07      | 14     | ▶ 21 | 28     | 04     | 11    | 18     | 25     | 04       | 11      | 18       | 25    | 01      | 08      | 15       | 22     | 29       | 06     | 13        | 20     | 27      | 03      | 10      | 17       |
|      |        |          |           |            |        |      |        |        |       |        |        |          |         |          |       |         |         |          |        |          |        |           |        |         |         |         |          |
|      |        |          |           |            |        |      |        |        |       |        |        |          |         |          |       |         |         |          |        |          |        |           |        |         |         |         |          |
|      | Critic | al Desig | n Phase:  |            |        |      |        |        |       |        |        |          |         |          |       |         |         |          |        |          |        |           |        |         |         |         |          |
| -    | Deve   | lop CDR  |           |            |        |      |        |        |       |        |        |          |         |          |       |         |         |          |        |          |        |           |        |         |         |         |          |
| •    | Turn   | in CDR   |           |            |        |      |        |        |       |        |        |          |         |          |       |         |         |          |        |          |        |           |        |         |         |         |          |
| 1.10 |        |          |           |            |        |      |        |        |       |        |        |          |         |          |       |         |         |          |        |          |        |           |        |         |         |         |          |
|      | -      |          | Fall Fina | Report:    |        |      |        |        |       |        |        |          |         |          |       |         |         |          |        |          |        |           |        |         |         |         |          |
|      |        |          | Develop   | Fall Final | Report |      |        |        |       |        |        |          |         |          |       |         |         |          |        |          |        |           |        |         |         |         |          |
|      |        | •        | Deliver I | FR         |        |      |        |        |       |        |        |          |         |          |       |         |         |          |        |          |        |           |        |         |         |         |          |
|      |        |          |           |            |        |      |        |        |       |        |        |          |         |          |       |         |         |          |        |          |        |           |        |         |         |         |          |
|      |        |          | <u>mm</u> | anna a     | 111111 | 1000 | 11111  | (1111) | 11111 | 11111  | 11111  | 11111    | 1111    | 11111    | 1000  |         | ] Proje | ect Logi | stics: |          |        |           |        |         |         |         |          |
|      |        | -        | 111111    |            |        |      |        | (1111) | 11111 | 01101  | 11111  |          | 1000    |          |       | 000     |         | Testi    | ng:    |          |        |           |        |         |         |         |          |
|      |        |          |           | 1111111    |        |      |        | 11/11  |       | (1111) | 11111  | 11111    | 0.00    | 01111    | 11111 |         | Softv   | vare De  | velopm | nent:    |        |           |        |         |         |         |          |
|      |        |          |           | uun        |        | 1000 | (1111) | 1111   |       | Hard   | lware: |          |         |          |       |         |         |          |        |          |        |           |        |         |         |         |          |
|      |        |          |           |            |        | 1111 | 11111  | 11111  | 000   | W      | Man    | ufacturi | ng Stat | us Revie | ew:   |         |         |          |        |          |        |           |        |         |         |         |          |
|      |        |          |           |            |        |      |        |        |       |        | (()))  |          | 1111    |          | Test  | Readine | ess Rev | iew:     |        |          |        |           |        |         |         |         |          |
|      |        |          |           |            |        |      |        |        |       |        |        |          |         |          | ×     | AIAA    | Paper:  |          |        |          |        |           |        |         |         |         |          |
|      |        |          |           |            |        |      |        |        |       |        |        |          |         |          | -     | 1111    | 000     | -        | Sprin  | ng Final | Review |           |        |         |         |         |          |
|      |        |          |           |            |        |      |        |        |       |        |        |          |         |          |       |         |         | -        | 100    | -        | Proje  | ect Final | Report | :       |         |         |          |
|      |        |          |           |            |        |      |        |        |       |        |        |          |         |          |       |         |         |          |        | 11111    | 1      | Publi     | c Symp | osium a | and Exp | osition | c.       |









## Work Plan: Software





## Work Plan: Hardware



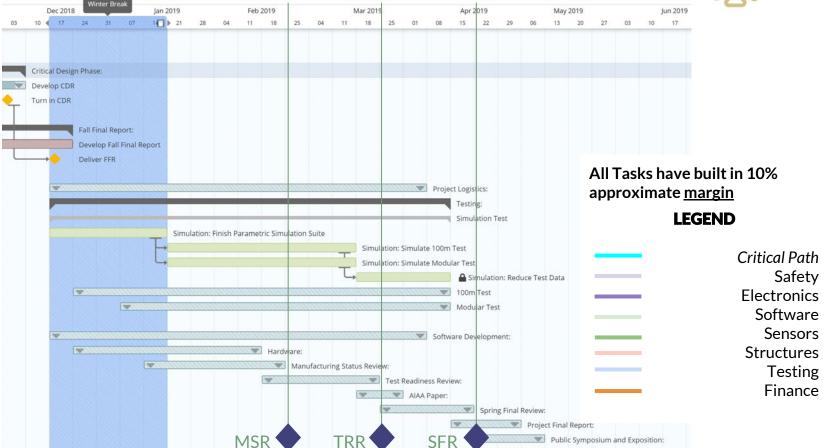




#### **Cost Plan**

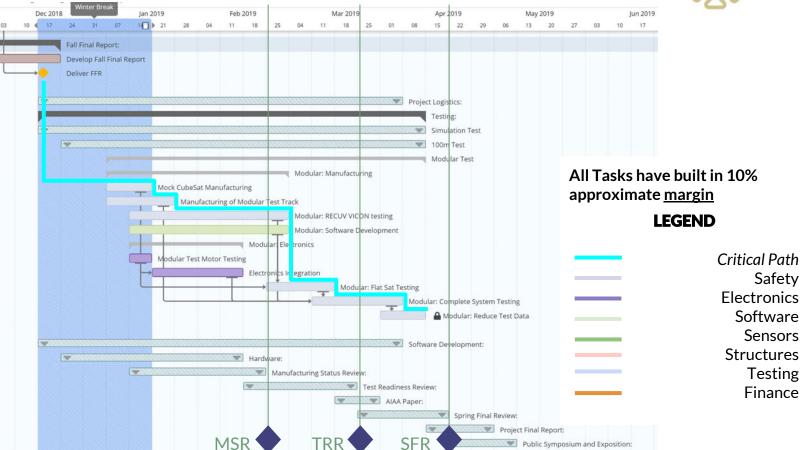


|                | Structures | Sensors    | Software | Electronics | Testing  | Total      |
|----------------|------------|------------|----------|-------------|----------|------------|
| Required Cost: | \$365.86   | \$2,430.00 | \$0.00   | \$916.22    | \$645.85 | \$3,992.07 |
| Margin Cost:   | \$215.86   | \$245.00   | \$0.00   | \$175.00    | \$56.86  | \$692.72   |
| Total Cost:    | \$581.72   | \$2,675.00 | \$0.00   | \$1,091.22  | \$702.71 | \$4,684.79 |


Total Margin 17.35%

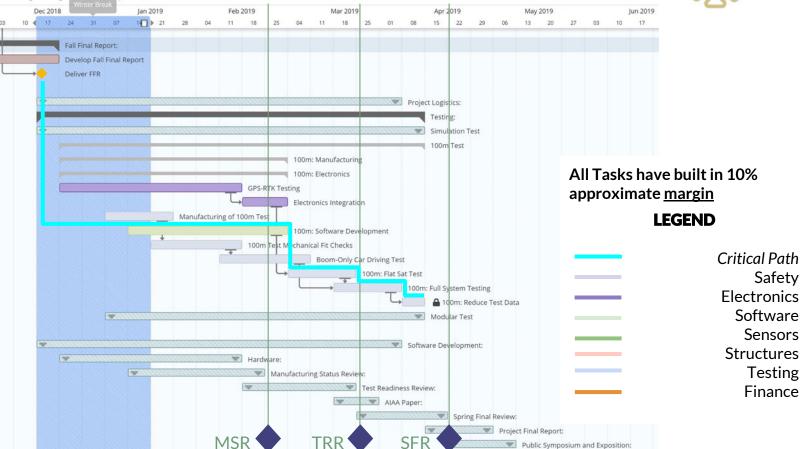





#### **Test Plan: Simulation**






### **Test Plan: Modular Test**





#### **Test Plan: 100m Test**









| Test Rig   | Specialized Testing Equipment /<br>Facilities Needed | Acquisition Status                                                        |
|------------|------------------------------------------------------|---------------------------------------------------------------------------|
| Simulation | C4D and Blensor                                      | Three remote team workstations with full simulation suite installed       |
| Modular    | Nema 34 Stepper Motor/Leadshine<br>Motor Controller  | Borrowed from Trudy                                                       |
| Modular    | RECUV VICON Lab                                      | Written approval from Steve McGuire                                       |
| 100 m      | Boulder Airport Road                                 | Verbal permission from FBO; Pending written approval from airport manager |
| 100 m      | Jerry's Car                                          | Written approval from Jerry                                               |
| 100 m      | C94-M8P ublox GPS RTK                                | Borrowed from Dr. Akos                                                    |



12/03/2018



| Test Rig   | Specialized Testing Equipment /<br>Facilities Needed | Acquisition Status                                                        |
|------------|------------------------------------------------------|---------------------------------------------------------------------------|
| Simulation | C4D and Blensor                                      | Three remote team workstations with full simulation suite installed       |
| Modular    | Nema 34 Stepper Motor/Leadshine<br>Motor Controller  | Borrowed from Trudy                                                       |
| Modular    | RECUV VICON Lab                                      | Written approval from Steve McGuire                                       |
| 100 m      | Boulder Airport Road                                 | Verbal permission from FBO; Pending written approval from airport manager |
| 100 m      | Jerry's Car                                          | Written approval from Jerry                                               |
| 100 m      | C94-M8P ublox GPS RTK                                | Borrowed from Dr. Akos                                                    |





| Test Rig   | Specialized Testing Equipment /<br>Facilities Needed | Acquisition Status                                                        |
|------------|------------------------------------------------------|---------------------------------------------------------------------------|
| Simulation | C4D and Blensor                                      | Three remote team workstations with full simulation suite installed       |
| Modular    | Nema 34 Stepper Motor/Leadshine<br>Motor Controller  | Borrowed from Trudy                                                       |
| Modular    | RECUV VICON Lab                                      | Written approval from Steve McGuire                                       |
| 100 m      | Boulder Airport Road                                 | Verbal permission from FBO; Pending written approval from airport manager |
| 100 m      | Jerry's Car                                          | Written approval from Jerry                                               |
| 100 m      | C94-M8P ublox GPS RTK                                | Borrowed from Dr. Akos                                                    |





| Test Rig   | Specialized Testing Equipment /<br>Facilities Needed | Acquisition Status                                                        |
|------------|------------------------------------------------------|---------------------------------------------------------------------------|
| Simulation | C4D and Blensor                                      | Three remote team workstations with full simulation suite installed       |
| Modular    | Nema 34 Stepper Motor/Leadshine<br>Motor Controller  | Borrowed from Trudy                                                       |
| Modular    | RECUV VICON Lab                                      | Written approval from Steve McGuire                                       |
| 100 m      | Boulder Airport Road                                 | Verbal permission from FBO; Pending written approval from airport manager |
| 100 m      | Jerry's Car                                          | Written approval from Jerry                                               |
| 100 m      | C94-M8P ublox GPS RTK                                | Borrowed from Dr. Akos                                                    |





| Test Rig   | Specialized Testing Equipment /<br>Facilities Needed | Acquisition Status                                                        |
|------------|------------------------------------------------------|---------------------------------------------------------------------------|
| Simulation | C4D and Blensor                                      | Three remote team workstations with full simulation suite installed       |
| Modular    | Nema 34 Stepper Motor/Leadshine<br>Motor Controller  | Borrowed from Trudy                                                       |
| Modular    | RECUV VICON Lab                                      | Written approval from Steve McGuire                                       |
| 100 m      | Boulder Airport Road                                 | Verbal permission from FBO; Pending written approval from airport manager |
| 100 m      | Jerry's Car                                          | Written approval from Jerry                                               |
| 100 m      | C94-M8P ublox GPS RTK                                | Borrowed from Dr. Akos                                                    |





| Test Rig   | Specialized Testing Equipment /<br>Facilities Needed | Acquisition Status                                                        |
|------------|------------------------------------------------------|---------------------------------------------------------------------------|
| Simulation | C4D and Blensor                                      | Three remote team workstations with full simulation suite installed       |
| Modular    | Nema 34 Stepper Motor/Leadshine<br>Motor Controller  | Borrowed from Trudy                                                       |
| Modular    | RECUV VICON Lab                                      | Written approval from Steve McGuire                                       |
| 100 m      | Boulder Airport Road                                 | Verbal permission from FBO; Pending written approval from airport manager |
| 100 m      | Jerry's Car                                          | Written approval from Jerry                                               |
| 100 m      | C94-M8P ublox GPS RTK                                | Borrowed from Dr. Akos                                                    |

# **Questions?**



## **Table of Contents**



| Project<br>Purpose and<br>Objectives     | Design<br>Solution | Critical Project Elements | Design<br>Requirements<br>and their<br>Satisfaction | Project Risks   | Verification<br>and Validation         | Project<br>Planning             |
|------------------------------------------|--------------------|---------------------------|-----------------------------------------------------|-----------------|----------------------------------------|---------------------------------|
| <u>Motivation</u>                        | <u>FBD</u>         | FR Summary                | <u>Sensors</u>                                      | Risk matrices   | <u>Test Systems</u><br><u>Overview</u> | Org Chart                       |
| <u>Project</u><br><u>Objectives</u>      | <u>Overview</u>    | <b>CPEs Overview</b>      | <u>Simulation</u>                                   | <u>Analysis</u> | Req. Validation<br><u>Plan</u>         | <u>Work</u><br><u>Breakdown</u> |
| <u>Multi-year</u><br><u>CONOPS</u>       | <u>Sensors</u>     | CPE Tables                | <u>ToF</u>                                          |                 | <u>Test System</u><br><u>Use</u>       | Work Plan                       |
| <u>This-year</u><br><u>CONOPS</u>        | <u>Software</u>    |                           | <u>Object</u><br>Detection                          |                 | <u>Simulation</u>                      | <u>Cost Plan</u>                |
| <u>Functional</u><br><u>Requirements</u> | <u>Avionics</u>    |                           | Multi-Object                                        |                 | Modular                                | <u>Test Plan</u>                |
|                                          | Structures         |                           | Camera Results                                      |                 | <u>100m</u>                            | <b>Facilities</b>               |
|                                          |                    |                           | Sensor Fusion                                       |                 |                                        |                                 |

# **Backup Slides**



# **Backup Table of Contents**



| Project<br>Management               | Structures          | Testing             | Sensors        | Software           | Simulation     | Electronics          |
|-------------------------------------|---------------------|---------------------|----------------|--------------------|----------------|----------------------|
| Requirements                        | <u>CPE</u>          | <u>Requirements</u> | Camera Only    | Identification     | Cinema 4D      | EL.DR Table          |
| <u>Risk</u>                         | NanoRacks Drawing   | Stop Motion Testing | Error Analysis | <u>Centroiding</u> | <u>Blensor</u> | <u>Communication</u> |
| <u>Planning</u>                     | <u>Extra Info</u>   | <u>100m Test</u>    | Satisfaction   | Occlusion          |                | <u>Power</u>         |
| <u>Master Gantt</u><br><u>Chart</u> | Manufacturing       | Beam Analysis       | DR             | Validation         |                | Power Consumption    |
|                                     | Mass Budget         | 100m Manufacturing  |                | Off-nominal        |                | Low Power Mode       |
|                                     | Fit Check           | <u>GPS RTK</u>      |                | Future Work        |                | Communication-link   |
|                                     | NASA Docs           | 100m Test System    |                | Transform          |                | <u>Storage</u>       |
|                                     | Mechanical Drawings | <u>Modular Test</u> |                | <u>Frame</u>       |                | <u>Recovery</u>      |
|                                     | CAD Screen Captures | Motor               |                | <u>Fusion</u>      |                | <u>Test</u>          |
|                                     |                     |                     |                | <u>Boundary</u>    |                |                      |
|                                     |                     |                     |                | Prediction         |                |                      |
|                                     |                     |                     |                | Deblurring         |                |                      |
|                                     |                     |                     |                | UML Diagram        |                |                      |
|                                     |                     |                     |                | Distortion         |                |                      |
|                                     |                     |                     |                | Unit Vector        |                |                      |
| ,                                   |                     |                     |                | Full Recognition   |                |                      |









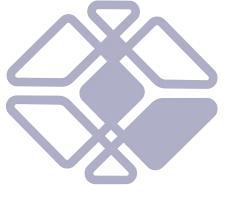
| Req.   | Full Description                                                                                                                                        |  |  |  |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| FR.1   | The system shall support in-focus imaging of at most 6 mock 1U CubeSats at some range between 3 and 100 meters from the VANTAGE payload.                |  |  |  |  |  |
| DR.1.1 | The system shall use a camera to capture images of mock CubeSats.                                                                                       |  |  |  |  |  |
| DR.1.2 | Imaging subsystem shall have a FOV greater than 20°x20°.                                                                                                |  |  |  |  |  |
| DR.1.3 | Imaging subsystem shall produce at least 2 images of each mock CubeSat deployed by the test system.                                                     |  |  |  |  |  |
| DR.1.4 | Imaging subsystem shall produce in-focus images of mock CubeSats.                                                                                       |  |  |  |  |  |
| FR.2   | The system shall receive and interpret commands and the deployment manifest from a PC which simulates the NanoRacks use-case system.                    |  |  |  |  |  |
| DR.2.1 | The electronics subsystem shall interface with the PC which simulates the NanoRacks use-case system via a USB2.0 Port for all data communication needs. |  |  |  |  |  |
| DR.2.2 | Software subsystem shall interpret a deployment manifest file sent from the PC which simulates the NanoRacks use-case system.                           |  |  |  |  |  |





| Req.   | Full Description                                                                                                                                                                                   |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FR.3   | The system shall accept power analogous to that which is available from the NanoRacks use-case system.                                                                                             |
| DR.3.1 | The system shall operate with up to 120 VDC with a ripple voltage of 3Vpp and less than 5 A, which simulates the power available from the NanoRacks use-case system.                               |
| DR.3.2 | The system shall draw less than 520 Watts.                                                                                                                                                         |
| DR.3.3 | The electronics subsystem shall enter a low power mode when not performing any operations (i.e. before a final test has been completed and all post-processing and communications have completed). |
| FR.4   | The system shall integrate mechanically with a structural interface which simulates the NanoRacks use-case system.                                                                                 |
| DR.4.1 | The VANTAGE mechanical structure shall meet the interface features and dimensions called out in the NanoRacks SILO INTERFACE REFERENCES DIMENSIONS drawing number 6EHC7.                           |
| DR.4.2 | The VANTAGE team shall demonstrate mechanical integration of the VANTAGE payload structure to the NanoRacks supplied ground based NRCSD hardware.                                                  |






| Req.   | Full Description                                                                                                                                                                                          |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FR.5   | The system shall uniquely detect and track up to 6 mock 1U-3U CubeSats while they remain between 3 and 100 m of the VANTAGE payload.                                                                      |
| DR.5.1 | Sensor subsystem shall have a sensing FOV of at least 20°x20°.                                                                                                                                            |
| DR.5.2 | The system shall detect mock CubeSats within its FOV 90% of the time over a range of 3 to 100 m if said CubeSats are part of a nominal deployment and not occluded by another CubeSat.                    |
| FR.6   | The system shall estimate the position and velocity vectors of CubeSats between a distance of 3 and 100 m.                                                                                                |
| DR.6.1 | Software subsystem shall produce relative position vector estimates accurate up to 10 cm 1σ to a distance of 10 m, changing to an accuracy of at least a tenth of the range 1σ up to a distance of 100 m. |
| DR.6.2 | Software subsystem shall provide relative velocity vector estimates accurate up to 1 cm/s 1σ to a distance of 10 m, changing to an accuracy of 10 cm/s 1σ up to a distance of 100 m.                      |





| Req.   | Full Description                                                                                                                                                                                                                                                                                              |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FR.7   | The system shall recognize off-nominal deployment cases, which shall include off-nominal relative initial velocities and off-nominal deployment times from the test system.                                                                                                                                   |
| DR.7.1 | Software subsystem shall maintain current time, synchronized with global time UTC, from the PC which simulates the NanoRacks use-case system with an accuracy of at least ±1 ms.                                                                                                                              |
| DR.7.2 | Software subsystem shall recognize if mock CubeSats exit the test system greater than 3 seconds before/after predicted with a tolerance of 0.5 seconds 3σ.                                                                                                                                                    |
| DR.7.3 | Software subsystem shall recognize if initial relative velocities of mock CubeSats are less than 0.5m/s or greater than 2.0m/s with a tolerance of 0.1m/s $3\sigma$ .                                                                                                                                         |
| FR.8   | The system shall report position/velocity vector measurements, off-nominal deployment cases, and raw images from the current mock deployment to the PC which simulates the NanoRacks use-case system before the next NanoRacks CubeSat Deployer (NRCSD) tube deployment would normally occur in the use-case. |
| DR.8.1 | The electronics subsystem shall transmit all relative position and velocity vector estimates and uncertainties, as well as mock CubeSat deployment images back to the PC which simulates the NanoRacks use-case system within 15 minutes of final mock CubeSat deployment.                                    |
| DR.8.2 | The system shall store all images, sensor data, and estimates within an onboard data storage device.                                                                                                                                                                                                          |



# **Risk Backup**









| RISK<br>ID        | IF                                                          | THEN                                                | ORIGINAL<br>SEVERITY | ORIGINAL<br>PROBABILITY | RISK<br>SCORE | MITIGATION STRATEGIES                                                                                                                     | POST-<br>MITIGATIO<br>N SEVERITY | POST-<br>MITIGATION<br>PROBABILITY | POST-<br>MITIGATION<br>RISK SCORE |
|-------------------|-------------------------------------------------------------|-----------------------------------------------------|----------------------|-------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------|-----------------------------------|
| SW<br>CMP 1       | Software team<br>encounters blocks<br>during development.   | Significant man<br>hours invested to<br>fix issues. | 4                    | 4                       | 16            | Well developed models<br>Highly Architectured /<br>diagramming<br>Simulation of sensors to do<br>unit testing                             | 3                                | 2                                  | 6                                 |
| TST<br>MOD<br>2   | Test structure<br>interferes with data<br>measurement.      | Modular test<br>unable to produce<br>usable data.   | 4                    | 4                       | 16            | Use IR black paint to<br>obscure test rig to TOF and<br>optical sensor<br>Use Stop motion and<br>simulation to verify all<br>requirements | 1                                | 3                                  | 3                                 |
| AVI<br>COM<br>M 1 | Arduino fails to<br>remotely turn on<br>NUC                 | NUC is never<br>booted, mission<br>entirely fails   | 4                    | 3                       | 12            | Multiple methods of<br>booting the NUC developed                                                                                          | 3                                | 2                                  | 6                                 |
| STR               | Competition for<br>machine shop time<br>prevents structural | VANTAGE<br>structure is not                         |                      |                         |               | We are using the PHYS<br>water jet for rapid<br>manufacturing at low cost<br>We will begin<br>manufacturing of large test                 |                                  |                                    |                                   |

| RISK<br>ID   | IF                                                                                                 | THEN                                                                          | ORIGINAL<br>SEVERITY | ORIGINAL<br>PROBABILITY | RISK<br>SCORE | MITIGATION<br>STRATEGIES                                                                             | POST-<br>MITIGATIO<br>N SEVERITY | POST-<br>MITIGATION<br>PROBABILITY | POST-<br>MITIGATION<br>RISK SCORE |
|--------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------|-------------------------|---------------|------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------|-----------------------------------|
| SW           | Inexperienced SW<br>team mismatches<br>styles and SW                                               | Significant portions of<br>the SW will not interface<br>properly and will not |                      |                         |               | Lots of diagraming                                                                                   |                                  |                                    |                                   |
| sw           | interfaces.<br>Improper planning<br>causes the SW to be<br>mismatched to the<br>real requirements. | work.<br>Code unable to function<br>according to VANTAGE<br>needs.            | 5                    | 2                       |               | and meeting often<br>Well developed<br>models, use of<br>representative<br>simulation<br>environment | 3                                |                                    | 3                                 |
|              | Hardware<br>unavailable for code                                                                   | Code cannot be tested.                                                        | 5                    | 2                       |               | Have backup<br>hardware (Trudy's<br>NUC?)                                                            | 1                                | 1                                  | 1                                 |
|              | Sensors are<br>missaligned                                                                         | Error grows to<br>potentially unacceptable<br>levels                          | 3                    | 3                       | 9             | Use of high accuracy<br>mounting<br>constructed by CNC<br>to mount sensors                           | 3                                | 1                                  | 3                                 |
|              | Drivers for Sensors<br>do not work                                                                 | We will be unable to get<br>sensor data                                       | 4                    | 2                       | 8             | Perform unit testing<br>with the drivers<br>Test sooner rather<br>than later                         | 3                                | 2                                  | 6                                 |
| SENS<br>SN 1 | A single sensor fails                                                                              | Error is too large to<br>meet requirements                                    | 4                    | 2                       | 8             | Simulation as offramp.                                                                               | 2                                | 2                                  | 4                                 |
|              | Sensors damaged<br>during testing                                                                  | Funding will have to be procured to replace said sensor.                      | 4                    | 2                       | 8             | Simulation as offramp.                                                                               | 2                                | 2                                  | 4                                 |



