Weightless Integrated Instrument for Ground-based Laboratory Sensing

WUIGLS

Preliminary Design Review

October 3rd, 2022

ASEN 4018 – 012, Team 11

Company Customers: Professor Francisco Lopez Jimenez Yasara Dharmadasa

> Faculty Advisor: Erik Knudsen

Presenters: Olivia Epstein, Céu Gómez, Victoria Lopez, Matthew Pabin, Tristan Workman

Additional Team Members: Gerardo Romero, Madison Ritsch, Alex Bergemann, Anabel de Montebello

Ann and H.J. Smead Aerospace Engineering Sciences

Presentation Outline

- 1. Project Overview
- 2. Trade Studies
- 3. Risk Analysis
- 4. Current Design Space
- 5. Moving Forward
- 6. Appendix

Trades

Moving Forward

Project Overview

Our mission is to create a modular Weightless Integrated Instrument for Ground-based Laboratory Sensing (WIIGLS) to characterize the dynamic motion of a deployable panel structure.

Trades

Moving Forward

Slow-Motion Deployment

Full-Speed Deployment

3/9/2023

3/9/2023

Appendix

Current Design

Risk Analysis

Trades

3/9/2023

Overview

Moving Forward

Trades

Moving Forward

4. Accelerometers record dynamics during deployment testing.

3. Sensor sleeps until hinge is triggered. 5. Housing is removed from hinge panel.

1. PCB + sensors are secured inside housing.

0

2. Housing is secured inside panel.

Trades

Overview

3/9/2023

Moving Forward > Appendix

∫IIGLS

4. Accelerometers record dynamics during deployment testing.

3. Sensor sleeps until hinge is triggered.

5. Housing is removed from hinge panel. ∫IIGLS

Mm

In F

Moving Forward

6. Data is extracted & packed for further analysis.

3/9/2023

Overview

2. Housing is

secured inside panel.

Trades

Risk Analysis

0

1. PCB + sensors

are secured

inside housing.

🔰 🔪 Current Design 💙

3/9/2023

Risk Analysis Current Design

Appendix

3/9/2023

Moving Forward

Key Functional Requirements

Key Functional Requirements

Trades

Risk Analysis

Design Requirements

Design Element	Description	FR ID:
DR1.1	System shall record deployment dynamics to within 5% of optically tracked motion.	FR1
DR1.2	System shall survive deployment forces and environments without damage.	FR1
DR2.1	System shall be contained within a $30 \times 20 \times 0.5$ cm volume.	FR2
DR2.2	System shall weigh less than 300g.	FR2
DR2.3	System shall have a symmetrical mass distribution about the long axis.	FR2
DR3.1	Sensors shall cost less than \$TBD.	FR3
DR3.2	Processors shall cost less than \$TBD.	FR3
DR3.3	Mounting system shall cost less than \$75.	FR3
DR4.1	Sensor suite shall be able to be comfortably removed or installed within 5 minutes.	FR4
DR5.1	System shall have sufficient battery life to record data for 1 hour and stand by for 1 hour.	FR5
DR5.2	System shall have sufficient on-board storage for 1 hour of data recording.	FR5

3/9/2023

Trades

Risk Analysis > Current Design > Moving Forward

Appendix

Design Requirements

Design Element	Description	FR ID:
DR1.1	System shall record deployment dynamics to within 5% of optically tracked motion.	FR1
DR1.2	System shall survive deployment forces and environments without damage.	FR1
DR2.1	System shall be contained within a $30 \times 20 \times 0.5$ cm volume.	FR2
DR2.2	System shall weigh less than 300g.	FR2
DR2.3	System shall have a symmetrical mass distribution about the long axis.	FR2
DR3.1	Sensors shall cost less than \$TBD.	FR3
DR3.2	Processors shall cost less than \$TBD.	FR3
DR3.3	Mounting system shall cost less than \$75.	FR3
DR4.1	Sensor suite shall be able to be comfortably removed or installed within 5 minutes.	FR4
DR5.1	System shall have sufficient battery life to record data for 1 hour and stand by for 1 hour.	FR5
DR5.2	System shall have sufficient on-board storage for 1 hour of data recording.	FR5

3/9/2023

Overview

Risk Analysis \rightarrow Current Design \rightarrow Moving Forward

Appendix

Critical Project Elements

Trade Study Summary

Title	Description	Requirements & CPE
Suite Insertion	How to best distribute the CG and survive G-loads.	FR1, FR2, FR4, CPE3,
Housing Attachment	How to avoid deployment interference and maximize insertion/removal ease.	FR1, FR2, FR4, CPE4,
Accelerometer	How to survive G-loads and accurately record accelerations within budget.	FR1, CPE1
Microcontroller/ Microprocessor	How to maximize processing speed and minimize power consumption within budget.	FR1, CPE1

