

Visual In-situ Sensing for Inertial Orbits of Nanosats TRR

Advisor: Morteza Lahijanian Customer: Penina Axelrad (CCAR)

Senior Projects Team: Adam Boylston, Adrian Perez, Andrew Pfefer, Bao Tran, Ben Hagenau, Cameron Baldwin, Ian Thomas, Mathew van den Heever, Max Audick, Tanner Glenn, Ted Trozinski, Zhuoying Chen

CCAR

VISION is a working prototype device that will monitor CubeSats from a launch provider as they deploy. VISION will deliver timely Two-Line Elements which will reduce the time between deployment and identification and eliminate ambiguity amongst CubeSats.

Mission Statement:

Project VISION will improve Space Situational Awareness (SSA) by developing an in-situ, autonomous prototype that tracks and estimates individual CubeSat trajectories during deployment.

Concept of Operation: Mission Overview

VISION Team CONOPS

Structural Overview

Critical Project Elements

Software Simulation

• Simulate sensor data inputs in relevant environment

Sensor Data Collection

• Automated data collection of sensors: TOF, Monochrome, GPS

Data Processing

• Determine centroid positions and filter relative velocities

TLE Estimation

• Deliverable to enable integration with existing SSA solutions

Functional Block Diagram

- Integration of Subsystems
 - Single power source
 - **PCB:** Soldered-in components
 - Raspberry Pi used to power/control
 - o Fully **autonomous** system
- State Estimation Software → TLEs
 Implemented nonlinear batch filter
- New Structure/Chassis
 - Reduced size by 45%
 - **Complete** design rework
 - o New **external** mounting mechanism

- Simulation
 - Non-linear CubeSat trajectories
- Integrated GPS
 - Attitude determination
- Testing
 - Centroid detection
 - Vibrational/Shock **testing of chassis**
 - Advanced TRL

Schedule

Project Schedule - Overview

Testing

Full System Test

- **Centroid detection** is extremely important in VISION's state estimation process
- The Physical Centroid Detection test will validate VISION's ability to **differentiate**

between up to 6 CubeSats and estimate centroids for each CubeSat.

Req.	Description
DR-1.1	VISION shall characterize and differentiate up to 6 CubeSats of 1U and up to 3U sized CubeSats.
DR-1.2	VISION shall estimate the centroid of each CubeSat of 1U up to 3U size

Calc Orbital Elements

Single Body Static Test

- Randomly orient CubeSat
- Determine centroid

Multi-Body Static Test

- Orient mock CubeSats Collect data
- Determine centroid of each CubeSat
- Determine system centroid

Simulated Dynamics Test Overview

State Estimation: Pre-Testing Status

	Development Status	Level of Validation	Integration Testing Readiness
Rotation into Orbit Frame	Complete	Unit Testing	Ready
State Estimation (Batch Filter)	Complete	Unit Testing	Tune using test data
Rotation into Inertial Frame	Complete	Unit Testing	Ready
Estimation of Classical Orbital Elements	Complete	Unit Testing	Ready
TLE Assembly	In - Progress	N/A	Not Ready

Req. Summary

- DR-2.2 VISION shall **estimate the inertial position** of each CubeSat such that the STD conforms to the Inertial Position Uncertainty Map.
- DR-2.6 VISION shall produce **Two-Line Elements** that can be **propagated** using the **SPG4** propagation tool.

State Estimation: Test Overview

Verification and Validation

Purpose of Full System Test

- Show full integration of system
- •Autonomous functionality of entire system to provide TLE
- Test accuracy and uncertainty profiles of real sensors and

state estimation software integration

Req.	Description
DR-2.7	VISION shall calculate and package TLE estimates within 15 minutes of the end of the deployment sequence.
DR-3.1	VISION shall deliver a still image of each individual CubeSat in a deployment.
DR-4.1	The chassis envelope shall enclose all components, excluding protruding instrument sensors.
DR-4.4	The system shall store images, raw data, and estimates of one deployment cycle, onboard, for the duration of the data processing and downlink period.

Overview of Test:

Budget

Budget Remaining:

\$2,696.92

Plans for funds:

• Replace any component that fails

Intel NUC \$641.84

Questions?

Back-Up Slides

Structural Tests Overview

Req.	Description
DR-4.1	The chassis envelope shall enclose all components, excluding protruding instrument sensors.
DR-5.1	The chassis shall mechanically integrate with one deployment system, as defined in the Mechanical Interface Control Document (MICD).
DR-5.2	The system shall have a mass of less than 8 kg.
DR-5.3	The system shall have dimensions less than 6000 cm3.
DR-6.1	Chassis structure shall reach an advanced TRL certification, or equivalent.
DR-6.2	Chassis structure shall maintain structural integrity within a safety factor of 2.