# **All Risks**



| IF                                                        | THEN                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PROBABI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MITIGATION STRATEGIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | POST-<br>MITIGATIO<br>N SEVERITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | POST-<br>MITIGATION<br>PROBABILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | POST-<br>MITIGATION<br>RISK SCORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Representative<br>CubeSat mock ups<br>are IR absorbative. | TOF cannot measure mock CubeSats.                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Use black paint to obscure<br>test rig to TOF and optical<br>sensor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Step Motor control<br>failure.                            | Step motor does not run<br>or is uncontrollable,<br>which means we cannot<br>get truth data or reliable<br>movement from our test<br>rig.                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Use RECOV system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Simulation<br>improperly models<br>real sensors.          | Algorithms redeveloped<br>to match real life.                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fast track real data<br>acquisition<br>Use accurate simulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Car Drives into the<br>Hayden Lake                        | Jerry has to get a new<br>car                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Make sure Jerry gets his<br>optical prescription renewed<br>Drain the Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Modular test<br>structure is warped<br>by continued usage | along the track - we get<br>highly non-linear<br>velocity of our cubesat                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Having test offramps (stop<br>motion)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                           | Representative<br>CubeSat mock ups<br>are IR absorbative.<br>Step Motor control<br>failure.<br>Simulation<br>improperly models<br>real sensors.<br>Car Drives into the<br>Hayden Lake<br>Modular test | Representative<br>CubeSat mock ups<br>are IR absorbative.TOF cannot measure<br>mock CubeSats.Step Motor does not run<br>or is uncontrollable,<br>which means we cannot<br>get truth data or reliable<br>movement from our test<br>rig.Simulation<br>improperly models<br>real sensors.Algorithms redeveloped<br>to match real life.Car Drives into the<br>Hayden LakeJerry has to get a new<br>carModular test<br>structure is warpedThe motor might have<br>highly non-linear<br>velocity of our cubesat | IFTHENSEVERITYRepresentative<br>CubeSat mock ups<br>are IR absorbative.TOF cannot measure<br>mock CubeSats.4Step motor does not run<br>or is uncontrollable,<br>which means we cannot<br>get truth data or reliable<br>movement from our test<br>rig.4Simulation<br>improperly models<br>real sensors.Algorithms redeveloped<br>to match real life.4Car Drives into the<br>Hayden LakeJerry has to get a new<br>car2Modular test<br>structure is warpedThe motor might have<br>difficulty pulling the cart<br>along the track - we get<br>highly non-linear<br>velocity of our cubesatSEVERITY | IFTHENORIGINAL<br>SEVERITYPROBABI<br>LITYRepresentative<br>CubeSat mock ups<br>are IR absorbative.TOF cannot measure<br>mock CubeSats.Image: CubeSatsImage: CubeSatsStep motor does not run<br>or is uncontrollable,<br>which means we cannot<br>get truth data or reliable<br>movement from our test<br>rig.Image: CubeSatsImage: CubeSatsStep Motor control<br>failure.Step motor does not run<br>or is uncontrollable,<br>which means we cannot<br>get truth data or reliable<br>movement from our test<br>rig.Image: CubeSatsImage: CubeSatsSimulation<br>improperly models<br>real sensors.Algorithms redeveloped<br> | IFTHENSEVERITYLITYRERepresentative<br>CubeSat mock ups<br>are IR absorbative.TOF cannot measure<br>mock CubeSats.Image: CubeSate in the section of the sect | IFTHENORIGINAL<br>SEVERITYPROBABIL<br>ILTYRCO<br>REMITIGATION STRATEGIESRepresentative<br>CubeSat mock ups<br>are IR absorbative.TOF cannot measure<br>mock CubeSats.Image: SeverityImage: SeverityIm | IFTHENORIGINAL<br>SEVERITYPROBABIL<br>LITYSCO<br>REMITIGATION STRATEGIESMITIGATION<br>N SEVERITYRepresentative<br>CubeSat mock ups<br>are IR absorbative.TOF cannot measure<br>mock CubeSats.Image: Comparison of the series of t | IFTHENORIGINAL<br>EVERITYPROBABIL<br>LITYSCO<br>REMITIGATION STRATEGIESMITIGATION<br>N SEVERITYMITIGATION<br>PROBABILITYRepresentative<br>CubeSat mock ups<br>are IR absorbative.TOF cannot measure<br>mock CubeSats.Image: Comparison of the text rig to TOF and optical<br>sensorUse black paint to obscure<br>test rig to TOF and optical<br>sensorImage: Comparison of text rig to TOF and optical<br>sensor |

| RISK<br>ID        | IF                                                                                     | THEN                                                                                                      | ORIGINAL<br>SEVERITY |   | RISK<br>SCORE | MITIGATION<br>STRATEGIES                                                                                     | POST-<br>MITIGATIO<br>N SEVERITY | POST-<br>MITIGATION<br>PROBABILITY | POST-<br>MITIGATION<br>RISK SCORE |
|-------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------|---|---------------|--------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------|-----------------------------------|
| TST<br>100M<br>1  | GPS RTK system<br>fails.                                                               | We do not get truth data<br>for our 100m test.                                                            | 3                    | 2 | 6             | Having test offramps<br>(stop motion)<br>100m test not necessary<br>for explicit requirement<br>satisfaction | 2                                | 2                                  | 4                                 |
| AVI<br>DEV 2      | Drivers for Sensors<br>are difficult to get<br>working properly                        | We will spend a lot of<br>time trying to get the<br>drivers working<br>We could slip testing<br>schedules | 2                    | 3 | 6             | Perform unit testing<br>with the drivers<br>Test sooner rather than<br>later                                 | 1                                | 3                                  | 3                                 |
| SW<br>CMP 2       | Testing conditions<br>create issues that<br>need to be resolved<br>within the software | Significant manhours<br>invested to fix issue.                                                            | 3                    | 2 | 6             | Begin testing sooner<br>rather than later.                                                                   | 1                                | 2                                  | 2                                 |
| TST<br>MOD<br>3   | Truth data system<br>fails.                                                            | We do not get truth data<br>for our modular test.                                                         | 3                    | 2 | 6             | Use RECOV system                                                                                             | 1                                | 2                                  | 2                                 |
| AVI<br>COM<br>M 2 | Arduino fails to<br>communicate with<br>NUC                                            | Launch data is never<br>transmitted, vantage<br>fails its reporting<br>requirements                       | 3                    | 2 | 6             | Remove Aurduino,<br>replace boot method,<br>communcate directly<br>with NanoRacks<br>simulated deployer.     | 1                                | 1                                  | 1                                 |
| SENS<br>SN 2      | Both sensors fail                                                                      | We get no data                                                                                            | 5                    | 1 | 5             | Simulation as offramp.                                                                                       | 3                                | 1                                  | 3                                 |



**All Risks** 



| RISK<br>ID  | IF                                                     | THEN                                                              | ORIGINAL | ORIGINAL<br>PROBABI<br>LITY | RISK<br>SCO<br>RE | MITIGATION STRATEGIES                                                            | POST-MITIG<br>ATION<br>SEVERITY | POST-MITIGA<br>TION<br>PROBABILITY | POST-MITIG<br>ATION RISK<br>SCORE |
|-------------|--------------------------------------------------------|-------------------------------------------------------------------|----------|-----------------------------|-------------------|----------------------------------------------------------------------------------|---------------------------------|------------------------------------|-----------------------------------|
| стр         |                                                        | VANTAGE structure is not in a deliverable                         |          |                             |                   |                                                                                  |                                 |                                    |                                   |
| STR<br>HW 2 | VANTAGE structure<br>is damaged.                       | state.                                                            | 5        | 1                           | 5                 | Use PHYS shops for rapid manufacturing at low cost.                              | 2                               | 1                                  | 2                                 |
|             | NanoRacks interface constraints change.                | VANTAGE structure<br>will not be compliant<br>with NanoRacks ICD. | 4        | 1                           | 4                 | Use PHYS shops for rapid manufacturing at low cost.                              | 2                               | 1                                  | 2                                 |
| MOD         | Modular test<br>structure damaged<br>beyond usability. | We do not get any<br>further truth data for<br>our modular test.  | 4        | 1                           | 4                 | Having test offramps (stop<br>motion)                                            | 2                               | 1                                  | 2                                 |
| SW<br>CMP 3 | NUC is too slow.                                       | Code refactored to lower complexity.                              | 4        | 1                           |                   | Add a second NUC (there is room)                                                 | 1                               | 1                                  | 1                                 |
| A. //       |                                                        | Power is lost in entire<br>system<br>Could Damage TOF<br>sensor   |          |                             |                   | Isolation circuitry<br>Use of lower setting on power<br>supply/multiple supplies |                                 |                                    |                                   |
|             | 120VDC - 24VDC<br>Power Conversion<br>Fails            | Potentially could<br>damage the other two<br>DCDC converters      | 3        | 1                           | 3                 | Extensive Bench testing with<br>variable load meter<br>Plug in real power last   | 2                               | 1                                  | 2                                 |







| RISK<br>ID       | IF                                         | THEN                                                                                   | ORIGINAL<br>SEVERITY | ORIGINAL<br>PROBABI<br>LITY | RISK<br>SCO<br>RE | MITIGATION STRATEGIES                                                                                                                                              | POST-MITIG<br>ATION<br>SEVERITY | POST-MITIGA<br>TION<br>PROBABILITY | POST-MITIG<br>ATION RISK<br>SCORE |
|------------------|--------------------------------------------|----------------------------------------------------------------------------------------|----------------------|-----------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------|-----------------------------------|
| AVI<br>PWR<br>2  | 24VDC - 19VDC<br>Power Conversion<br>Fails | Power to NUC is lost<br>Could Damage the<br>NUC                                        | 3                    | 1                           | 3                 | Isolation circuitry<br>Use of lower setting on power<br>supply/multiple supplies<br>Extensive Bench testing with<br>variable load meter<br>Plug in real power last | 2                               | 1                                  | 2                                 |
| AVI<br>PWR<br>3  | 24VDC - 9VDC<br>Power Conversion<br>Fails  | Power to Arduino<br>Mega is Lost<br>Damage to Arduino<br>Mega or its Ethernet<br>Shell | 3                    | 1                           | 3                 | Isolation circuitry<br>Use of lower setting on power<br>supply/multiple supplies<br>Extensive Bench testing with<br>variable load meter<br>Plug in real power last | 2                               | 1                                  | 2                                 |
| TST<br>100M<br>2 | Boom mounting<br>deflects too much.        | 100m test data<br>rendered useless.                                                    | 3                    | 1                           | 3                 | Having test offramps (stop<br>motion)<br>100m test not necessary for<br>explicit requirement<br>satisfaction                                                       | 2                               | 1                                  | 2                                 |



# **Project Plan Backup**





#### **Budget Backup - Structures**



| Subsystems:                                                                  | Structures | Sensors      | Software  | Electronics      | Testing    | Total        | Margin Percent    |              |           |             |             |            |
|------------------------------------------------------------------------------|------------|--------------|-----------|------------------|------------|--------------|-------------------|--------------|-----------|-------------|-------------|------------|
| Required Cost:                                                               | \$365.86   | 6 \$2,430.00 | \$0.00    | \$916.22         | 2 \$645.85 | 5 \$3,992.07 | (                 | Total Margin |           |             |             |            |
| Margin Cost:                                                                 | \$215.86   | 6 \$245.00   | \$0.00    | \$175.00         | 0 \$56.86  | § \$692.72   | 17.35240114       | 4 17.35%     | 0         |             |             |            |
| Total Cost:                                                                  | \$581.72   | 2 \$2,675.00 | \$0.00    | \$1,091.22       | 2 \$702.71 | 1 \$4,684.79 | i                 |              |           |             |             |            |
| Item Description                                                             | Req Qty    | Margin Qty   | Total Qty | Quantity per Pkg | Req Pkg    | Margin Pkg   | Req Qty Purchased | Cost per Pkg | Req Cost  | Margin Cost | Extra Notes | Link       |
| Part 002: 6061 Aluminum 1/4" x 6" x 12"                                      | 1          | 1 2          | 2 3       | 1                | 1 1        | 1 2          | . 1               | 1 \$14.89    | 9 \$14.89 | \$29.78     | 3           | https://ww |
| Part 003: 6061 Aluminum 1/4" x 6" x 12"                                      | 1          | 1 0          | 1         | 1                | 1          | 1 0          | 1 1               | 1 \$14.89    | 9 \$14.89 | 9 \$0.00    | )           | https://ww |
| Part 005: 6061 Aluminum 1/4" x 6" x 6"                                       | 1          | 1 2          | 3         | 1                | 1          | 1 2          | . 1               | 1 \$8.04     | 4 \$8.04  | \$16.08     | 3           | https://ww |
| Part 006: 6061 Aluminum 1/4" x 6" x 6"                                       | 1          | 1 0          | 1         | 1                | / 1        | 1 0          | 1                 | 1 \$8.04     | 4 \$8.04  | \$0.00      | )           | https://ww |
| Part 007: 6061 Aluminum 1/4" x 8" x 36"                                      | 1          | 1 0          | 1         | 1                | 1          | 1 0          | 1 1               | 1 \$51.68    | 8 \$51.68 | 3 \$0.00    | )           | https://ww |
| Part 008: 6061 Aluminum 1/4" x 8" x 36"                                      | 1          | 1 0          | 1         | 1                | 1          | 1 0          | 1 1               | 1 \$51.68    | 8 \$51.68 | 3 \$0.00    | )           | https://ww |
| Part 009: 6061 Aluminum 1/4" x 6" x 12"                                      | 1          | 1 0          | 1         | 1                | 1 1        | 1 0          | 1                 | 1 \$14.89    | 9 \$14.89 | \$0.00      | )           | https://ww |
| Part 010: 6061 Aluminum 1/2" x 1.25" x 6"                                    | 1          | 1 0          | 1         | 1                | 1 1        | 1 0          | 1                 | 1 \$3.95     | 5 \$3.95  | 5 \$0.00    | )           | https://ww |
| Part 011: 6061 Aluminum 3/4" x 3/4" x 6"                                     | 1          | 1 0          | 1         | 1                | 1 1        | 1 0          | 1                 | 1 \$3.92     | 2 \$3.92  | 2 \$0.00    | )           | https://ww |
| 18-8 Stainless Steel Socket Head Screw<br>4-40 Thread Size, 5/8" Long        | 50         | 0 20         | ) 70      | 0 100            | J 1        | 1 0          | ) 100             | 53 \$4.53    | 3 \$4.53  | 3 \$0.00    | )           | https://ww |
| 18-8 Stainless Steel Socket Head Screw<br>4-40 Thread Size, 3/8" Long        | 50         | 0 20         | ) 70      | 0 100            | J 1        | 1 0          | ) 100             | \$4.10       | 0 \$4.10  | \$0.00      | )           | https://ww |
| 18-8 Stainless Steel Socket Head Screw<br>M3 x 0.5 mm Thread, 16 mm Long     | 50         | 0 20         | ) 70      | 0 100            | 5 1        | 1 0          | ) 100             | ) \$5.58     | 8 \$5.58  | 3 \$0.00    | )           | https://ww |
| 18-8 Stainless Steel Socket Head Screw<br>M5 x 0.8 mm Thread, 90 mm Long     | 50         | 0 20         | 0 70      | 0 100            | 5 1        | 1 0          | ) 100             | \$6.87       | 7 \$6.87  | 7 \$0.00    | )           | https://ww |
| Zinc-Plated Steel Hex Nut<br>Medium-Strength, Class 8, M5 x 0.8 mm<br>Thread | 50         | 0 20         | ) 70      | 0 100            | 0 1        | 1 0          | ) 100             | ) \$2.80     | 0 \$2.80  | 0 \$0.00    | )           | https://ww |
| Machining time (Phys shop)                                                   | 2          | 2 2          | 2 4       | 4 1              | 1 2        | 2 2          | 2 2               | 2 \$85.00    | \$170.00  | \$170.00    | )           |            |



# Budget Backup - Sensors / Electronics VANTAGE

| Subsystems:                            | Structures | Sensors    | Software  | Electronics      | Testing  | Total      | Margin Percent    |              |            |             |                               |              |
|----------------------------------------|------------|------------|-----------|------------------|----------|------------|-------------------|--------------|------------|-------------|-------------------------------|--------------|
| Required Cost:                         | \$365.86   | \$2,430.00 | \$0.00    | \$916.22         | \$645.85 | \$3,992.07 |                   | Total Margin |            |             |                               |              |
| Margin Cost:                           | \$215.86   | \$245.00   | \$0.00    | \$175.00         | \$56.86  | \$692.72   | 17.35240114       | 17.35%       |            |             |                               |              |
| Total Cost:                            | \$581.72   | \$2,675.00 | \$0.00    | \$1,091.22       | \$702.71 | \$4,684.79 |                   |              |            |             |                               |              |
| Item Description                       | Req Qty    | Margin Qty | Total Qty | Quantity per Pkg | Req Pkg  | Margin Pkg | Req Qty Purchased | Cost per Pkg | Req Cost   | Margin Cost | Extra Notes                   | Link         |
| O3D313 IR ToF Camera                   | 1          | 0          | 1         | 1                | 1        | 0          | 1                 | \$1,460.00   | \$1,460.00 | \$0.00      |                               | https://ww   |
| EO-6412M Monochrome USB 3.0 Camera     | 1          | 0          | 1         | 1                | 1        | 0          | 1                 | \$725.00     | \$725.00   | \$0.00      |                               | https://ww   |
| 35mm MegaPixel Fixed Focal Length Lens | 1          | 1          | 2         | 1                | 1        | 1          | 1                 | \$245.00     | \$245.00   | \$245.00    | May change to 16mm<br>version | https://ww   |
| MATLAB License                         | 1          | 0          | 1         | 1                | 1        | 0          | 1                 | \$0.00       | \$0.00     | \$0.00      |                               | https://oit. |
| Various external packages              | 1          | 0          | 1         | 1                | 1        | 0          | 1                 | \$0.00       | \$0.00     | \$0.00      |                               | https://oit. |
| INTEL® NUC KIT NUC8I7BEH               | 1          | 0          | 1         | 1                | 1        | 0          | 1                 | \$484.30     | \$484.30   | \$0.00      |                               | https://ww   |
| 500GB Solid State Drive                | 1          | 0          | 1         | 1                | 1        | 0          | 1                 | \$86.99      | \$86.99    | \$0.00      |                               | https://ww   |
| 16 GB RAM                              | 1          | 0          | 1         | 1                | 1        | 0          | 1                 | \$99.99      | \$99.99    | \$0.00      |                               | https://ww   |
| DC DC CONVERTER 3.3-24V 250W           | 2          | 1          | 3         | 1                | 2        | 1          | 2                 | \$35.00      | \$70.00    | \$35.00     |                               | https://ww   |
| DC/DC CONVERTER 24V 120W               | 1          | 1          | 2         | 1                | 1        | 1          | 1                 | \$63.00      | \$63.00    | \$63.00     |                               | https://ww   |
| Arduino Ethernet Shield 2              | 1          | 0          | 1         | 1                | 1        | 0          | 1                 | \$44.95      | \$44.95    | \$0.00      |                               | https://ww   |
| USB 2.0 to Ethernet / USB to RJ45      | 1          | 0          | 1         | 1                | 1        | 0          | 1                 | \$9.99       | \$9.99     | \$0.00      |                               | https://ww   |
| Cat5E straight-through patch cable     | 1          | 0          | 1         | 1                | 1        | 0          | 1                 | \$18.50      | \$18.50    | \$0.00      |                               | https://ww   |
| Arduino Mega 2560                      | 1          | 2          | 3         | 1                | 1        | 2          | 1                 | \$38.50      | \$38.50    | \$77.00     |                               | https://ww   |



#### **Budget Backup - Testing**



| Subsystems:                                                                               | Structures | Sensors    | Software  | Electronics      | Testing  | Total      | Margin Percent    |              |          |             |                                 |            |
|-------------------------------------------------------------------------------------------|------------|------------|-----------|------------------|----------|------------|-------------------|--------------|----------|-------------|---------------------------------|------------|
| Required Cost:                                                                            | \$365.86   | \$2,430.00 | \$0.00    | \$916.22         | \$645.85 | \$3,992.07 |                   | Total Margin |          |             |                                 |            |
| Margin Cost:                                                                              | \$215.86   | \$245.00   | \$0.00    | \$175.00         | \$56.86  | \$692.72   | 17.35240114       | 17.35%       |          |             |                                 |            |
| Total Cost:                                                                               | \$581.72   | \$2,675.00 | \$0.00    | \$1,091.22       | \$702.71 | \$4,684.79 |                   |              |          |             |                                 |            |
| Item Description                                                                          | Req Qty    | Margin Qty | Total Qty | Quantity per Pkg | Req Pkg  | Margin Pkg | Req Qty Purchased | Cost per Pkg | Req Cost | Margin Cost | Extra Notes                     | Link       |
| Sheathing Plywood 15/32in x 4ft x 8ft                                                     | 1          | 0          | 1         | 1                | 1        | 0          | 1                 | \$20.15      | \$20.15  | \$0.00      |                                 | https://ww |
| Underlayment Plywood 7/32in x 4ft x 8ft                                                   | 1          | 0          | 1         | 1                | 1        | 0          | 1                 | \$15.98      | \$15.98  | \$0.00      |                                 | https://ww |
| Black spray paint                                                                         | 2          | 2          | 4         | 1                | 2        | 2          | 2                 | \$3.98       | \$7.96   | \$7.96      |                                 | https://ww |
| 1-3/8 in. White Metal Closet Pole Sockets                                                 | 32         | 0          | 32        | 2                | 16       | 0          | 32                | \$2.48       | \$39.68  | \$0.00      |                                 | https://ww |
| 1-3/8 in. x 72 in. Hardwood Round Dowel                                                   | 3          | 0          | 3         | 1                | 3        | 0          | 3                 | \$10.49      | \$31.47  | \$0.00      |                                 | https://ww |
| Hudson Bearings 1" Carbon Steel                                                           | 4          | 2          | 6         | 1                | 4        | 2          | 4                 | \$3.16       | \$12.64  | \$6.32      |                                 | https://ww |
| 3 in. x 10 ft. PVC Schedule 40 DWV<br>Plain-End Pipe                                      | 8          | 0          | 8         | 1                | 8        | 0          | 8                 | \$17.41      | \$139.28 | \$0.00      |                                 | https://ww |
| 3 in. PVC DWV 90 Degree Hub x Hub Elbow                                                   | 4          | 0          | 4         | 1                | 4        | 0          | 4                 | \$2.66       | \$10.64  | \$0.00      |                                 | https://ww |
| Magicmend Schedule 40 3 in. Slip PVC<br>Insider Connector                                 | 6          | 0          | 6         | 1                | 6        | 0          | 6                 | \$5.99       | \$35.94  | \$0.00      |                                 | https://ww |
| 1/4 in. x 50 ft. White Diamond Braided Nylon Rope                                         | 1          | 0          | 1         | 1                | 1        | 0          | 1                 | \$8.71       | \$8.71   | \$0.00      |                                 | https://ww |
| 1-1/4 in. Construction Screw                                                              | 40         | 50         | 90        | 184              | 1        | 0          | 184               | \$7.98       | \$7.98   | \$0.00      | Quantity reqd is<br>approximate | https://ww |
| 6000 Lumen Flashlight                                                                     | 1          | 0          | 1         | 1                | 1        | 0          | 1                 | \$29.69      | \$29.69  | \$0.00      |                                 | https://ww |
| Conduit Clamp, Steel, Zinc Plated                                                         | 8          | 0          | 8         | 1                | 8        | 0          | 8                 | \$0.83       | \$6.64   | \$0.00      |                                 | https://ww |
| Roof Rack Bars For BMW 5 Series Touring 2010-2017                                         | 1          | 0          | 1         | 1                | 1        | 0          | 1                 | \$139.95     | \$139.95 | \$0.00      |                                 | https://ww |
| 3/4 in. x 10 ft. Electric Metallic Tube (EMT)<br>Conduit                                  | 12         | 2          | 14        | 1                | 12       | 2          | 12                | \$6.20       | \$74.40  | \$12.40     |                                 | https://ww |
| 1/8 in. Dia. x 14 in. Long Fleetweld 37-RSP<br>E6013 Stick Welding Electrodes (5 lb. Box) | 3          | 2          | 5         | 1                | 3        | 2          | 3                 | \$12.97      | \$38.91  | \$25.94     |                                 | https://ww |
| Steel Pan Head Phillips Screws<br>1/4"-20 Thread, 2" Long                                 | 20         | 20         | 40        | 50               | 1        | 0          | 50                | \$10.65      | \$10.65  | \$0.00      |                                 | https://ww |
| Zinc-Plated Steel Wing Nut<br>1/4"-20 Thread Size, 31/64" Base Diameter                   | 20         | 20         | 40        | 100              | 1        | 0          | 100               | \$10.94      | \$10.94  | \$0.00      |                                 | https://ww |
| 1 in. x 48 in. Wood Round Dowel                                                           | 1          | 1          | 2         | 1                | 1        | 1          | 1                 | \$4.24       | \$4.24   | \$4.24      |                                 | https://ww |