*All trades are dependent on correct G-load predictions

Overview

Coding Language	Dependent on microcontroller trade study.	N/A
--------------------	---	-----

Moving Forward

Trade Studies

Tristan Workman, Victoria Lopez & Matthew Pabin

Mechanical DRs & CPEs

DR 2.3	System shall have a symmetrical mass distribution about the long axis.
DR 4.1	Sensor suite shall be able to be comfortably removed or installed within 5 minutes.
CPE 3	Sensor Suite must be integrated in such a fashion so that the panel can open/close (or deploy) as intended.
CPE 4	Housing must remain secure through deployment and predicted G-loads.

Suite Insertion/Connection Trade Study

Metric	Description	Weight	Requirement
Impact to dynamics	The rigidity, mass distribution, and security of the placement of the housing on the paneling.	0.3	FR 2, DR 2.3
Reliability/Survivability	Ability to survive initial shock and subsequent movement consistently.	0.35	DR 1.2
Size and Weight	The dimensions and the total mass of the structure.	0.2	DR 2.1, 2.2, 2.3
Insertability/Removability	Ease and amount of time for insertion and removal.	0.15	DR 4.1

Suite Insertion/Connection Trade Study

	Slide Through Honeycomb	Insert Through Paneling	Attached Externally to Panel
Impact to dynamics (0.3)	4	3	2
Reliability/Survivability (0.35)	5	4	4
Size and Weight (0.2)	5	4	3
Insertability/ Removability (0.15)	4	3	5
TOTAL =	4.55	3.55	3.35

Metric	Description	Weight	Requirement
Impact to dynamics	The rigidity, mass distribution, and security of the connection between the housing and paneling.	0.35	FR 2, DR 2.3
Reliability/Survivability	Ability to survive initial shock and subsequent movement consistently.	0.35	DR 1.2
Size and Weight	The additional volume to the housing and mass of method.	0.1	DR 2.1, 2.2, 2.3
Insertability/Removability	Ease and amount of time for insertion and removal.	0.2	DR 4.1

	Washer + Bolts	Ероху	Expanding Thumb Screw
Impact to dynamics (0.35)	3	4	2
Reliability/Survivability (0.35)	5	5	3
Size and Weight (0.1)	3	5	4
Insertability/Removability (0.2)	5	1	5
TOTAL =	4.1	3.85	3.15

Electrical DRs & CPEs

Moving Forward

Sensor Trade Study

Metric	Description	Weight	Requirement
Sensing capabilities	Amount of Gs the sensor is capable of sensing.	0.3	FR1, D1.1.1, D1.1.3, D1.1.4
Microcontroller/ microprocessor interface	Type of communication to/from sensor (Digital vs. Analog).	0.3	FR1, D1.1.2
Axis	Amount of degrees of freedom.	0.15	FR1, D1.1.3, D1.1.4
Bandwidth	Range of the speed of obtaining output data.	0.15	FR1, D1.1.2
User interface	Ease of use (sufficient documentation).	0.1	FR1

Appendix

Sensor Trade Study

	Accelerometer			IN	IU
	ADXL375	ADXL345	ADXL326	MPU6050	LSM6DSOX
Sensing capabilities (0.3)	5	3	3	4	4
Microcontroller/ microprocessor interface (0.3)	5	5	1	2	5
Axis (0.15)	3	3	3	5	5
Bandwidth (0.15)	2	3	1	5	4
User interface (0.1)	5	5	4	1	5
TOTAL =	4.25	3.7	2.3	3.5	4.5

3/9/2023

Risk Analysis > Current Design

Sensor Design Selection

	Dimension [mm]	Weight [g]	Degrees of Freedom	Interface	Sensing capabilities [Gs]	Voltage Range [V]	Shock Capabilities [Gs]	Bandwidth [kHz]
LSM6DSOX	25.6 x 17.8 x 4.6	1.7	6	SPI/I2C	2,4,6,8,16	3-5	10,000	1.6-6.7

Microcontroller/Microprocessor Trade Study

Metric	Description	Weight	Requirement
User interface	Ease of use (sufficient documentation).	0.2	D1.1
Mass	Weight of the microcontroller/microprocessor.	0.1	FR2, D2.2
Power consumption	Amount of power needed for the microcontroller/microprocessor to work.	0.3	FR5, D5.1
Processing speed	Range of the speed of obtaining output data.	0.25	D1.1
Dimensions	Size of the microcontroller/microprocessor.	0.1	FR2, D2.1
Cost	Monetary value of the microcontroller/microprocessor.	0.05	FR3, D3.2