<u>Requirement Justification:</u>

- VISION System must be compact, and accessible (CubeSat Restrictions)
- VISION is aware of the intended environment (TRL must improve)
- Interface Control Documents are integral to setting a baseline for integration with customer/deployer
- Structure is a Non-Critical component, but essential to robustness
- 3 Structural Tests:
 - Physical Inspection
 - Vibe
 - Thermal & Vacuum

Structural Tests Overview

Component	Status
Chassis	3 Faces Completed, anticipated completion on March 1 st
Mechanical Interface Control Document	50% Written, anticipated completion of March 5 th
Electrical Components	Purchased/Tested, anticipated integration date of March 2 nd
Vibe Test Fixtures	Test Confirmed, CAD drawings finished, anticipated milling date of March 7 th

Test	Date of Completion
Physical Integration Inspection	March 1 st
Vibe Test	March 19 th *
Thermal Chamber Testing	March 11 th
Vacuum Chamber Testing	March 11 th

*Insert Evidence Photos

Full System Test (Thermal Considerations)

Chassis Properties:

- $A_{total} \approx 2000 \text{ cm}^2$
- $t_{max} = 0.5 \text{ cm}$
- $k_{al(6061)} = 167 [W/m \cdot C^{\circ}]$

$$q_{in} = \frac{k}{t} \cdot A \cdot dT$$

$$dT = \frac{q_{in} \cdot t}{k \cdot A} \approx 1^{\circ} C / \min *$$

Components	Max Power Consumption
ToF camera	40W
Raspberry Pi	5W
Intel NUC	65W
Monochrome Camera	5W
GPS Receiver	1W
GPS Antenna	0.2W
DC/DC Converter (~90% eff)	Expected Heat Draw
124-24 V	12W
24-12 V	25W
24-5 V	25W
Expected \mathbf{Q}_{in}	178.2W

*Assuming all HW emits 50% max power as heat and converters operate at a lower efficiency.

Test	Status	Validation
Electrical Power System Test (PCB mockup test)	Completed Results: The system booted up with simulated power supply.	DR. 4.2 & DR. 4.3
Boot up Test	Completed Results: The NUC was booted up by the student's laptop controlling raspberry pi remotely.	DR. 5.4
Data and Command Interface Test	Planned Expected Results: The student's laptop shall be able to send commands to raspberry pi to wake up the NUC and receive data from NUC via raspberry pi.	DR. 5.4

CCAR
\square

Req. ID	Description
DR-5.4	The electrical power distribution subsystem shall interface with a PC. Note: This interface will simulate all data and power communications between a potential deployment system.
DR-4.2	The system shall operate with no more than 120 VDC, 3 Vpp ripple voltage, and 5 A.
DR-4.3	The system shall draw no more than 520 Watts.

Justification:

- The personal PC shall be able to boot up the whole system and receive estimates autonomously
- The system shall be able to operate with simulated power from the deployer

Back up – Electrical PCB Mockup Test

CCAR

41

GPS Subsystem Test Overview

								or /
							etect	nent
				。 / 。	yster .e	m /	oid	ronn
			all VIID	SUD	SYST.	Cent	, En	
			ctura	tricat	SUD .	ical	ulater .	al ^{SI}
Requirement	Simplified	<u> </u>	s the	ં⁄ હર*	Pur	- sin	i on	· / 43
DR-1.1	Differentiate CubeSats				x	х		
DR-1.2	Centroid Identification					х		х
DR-1.3	Identification by Manifest					х		
DR-2.1	Deployment Period					х		
DR-2.2	Estimation Accuracy						x	х
DR-2.3	GPS Single-Axis Attitude			x				
DR-2.4	GPS Position			X				
DR-2.7	15 Minute Estimates						x	x
DR-3.1	Proof of Deployment Image							х
DR-4.1	All Components Contained in Chassis	x						
DR-4.2	Voltage/Current Limitations		x					
DR-4.3	Power Limitations		x					
DR-4.4	Store Data Onboard							x
DR-5.1	MICD w/ Deployment System	x						
DR-5.2	Mass <8kg	X						
DR-5.3	Dimensions <6000cm^3	x						
DR-5.4	Communicate with PC		x					
DR-5.5	Comply with EMI/EMC Regulations		X*					
DR-6.1	Advance TRL Certification	X						
DR-6.2	Structural FOS of 2	x						
DR-6.3	Component Equivalency		х					

Verifications

State Estimation Back-up: Batch Filter Performance

Scenario:

- 1. 1. Keplerian orbits
- 2. 2. Deployer ECC=0.1
- 3. 2. Measurement $\sigma = 1 [m]$
- 4. 3. 250 measurements over $\sim 6 [s]$

Performance:

- 1. Run Time: 3.32 [s]
- 2. Outer Batch Iterations: 2
- 3. Batch Convergence: 1.639e-16
- 4. Min Position $3\sigma \sim 20$ cm
- 5. Max Position $3\sigma \sim 40$ cm

Tack	%	March 2020											April 2020						
IdSK		29	3	6	9	12	15	18	21	24	27	30	2	5	8	11	14	17	20
Project Logistics	67%	_																	
⊡ Manufacturing	86%																		
Left / Right	95%																		
Front Face & Rear Panel	75%																		
Integration	77%	1																	
⊟ Hardware (Sensors)	73%	1																	
TOF Spec Verification	85%				- 2	///////	//////												
Confirm Code for TOF	85%					//////													
GPS Calibration	50%																		
Confirm Code for GPS	50%	-							//////	Z									
Integrate Sensors with NUC	50%	-																	
⊟Electronics	81%																		
Integrate NUC with Sensors	25%	-								2									
Integrate NUC with Post Processing Code	25%		_						///////										
□ Software	90%																		
□ Simulations	95%																		
Process Automation w/ processing	80%			2	///////														
□ Post Processing	81%																		
Integrate Post Processing Code with TOF	65%							////											
Integrate Post Processing Code with Monochrome	75%						2	//////											
Integrate with NUC	25%								//////	\mathbf{Z}									
□ State Estimation	93%	-																	
format_satellite() development and unit tests	90%	-		- 0	///////														
format_deployer() development and unit tests	95%	-			///////														
Batch Filter V & V	85%	-		- 0	///////														
get_tle()	85%	-				7/////													
Integrate with NUC	0%		1						//////	\mathbf{Z}									
⊕ Testing	17%																		_