#### Master Gantt Chart







# **Structures Backup**

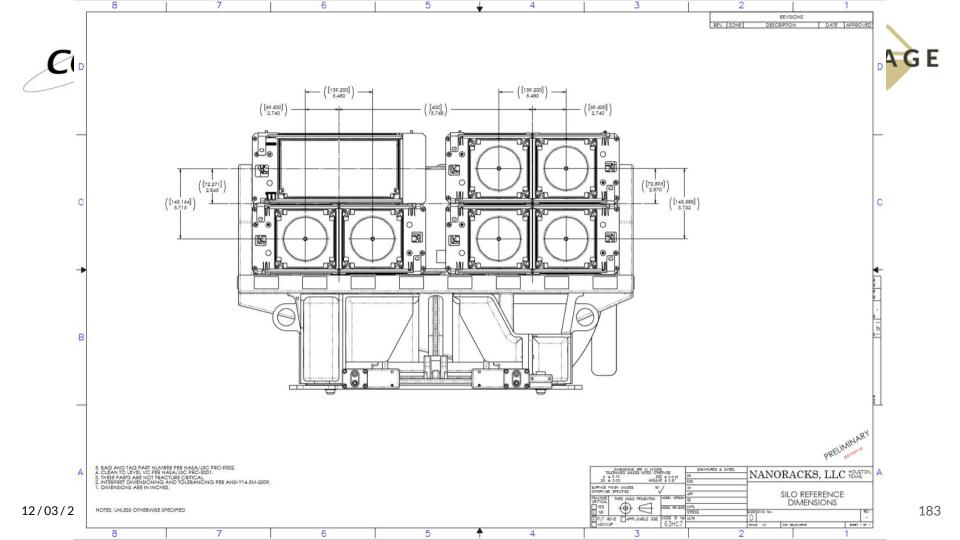


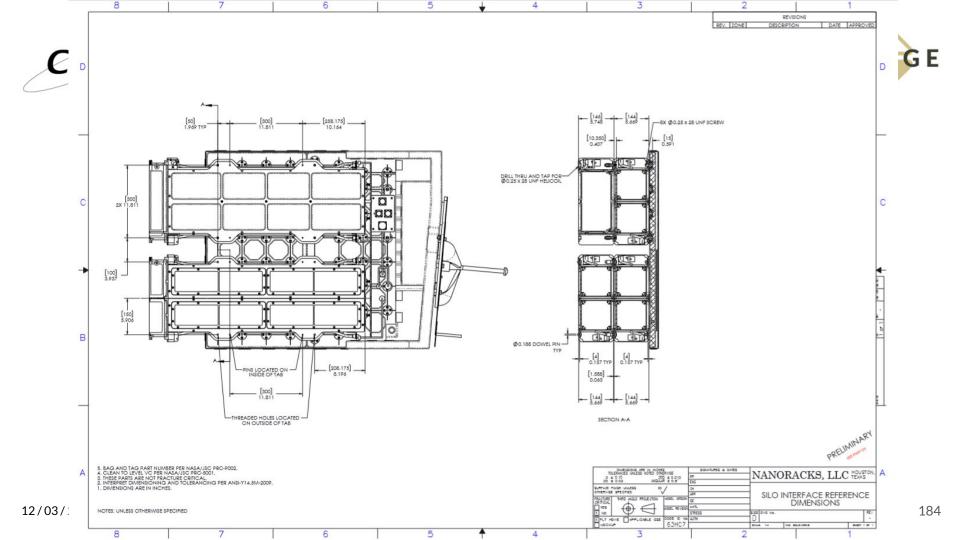


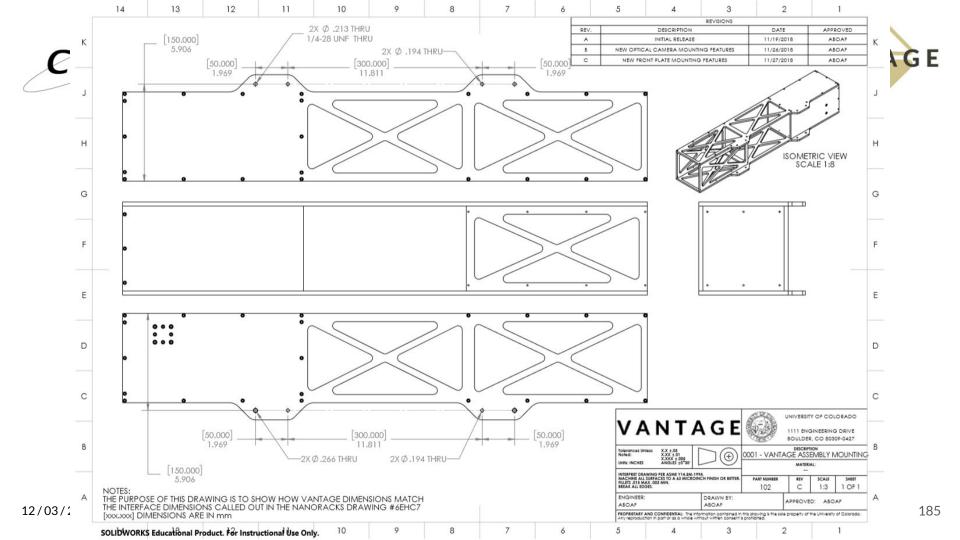
#### Structures Critical Project Elements



| Subsystem CPEs                   | Governing<br>Requirement(s) | Parent Project Objective(s)  | CPE Justification                                                                                                                                                                                |
|----------------------------------|-----------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NanoRacks Hardware<br>Compliance | DR.4.1, DR.4.2              | FR.4: Mechanical Integration | The planned use case is around the<br>NanoRacks ISS deployer system since<br>a single VANTAGE system could be<br>used for many launches and would<br>always be available for use from the<br>ISS |


| Req.       | Description                                                                                                                                                              |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DR.4.1-STR | The VANTAGE mechanical structure shall meet the interface features and dimensions called out in the NanoRacks SILO INTERFACE REFERENCES DIMENSIONS drawing number 6EHC7. |
| DR.4.2-STR | The VANTAGE team shall demonstrate mechanical integration of the VANTAGE payload structure to the NanoRacks supplied ground based NRCSD hardware.                        |





#### **Structures CPE Satisfaction**



- Per the PDD and requirements:
  - VANTAGE mechanical design currently matches the 6EHC7 drawing called out in the requirements (Level 1)
  - Potential internal components are identified which fit within the VANTAGE mechanical structure (Level 2)
    - A low fidelity mockup of VANTAGE already demonstrates this
- Design load case:
  - Handling loads only Rigid aluminum structure < 6kg
  - System is stationary during testing
  - Flight loads defined by SSP-57000 and SSP-57003 considered out of scope
- Internal component layout:
  - Sufficient space to house all chosen components, wire harnessing, and mounting features
  - Sensor specifications identified for future choosing of space ready hardware
- Manufacturing
  - RapidCut Quote: \$1880 & 2 weeks
  - In house: ~\$500 & 4 weeks
- Requirements satisfaction:
  - $\circ \qquad \mathsf{DR.4.1-STR}-\mathsf{YES}, the designed mechanical interface is dictated by the NanoRacks \, \mathsf{6ECH7} \, drawing$
  - DR.4.2-STR YES, knowing the machining capabilities this should be satisfied trivially
  - A fit check test plan has been developed for implementation in the Spring once the mechanical structure has been built

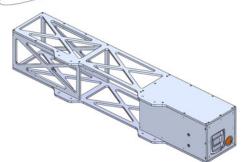








#### **Extra Structure Info**




- Mass relief features included internal to component housing
  - Estimated mass ~8.2kg
- #4-40 fasteners for mounting <sup>1</sup>/<sub>4</sub>" thick Aluminum panels
  - Staked and torqued
- The back end exists because
  - NanoRacks wants us to emulate the volume of the NRCSD
  - NanoRacks doesn't have to change their packaging to go up to the ISS
  - On-orbit MLI blanket is designed to fit with the NRCSD volume
- Rear truss structure
  - Provides required mounting interface with the NanoRacks deployer silo
  - Provides structure and replicates silo interface for MLI blanket





#### VANTAGE's Travel to the ISS



1. VANTAGE is assembled, tested, and verified on the ground

o



2. VANTAGE is packaged by NanoRacks as ISS bound cargo



5. VANTAGE is used in the field



any qualified launch vehicle

4. Astronauts unpack VANTAGE and assemble the NanoRacks <sup>12/03/2018</sup> deployer



### **Structures Manufacturing Plan**



- 3 Team members with Mill/CNC/SolidCAM experience no shop training necessary
  - Additional interest from other team members to develop these skills
- Manufacturing review completed with Matt
  - Machines have been verified capable with regards to size of VANTAGE mechanical structure
  - All design based on standard imperial system tool with exception of necessary sensor mounting features
- Scheduling
  - Lighter class schedules expected in Spring semester,(during shop hours)
  - Anticipate sufficient schedule overlap between shop qualified members
  - IMS plans for 14 days of manufacturing with 14 days of margin
    - This is 100% greater than the estimated time
- No tolerances tighter than 0.005"
- Material easily sourced form McMaster
  - Budget funds available for additional material if mistake occurs
- Detailed breakdown by part on next slide



#### Manufacturing Part Breakdown VANTAGE



| Part        | CNC/SolidCAM? | Tools                                                          | Est. Mill<br>Hours | Est. Prep<br>Hours | QTY |
|-------------|---------------|----------------------------------------------------------------|--------------------|--------------------|-----|
| 002, 003*   | Yes           | EM: 1", ¼" Drill#: 43, 7/32 Tap:<br>4-40                       | 4,4                | 4                  | 1,1 |
| 005         | Yes           | EM: 1/8", 1/4", 1/2" Drill#: 30                                | 5                  | 4                  | 1   |
| 006         | Yes**         | EM: ½" Drill#: 43 Tap: 4-40                                    | 3                  | 4                  | 1   |
| 007         | Yes           | EM: 1⁄8", 1⁄2", 1" Drill#: 43, 10, 3 Tap:<br>4-40, 1⁄4-28      | 10                 | 6                  | 1   |
| 008         | Yes           | EM: ½", ½", 1" Drill#: 43, 30, 29,<br>10, 3<br>Tap: 4-40, ½-28 | 10                 | 7                  | 1   |
| 009         | Yes           | EM: ½" Drill#: 43 Tap: 4-40                                    | 6                  | 4                  | 2   |
| 010         | No            | EM: Facing Drill#: 43, 29 Tap:<br>4-40                         | 5                  | 2                  | 1   |
| 011         | No            | EM: Facing Drill#: 7/32                                        | 5                  | 2                  | 1   |
| TOTAL Hours |               |                                                                | 53                 | 33                 |     |



## Manufacturing Stock Breakdown VANTAGE



| Part      | Part Dimensions                            | Stock Type          | Stock Dimensions (in)                                                           | QTY         | Cost     |
|-----------|--------------------------------------------|---------------------|---------------------------------------------------------------------------------|-------------|----------|
| 002       | ¼ x 5.17 x 11                              | Plate               | ¼ x 6 x 12                                                                      | 1           | 14.89    |
| 003       | ¼ x 5.17 x 11                              | Plate               | ¼ x 6 x 12                                                                      | 1           | 14.89    |
| 005       | ¼ x 5.43 x 5.67                            | Plate               | ¼ x 6 x 6                                                                       | 1           | 8.04     |
| 006       | ¼ x 4.93 x 5.17                            | Plate               | ¼ x 6 x 6                                                                       | 1           | 8.04     |
| 007       | <sup>1</sup> ⁄ <sub>4</sub> x 6.48 x 31.89 | Plate               | ¼ x 8 x 36                                                                      | 1           | 51.68    |
| 008       | <sup>1</sup> ⁄ <sub>4</sub> x 6.48 x 31.89 | Plate               | ¼ x 8 x 36                                                                      | 1           | 51.68    |
| 009       | ¼ x 5.17 x 11                              | Plate               | ¼ x 6 x 12                                                                      | 2           | 29.78    |
| 010       | 0.423 x 1.25 x 1.25                        | Bar                 | ½ x 1.25 x 6                                                                    | 1           | 3.95     |
| 011       | 0.61 x 0.65 x 2.22                         | Bar                 | <sup>3</sup> / <sub>4</sub> x <sup>3</sup> / <sub>4</sub> x 6                   | 1           | 3.92     |
| Fasteners | Various                                    | 18-8 Stainless SHCS | #4-40 SHCS 5%"<br>#4-40 SHCS 3∕6"<br>#M3 SHCS 16mm<br>#M5 SHCS 90mm<br>#M5 Nuts | 1 pkg. each | 36.92    |
| TOTAL     |                                            |                     |                                                                                 |             | \$223.79 |



## Manufacturing RapidCut Quote



#### <u>RapidCut Quote</u>:

- \$1,880 with 13 days lead time
- Saves us 3 weeks of full time work in the shop over three team members
  - This is valuable in itself since we have a lot of testing to coordinate and make sure runs smoothly
  - There will undoubtedly be issues with getting test rigs operational so having extra bodies with experience to help troubleshoot issues is invaluable.

| Sets |           | Parts+Shipping<br>(Working Days) | Total value |
|------|-----------|----------------------------------|-------------|
| 1    | \$ 120.00 | 12+1                             | \$ 1,880.00 |



#### **Mass Budget**



- Dark Grey = part is no longer in assembly
- Orange = nonmechanical component
- Masses for the NUC, power electronics, fasteners, and staking/coating, are estimates based on the MAXWELL project
- Link to Document

| Part #          | Description      | Quantity | Part Mass (g) | Assembly Mass (g) | 15% Margin Mass        | Actual Mass |
|-----------------|------------------|----------|---------------|-------------------|------------------------|-------------|
| 001             | Base Plate       | 0        | 266.94        | 0                 | 0                      |             |
| 002             | Left Plate       | 1        | 361.29        | 361.29            | 415.4835               |             |
| 003             | Right Plate      | 1        | 367.99        | 367.99            | 423.1885               |             |
| 004             | Top Plate        | 0        | 266.94        | 0                 | 0                      |             |
| 005             | Front Plate      | 1        | 114.1         | 114.1             | 131.2 <mark>1</mark> 5 |             |
| 006             | Back Plate       | 1        | 163.89        | 163.89            | 188.4735               |             |
| 007             | Base Plate 6U    | 1        | 857.93        | 857.93            | 986.6195               |             |
| 008             | Top Plate 6U     | 1        | 919.15        | 919.15            | 1057.0225              |             |
| 009             | Outer Bulkhead   | 2        | 266.97        | 533.94            | 61 <mark>4</mark> .031 |             |
| 010             | Camera Mountin   | 1        | 27.72         | 27.72             | 31.878                 |             |
| 011             | TOF Mounting B   | 1        | 34.29         | 34.29             | 39.4335                |             |
| 012             |                  |          |               | 0                 | 0                      |             |
| 013             |                  |          |               | 0                 | 0                      |             |
| 014             |                  |          |               | 0                 | 0                      |             |
| 015             | /                |          |               | 0                 | 0                      |             |
| O3D311          | TOF Camera       | 1        | 1162          | 1162              | 1336.3                 |             |
| EO-6412M        | Optical Camera   | 1        | 52            | 52                | 59.8                   |             |
| 64-868          | Optical Camera   | 1        | 87            | 87                | 100.05                 |             |
| #               | NUC              | 1        | 1440          | 1440              | 1656                   |             |
| #Custom         | Power Electronic | 1        | 1000          | 1000              | 1150                   |             |
| Fasteners       |                  | 1        | 200           |                   | 230                    |             |
| Staking/Coating | 2                | 1        | 200           |                   | 230                    |             |
| TOTALS (g)      |                  |          |               | 7121.3            | 8649.495               |             |



#### Fit Check Test Plan (1)



- VANTAGE has received a deployer SILO (NRCSD) which will essentially act like the test rig for this fit check test
- 1. The VANTAGE mechanical structure will be assembled according to the assembly procedures document and the assembly drawing #0011
  - The necessary parts for this test are the outer plates of the mechanical housing being PN#: 002, 003, 005, 006, 007, 008, 009
- 2. The NanoRacks hardware will be unpacked and placed on a flat table and oriented to match the on orbit orientation of SILO 8
- 3. The VANTAGE mechanical structure will be oriented to match its planned orientation in place of SILO 1
- 4. The VANTAGE mechanical structure will be lifted by two people and placed on top of the NanoRacks hardware such that both guiding dowel pins interface with their respective holes on the VANTAGE mechanical structure.
  - If the dowel pins on the NanoRacks hardware SILO do not fit into the dowel pin holes on the VANTAGE structure this test shall be considered a failure



### Fit Check Test Plan (2)



- 5. Once the dowel pin interface has been checked, two ¼"-28 x ½" socket head cap screws will be hand threaded through the clearance holes on the VANTAGE mechanical structure into the threaded holes of the NanoRacks hardware SILO
  - These will be hand threaded at first to prevent damage to the threaded holes of the NanoRacks hardware
  - If there is considerable resistance to start hand threaded or these clearance holes on the VANTAGE mechanical structure do not align with the threaded holes on the NanoRacks hardware well enough to support easy hand threading this test shall be considered a failure
- 6. Once hand threading is complete, the ¼"-28 socket head cap screws will be torqued using a torque wrench. Torque to 57in · lbs
  - If the fasteners are unable to to torqued properly either due to head or thread stripping then this test shall be considered a failure
- 7. The VANTAGE mechanical structure will then be gripped by hand to ensure that it is secured well to the NanoRacks hardware SILO
  - If the VANTAGE mechanical structure moves significantly (feels loose of insecure because it moves more than 0.01" when a handheld force is applied) then this test shall be considered a failure
- 8. The ¼"-28 fasteners should then be removed
  - If the fasteners are unable to be removed with only the use of a torque screwdriver and allen key then this test shall be considered a failure



#### Extra Info & NASA Docs

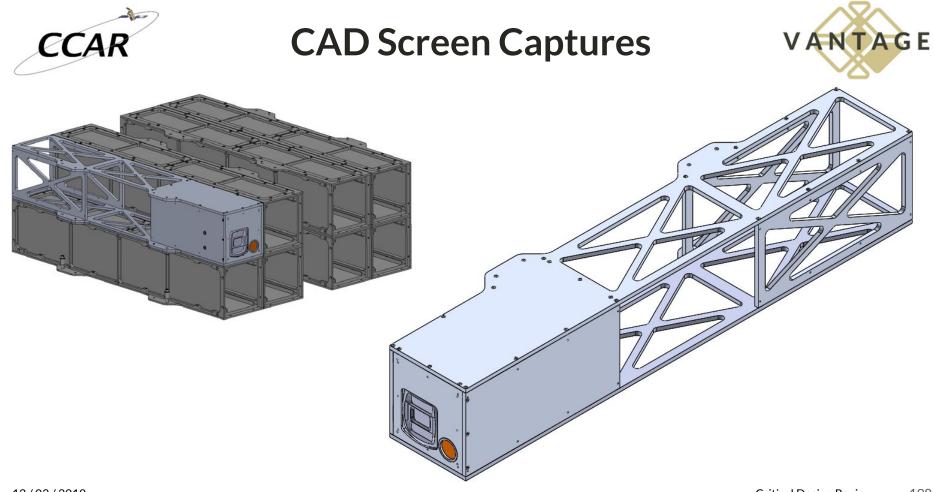


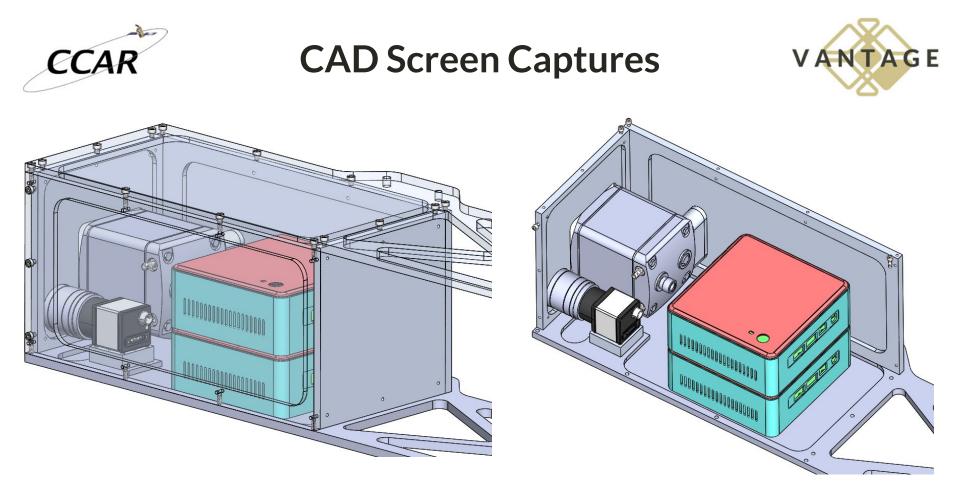
- All Coatings(lens coatings, housings, etc.) should have low outgassing properties.
- Electronics(CMOS image sensors, internal processors) may need to be radiation hardened.
- Components should have appropriate operational and storage temperature ranges.
- Governing NASA documents
  - NASA SSP 57003 External Payload Interface Requirements Document for the International Space Station Program (rev L)
  - NASA SSP 30237 Space Station Electromagnetic Emission and Susceptibility Requirements for the International Space Station (rev T).
- Exactly replicates the required NRCSD mounting features
  - Interface mounting to NR NRCSD using two ¼"-28 bolts
  - $\circ$  Has two ¼"-28 threaded holes for MLI blanket mounting
- Sensors mounted internally using fitted bulkheads
  - Sensor mounting allows for fine tuned adjustment

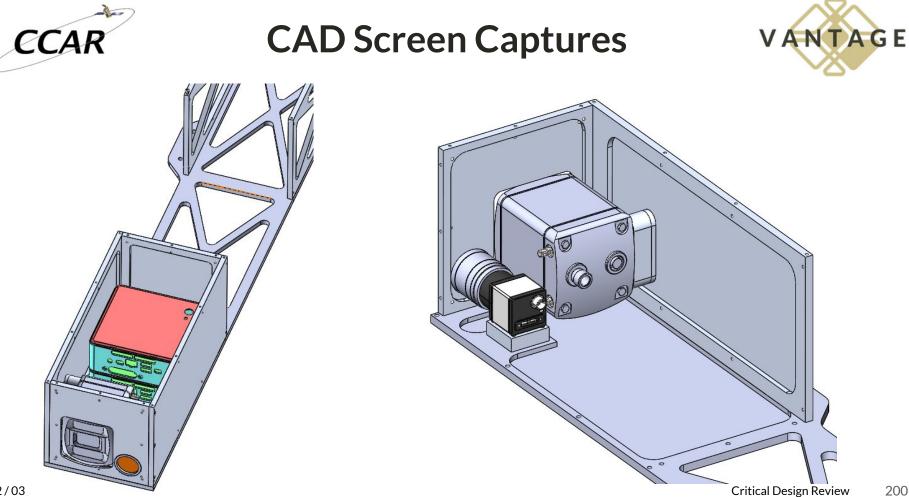
## Mechanical Drawings (1)

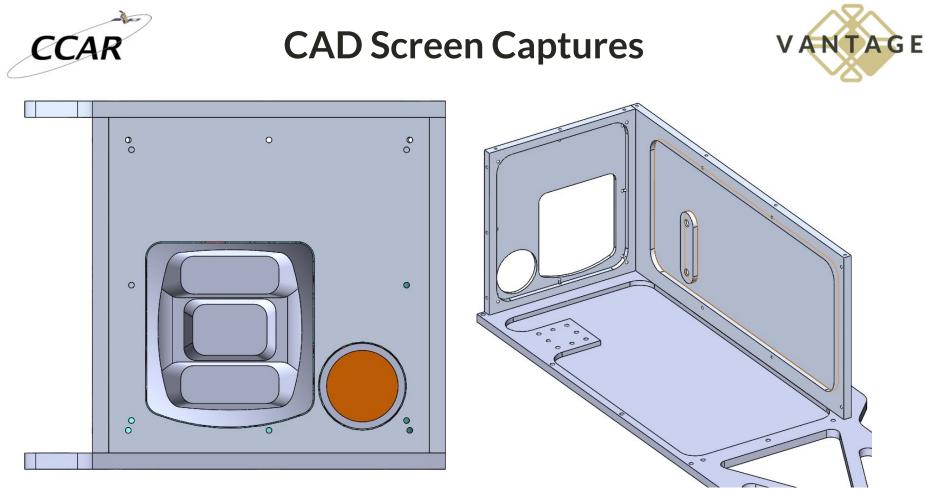


- Please see the table below for descriptions of each drawing
- The PDFs can be found in this <u>FOLDER</u> and are also printed for the convenience of the reviewers


| Drawing<br>Number |   | Release Date | Description                                                                                                            | Change Log:                                                                                                                            |
|-------------------|---|--------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 0001              | С | 11/27/2018   | This drawing calls out the same dimensions as the NR drawing 6EHC7 in order to show compliance with require DR.4.1-STR | 11/19/2018 -> Initial Release<br>11/26/2018 -> NEW OPTICAL CAMERA MOUNTING FEATURES<br>11/27/2018 -> NEW FRONT PLATE MOUNTING FEATURES |
| 0002              | В | 11/27/2018   | Left plate of the main structure. This is the right plate when mounted in the SILO 1 position.                         | 11/19/2018 -> Initial Release<br>11/27/2018 -> NEW FRONT PLATE MOUNTING FEATURES                                                       |
| 0003              | В | 11/27/2018   | Right plate of the main structure. This it the left plate when mounted in the SILO 1 position.                         | 11/19/2018 -> Initial Release<br>11/27/2018 -> NEW FRONT PLATE MOUNTING FEATURES                                                       |
| 0004              | А | 11/19/2018   | Back plate of the main structure.                                                                                      | 11/19/2018 -> Initial Release                                                                                                          |
| 0005              | С | 11/27/2018   | Front plate of the main structure.                                                                                     | 11/19/2018 -> Initial Release<br>11/26/2018 -> NEW OPTICAL CAMERA APERTURE<br>11/27/2018 -> NEW FRONT PLATE MOUNTING FEATURES          |
| 0006              | В | 11/27/2018   | Base plate of the main structure. This is the top plate when mounted in the SILO 1 position.                           | 11/19/2018 -> Initial Release<br>11/27/2018 -> NEW FRONT PLATE MOUNTING FEATURES                                                       |