Microcontroller/Microprocessor Trade Study

Metric	Arduino Pro Micro	Teensy 4.1	RPi Pico	RPi Zero 2W	Feather 32u4
User interface (0.2)	3	4	2	2	4
Mass (0.1)	4	3	5	3	5
Power consumption (0.3)	5	3	1	1	5
Processing speed (0.25)	2	4	3	5	2
Dimensions (0.1)	2	2	5	3	1
Cost (0.05)	4	4	4	3	4
TOTAL =	3.4	3.4	2.65	2.7	3.6

Appendix
Microcontroller Design Selection

	Dimension [mm]	Weight [g]	Power Consumption [mA]	Processing Speed [MHz]	Cost
Feather 32u4	51 x 23 x 8	5.7	~10	8	\$25

Software DRs & CPEs

DR 1.1	System shall record deployment dynamics to within 5% of optically tracked motion.
DR 1.1.3	Sensors shall record accelerations on 3 axes of up to 16 Gs within an accuracy of 5% of the optically tracked motion.
DR 1.1.4	Sensors shall record vibrations on 6 axes of up to 4 Gs within an accuracy of 5% of the optically tracked motion.
CPE 1	Must be able to record linear accelerations and angular velocities accurately.

Moving Forward

Software Functional Block Diagram

Overview

Trades

G-Load Prediction Method 1: Observation

- Highest acceleration is instant of release.
- Solved for ω at several θ 's, given $\theta_0 = 0$.

$$\theta = \omega t + \theta_0 \longrightarrow \omega = \theta/t$$

• Used highest calculated ω , solved for a.

$$\omega = \alpha t = at/r \longrightarrow a = \omega r/t$$

Predicted max g-load: 10.4 Gs [102 m/s²]

Method 2: Motion Capture Software "Tracker"

• Linear regression line through first 24 milliseconds.

3/9/2023

Predicted max g-load: 7.33 Gs [71.9 m/s²]

 $v = at + v_0$

$$v = (71.9)t + (0.836)$$

Expected Deployment G-Loading Analysis

Predicted Peak Acceleration	Factor of Safety	Accelerometer Maximums
10.4 Gs [102 m/s²]	1.5	< 16G [156.96 m/s²]

Current Design

Risk Analysis

Trades

Overview

Moving Forward

Appendix

Risk Analysis

Céu Gómez

High Risk/Uncertainty Elements

- CPE 1

- Difficulty in characterizing expected motion after initial deployment
- Sensor sizing and response rate dependent on motion

- CPE 3

Overview

- Battery monitoring and protection

CPE1 - Modeled Deployment G-Load

#:	Risk:	Mitigation:
1	Loading exceeds sensor range	Add a margin of error to predicted G-loads
2	Loading exceeds safe structural tolerance	Design structure to factor of safety
3	Modal vibration Nyquist frequency exceeds sensor polling rate	Synchronous serial interface to sensors

Trades

Risk Analysis

CPE1 - Vibrations and Frequencies

#:	Risk:	Mitigation:
4	Secondary vibrations	Vibe table frequency analysis
5	Structural resonance	Install vibration dampening mechanism
6	Sensors picking up second-stage frequencies & obscuring modes	Analyze data from multiple sensors

Trades

Risk Analysis

CPE3 - Battery Longevity and Safety

#:	Risk:	Mitigation:
7	Battery puncture	Structural protection for the battery
8	Overdraw	Integrated battery monitoring
9	Thermal runaway	Thermal output modeling

3/9/2023

Trades

Risk Analysis

Risk Matrix

	Very Likely					
Probability	Likely			R5	Incorrect predicted G load	
	Possible			R4, R6	R1, R3	
	Unlikely	Inefficient code will produce inaccurate data				R2, R8
	Very Unlikely	Sensor suite takes longer than 5 minutes to remove or install		Cost of material/ manufacturing exceeds budget		R7, R9
		Negligible	Minor	Moderate	Significant	Severe
		Impact/Consequence		Risk Level:		
				Acceptable	Watch	Unacceptable

3/9/2023

Trades **>** Risk Analysis

48

Current Design State

Ceu Gomez

Key Design Points

- Sensors:
 - LSM6DSOX Serial
 - ADXL375 Serial
- Microcontroller:
 - Feather 32u4
- Slide-in structure design:
 - Washer & bolts connection
- Battery:
 - PRT-13851 Lithium-Ion Battery

Trades

3/9/2023

Overview

Trades

Appendix

Trades

Risk Analysis

Appendix

53

Inconclusive Trade Studies & DEs

Trade Studies:

Coding Language

Design Elements:

• Vibrational Analysis

Trades

Moving Forward

Olivia Epstein

Design Timeline & Critical Path

Finalize Design Develop a sub-system integration plan. Continue Design Analysis Sensing elements, power, microcontroller, and structural materials. **Low-Level Prototyping** Prototype sensor-processor interface and design catch/release mechanism. **Validation & Testing** Develop test procedures & use vibration tables and optical tracking to verify and mitigate risks. Simulation Test

Verify software with test data.