#### Mechanical Drawings (2)

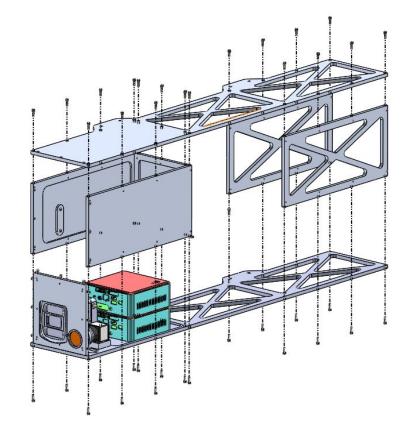


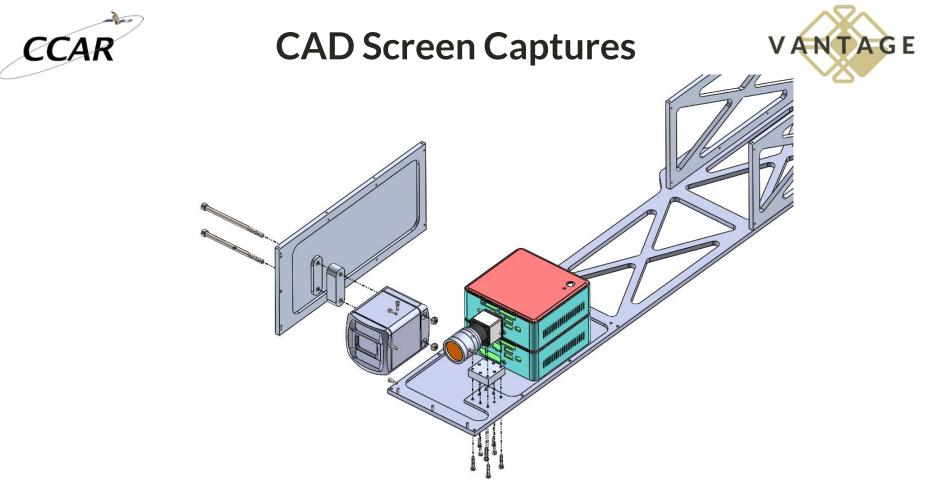

| Drawing<br>Number | Revision | Release Date | Description                                                                                  | Change Log:                                                                                                                               |
|-------------------|----------|--------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 0007              | С        | 11/27/2018   | Top plate of the main structure. This is the base plate when mounted in the SILO 1 position. | 11/19/2018 -> Initial Release<br>11/26/2018 -> NEW OPTICAL<br>CAMERA MOUNTING HOLES<br>11/27/2018 -> NEW FRONT PLATE<br>MOUNTING FEATURES |
| 0008              | A        | 11/19/2018   | Outer bulkhead of the main structure.                                                        | 11/19/2018 -> Initial Release                                                                                                             |
| 0009              | A        | 11/19/2018   | Optical camera mounting block.                                                               | 11/19/2018 -> Initial Release                                                                                                             |
| 0010              | А        | 11/19/2018   | TOF camera mounting block.                                                                   | 11/19/2018 -> Initial Release                                                                                                             |
| 0011              | С        | 11/27/2018   | VANTAGE assembly drawing including exploded views.                                           | 11/20/2018 -> Initial Release<br>11/26/2018 -> NEW OPTICAL<br>CAMERA MOUNTING HOLES<br>11/27/2018 -> NEW FRONT PLATE<br>MOUNTING FEATURES |













#### **CAD Screen Captures**









# **Testing Backup**





#### **Testing Requirements (1)**



| Req.         | Description                                                                                              |  |  |  |
|--------------|----------------------------------------------------------------------------------------------------------|--|--|--|
| DR.5.3-TST   | The test rig shall be capable of simulating all required deployment scenarios including off nominal depl |  |  |  |
|              | cases and deployments from the 7 other Nanorack Deployer tubes not taken up by the VANTAGE system.       |  |  |  |
| DR.5.3.1-TST | The test rig shall be able to produce mock cubesat motion at velocities between 0 and 3 m/s.             |  |  |  |

| Req.         | 100m Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Modular Test                                                                                                                                                                                                                                                                                                                            |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DR.5.3-TST   | <ul> <li>The position of the VANTAGE Flatsat in the 100m Test is variable and thus can be adjusted in relation to the Cubesat Kabob on the boom arm. The boom arm starting position is fixed.</li> <li>The car is capable of moving at different speeds within the 1-3m/s range.</li> <li>Cubesats are fixed to the Cubesat Kabob in prescribed orientations which can be arranged and designed as the deployment case requires.</li> <li>Ref: Content Slides for Overview</li> </ul> | <ul> <li>Mock CubeSat Cart is capable of mounting all required deployment scenarios.</li> <li>Mock CubeSat Cart can simulate deployments from the 7 other NanoRacks Deployer tubes.</li> <li>Nema 34 Motor is capable of producing off nominal velocity.</li> <li>Off nominal deployment times/failures trivially simulated.</li> </ul> |
| DR.5.3.1-TST | <ul> <li>The test rig is attached to a motor vehicle (BMW535i) which is capable of driving at steady speeds between 0 and 3m/s</li> <li>Ref: 100M Test Mounting to Car</li> </ul>                                                                                                                                                                                                                                                                                                     | <ul> <li>The Nema 34 Motor is capable of accelerating the cart in its maximum weight scenario (2 2x3U mock CubeSats) to 3 m/s.</li> <li>Ref: Motor Feasibility</li> </ul>                                                                                                                                                               |



#### **Testing Requirements (2)**



| Req.         | Description                                                                                                                                                                                                               |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|              | The test rig shall be capable of mounting all required combinations of mock cubesats that are launched from the Nanorack Deployer.                                                                                        |  |  |
| DR.5.3.3-TST | The test rig shall be capable of mounting mock cubesats such that their geometric center is at the same height as the geometric center of VANTAGE, as well as at a height 5.732 in below the geometric center of VANTAGE. |  |  |

| Req.         | 100m Test                                                                                                                                                                                                                                                                                                                                 | Modular Test                                                                                                                                                                                                            |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DR.5.3.2-TST | <ul> <li>The mock cubesats are designed in 1U, 2U, and 3U sizes based<br/>on the NanoRacks Interface Definition Document.</li> <li>These are fixed to the Cubesat Kabob using a rail and pin<br/>system which allows for modularity and ease of changing order<br/>of deployment.</li> <li>Ref: 100M Test Mounting to CubeSats</li> </ul> | <ul> <li>The Mock CubeSat Cart is capable of mounting 6 1Us, 3 2Us, 2 3Us, 1 6U, 2 2x3Us, and any other possible combination that NanoRacks has launched in the past.</li> <li>Ref: Mock CubeSat Cart</li> </ul>        |
| DR.5.3.3-TST | <ul> <li>VANTAGE TOF and optical camera are mounted on an arm<br/>connected to a tripod. The tripod location of the VANTAGE<br/>sensors is adjustable</li> <li>Ref: VANTAGE Sensor Mounting</li> </ul>                                                                                                                                    | <ul> <li>The Mock CubeSat Cart can attach mock CubeSats with a 7.87 in pole as well as a 13.61 in one. This allows for mock CubeSats to be attached at the required heights.</li> <li>Ref: Mock CubeSat Cart</li> </ul> |



#### **Testing Requirements (3)**



| Req. | Description                                                                                                                                                                                                                                |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | The test rig shall be capable of mounting mock cubesats such that their geometric center is horizontally aligned with VANTAGE's geometric center, as well as 5.48 in, 15.748 in, and 21.228 in to the right of VANTAGE's geometric center. |
|      | The test rig shall produce truth data for relative position vectors accurate up to 1 cm 1 $\sigma$ to a distance of 10 m, changing to an accuracy of at least a hundredth of the range 1 $\sigma$ up to a distance of 100 m.               |

| Req.         | 100m Test |                                                                                                                                                                            | Modular Test |                                                                                                                    |  |
|--------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------|--|
| DR.5.3.4-TST | •         | VANTAGE TOF and optical camera are mounted on an arm<br>connected to a tripod. The tripod location of the VANTAGE<br>sensors is adjustable<br>Ref: VANTAGE Sensor Mounting | •            | The Mock CubeSat Cart is capable of mounting mock CubeSats at<br>all of these locations.<br>Ref: Mock CubeSat Cart |  |
| DR.6.4-TST   | •         | GPS RTK data is generated for the 100m Test<br>Ref: GPS TRK System (2)                                                                                                     | •            | Vicon System position error of 0.0775 mm.<br>Ref: RECUV Test Location                                              |  |



#### **Testing Requirements (4)**



| Req.       | Description                                                                                                                                                                                         |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DR.6.5-TST | The test rig shall produce truth data for relative velocity vectors accurate up to 0.1 cm/s $1\sigma$ to a distance of 10 m, changing to an accuracy of 1 cm/s $1\sigma$ up to a distance of 100 m. |
| DR.1.5-TST | The test rig shall use a light source that produces a constant luminous flux of at least 1000 lumens on the surface of the mock cubesat.                                                            |

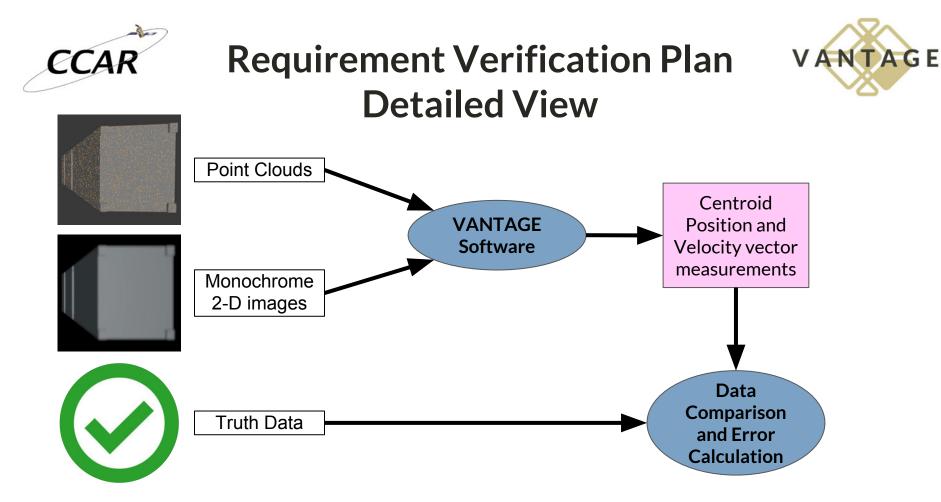
| Req.       | 100m Test                                                                                                                                                                                                                                                                                                                                                                              | Modular Test                                                                                                                                                                                                                                                                                                                                      |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DR.6.5-TST | <ul> <li>GPS RTK data is generated for the 100m Test</li> <li>Ref: GPS TRK System (2)</li> </ul>                                                                                                                                                                                                                                                                                       | <ul> <li>Vicon System velocity error of 0.0775 mm/s.</li> <li>Ref: RECUV Test Location</li> </ul>                                                                                                                                                                                                                                                 |
| DR.1.5-TST | <ul> <li>A flashlight has been chosen that produces 10x the required illumination</li> <li>The flashlight will be mounted to the vehicle and pointed at the mock cubesats during the test to produce the required illuminance of the mock cubesats</li> <li>The same flashlight is used for both the 100m test and the Modular test</li> <li>Ref: Simulating Ideal Lighting</li> </ul> | <ul> <li>The same flashlight that will be used for the 100m Test will be used for the Modular Test as well.</li> <li>The flashlight will be mounted to the VANTAGE Shelf and will provide effectively constant illumination over the short range.</li> <li>Can be mounted to the cart as well.</li> <li>Ref: Simulating Ideal Lighting</li> </ul> |

#### **Testing FR Satisfaction** Simulation Test Modular Test\* 100m Test\*\* FR **FR. Summary Test Summary** Images of Mock CubeSats **FR.1** Modular and 100m Tests move cubesats at speeds in this range between 3 and 100 m FR.2 Receive and interpret commands All Tests can verify this 1 / 1 100m Test will run with NanoRacks provided power on the final run in FR.3 1 Accept power order to minimize risk of hardware damage This is a separate integration test with the mechanical structure and FR.4 Mechanical Integration $\checkmark$ NanoRacks ground based hardware Detect and track Mock CubeSats FR.5 All Test can verify this between 3 and 100m Estimate position and velocity FR.6 VANTAGE is the test article in all three Tests vector of Mock CubeSats **FR.7** Simulation and Modular Tests will verify this

All three Tests can verify this

12/03/2018

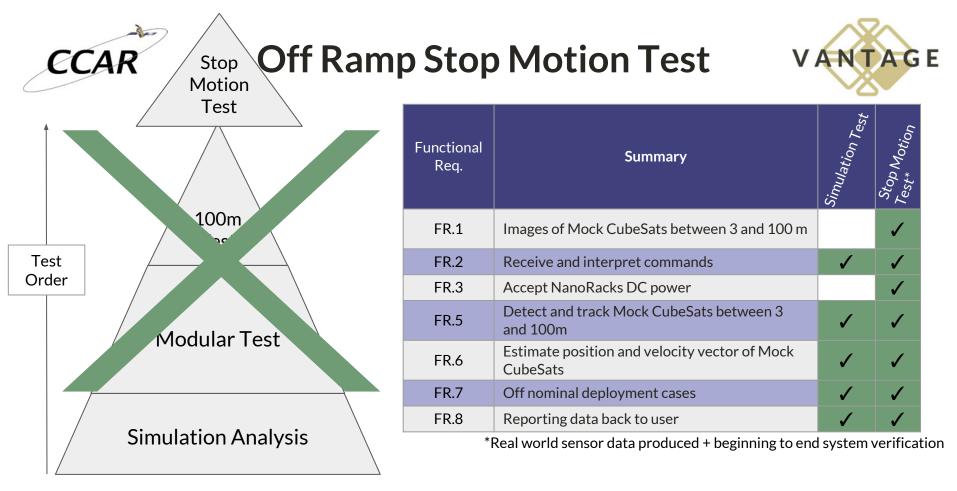
**FR.8** 


Off nominal deployment cases

Reporting data back to user

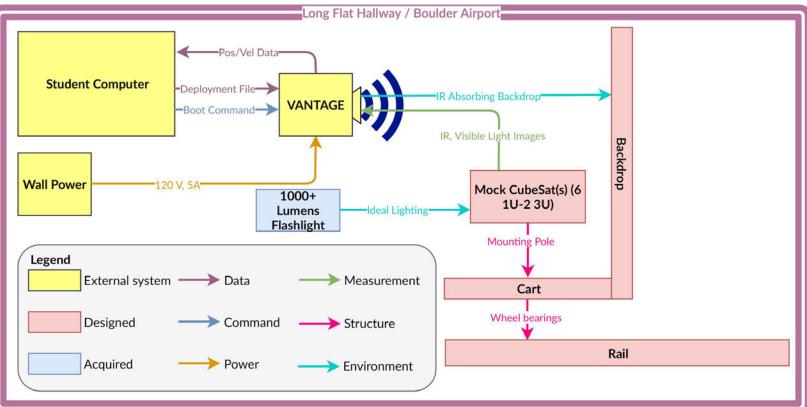
\*Real world sensor data produced

**Critical Design Review** 210


\*\*Real world sensor data produced + beginning to end system verification






## **Stop Motion Test Backup**





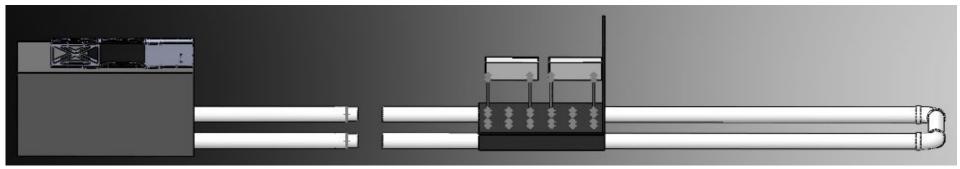
#### **Stop Motion Test FBD**





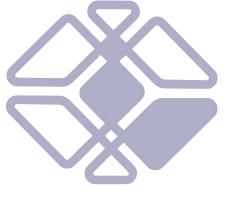


#### **Stop Motion Test Overview**




| Necessary Capability/<br>Measurement | Hardware Used                                             | Hardware Capability                             | Relevant<br>Requirements                                                                    |
|--------------------------------------|-----------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------|
| Truth Data (Position &               | Recorded cart position                                    | Ruler provides <b>1 mm</b>                      | <b>DR.6.1:</b> Position Accuracy<br>( <b>10 cm</b> for 3-10 10m ,10%<br>of range to 100 m). |
| Velocity)                            | Recorded cart position                                    | accuracy                                        | DR.6.2: Velocity Accuracy<br>(1 cm/s to 10 m , 10cm/s to<br>100m)                           |
| Test Data (Position & Velocity)      | TOF & Optical Camera ( <b>Unit</b><br><b>Under Test</b> ) | N/A                                             | DR.6.1 & DR.6.2                                                                             |
| Imaging Targets                      | Mock CubeSat Models                                       | Simulates the appearance of a<br>CubeSat        | FR.1: Images of Mock<br>CubeSats                                                            |
| Various Deployment Scenarios         | Mock CubeSat Cart                                         | Capable of mounting all<br>deployment scenarios | FR.5: Mount up to 6 1U to<br>2 3U Mock CubeSats                                             |
| Mock CubeSat Motion                  | N/A                                                       | N/A                                             | FR.6, FR.7: Mock Cubesats<br>move with velocities<br>between 0 and 3 [m/s].                 |




#### **Stop Motion Test Setup**





Procedure

- 1. Cart will we positioned at start location.
- 2. Based on the FPS of each sensor, cart will be incrementally moved
  - a. If doing for 100 m, re-assemble rail every 10 m
- 3. Data will be captured at each location and tagged with a timestamp
- 4. Once all data collected, fed into software system



## **100 m Test Backup**

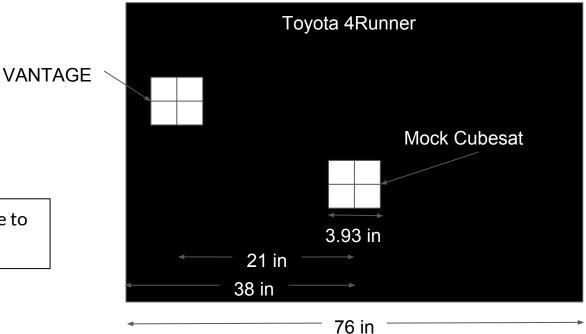




## 100 m Test PDD Req. and Off Ramps



- Per the PDD and requirements:
  - 8 testing specific requirements that cover
    - Test rig capability to simulate different cubesat configurations
    - Truth data for position and velocity relative to the VANTAGE system
    - Ideal lighting assumptions
- Acceptable off ramps:
  - Stop motion capture
    - No live motion, truth data can be acquired using simple measurement tools
    - Remove need to purchase, build, troubleshoot, and verify any motion related components
    - Stitch all pictures together and feed that into VANTAGE software
  - Verify by simulation
    - Use Blensor simulation to create a data set which is then fed into VANTAGE
    - Perfect truth data, but less realistic sensor inputs




## **Trade on Car Back Mount**



#### For furthest tube test case:

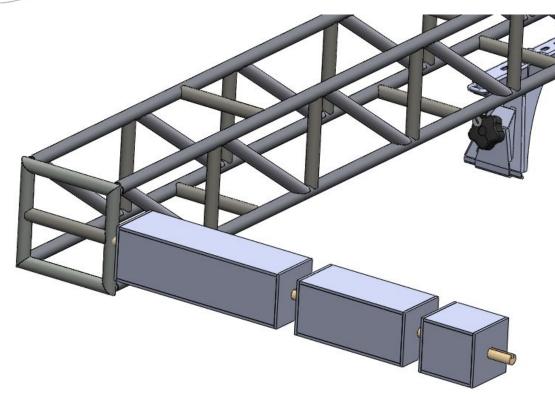
• Distance between VANTAGE and tube is 21.228 in.



Problem: VANTAGE will have to start directly behind the car



## 100m Test Mounting to Car




- Rack is COTS part made for the test vehicle
- Two options for boom to rack mounting
  - Directly weld the boom to the rack
  - Bolt through the boom into the rack

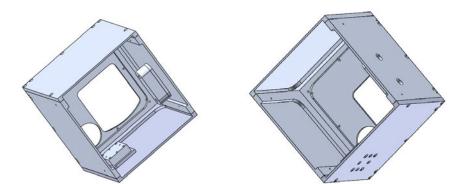


## **100m Test Mounting to CubeSats**





- Cubesats lock into groove of the Cubesat Kabob to prevent rotation
- Cubesats can be locked from translation by adding a pin to either side through the rod
  - This pin can be as simple as a paperclip
- Cubesat Kabob is simply bolted with two bolts and wing nuts to the boom




## **VANTAGE** Sensor Mounting



#### • For the 100m Test

- VANTAGE sensors will be mounted to a 3D printed part that will replicate the mounting features
- The 3D printed part will be clamped to the underside of the boom to prevent an unstable pendulum from being formed
- A counter weight will be applied to the other end of the boom to balance the mass of the VANTAGE sensor testing mount
- The tripod height and position can be adjusted relative to the car to ensure that deployments come from the "correct" position







### **Steel Material Properties**



| Specification                          | AMS 5046 and<br>AMS-S-7952 | AMS 5075, AMS 5077<br>and AMS-T-5066 <sup>a</sup> | ASTM A 108 | Table 2.5.1.0(c). Design Mech<br>Specification | ianicai a | AM     |
|----------------------------------------|----------------------------|---------------------------------------------------|------------|------------------------------------------------|-----------|--------|
| Form                                   | Sheet, strip, and plate    | Tubing                                            | Bar        | Form                                           | Sheet     | 1      |
| Condition                              | Annealed                   | Normalized                                        | A11        | Condition                                      |           | Marage |
| Thickness, in.                         |                            |                                                   | 5,000 A    | Thickness or diameter, in                      | ≤0.187    | 0.18   |
| Basis                                  | S                          | S                                                 | Sb         | Basis                                          | S         | 0.10   |
| Mechanical Properties:                 |                            |                                                   |            | Mechanical Properties:                         |           | -      |
| $F_{i\nu}$ , ksi:                      |                            |                                                   |            | $F_n$ ksi:                                     |           |        |
| L                                      | 55                         | 55                                                | 55         | L.                                             | 271       | 3      |
| LT                                     | 55                         | 55                                                | 55         | Τ                                              | 280       |        |
| ST                                     |                            |                                                   | 55         | $F_{sc}$ ksi:                                  | 200       |        |
| $F_{\mu\nu}$ ksi:                      |                            |                                                   |            | L L                                            | 262       |        |
| L                                      | 36                         | 36                                                | 36         |                                                | 262       | 2      |
| LT                                     | 36                         | 36                                                | 36         | T                                              | 270       | 1      |
| ST                                     | 50 - Con 2                 |                                                   | 36         | F <sub>ry</sub> , ksi:<br>L                    | 244       |        |
| $F_{ev}$ , ksi:                        |                            |                                                   | 50         | 5                                              | 244       | 8      |
| L Kor                                  | 36                         | 36                                                | 36         | _T                                             | 248       |        |
| LT                                     | 36                         | 36                                                | 36         | <i>F<sub>su</sub></i> , ksi                    | 163       |        |
| ST                                     |                            | 10.0                                              | 36         | $F_{bra}$ , ksi:                               |           |        |
| <i>F</i> , ksi                         | 35                         | 35                                                | 35         | (e/D = 1.5)                                    | 359       | 1      |
|                                        | 30                         | 33                                                | 30         | (e/D = 2.0)                                    | 487       | 9      |
| F <sub>brus</sub> ksi:                 |                            |                                                   |            | $F_{b\gamma\gamma}$ ksi:                       |           |        |
| (e/D = 1.5)                            |                            |                                                   |            | (e/D = 1.5)                                    | 306       |        |
| (e/D = 2.0)                            | 90                         | 90                                                | 90         | (e/D = 2.0)                                    | 389       | 5      |
| F <sub>bry</sub> , ksi:                |                            |                                                   |            | e, percent:                                    |           |        |
| (e/D = 1.5)                            |                            | 1                                                 |            | Ĺ                                              | v         |        |
| (e/D = 2.0)                            | 8.000                      | 6775                                              |            | Τ                                              |           |        |
| e, percent:                            |                            |                                                   |            | RA, percent:                                   |           |        |
| L                                      |                            | c                                                 | c          | L                                              |           |        |
| LT                                     | c                          |                                                   |            | Тт.                                            |           |        |
| <i>E</i> , 10 <sup>3</sup> ksi         |                            | 29.0                                              |            | <i>E</i> .10 <sup>3</sup> ksi                  |           | -      |
| $E_{e}$ , 10 <sup>3</sup> ksi          |                            | 29.0                                              |            | $E_{-1} 10^3$ ksi:                             |           |        |
| G, 10 <sup>3</sup> ksi                 |                            | 11.0                                              |            | L                                              |           |        |
| μ                                      |                            | 0.32                                              |            | T                                              |           |        |
| Physical Properties:                   |                            |                                                   |            |                                                |           |        |
| ω, lb/in. <sup>3</sup>                 |                            | 0.284                                             |            | <b>MMPDS-01</b> <sup>y<sup>3</sup> ksi</sup>   |           |        |
| C, Btu/(1b)(°F)                        |                            | 0.116 (122 to 212 °F)                             |            | al Properties:                                 | 4)<br>    |        |
| K, Btu/[(hr)(ft <sup>2</sup> )(°F)/ft] |                            | 30.0 (at 32°F)                                    |            |                                                |           |        |
| α, 10 <sup>-6</sup> in./in./°F         |                            | See Figure 2.2.1.0                                |            | 31 January 2003 <sup>m<sup>3</sup></sup> and α |           |        |

#### hysical Properties of 280 Maraging Steel

| pecification                   |        | AMS 6521*       | AMS 6514         |            |               |  |
|--------------------------------|--------|-----------------|------------------|------------|---------------|--|
| orm                            | Sheet  | Plate           | Bar              |            |               |  |
| ondition                       | I      | Maraged at 900° | Maraged at 900°F |            |               |  |
| hickness or diameter, in.      | ≤0.187 | 0.188-0.250     | >0.250           | <4.000     | 4.000-10.000  |  |
| asis                           | S      | S               | S                | S          | S             |  |
| fechanical Properties:         |        |                 |                  |            |               |  |
| F. ksi:                        |        |                 |                  |            |               |  |
| Ľ                              | 271    | 276             |                  | 280        | 275           |  |
| Τ                              | 280    | 280             | 280              | 280        | 275           |  |
| F <sub>or</sub> ksi:           |        |                 | 10101010         | 2010/00/07 | C. 14 ( 1.10) |  |
| Ľ                              | 262    | 267             |                  | 270        | 270           |  |
| Τ                              | 270    | 270             | 270              | 270        | 270           |  |
| F <sub>ev</sub> , ksi:         |        | 2002/02         | 433(16)          | 120010     | 1010030       |  |
| Ľ                              | 244    |                 | 2.22             | 281        |               |  |
| Τ                              | 248    | 201             | 19222            |            | 11.           |  |
| F, ksi                         | 163    | 170             |                  | 162        |               |  |
| F <sub>bm</sub> , ksi:         |        |                 |                  |            |               |  |
| (e/D = 1.5)                    | 359    | 386             |                  |            |               |  |
| (e/D = 2.0)                    | 487    | 492             |                  |            |               |  |
| F <sub>kra</sub> , ksi:        | 10000  | 0.004.000       | 8.872            |            | 1000          |  |
| (e/D = 1.5)                    | 306    | 357             | 1222             |            |               |  |
| (e/D = 2.0)                    | 389    | 390             |                  |            |               |  |
| e, percent:                    |        |                 |                  |            |               |  |
| Ĺ                              |        |                 | 1000             | 5          | 4             |  |
| Τ                              | ъ      | ъ               | Ъ.               | 4          | 2             |  |
| RA, percent:                   |        |                 |                  | 1272.0     |               |  |
| L                              |        |                 | ~~~              | 30         | 25            |  |
| T                              |        |                 |                  | 25         | 20            |  |
| <i>E</i> , 10 <sup>3</sup> ksi |        |                 | 26.5             |            |               |  |
| $E_{\rm st} 10^3$ ksi:         |        |                 | 20.5             |            |               |  |
| L                              |        |                 | 28.6             |            |               |  |
| Τ                              | 29.6   |                 |                  |            |               |  |
| ) <sup>2</sup> ksi             | 29.0   |                 |                  |            |               |  |
|                                | 0.31   |                 |                  |            |               |  |
| al Properties:                 |        |                 | 19.00 A          |            |               |  |
| 3 <sup>/in.3</sup>             |        |                 | 0.286            |            |               |  |
|                                | 0.280  |                 |                  |            |               |  |

See Figure 2.5.1.0

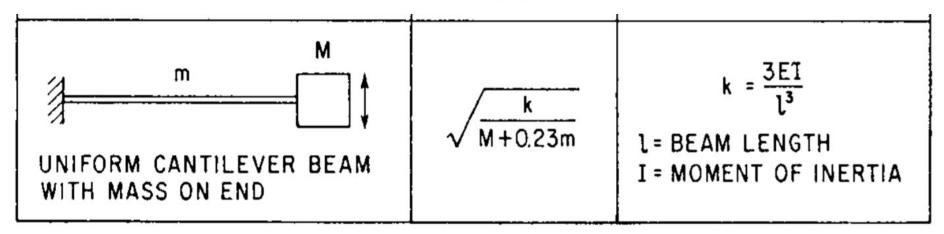


### **Beam Analysis Summary**



| Quantity                                           | Value |
|----------------------------------------------------|-------|
| Predicted deflection at the tip                    | <1mm  |
| Safety Factor on yield due to curvature            | 169   |
| Buckling Safety Factor                             | 257   |
| Safety Factor on bolt experiencing reaction moment | 200   |
| First fundamental frequency                        | 51Hz  |

It should be noted that this analysis only assumes the longerons are part of the beam. All of the battens and diagonals will increase stiffness and distributing loads pushing all of these number upward








#### CHAPTER 7 VIBRATION OF SYSTEMS HAVING DISTRIBUTED MASS AND ELASTICITY

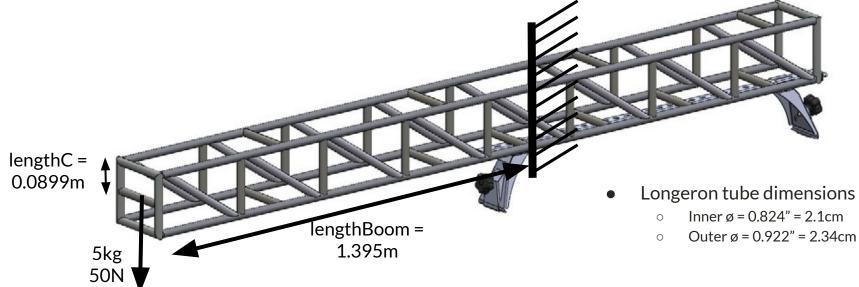
William F. Stokey



# CCAR

## Beam Analysis (1)




- Reasons a simple analysis of the long beam members is valid
  - Cross members (diagonals and battens) only add stiffness to the beam reducing displacements and raising modal frequencies
  - Rigid mounting in practice is on more of the beam surface than in the assumptions
  - Movement speeds will by under 2m/s (5mph)
  - BMW suspension on flat, smooth asphalt surface will dampen high percentage of road vibrations
  - Boom is essentially a completely rigid structure since all members are welded together
- Assumptions made in analysis
  - Consider the boom to be a beam made of only the "longerons" (8ft sections)
  - Consider the beam is cantilevered with the Cubesat Kabob end as the free end
  - The Cubesat Kabob provides only a downward force at the free end
  - This is a 1 DOF system
- Some numbers
  - $\circ \qquad {\sf Cubesat \ Kabob \ mass: SW \ says \ 2.28kg \to Analysis \ uses \ 5kg}$
  - Carbon Steel Young's Modulus E = 29e3ksi = 200GPa
  - Carbon Steel Yield Strength = 55ksi = 380MPa
  - Alloy Steel Yield Strength = 170ksi = 1172MPa



### Beam Analysis (2)



- Layout of the boom dimensions
- All calculations done in SI units





### Beam Analysis (3)



#### Calculate the second moment of area of the cross section using the parallel axis theorem

```
A single longeron centered crossection
```

```
I1 = \frac{\pi}{4} \left( outerR^4 - innerR^4 \right)
5.34564 \times 10^9
```

The distance of each longeron from the center of the beam crossection

```
distance = lengthC; (*(lengthC<sup>2</sup>+lengthC<sup>2</sup>)<sup>0.5</sup>;*)
```

The area of a single longeron crossection

```
A = \pi \left( outer R^2 - inner R^2 \right);
```

Parallel Axis theorem for second moments of area

```
I2 = I1 + A * distance<sup>2</sup>;
```

The final second moment of area for the beam made of four longerons each at the same distance away from the beam center

```
Ibeam = 4 * I2
12/03/2018
2.82369×10<sup>-6</sup>
```

| Galvanized steel pipe 3/4"                                                                       |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <pre>outerD = 0.0234188; ( innerD = 0.0209296; ( outerR = outerD / 2; innerR = innerD / 2;</pre> |  |  |  |  |  |

```
Review 228
```

### Beam Analysis (4)



Considering the beam to be cantilevered we calculate the displacement at the tip

For a cantilevered beam:  $F = \frac{3EI}{L^3} u$  or  $u = \frac{FL^3}{3EI}$  and the force at the end is given by

F = Mass \* g;

Thus the tip displacement is:

Utip = F \* lengthBoom<sup>3</sup> 3 \* Esteel \* Ibeam

0.0000785946

Calculate the maximum moment

Mmax = F \* lengthBoom

68.4248

12/03/2018

#### Calculate the maximum curvature

K = Mmax
Esteel \* Ibeam
0.000121162

Maximum strain due to curvature e = x \* distance(\* (distance+ outerD) \*) 0.0000108913 Maximum stress due to curvature  $\sigma = Esteel \star \epsilon$  $2.17826 \times 10^{6}$ The safety factor on the yield stress of steel oyield SF = σ 169.86

esign Review 229



## **Beam Buckling Analysis**



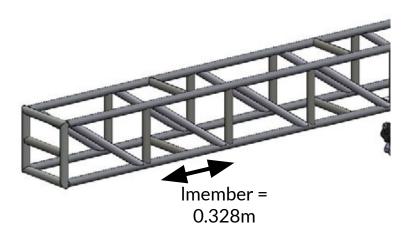
longest member length

lmember = .328;

Buckling load

 $P = \frac{\pi^2 \text{ Esteel } \star \text{I1}}{\text{lmember}^2}$ 

98080.3


Compression load caused by moment in a single bar

 $M = F \star \text{lengthBoom;}$   $Fbar = \frac{M / \text{lengthC}}{2}$ 

380.6

Buckling safety factor

12/03/2018 SFbuckling = 257.699





### **Beam Modal Analysis**



Modal Analysis of the cantilever boom

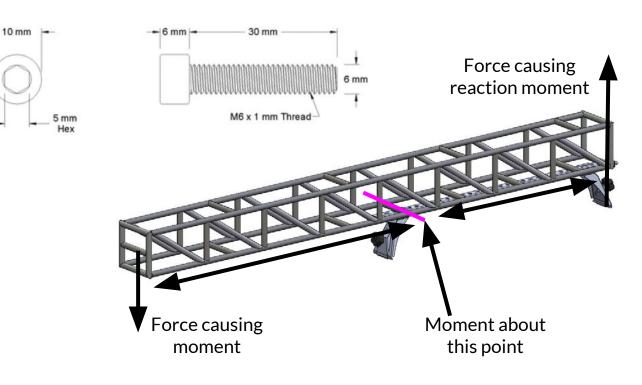
More beam characteristics

rodmass = 1.65; rodlength = 2.42; \rho = 4 \* rodmass / rodlength; (\*four rods\*)

Modeled as a cantilever with non negligible boom mass and end mass

 $f1 = \frac{1}{2\pi} \sqrt{\frac{3 \times \text{Esteel} \times \text{Ibeam}}{(0.233 \times \rho \times \text{lengthBoom} + \text{Mass}) \times \text{lengthBoom}^3}}$ 

51.8222


12/03/2018



## **Pin Fastener Analysis**



TSalloysteel = 1172000000; massBoom = 15; TotallengthBoom = 3.05; Dscrew = 0.006; Rscrew = Dscrew / 2; Ascrew =  $\pi \star \text{Rscrew}^2$ ; Maximum force on the screw TotalMass = massBoom + Mass; CounterMoment = TotalMass \* g \* lengthBoom; CounterMoment ForceScrew = TotallengthBoom - lengthBoom 165.377 Tensile stress on the screw ForceScrew oscrew = Ascrew 5.84902×106





## 100m Test Manufacturing Plan (1)



- Boom components should be cut to the mechanical specifications outlined in the mechanical drawings
- The thin steel pipe is easily cut with a bandsaw or miter saw, edges can be deburred with a simple grinder
- Dry fit all boom components
  - Using tape, all the boom components can be dry-fit together to make sure that they are properly sized to begin welding
  - The dry-fit will allow for small adjustments to be made as required
- Dry fit car rack
  - This will be a simple test of the purchased car rack with the planned test vehicle
- Boom construction
  - Welding the components of the boom will be done by stick welding. There is no need for more precise or cleaner welds
  - Order of welding will take place according to the welding procedures detailed in the Test Boom Construction document
- Modify car rack to interface with boom
  - Once the boom has been completed, its segments will be fixed which includes the mounting features which connect the boom to the car rack
  - If the car rack can be welded (the current model is also steel) the the boom will just be welded to the car rack
  - If the car rack cannot be welded then the rack will be modified with bolt holes to connect the boom directly to the rack



## 100m Test Manufacturing Plan (3)



- Schedule
  - Pending full design approval the plan is to initiate manufacture over Winter Break (estimate roughly 5 days)
    - Boom component crafting expected to take 8hrs
    - Boom dry fit and small mods expected to take 8hrs
    - Boom welding expected to take 8hrs
    - Cubesat kabob manufacture (can be run in parallel) expected to take 8hrs
    - Full system fit and necessary modifications expected to take 8rhs
  - Worst case is that no welding resources are available over Winter Break
    - This only requires welding time to be taken once Spring semester starts
    - This pushes back the full system fit check and adjustments



## **100m Test Material and Costs**



- Link to BOM Document
- Largest expense is the roof rack for the vehicle
- Without the roof rack the total cost of materials is ~\$168.73

| Part                 | D                                                            |             | OTY | Unit Cost | Part Cost | Notes                                                                           |
|----------------------|--------------------------------------------------------------|-------------|-----|-----------|-----------|---------------------------------------------------------------------------------|
| Part                 | Description                                                  | Source      | QIY | Unit Cost | Part Cost |                                                                                 |
| Mounting             | Conduit Clamp                                                | https://www | 8   | 0.83      | 6.64      | Need 6 plus buy 2 extra for a total of<br>8                                     |
| BMW Roof Rack        | Modified Roof Rack for mounting                              | https://www | 1   | 139.95    | 139.95    | Only 4 left in stock, made of steel so thats good                               |
| Long Bars            | 10ft Pipe basically                                          | https://www | 4   | 6.2       | 24.8      |                                                                                 |
| End Corner           | For making the End Caps                                      | https://www | 8   | 0.42      | 3.36      |                                                                                 |
| Studs                | Short bars for the boom                                      | https://www | 10  | 0.35      | 3.5       |                                                                                 |
| Long Cross Beam      | Long cross beams for the boom                                | https://www | 6   | 6.2       | 37.2      |                                                                                 |
| Stick Welding Sticks | For welding the Boom                                         | https://www | 3   | 12.57     | 37.71     | Buying more that we could possibly ever need                                    |
| Mounting Bolts       | Bolts from boom to rack and from<br>boom to cubesat assembly | https://www | 1   | 10.65     | 10.65     | something beefy to hold the boom to<br>the rack and the cubesats to the<br>boom |
| Mounting Bolts Nuts  | Nuts for the mounting bolts                                  | https://www | 1   | 10.94     | 10.94     | need to make sure the bolts actually have an attachment mechanism               |
| Cubesat rod          | Rod for Cubesat Assembly                                     | https://www | 1   | 4.24      | 4.24      |                                                                                 |
| Light Source         | LED Spotlight                                                | https://www | 1   | 29.69     | 29.69     | 6000lm, out to 800m, 9000mAh<br>battery rechargable through USB                 |
|                      |                                                              |             |     |           | 0         |                                                                                 |
|                      |                                                              |             |     |           | 0         |                                                                                 |
|                      |                                                              |             |     |           | 0         |                                                                                 |
|                      |                                                              |             |     |           | 0         |                                                                                 |
|                      |                                                              |             |     |           | 0         |                                                                                 |
|                      |                                                              |             |     |           | 0         |                                                                                 |
| Totals               |                                                              |             |     |           | 308.68    |                                                                                 |



## 100m Test Manufacturing Plan (2)



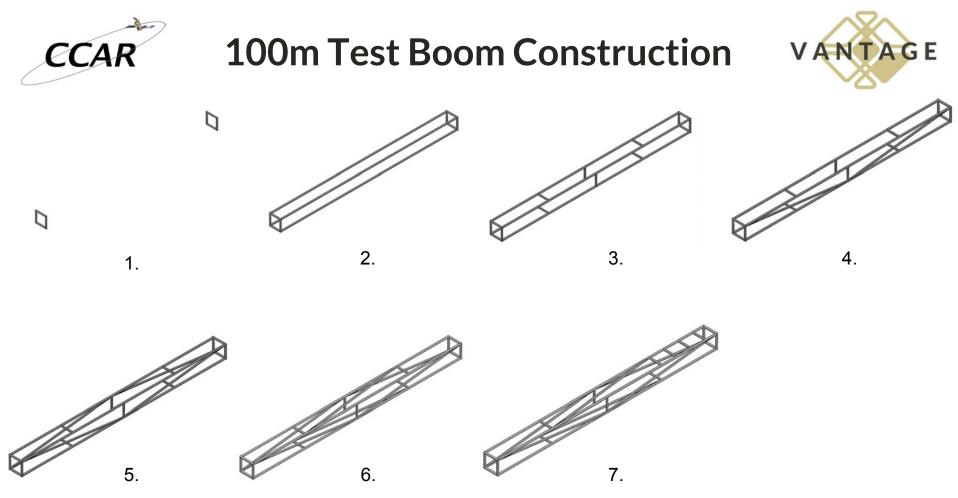
- Manufacture the Cubesat Kabob
  - This will hold different CubeSat configurations for testing
  - CubeSat models will be 3D printed and attached to the CubeSat rod which is designed for easy switching between configs
- Full mechanical test fit
  - The boom and rack assembly will be joined with the car and then the CubeSat Kabob will be mounted
  - A short driving test will be conducted to ensure that no mounting issues have arisen
- Facilities and tool availability
  - Some shop access during winter break, best availability likely in early January prior to Spring semester
  - Personal welding equipment available
  - Personal equipment available to do all boom component creation and dry-fit without need for CU or professional facilities
- Fumes from galvanized steel welding and the approach for safety
  - Well ventilated area or masks would be required during the welding of the boom components since stock is galvanized electrical conduit piping
- Welding experience
  - 2 members on the team have prior welding experience
  - Stick welding is quick and simple, time estimate to complete welding is a single day



## **100m Test Mechanical Drawings**



- Please see the table below for descriptions of each drawing
- The PDFs can be found in this <u>FOLDER</u> and are also printed for the convenience of the reviewers


| Drawing Number | Revision | Release Date | Description                        | Change Log:                   |
|----------------|----------|--------------|------------------------------------|-------------------------------|
| 0000           | A        | 11/24/2018   | Boom Assembly Drawing              | 11/24/2018 -> Initial Release |
| 0001           | А        | 11/24/2018   | End Square Assembly Drawing        | 11/24/2018 -> Initial Release |
| 0002           | А        | 11/24/2018   | End Corner Mechanical Drawing      | 11/24/2018 -> Initial Release |
| 0003           | А        | 11/24/2018   | Stud Mechanical Drawing            | 11/24/2018 -> Initial Release |
| 0004           | А        | 11/24/2018   | Long Cross Beam Mechanical Drawing | 11/24/2018 -> Initial Release |
| 0005           | А        | 11/24/2018   | Long Bar Mechanical Drawing        | 11/24/2018 -> Initial Release |
| 0006           | А        | 11/26/2018   | Beam Cross-Section                 | 11/26/2018 -> Initial Release |



## **100m Test Boom Construction**



- This list is a summary of the assembly procedures document which can be found <u>HERE</u>
- 1. Build the two Square End Caps per assembly drawing #0001
- 2. Connect the two Square End Caps with the four Long Bar components
- 3. Add the main studs to the structure based on the locations detailed in drawing #0000
- 4. Add the long cross beams to the near side
- 5. Add the long cross beams to the far side
- 6. Add the long cross beams to the top and bottom
- 7. Add the rack mounting studs
- 8. Add the Cubesat mounting stud
- 9. Add all mounting clamps and tighten to the Boom
- 10. Do a dry fit and mark locations of the mounting lamps
- 11. Weld mounting clamps into place for total rigid mounting





## GPS RTK System (1)



- Feasibility and System Familiarity
  - We have interfaced with the UBlox C94-M8P GPS RTK receivers and software
  - Found some documentation and identified some potential paths forward
- Issues
  - Software driver issues encountered initially
  - Plan to troubleshoot and update this slide with further information in the coming weeks

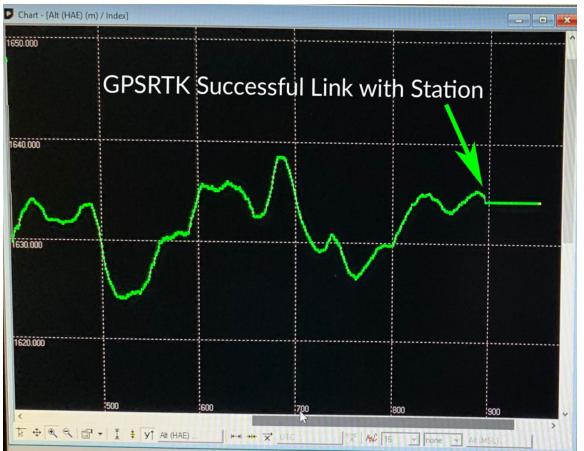
#### • Feasibility test concept

- $\circ$  ~ Get the RTK receivers configured properly (in RTK mode)
- Set up a basic ground based experiment to test the accuracy of the RTK module (open space)
- Line up on of the receivers with a ruler and acquire a "0" position
- Move the receiver alone the ruler to different positions and record data stopping at regular intervals to check later
- Reset the receiver and begin a new data set
- Do a high speed test with the RTK by moving the receiver along the ruler quickly (just faster than walking pace)
- Reset and place the receiver in a car
- Do a driving test in a parking lot



## GPS RTK System (2)




#### • Two receivers

- One is stationary at a known location near the test site
  - This one is connected to a laptop with the configuration software and does the data collection
- The other is configured beforehand and mounted to the boom and powered through a 5V USB power interface
  - The flashlight we chose for ideal lighting also provides a USB power output suitable for RTK
- Software interface
  - UBlox software download is free
  - Can configure the receivers beforehand and gathers data from both receivers through the connection of a single receiver (UHF receiver to receiver antennas)
  - Data exported as a GPS file
- Accuracy
  - 2cm



### **GPS RTK In progress test**





12/03/2018

CCAR



#### **Boulder Airport**





243



## **Boulder Airport Test Location**







#### Lighting condition in Boulder Airport





12/03/2018

Critical Design Review 245



#### **Backup location**







## 100m Test System



- Power required at test site
  - 220V AC for VANTAGE power supply
    - Gasoline powered generator
  - Ideal lighting
    - Battery powered flashlight charged beforehand
    - Only expected to be on during VANTAGE data acquisition
  - GPS RTK
    - Receiver 1 (stationary) powered by connected charged laptop
    - Receiver 2 (Test Boom) powered by flashlight battery or direct USB connection to car USB port

#### • Additional considerations

- Flashlight to illuminate
- Set up of electronics within the test vehicle
- $\circ$   $\qquad$  Electronics required to power RTK and VANTAGE during test  $\qquad$
- Feasibility or Costs of said electronics
- Make and model of a nice measurement wheel (encoder thing)



## 100 m Test Procedure



- 1. Get everything set up and aligned
- 2. Initialize truth data collection system
  - a. Starting the GPS RTK and begin data collection of truth data
- 3. Start up the VANTAGE flat sat system
- 4. Send the test case deployment predictions file to VANTAGE
- 5. Initiate motion of vehicle to bring up to deployment velocity (<2m/s)
- 6. Capture data
- 7. End data capture
- 8. Run software algorithm and process to see if test results were acceptable
- 9. Reset for new test or take down



## 100 m Stop Motion Test Setup

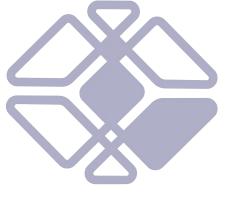


- Nearly identical to the 100m test setup and procedure EXCEPT
  - There is no live motion
    - All data points have been predetermined by a chosen test scenario
    - These data points will be generated via simulation and then replicated in the 100m test setup
      - Based on the sampling rates of the sensor system and the rate commanded by the software package this results in roughly 50-100 different capture frames
      - Each capture frame is based on a distance from the VANTAGE system which can be tightly and precisely controlled to within cm of precision both by GPS RTK and by a simple encoder measurement
  - There is an additional way to gather truth data
    - The nice measurement wheel encoder device
- Still meets requirements and can be done more easily than trying to get motion and timing to all work out
  - There is easier control of the system in this case since the test doesn't happen in real time



## **Simulating Ideal Lighting**




#### **Necessary Specifications:**

• The more light we can get on the target, the better

#### Flashlight Picked:

- 6000 LUMENS
- LED Bulb
- 9000mAh Rechargeable Battery
- \$30





## **Modular Test Backup**





### **Modular Test BOM**



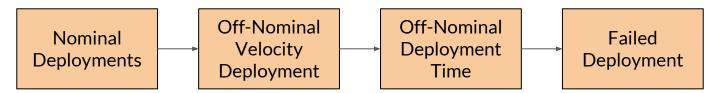
| Material                  | Cost [\$] | Quantity | Total Cost | Link                                                       |
|---------------------------|-----------|----------|------------|------------------------------------------------------------|
| Sheathing<br>Plywood      | 20.15     | 1        | 20.15      | https://www.homedepot.com/p/Sheathing-Plywood-Commp        |
| Underlayment<br>(plywood) | 15.98     | 1        | 15.98      | https://www.homedepot.com/p/Underlayment-Common-7-32       |
| Black Spray<br>Paint      | 3.98      | 2        | 7.96       | https://www.lowes.com/pd/Krylon-Colormaxx-General-Purp     |
| Pole Sockets              | 2.48      | 16       | 39.68      | https://www.homedepot.com/p/Everbilt-1-3-8-in-White-Me     |
| Pole                      | 10.49     | 3        | 31.47      | https://www.homedepot.com/p/Waddell-1-3-8-in-x-72-in-H     |
| Ball Bearing<br>Wheel     | 3.16      | 4        | 12.64      | https://www.globalindustrial.com/p/material-handling/conve |
| PVC Pipe                  | 17.41     | 8        | 139.28     | https://www.homedepot.com/p/JM-eagle-3-in-x-10-ft-PVC-S    |
| PVC Pipe<br>Corner Piece  | 2.66      | 4        | 10.64      | https://www.homedepot.com/p/3-in-PVC-DWV-90-Degree-        |
| PVC Pipe<br>Connector     | 5.99      | 6        | 35.94      | https://www.acehardware.com/departments/plumbing/pipe-     |
| Rope                      | 8.71      | 1        | 8.71       | https://www.homedepot.com/p/Everbilt-1-4-in-x-50-ft-Whit   |
| Screws                    | 7.98      | 1        | 7.98       | https://www.homedepot.com/p/Grip-Rite-1-1-4-in-Construct   |
| Light Source              | 29.69     | 1        | 29.69      | https://www.amazon.com/dp/B074P5N3RG/ref=psdc 24454        |
| Total                     |           |          | 360.12     |                                                            |



#### **RECUV** Test Location






#### Vicon Specifications:

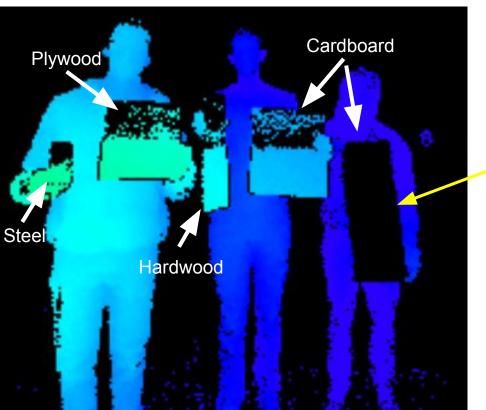
- System of IR cameras
- Position Error of 0.0775 mm
- 100 Hz data capture
- Latency of 16.87 ms



# Modular Test Plan/Procedure

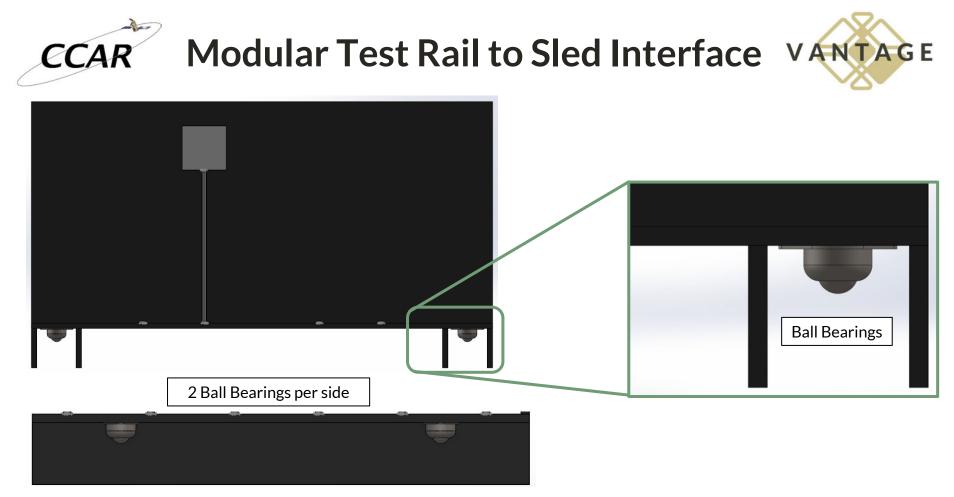





- 1. RTK GPS placed inside first Mock CubeSat and powered on
- 2. Internal lighting turned off and ideal light source turned on
- 3. VANTAGE powered on (FR.2, FR.3)
- 4. Motor commanded to accelerate cart
- 5. Cart enters VANTAGE FOV and data collection begins (FR.1, FR.5)
- 6. Motor commanded off
- 7. Data collection ends
- 8. Data processing begins (FR.6, FR.7)
- 9. Data offloaded (FR.8)

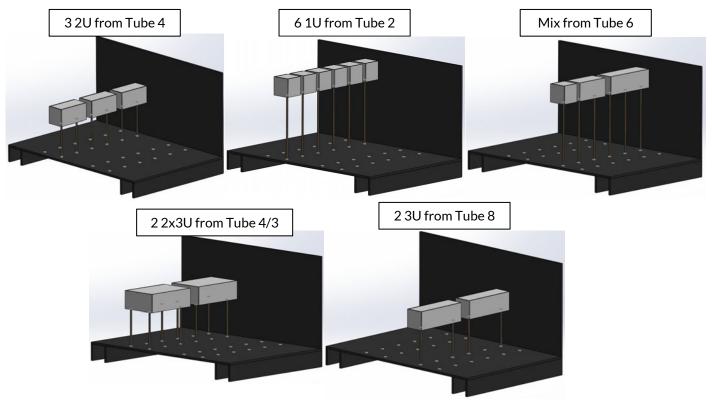


Paint on top


No paint on bottom

#### **IR Absorbing Background**



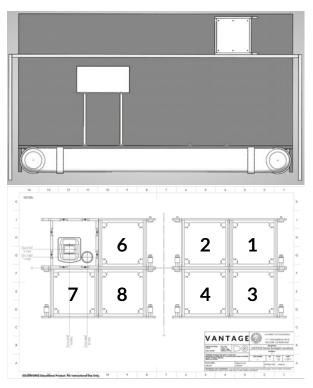



Paint

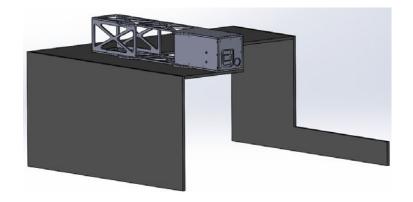


### Mock CubeSat Cart






CCAR




### **VANTAGE** Shelf

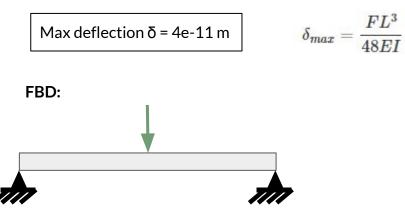


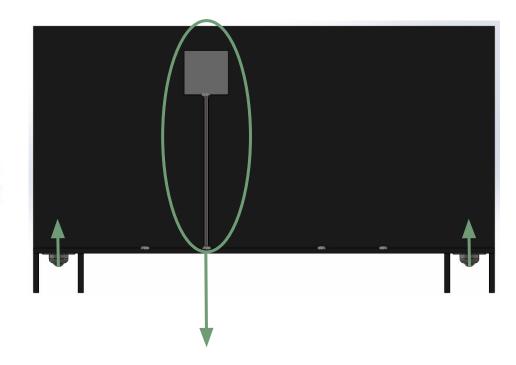


- Shelf holds VANTAGE package at the height and position of the deployer tube it would replace
- Design allows for mock deployments from tubes in line with VANTAGE





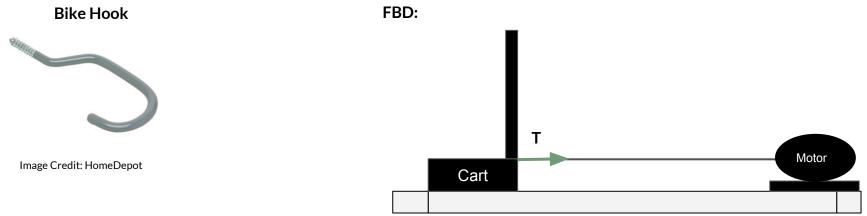

# **Cart Bottom Board Deflection**


 $FL^3$ 



Assuming Simply Supported Beam:

- Mass of 6 1U CubeSat Assembly: 0.96 kg •
- F = 9.414 N •
- L = 1.041 m •
- E = 11 GPa •
- $I = 0.502 \text{ kg-m}^2$ •

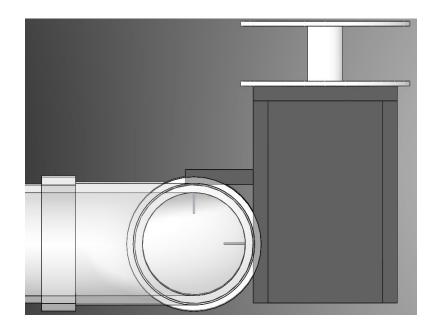







# Effects of Max Motor Pulling Force VANTAGE

- During cart acceleration, max force produced: **T** = **63.45 N**
- Interface between cable and cart is a bike hook.
- Bike hook has 25 lbf weight limit = 111.206 N
- FOS = 1.75






#### **Motor Mount to Rail**

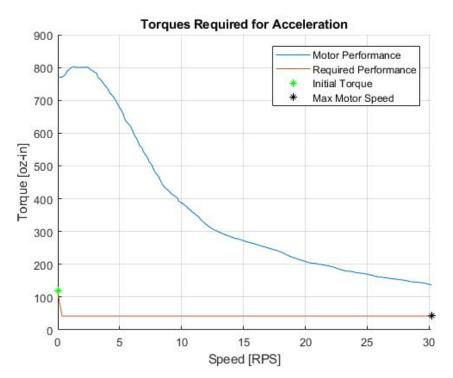


- During cart acceleration, max force produced: **T** = 63.45 N
- Interface between motor and rail is 4 1-1/4" steel screws





# Motor Feasibility (1)



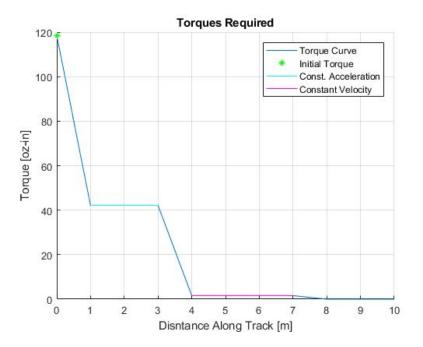

Initially must overcome static friction to get ball bearing wheels to roll:

- Requires T = 119 [oz-in]
- Well under torque motor produces
- FOS = 6.5

After wheels begin to roll:

- Requires T = 43 [oz-in]
- Required up until max motor speed: **30 [RPS]**
- At 30 [RPS], **FOS = 3.25**

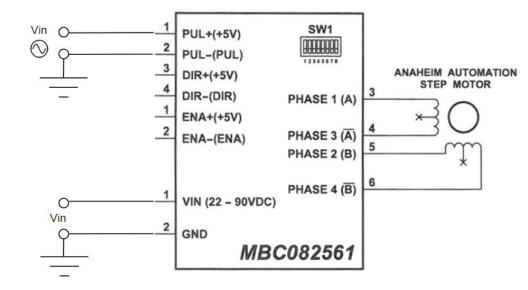


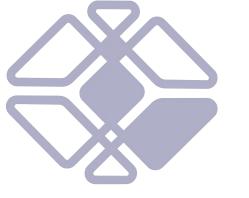



## Motor Feasibility (2)



Don't currently have control designed for motor in LabView


- Required torques already known
- Motor is capable of producing these torques






#### **Motor Wiring Diagram**

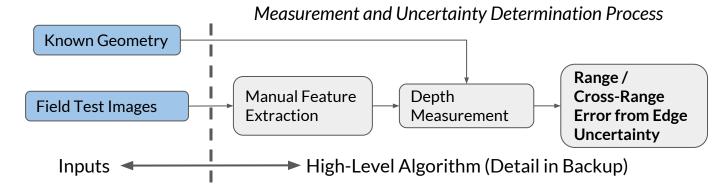






# **Sensors Backup**





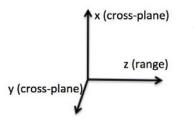

## **Camera-Only** Accuracy Feasibility





Image from field test




|      | Actual<br>Range |       | easured<br>nge | Range<br>Uncertainty (1ơ) | Cross-Range<br>Uncertainty | Error +<br>Uncertainty | satisfy positi<br>measureme | A camera <u>alone</u> does not  |
|------|-----------------|-------|----------------|---------------------------|----------------------------|------------------------|-----------------------------|---------------------------------|
|      | 5.0m            | 5.2   | l2m            | 0.30m                     | 0.22 cm                    | 42 cm > 10cm           |                             | satisfy position<br>measurement |
|      | 100.0m 9        |       | .33m           | 4.76m                     | 0.24 m                     | 10.43 m >10 m          | P                           | requirements                    |
| 40.4 | 00 ( 0010       | Req.  |                | Summary                   |                            |                        | 0//                         |                                 |
| 12/  | 03/2018         | DR 6. | 1              | Position Accurac          | 266                        |                        |                             |                                 |



### **TOF Camera: Error Analysis**

TOF Sensor Error Figures (from Data Sheet)

| Range | Depth Error |
|-------|-------------|
| >3m   | 7 mm        |
| 3-5 m | 10 mm       |
| 5-7 m | 15 mm       |
| 7-8 m | 20 mm       |



**Cross-plane accuracy approach**: Assumed sensor can measure geometric center to ½ pixel.

$$v = \frac{\Delta x}{\Delta t}$$
$$v = \sqrt{\delta x^2 + \delta t^2}$$

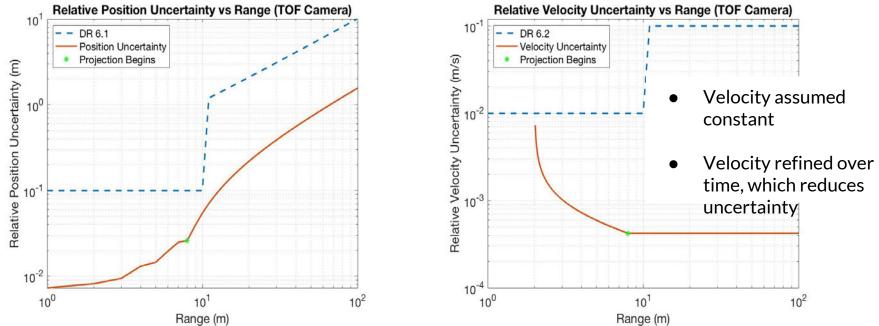
Electronic timing of measurements assumed to be very accurate.

δ

 $\delta t \ll \delta x$ 

Assuming constant velocity, the velocity estimate is refined by each position measurement.

$$\delta v_{refined} \propto \frac{\delta v}{\sqrt{N}}$$


N = Number of TOF Position Measurements - 1

Assumed conservative TOF measurement rate of 12 fps (max TOF FPS = 25 FPS)



#### **Sensor Requirements Satisfaction**





| Req.   | Summary                                                       |  |
|--------|---------------------------------------------------------------|--|
| DR 6.1 | Position Accuracy (10 cm for 3-10 10m ,10% of range to 100 m) |  |
| DR 6.2 | Velocity Accuracy (1 cm/s to 10 m , 10cm/s to 100m)           |  |



#### Other DR's



1.1: The system shall use a camera to capture images of mock CubeSats. SATISFIED-Verify By Inspection

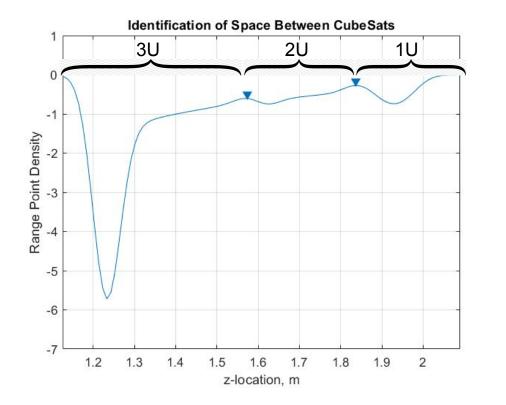
1.2: Imaging subsystem shall have a FOV greater than 20° horizontally SATISFIED: Sensor Size: 7.41 mm x 4.98 mm Lens Focal Length: 16 mm Horizontal FOV~26 degrees

Using triangle geometry:  $(FOV/2) = tan^{-1}(\frac{SensorSize/2}{FocalLenath})$ 

1.3: Imaging subsystem shall produce at least 2 images of each mock CubeSat deployed by the test system. SATISFIED: We expect to take images at a rate of about 1 Hz, we should have plenty of images.

1.4:Imaging subsystem shall produce in-focus images of mock CubeSats within 10 m. SATISFIED: We will set the focus of the lens to be clear at about 10 meters. Verify by inspection

1.5: Sensor subsystem shall have a sensing FOV of at least 20° horizontally SATISFIED: Both Sensors have FOV's that exceed this. ToF FOV= 40x30 deg.

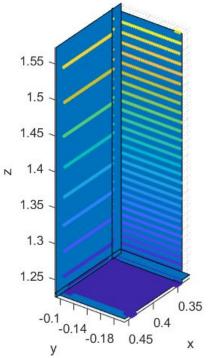



# **Software Backup**







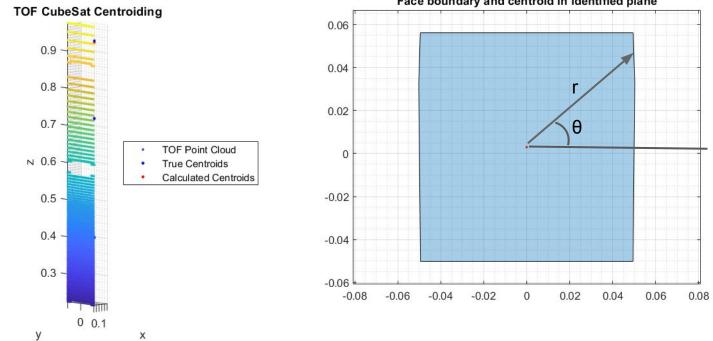



- TOF point cloud splitting method:
  - Convert point cloud into z-direction (aka downrange) point density using K-Squares method
  - Apply findpeaks() to point density to determine regions of minimum point density
  - These points are used to separate the CubeSat

# **TOF Plane Identification**



Planes Fitted to 3U CubeSat

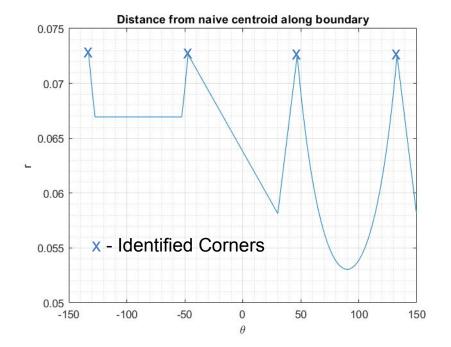



- Simplified plane identification method:
  - Use MATLAB's pcfitplane to find most heavily populated plane with a specified heuristic parameter: the maximum allowable distance of a point from the plane
  - Remove points associated with the previous plane and use pcfitplane to find most heavily populated plane in remaining point cloud
  - Repeat until pcfitplane cannot find a plane or three planes have been found



#### **TOF One-Plane Centroiding**



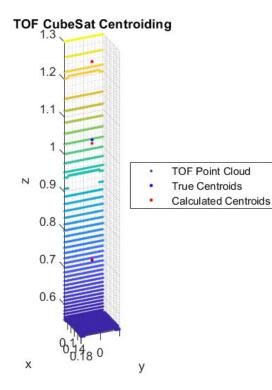


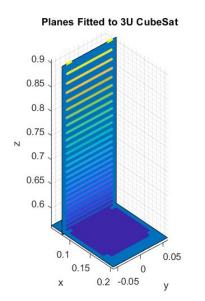

Face boundary and centroid in identified plane



# **TOF One-Plane Centroiding**



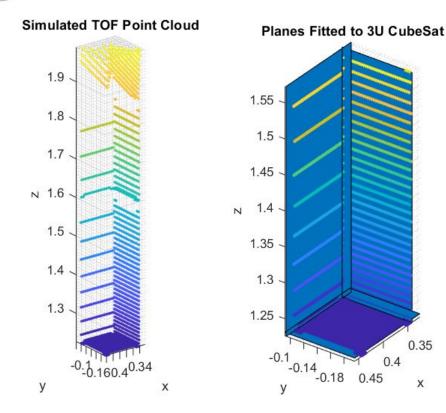




- Simplified corner identification method:
  - Up to four large peaks in a graph of distance from naive face centroid to boundary describe the locations of corners in the face
  - Based on the number of corners and their location relative to the naive centroid of the CubeSat face, the true centroid of the CubeSat face can be determined
  - Note: CubeSat U is defined by the deployment manifest and assumed to be known



# **TOF Two-Plane Centroiding**





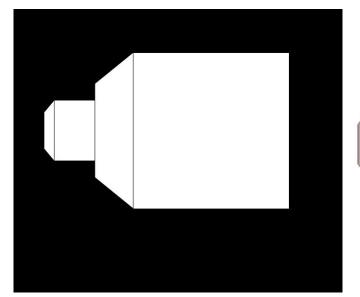


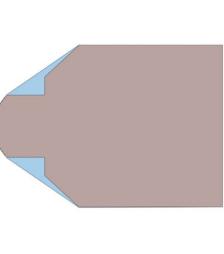

- Solve for line of intersection of the two planes
- Project point cloud onto the line of intersection
- Determine midpoint of projected pointspread
- Project from intersection midpoint into CubeSat to calculate centroid

# **TOF Three-Plane Centroiding**






- Solve for intersection point of the three planes
- Project from intersection point into CubeSat to calculate centroid


CCAR



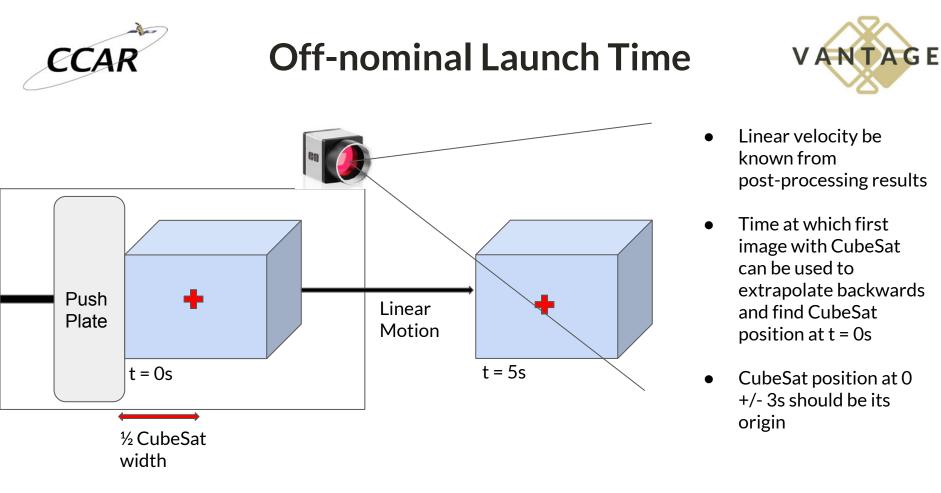
#### **Partial Occlusion**







Using the computational geometry library in Matlab, we can use the extracted image border to create a convex hull, and compare it with the boundary itself.


If the difference between the two is not negligible, the differences between the two can be used to remove the partially occluded cubesat hull.



# **Deployment Prediction Validation** VANTAGE



- Necessary to validate the following:
  - CubeSats launch within 3 seconds of expected time given in deployment manifest 0
  - CubeSat velocities are within the range of 0.5-2m/s 0
- Launch time validation can be done by linearly interpolating from first image with detected CubeSat centroid backwards to the centroid position of ½ CubeSat width, where the back face is resting against the pusher plate
- Launch velocity validation will be trivially completed with existing linear velocity result
  - Motion of CubeSats will be linear, so output velocity will be equivalent to launch velocity, which can be directly compared 0 to the manifest

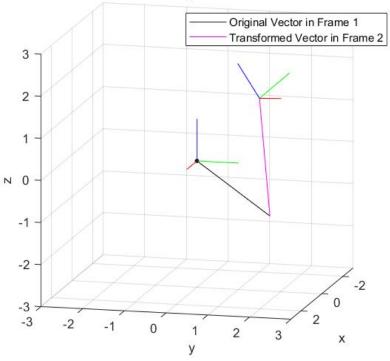




## **TOF Future Work**



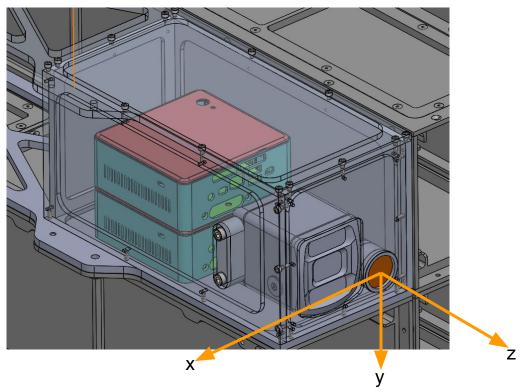
- Make all heuristic parameters adaptive (e.g. pcfitplane's maximum allowable distance of a point from the plane, findpeaks' maximum peak height)
- One-plane method
  - Add ability to handle detection of only two corners
  - Add ability to handle partial-plane centroiding when entering FOV
- Two-plane method
  - Add ability to handle partial-plane centroiding when entering FOV
- Add ability to predict cubesat locations so that TOF data can still be used even when CubeSats cannot be differentiated based on the raw point cloud




### **Transform Method**



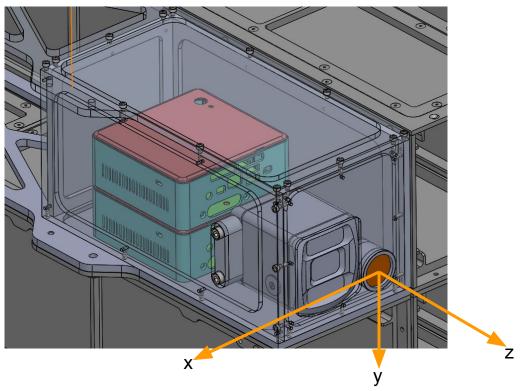
- This method will be used to transform vectors between the Camera Frame, the TOF Camera Frame, and the VANTAGE Frame in which CubeSat state is measured
- The transform method is able to receive data to define the relationship (rotation and offset) between an arbitrary number of frames
- It is then able to transform a vector between any frames whose relationship has been defined


#### **Results of Transforming Vectors between Frames**





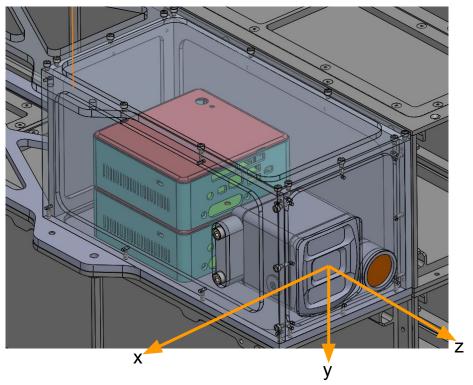
#### **VANTAGE Frame**



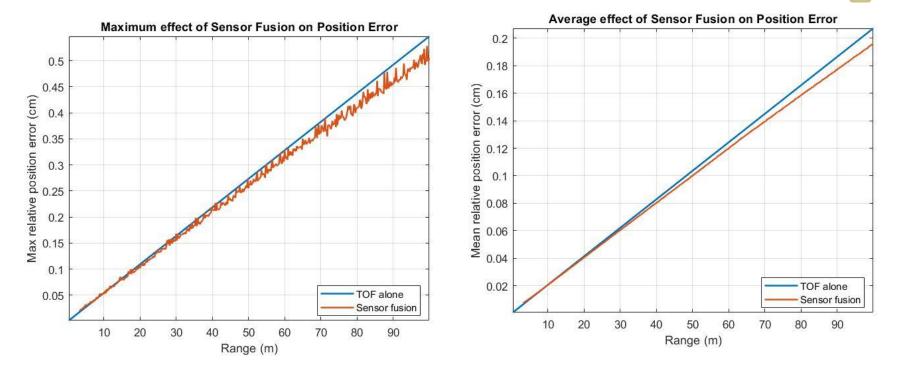





#### **Camera Frame**











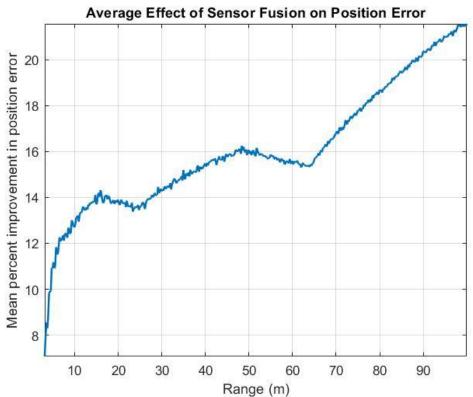





12/03/2018





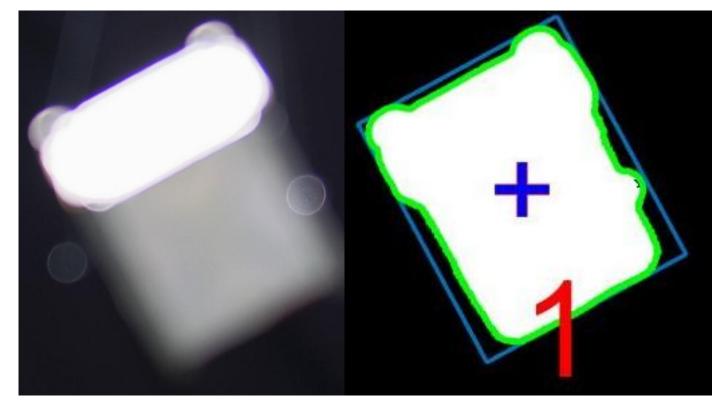


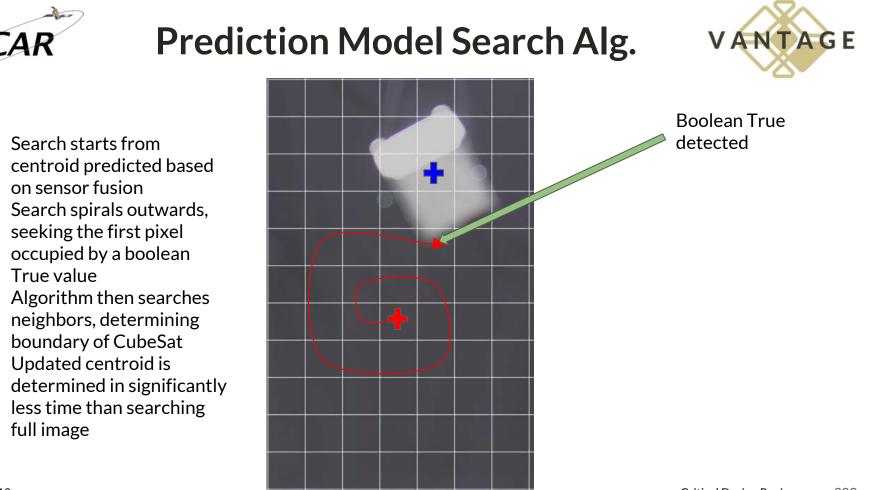

#### **Sensor Fusion Verification**



#### Monte Carlo Simulation:

- Verification of sensor fusion effectiveness
- Maximum error as a function of range
- Gaussian distribution of ToF error for 0.25-3m
  - Propagated to 100m
- Gaussian distribution of camera error for 3-100m




#### **Boundary Boxes**



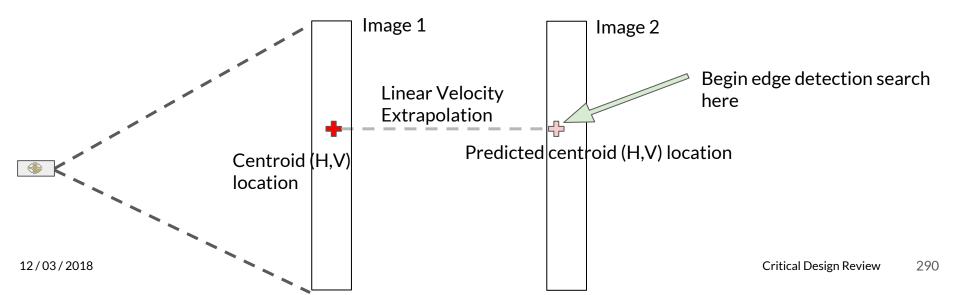
- In some orientations, binarization may eliminate pixels that correlate to CubeSats
- Bounding boxes encapsulate all pixels captured within the box





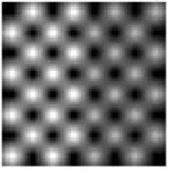
•

•

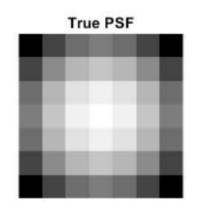

•

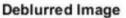
# CCAR

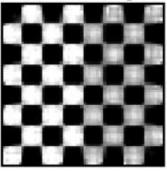
## **Prediction Model**



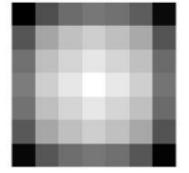

- To significantly improve the runtime of the post-processing, a prediction model is implemented based on extrapolated TOF data, as well as optical camera data past the first optical image processing
- After detecting a centroid from the weighted-average sensor fusion, the expected next position in the optical camera will be determined based on rectilinear motion assumption
- In the next frame, the prediction model provides an expected pixel (H,V) location for the centroid
- Edge detection begins its search for a binary True value outwards from this location





A = Blurred and Noisy




## Image Deblurring







#### **Recovered PSF**

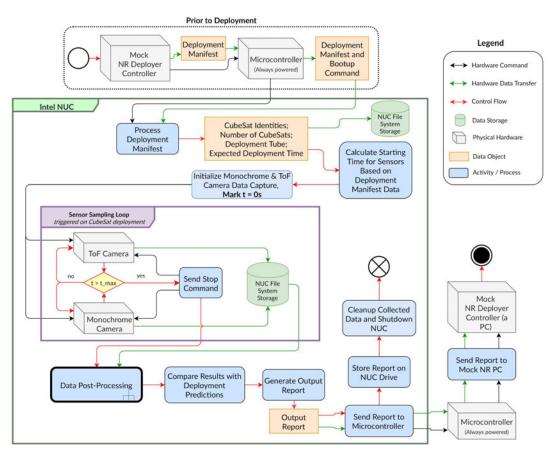




- To deblur an image, an accurate Point-Spread Function must be known
- This level of accuracy to camera blur can only be achieved using field data (using actual VANTAGE camera)
- Resolving a Point-Spread Function requires initially deblurred results of the same image
  - Rigorous testing is necessary
- Point-Spread Function is impossible to achieve until Spring semester when camera is accessible
- When a PSF is determined, image deblurring is more realistic



## Image Deblurring

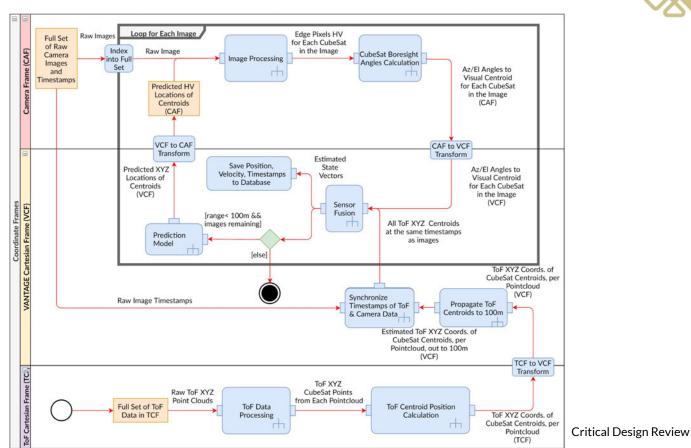



- Image deblurring is initially motivated by a desire for more accurate edge detection
- For the case of using boundary boxes to resolve occlusion, image blur is not necessarily a problem
- Deblurring increases software runtime by multiple magnitudes, greatly over requirement of 15min. to output
  - Runtime can be drastically reduced by isolating regions of images to deblur (based on image cropping when CubeSats are found)



## **Overall System Software Solution** VANTAGE



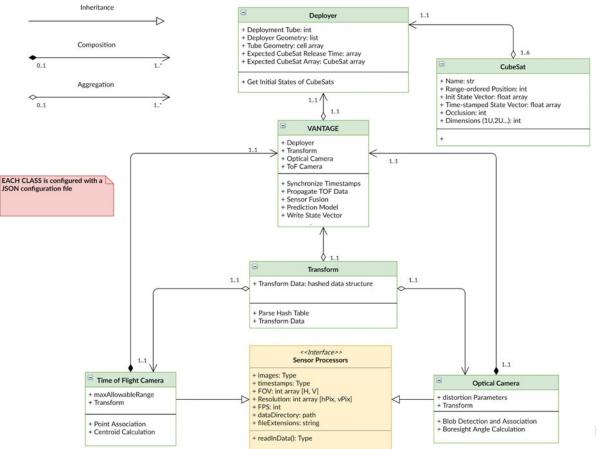



12/03/2018



## **Post-processing Software Solution**






12/03/2018



### **UML Software Class Diagram**



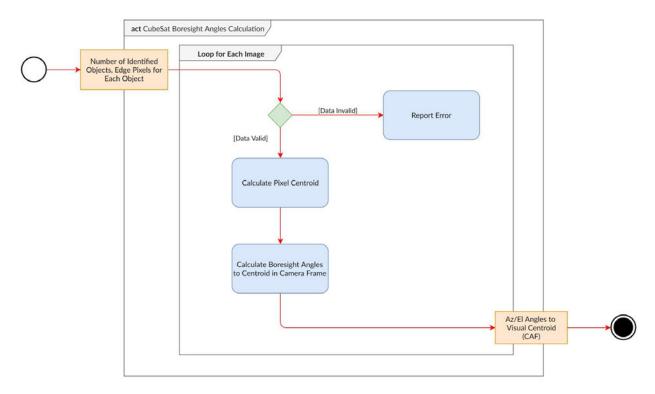


12/03/2018

tical Design Review 295



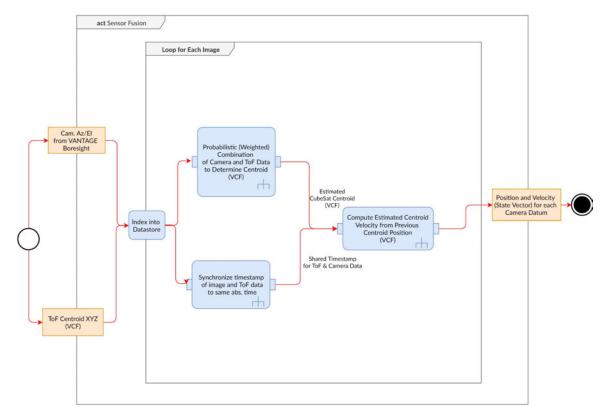
### Image Cropping



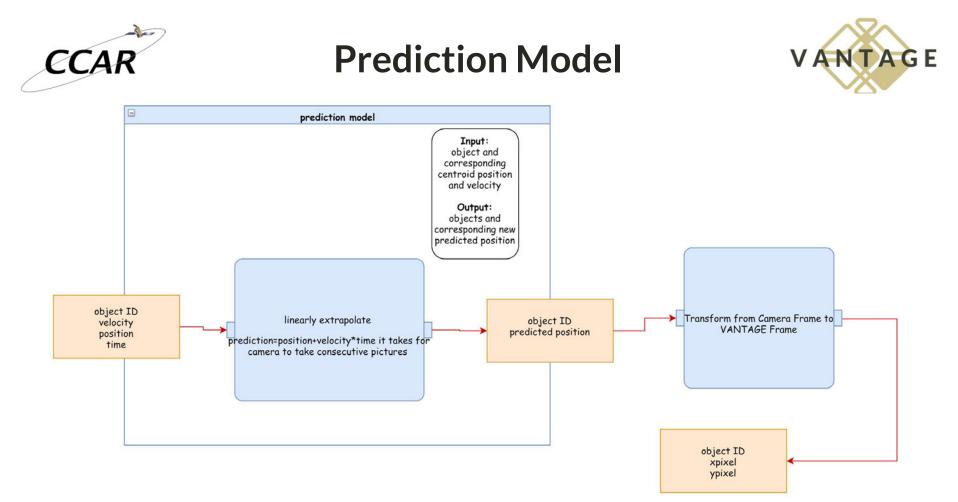




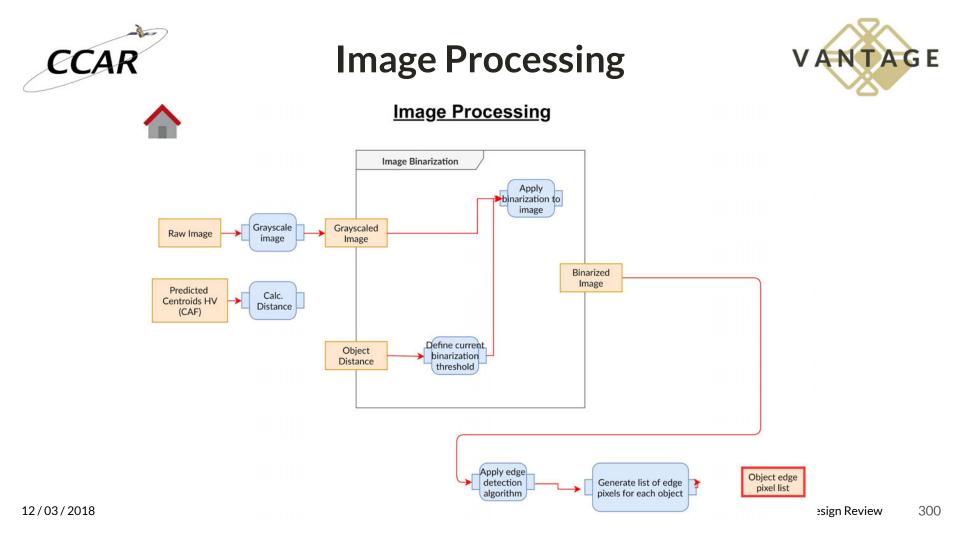

## **Boresight Angles Calculations**






#### **Sensor Fusion**






12/03/2018



299





### **Lens Distortion**



Most analysis up to this point has assumed a pinhole projection model for the camera.

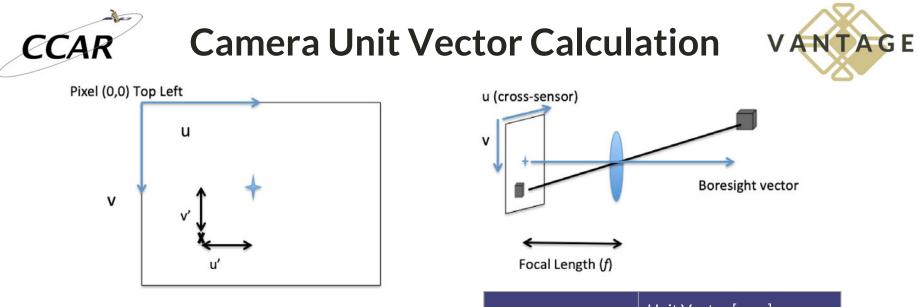
However, the lens will impart some distortion that needs to be corrected in order to make accurate measurements. The primary distortion will be radially symmetric and can be estimated by a n-order polynomial in terms of r (distance from optical center).

$$egin{aligned} x_{\mathrm{u}} &= x_{\mathrm{d}} + (x_{\mathrm{d}} - x_{\mathrm{c}})(K_{1}r^{2} + K_{2}r^{4} + \cdots) \ y_{\mathrm{u}} &= y_{\mathrm{d}} + (y_{\mathrm{d}} - y_{\mathrm{c}})(K_{1}r^{2} + K_{2}r^{4} + \cdots) \end{aligned}$$

There may also be some tangential distortion (dependence on x or y) Both of these effects can be mitigated by measuring this distortion and removing it in software.






## **Distortion Removal**



There are useful MATLAB functions that can help to estimate distortion characteristics of a camera.

Basic process:

- Take several images of a checkerboard pattern.
- Use MATLAB Function EstimateCameraParameters
  - Estimates tangential and radial distortion parameters
  - Measures pixel location of optical center
  - Estimates focal length (reality check, should be close to that of our lens)
  - Produces object with all of this information
- Given undistorted Centroid Locations, can undistort using MATLAB undistortPoints()
- This will undistort centroids to their location under a pinhole projection.
- We can then calculate the unit vector that points to the centroid.



- Centroid determined in pixel coordinates
- Vector to the object defined by coordinate offsets of the centroid (u' and v') from the optical center location and the focal length
- Vector =  $[u', v', f] \rightarrow$  Normalize to unit length

| [-0.0174,0,0.9998]    |
|-----------------------|
| [-0.0175,4e-5,0.9998] |
| 0.0102 degrees        |
| [                     |



## **Full Range Object Recognition**



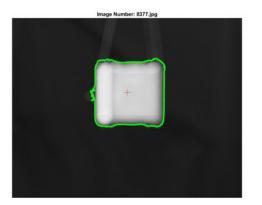



Image Number: 8391.jpg

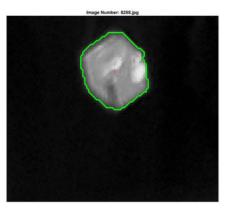




5 m

5 m

5 m




## **Full Range Object Recognition**

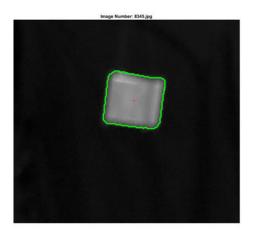



Image Number: 8261.jpg









70 m

60 m

40 m



CCAR

## **Full Range Object Recognition**



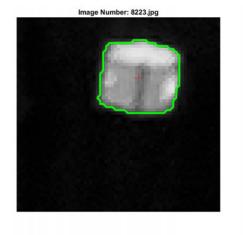



Image Number: 8231.jpg



Image Number: 8238.jpg

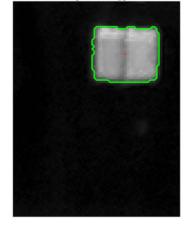
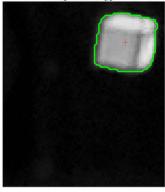




Image Number: 8254.jpg



80 m

80 m

70 m



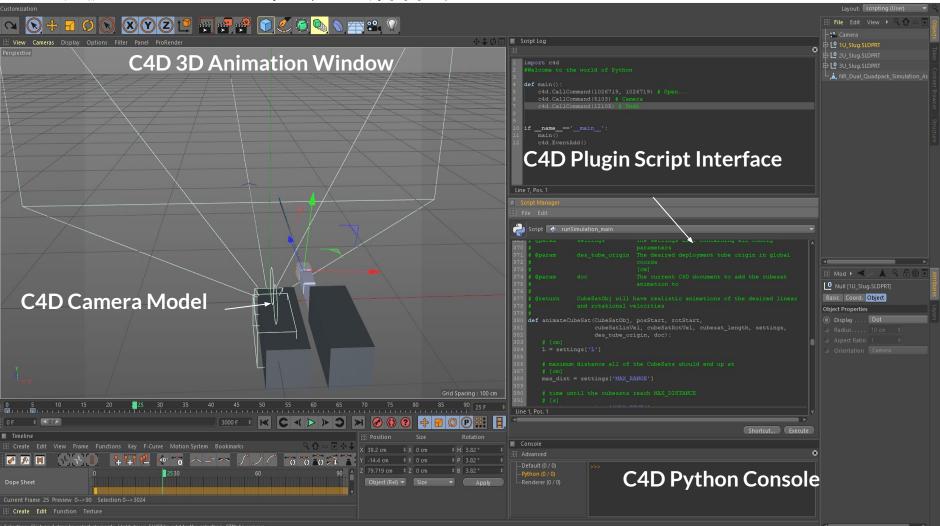






- Industry standard animation and effects professional software
- We are using free student licenses
- Parametric configuration in YAML config files
  - Types of CubeSats
  - Separations, Linear / Angular Velocities
  - Coordinate Systems
  - Sampling Rates, Camera / ToF Params
- Created a **python plugin** using C4D Python API
  - Input python
  - o Output .fbx files to input animation, camera, and lighting to Blensor



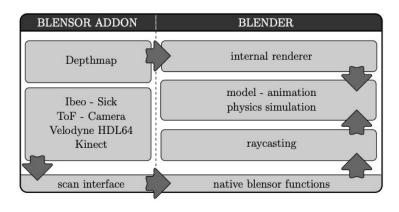



| <u>File Edit Selection Find View Goto Tools Project Preferen</u>             | ces <u>H</u> elp |                                    |                                                                   |                                                      |                                                                            |
|------------------------------------------------------------------------------|------------------|------------------------------------|-------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------|
| FOLDERS                                                                      | runSimulation_   | main.py × Sir                      | nulation Setup Pyth                                               | on Plugin                                            | config_simulation_template.yaml ×                                          |
| v 📄 13 Simulation 34                                                         | 5                |                                    | , , , , , , , , , , , , , , , , , , , ,                           |                                                      |                                                                            |
| I C4D ORGINFILE                                                              |                  |                                    |                                                                   | -238                                                 |                                                                            |
|                                                                              | 8 #@brief        |                                    |                                                                   |                                                      |                                                                            |
| ▼ → 3 C4D Scripts 34                                                         |                  |                                    |                                                                   |                                                      |                                                                            |
|                                                                              |                  |                                    |                                                                   |                                                      |                                                                            |
| - 35                                                                         | 2 #              |                                    |                                                                   |                                                      |                                                                            |
| /* config_simulation_Josh_CDR (1).yaml 35                                    | 3 #<br>1 #       |                                    |                                                                   | 15                                                   |                                                                            |
| /* config_simulation_Josh_CDR.yaml                                           |                  |                                    |                                                                   | 16<br>17                                             |                                                                            |
| 35                                                                           | 6 #@param        |                                    |                                                                   | 17<br>18                                             |                                                                            |
| /* config_simulation_Justin.yami 35<br>/* config_simulation_template.yaml 35 |                  |                                    | The start location of the CubeSat's centroid<br>in global coords. | 19                                                   |                                                                            |
| /* desktop.ini 35                                                            |                  |                                    |                                                                   | 20                                                   |                                                                            |
| 36                                                                           | ð #@param        |                                    |                                                                   |                                                      |                                                                            |
|                                                                              |                  |                                    |                                                                   |                                                      |                                                                            |
| 36                                                                           |                  |                                    |                                                                   |                                                      |                                                                            |
| /* dylantruthsimulation.yaml 36                                              |                  |                                    |                                                                   |                                                      |                                                                            |
| ≝ .gitignore 36                                                              |                  |                                    |                                                                   |                                                      | / # If there are N CUBESATS_SIZES, there will be N - 1 CUBESAT_SEPARATIONS |
| /*initpy36                                                                   |                  |                                    |                                                                   |                                                      |                                                                            |
| /* desktop.ini 36                                                            |                  |                                    |                                                                   |                                                      | UHESAT SEPARATIONS:                                                        |
| /* runSimulation_main.py 36                                                  |                  |                                    | The settings dict containing all config<br>parameters             | BECKEN PARTY AND |                                                                            |
| ▶ 4 MISC file 37                                                             |                  |                                    |                                                                   |                                                      |                                                                            |
| 5 Documentation 37                                                           |                  |                                    |                                                                   | 33                                                   |                                                                            |
| ▶ 6_C4D_Simulation_Cases 37                                                  |                  |                                    |                                                                   |                                                      |                                                                            |
| T_Blensor_Simulation_Cases 37                                                |                  |                                    |                                                                   |                                                      |                                                                            |
| 8 Modified Blensor 37                                                        |                  |                                    |                                                                   |                                                      |                                                                            |
| 9 Documentation 37<br>37                                                     |                  |                                    |                                                                   |                                                      |                                                                            |
| /* desktop.ini 37                                                            |                  |                                    |                                                                   |                                                      |                                                                            |
| 🖬 dylan.jpg                                                                  |                  |                                    | i, posStart, rotStart,                                            | 41                                                   |                                                                            |
| <> README.md 38<br>38                                                        |                  | des tube d                         | nVel, cubeSatRotVel, cubesat_length, settings,<br>prigin, doc):   | 43                                                   |                                                                            |
| 38                                                                           |                  |                                    |                                                                   |                                                      |                                                                            |
| 38                                                                           |                  | tings['L']                         |                                                                   | ACC STREET                                           |                                                                            |
| 38                                                                           |                  |                                    |                                                                   | 40<br>2000/07/2000 47                                |                                                                            |
| 38                                                                           |                  |                                    |                                                                   | 48                                                   |                                                                            |
| 38                                                                           |                  | t = settings['MAX_                 | RANGE']                                                           | # 1- University                                      |                                                                            |
| 39                                                                           |                  |                                    |                                                                   |                                                      |                                                                            |
| 39                                                                           |                  |                                    |                                                                   |                                                      |                                                                            |
| 39                                                                           |                  | e = settings['MAX_                 | TIME']                                                            | 55<br>54                                             |                                                                            |
| 39                                                                           |                  | oc.GetFps()                        |                                                                   |                                                      |                                                                            |
| 39                                                                           |                  |                                    |                                                                   |                                                      |                                                                            |
| 39                                                                           |                  | ng the starting ar<br>ZStartFrame, |                                                                   |                                                      | # Simulation.<br># [omega_x, omega_x]                                      |
| 39                                                                           |                  | LinXYVelStartFrame                 |                                                                   |                                                      |                                                                            |
| 39                                                                           |                  | me) = getAnimation                 | FrameNumbers(L, cubesat_length,                                   |                                                      |                                                                            |
| 40<br>40                                                                     |                  |                                    | posStart, max_dist,<br>des tube origin,                           |                                                      |                                                                            |
| 40                                                                           |                  |                                    | fps, cubeSatLinVel[2])                                            |                                                      |                                                                            |
| 40                                                                           | 3                |                                    |                                                                   | 64                                                   |                                                                            |



A S



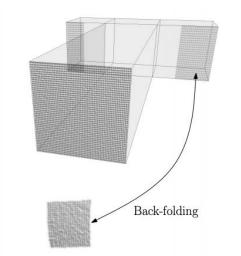








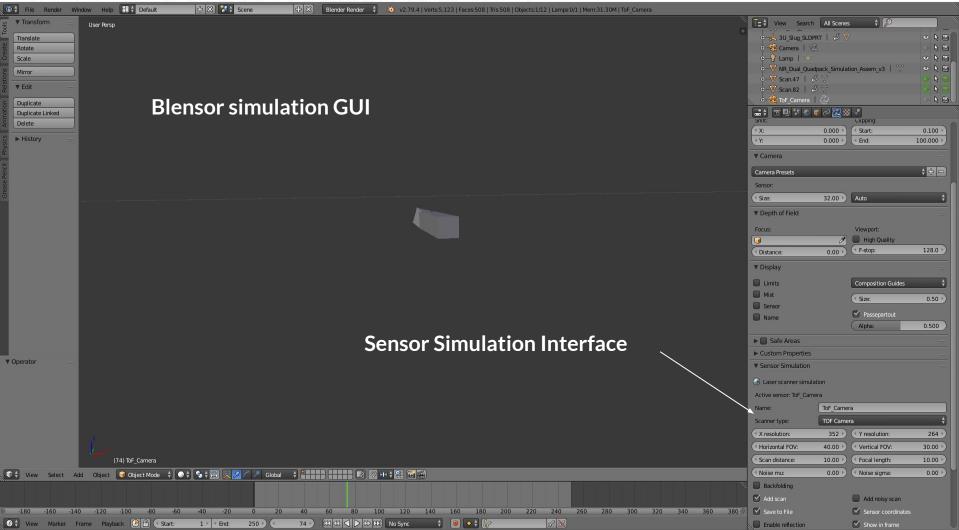

- An add-on running in Blender GUI
- A thesis for a PHD. Michael Gschwandtner "Support Framework For Obstacle Detection on Autonomous Trains" University of Salzburg
- The main purpose of Blensor is to simulate a 3-D ToF sensor and test the sensor for autonomous train. It will use all the model built in blender with ray-tracing techniques and physics models to simulate a ToF sensor
- The sensor simulation interface is a part of the blender GUI. It can be used simply use for adjusting all the different parameter for the sensor (such as reflection & <sup>12/03/2018</sup>noise)







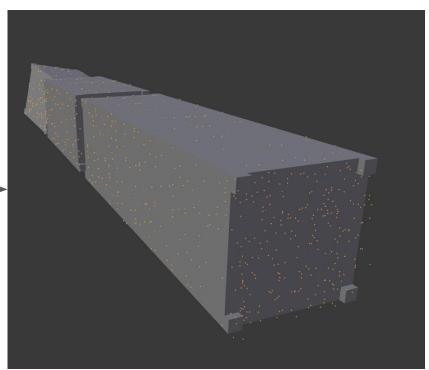

• It use physics model to capture all of the ToF's sensor characteristics


Such as below the back-folding effect from ToF sensor:

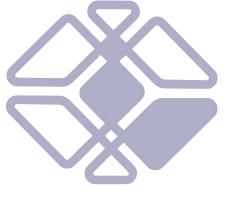




#### Comparison of normal distances from a real and simulated scan to a wall


PHD. Michael Gschwandtner, "Support Framework For Obstacle Detection on Autonomous Trains", University of Salzburg








| Sensor Simulation       |                          |                    |       |  |  |  |
|-------------------------|--------------------------|--------------------|-------|--|--|--|
| Laser scanner simula    | Laser scanner simulation |                    |       |  |  |  |
| Active sensor: ToF_Came | era                      |                    |       |  |  |  |
| Name:                   | ToF_Came                 | ra                 |       |  |  |  |
| Scanner type:           | TOF Came                 | ra                 | \$    |  |  |  |
| • X resolution:         | 352 🖻                    | ( Y resolution:    | 264   |  |  |  |
| Horizontal FOV:         | 40.00                    | Vertical FOV:      | 30.00 |  |  |  |
| Scan distance:          | 10.00                    | • Focal length:    | 10.00 |  |  |  |
| Noise mu:               | 0.01                     | (* Noise sigma:    | 0.01  |  |  |  |
| Backfolding             |                          |                    |       |  |  |  |
| Add scan                |                          | 🗹 Add noisy scan   |       |  |  |  |
| 🗹 Save to File          |                          | Sensor coordinates |       |  |  |  |
| Enable reflection       |                          | Show in frame      |       |  |  |  |
| 🗹 Store data in mesh    |                          |                    |       |  |  |  |
| 🔲 Inv X                 | 🔲 Inv Y                  | 🔲 Inv Z            |       |  |  |  |
| Start frame:            | 0 🖻                      | End frame:         | 320   |  |  |  |
|                         | Single                   | scan               |       |  |  |  |
|                         | Scan range               |                    |       |  |  |  |
| Export motion           |                          | Delete scans       |       |  |  |  |



CCAR



# **Electronics Backup**







## Electronic Design Requirements VANTAGE



| Req. Label | Summary                                                                                                                                                                                                                                                                             | Satisfied |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|
| DR. 2.1    | The electronics subsystem shall interface with the PC which simulates the NanoRacks use-case system via a USB2.0 Port for all data communication needs.                                                                                                                             | Yes       |  |  |
| DR. 3.1    | DR. 3.1 The system shall operate with up to 120 VDC with a ripple voltage of 3Vpp and less than 5 A, which simulates the power available from the NanoRacks use-case system.                                                                                                        |           |  |  |
| DR. 3.2    | 3.2 The system shall draw less than 520 Watts.                                                                                                                                                                                                                                      |           |  |  |
| DR. 3.3    | The electronics subsystem shall enter a low power mode when not performing any operations (i.e. before a final test has been started, after a final test has been completed and all post-processing and communications have completed).                                             | Yes       |  |  |
| DR. 8.1    | The electronics subsystem shall transmit all relative position and velocity vector estimates<br>and uncertainties, as well as mock CubeSat deployment images back to the PC which<br>simulates the NanoRacks use-case system within 15 minutes of final mock CubeSat<br>deployment. | Yes       |  |  |
| DR. 8.2    | The system shall store all images, sensor data, and estimates within an onboard data storage device.                                                                                                                                                                                | Yes       |  |  |



Vantage can communicating with the Nanoracks use-case system via Arduino USB serial port.



| Req.   | Summary                                                                                                                                                 |  |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| DR 2.1 | The electronics subsystem shall interface with the PC which simulates the NanoRacks use-case system via a USB2.0 Port for all data communication needs. |  |  |  |

-



## Avionics-Power Supply (DR 3.1)



Feasible? Yes:

- The VANTAGE system needs to step down from 120 VDC to 24VDC and from 120VDC to 19VDC
- 120V to 24V DC DC Converter
  - MEAN WELL USA Inc. DDR120D
    - **\$63.00**
    - 120W max (~40W more power than we expect to draw)
- 24V to 19V DC DC Converter
  - TDK-Lambda Americas Inc. 285-2857-ND
    - \$35.00
    - 250W max

|         | Req. Label | Summary                                                                                            |
|---------|------------|----------------------------------------------------------------------------------------------------|
|         | DR.3.1-EL  | The system shall operate with up to 120 VDC with a ripple voltage of 3Vpp and less than 5 A, which |
|         |            | simulates the power available from the NanoRacks use-case system.                                  |
| n 2 / 2 | 010        | Critical Design Deview                                                                             |

Image Credit: DigiKey



### Mean Well DDR-120D





120W DIN Rail Type DC-DC Converter



#### SPECIFICATION

| MODEL      |                              | DDR-120C-12         | DDR-120C-24                                                                                              | DDR-120C-48    | DDR-120D-12     | DDR-120D-24                             | DDR-120D-48   |
|------------|------------------------------|---------------------|----------------------------------------------------------------------------------------------------------|----------------|-----------------|-----------------------------------------|---------------|
|            | DC VOLTAGE                   | 12V                 | 24V                                                                                                      | 48V            | 12V             | 24V                                     | 48V           |
|            | RATED CURRENT                | 10A                 | 5A                                                                                                       | 2.5A           | 10A             | 5A                                      | 2.5A          |
|            | CURRENT RANGE                | 0~10A               | 0~5A                                                                                                     | 0~2.5A         | 0~10A           | 0~5A                                    | 0~2.5A        |
|            | RATED POWER                  | 120W                | 120W                                                                                                     | 120W           | 120W            | 120W                                    | 120W          |
|            | PEAK CURRENT                 | 15A                 | 7.5A                                                                                                     | 3.75A          | 15A             | 7.5A                                    | 3.75A         |
|            | PEAK POWER Note.5            | 180W (3sec.)        |                                                                                                          |                |                 |                                         |               |
| OUTPUT     | RIPPLE & NOISE (max.) Note.2 | 50mVp-p             | 50mVp-p                                                                                                  | 50mVp-p        | 50mVp-p         | 50mVp-p                                 | 50mVp-p       |
|            | VOLTAGE ADJ. RANGE           | 9~14V               | 24 ~ 28V                                                                                                 | 48~56V         | 9~14V           | 24 ~ 28V                                | 48~56V        |
|            | VOLTAGE TOLERANCE Note.3     | ±1.0%               | ±1.0%                                                                                                    | ±1.0%          | ±1.0%           | ±1.0%                                   | ±1.0%         |
|            | LINE REGULATION              | ±0.5%               | ±0.5%                                                                                                    | ±0.5%          | ±0.5%           | ±0.5%                                   | ±0.5%         |
|            | LOAD REGULATION              | ±1.0%               | ±1.0%                                                                                                    | ±1.0%          | ±1.0%           | ±1.0%                                   | ±1.0%         |
|            | SETUP, RISE TIME             | 500ms, 60ms @48Vdc  |                                                                                                          |                | 500ms, 60ms @11 | l0Vdc                                   |               |
|            | HOLD UP TIME (Typ.)          | comply with S1 leve | omply with S1 level (6ms) @ full load, S2 level (10ms) @ 60% load                                        |                |                 | comply with S2 level (10ms) @ full load |               |
|            | VOLTAGE RANGE Note.4         | 33.6~67.2Vdc        | 33.6~67.2Vdc                                                                                             | 33.6 ~ 67.2Vdc | 67.2 ~ 154Vdc   | 67.2 ~ 154Vdc                           | 67.2 ~ 154Vdc |
| UDUT       | EFFICIENCY (Typ.)            | 89.5%               | 91%                                                                                                      | 92%            | 89.5%           | 91%                                     | 91.5%         |
| NPUT       | DC CURRENT (Typ.)            | 2.8A @48Vdc         |                                                                                                          |                | 1.3A@110Vdc     |                                         |               |
|            | INRUSH CURRENT (Typ.)        | 5A @48Vdc           |                                                                                                          |                | 5A@110Vdc       |                                         |               |
|            | OVERLOAD                     |                     | Normally works within 150% rated output power for more than 3 s<br>rated output power with auto-recovery |                |                 | onstant current protect                 | on 105~135%   |
| PROTECTION |                              | 14.4 ~ 16.8V        | 28.8~33.6V                                                                                               | 57.6~67.2V     | 14.4 ~ 16.8V    | 28.8 ~ 33.6V                            | 57.6~67.2V    |
|            | OVER VOLTAGE                 | Protection type : S | Protection type : Shut down o/p voltage, re-power on to recover                                          |                |                 |                                         |               |



### **TDK-Lambda I6AP**



#### **Electrical Data:**

| Characteristic                     |                                             | Min | Тур                      | Max   | Unit        | Notes & Conditions                                                                                                                             |
|------------------------------------|---------------------------------------------|-----|--------------------------|-------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Output Voltage Initial Setpoint    |                                             | -2  | -                        | +2    | %           | Vo=3.3Vsetting, Vin=Vin,nom; Io=Io,min; Tc<br>= 25°C                                                                                           |
| Output Voltage Tolerance           |                                             | -4  |                          | +4    | %           | Over all rated input voltage, load, and temperature conditions to end of life                                                                  |
| Efficiency                         | Vo = 3.3V<br>Vo = 5V<br>Vo = 8V             |     | 92.5<br>94.5<br>96       | =     | %<br>%<br>% | Vin=12V; lo=lo,max; Tc=25°C                                                                                                                    |
| Efficiency                         | Vo = 5V<br>Vo = 12V<br>Vo = 15V<br>Vo = 20V | =   | 92.5<br>96.5<br>97<br>98 |       | %<br>%<br>% | Vin=24V; lo=lo,max; Tc=25°C                                                                                                                    |
| Line Regulation                    |                                             |     | 0.3                      |       | %           | Vin=Vin,min to Vin,max                                                                                                                         |
| Load Regulation                    |                                             |     | 1                        |       | %           | lo=lo,min to lo,max                                                                                                                            |
| Output Current                     |                                             | 0   |                          | 14    | A           | Observe maximum power limit                                                                                                                    |
| Output Current Limiting Threshold  |                                             |     | 22                       |       | A           | Vo = 0.9*Vo,nom, Tc <tc,max< td=""></tc,max<>                                                                                                  |
| Short Circuit Current              |                                             |     | 0.5                      |       | A           | Vo = 0.25V, Tc = 25°C                                                                                                                          |
| Output Ripple and Noise Voltage    |                                             |     | 20                       |       | mVpp        | Measured across one 0.1 uF ceramic<br>capacitor and one 22uF ceramic capacitor –<br>see input/output ripple measurement figure;<br>BW = 20MHz. |
| Output Voltage Adjustment Range    |                                             | 3.3 |                          | 24    | V           |                                                                                                                                                |
| Output Voltage Sense Range         |                                             |     |                          | 5     | %           |                                                                                                                                                |
| Dynamic Response:<br>Recovery Time |                                             |     | 50                       |       | uS          | di/dt =1A/uS, Vin=Vin,nom; Vo=12V, load<br>step from 25% to 75% of lo,max                                                                      |
| Transient Voltage                  |                                             |     | 500                      |       | mV          |                                                                                                                                                |
| Switching Frequency                |                                             |     | 400                      |       | kHz         | Fixed                                                                                                                                          |
| External Load Capacitance          |                                             | 0   |                          | 2000* | uF          |                                                                                                                                                |
| Vref                               |                                             |     | 0.6                      |       | V           | Required for trim calculation                                                                                                                  |
| F                                  |                                             |     | 36500                    |       | Ω           | Required for trim calculation                                                                                                                  |
| G                                  |                                             |     | 511                      |       | Ω           | Required for trim calculation                                                                                                                  |

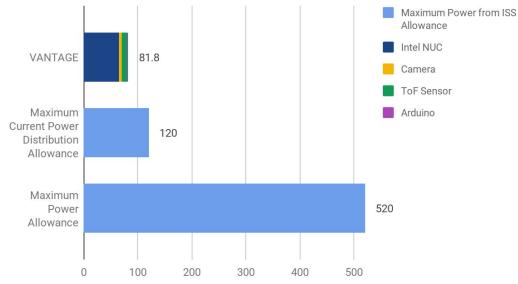
Please contact TDK - Lambda Americas for technical support for very low esr capacitor banks or if higher capacitance is required



## Avionics - Power Consumption (DR 3.2)



#### **Feasible? Yes**


- VANTAGE power usage below maximum power allowance
- Power (Max) Break Down
  - NUC 65W

5W

81.8 W

-

- Camera -
- ToF Sensor 10W
- $\circ~$  Arduino Mega with Shield ~-~ 1.8 W
- Total



| Req.   | Summary                                    |
|--------|--------------------------------------------|
| DR 3.2 | The system shall draw less than 520 Watts. |

#### **Power Consumption**



#### **Electronic Low Power mode (DR3.3)**



- During the Avionics low power mode, only the Arduino Mega will be online.
- When the Nanorack's use-case system sends the metadata file through the USB2.0 connection, Arduino will send a Wake-on-Lan package through the Ethernet connection. (DHCP)
- The Wake-on-Lan functionality is based on the Linux Wake-On-Lan script. It works by using the PC IP and MAC address to target the NUC and wake it up.



| Req. Label | Summary                                                                                                                                                                                                                                 |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DR.3.3-EL  | The electronics subsystem shall enter a low power mode when not performing any operations (i.e. before a final test has been started, after a final test has been completed and all post-processing and communications have completed). |



-

#### Data Processing Time Calculations (DR 8.1)



- A data file, following the NanoRack's format, is input through USB 3.0 to the NUC. Slowest transfer speed: 220.1MB/S
  - Import from ToF
    - The total ToF data worse case(0.5 /s deployment) will have 600 frames of data and a single file size of 2.4 MB. Transferring this on USB3.0 will take 6.54 Sec.
  - Import from Camera
    - The total Camera worst case will have 400 frames and a single file size of 6.41 MB (8-bits Single Channel 3088x2076 footage). Transferring this on USB3.0 will take 11.65 Sec.
  - The following programs were run on the NUC:
    - ToF Centroiding 0.2 sec per point cloud
    - Image Processing 0.26 sec per image
    - Camera Distortion 0.132 sec per image
    - Sensor Fusion 1.68e-4 sec per image
  - Output to NR with 76800 Baud rate serial USB2.0 output. We are looking at a 0.2% bit error.

| Req.   | Summary                                                                        | Addressed in Slide(s) |
|--------|--------------------------------------------------------------------------------|-----------------------|
| DR 8.1 | VANTAGE shall have ability to store and processing large amount data in 15 Min |                       |



#### Arduino USB2.0 Output Bit Error



|        | 16 Mhz |            |  |  |  |  |  |
|--------|--------|------------|--|--|--|--|--|
| Baud   | UBRR   | % of error |  |  |  |  |  |
| 300    | 3332   | 0.0        |  |  |  |  |  |
| 600    | 1666   | 0.0        |  |  |  |  |  |
| 1200   | 832    | 0.0        |  |  |  |  |  |
| 2400   | 416    | 0.1        |  |  |  |  |  |
| 4800   | 207    | 0.2        |  |  |  |  |  |
| 9600   | 103    | 0.2        |  |  |  |  |  |
| 14400  | 68     | 0.6        |  |  |  |  |  |
| 19200  | 51     | 0.2        |  |  |  |  |  |
| 28800  | 34     | 0.8        |  |  |  |  |  |
| 38400  | 25     | 0.2        |  |  |  |  |  |
| 57600  | 16     | 2.1        |  |  |  |  |  |
| 76800  | 12     | 0.2        |  |  |  |  |  |
| 115200 | 8      | 3.7        |  |  |  |  |  |

- AVR Baud Rate Table

$$- UBPR = \frac{f_{OSC}}{16BAUD} - 1$$

- We will use a Baud Rate of 76800 for the USB communication with NR
- 9.6 Kb/s Uplink Speed

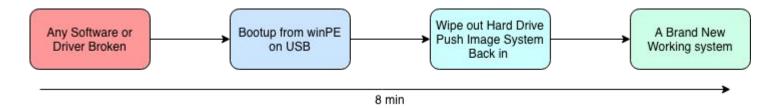


# Data Storage Calculations (DR 8.2) VANTAGE



|              | Normal Size       | Number     | Total    |
|--------------|-------------------|------------|----------|
| TOF data     | 2.4 MB per frame  | 600 frames | 1440 MB  |
| Camera Data  | 6.41 MB per frame | 400 frames | 2564 MB  |
| Windows Size | 20GB              | 1          | 20480 MB |
| Matlab       | 15GB              | 1          | 15360 MB |
| Total        |                   |            | 39.94 GB |

| Req.   | Summary                                                                                              |  |
|--------|------------------------------------------------------------------------------------------------------|--|
| DR 8.2 | The system shall store all images, sensor data, and estimates within an onboard data storage device. |  |




## **Fast Recovery For Testing**



To eliminate VANTAGE avionics driver issues and operating system errors, the following will be used:

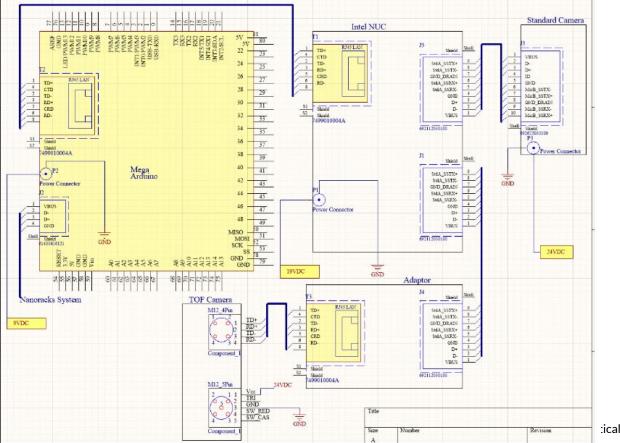
- All VANTAGE drivers and software will be clean installed and the system will be imaged.
- WinPE(Windows Preinstallation Environment) will be used in case things need to be recovered or windows needs to be repaired.





### **Avionics - Parts Break Down**




| Electronic Parts                      |   |  |
|---------------------------------------|---|--|
| Intel NUC                             | 1 |  |
| USB To Ethernet Converter             | 1 |  |
| DCDC: Mean Well 120D-24               | 1 |  |
| DCDC: TDK-Lambda Americas 16AP Series | 2 |  |
| Arduino Mega 2560                     | 1 |  |
| Arduino Ethernet Shield R3            | 1 |  |

12/03/2018



Wiring Diagram





:ical Design Review 328



## **Power Distribution - Test Plan**



- The XFR 300-4 power supply (provided by Trudy) will be used to simulate the 120V NanoRacks power system.
- The Keysight N3301A load tester (provided by Tim May) will be used to test voltage variation in this supply. This system can take a 0-600W load.