Trades

CDR

Acknowledgements

Team WIIGLS would like to thank Dr. Erik Knudsen, Dr. Francisco López Jiménez, Yasara Dharmadasa, Professor Trudy Schwartz, and Teaching Fellow Jasmin Chadha for their guidance, mentoring, and contributions to this presentation.

THANK YOU!

Trades

Thank you

Any Questions?

Appendix & Supporting Materials

Overview

Trades

60

Appendix

Prototyping/Modeling

Trades

Current Design

Moving Forward

Appendix

Risk Analysis

Overview

Background and Motivation

Project Background:

- JPL's OMERA
 - Can fold into a small volume.
 - Requires hinges with high precision.

Trades

Tape-Spring Hinge Study

Motivation:

It is vital to experimentally characterize all aspects of the deployment dynamics in order to reduce risk when unfolding onorbit. Deployable structures are useful in space mission design as they allow for large surface areas, usable during the mission for sub-systems like solar panels.

Levels of Success

Objective	Success Level 1	Success Level 2
Data Collection	Record total deployment time, and characterize 2 linear accelerations and 1 rotational acceleration during deployment.	Record total deployment time, and characterize 3 linear accelerations and 3 rotational accelerations dur- ing deployment as well as during the resonance period.
Endurance	1 hour active data collection, 1 hour standby.	2 hours active data collection, 1 hour standby.
Physical Attributes	Less than 10mm thick, 30cm x 20cm. Weighs less than 300g. MOI is known.	Less than 5mm thick, 20cm x 20cm. Weighs less than 150g. MOI is known.
Cost	Less than \$750 for a single unit.	Less than \$500 for a single unit.
Testing	TBD physical model, single (1) hinge. Instrument will survive testing with no functional damage.	Physically accurate model to within TBD% error, Multiple (2+) sensors can be operated concurrently with- out interference. TBD offloader to simulate zero gravity. Instrument will survive testing with no damage.
Ease of Use	Instrument can be easily installed and uninstalled without damage.	Instrument can be easily installed and uninstalled in less than 5 min- utes and without damage.

Overview

Software Plan

- Create precise models using recorded motion for various panel materials
 - 1. Record hinge deploying motion with optical tracking system
 - 2. Use optical tracking system to obtain position and velocity model
 - 3. Use MATLAB with obtained data to back out frequency, accelerations, G forces, etc
- Concerns with model development:
 - Camera position and angle
 - Frames per second rate on camera
 - Tracker application precision
 - Precision in panel/hinge dimensions
 - used in Tracker calculations

Overview

Item:	Description:	Estimated Cost:
Sensor Housing	Structural material, bolts, printing, other misc. costs	\$ 30
Sensor suite	Sensor, microcontroller/microprocessor,battery	\$126
	TOTAL ESTIMATED COST:	\$156

Mass Budget Feasibility

Item:	Description:	Estimated Mass:
Sensor Housing	Structural material, bolts, printing, other misc. mass	100 g
Sensor suite	Sensor, microcontroller/microprocessor,battery	75 g
	TOTAL ESTIMATED MASS:	175 g

Trades

Requirements Breakdown

R	DR1	DR2	Requirement	Motivation	Validation
1	-	-	System shall accurately record deployment motion of attached panel structure.	Customer-defined requirement	Demonstration
	1.1	-	System shall record deployment dynamics to within 5% of optically tracked motion.	Derived accuracy requirement	Testing - compared to a motion-capture study
	-	1.1.1	Sensors shall record motion at double the Nyquist frequency of deployment or higher	Derived accuracy requirement	Inspection - from manufacturer
	-	1.1.2	Sensors shall record acceleration at double the Nyquist frequency of the highest-frequency resonance mode or higher	Derived accuracy requirement	Inspection - from manufacturer
	-	1.1.3	Sensors shall record accelerations on 3 axes of up to 16 Gs within an accuracy of 5% of the optically tracked motion	Derived accuracy requirement	Testing - compared to a motion-capture study
	-	1.1.4	Sensors shall record vibrations on 6 axes of up to 4 Gs within an accuracy of 5% of the optically tracked motion	Derived accuracy requirement	Demonstration
	1.2	-	System shall survive deployment forces and environments without damage	Derived safety requirement	Demonstration
	-	1.2.1	Sensors shall survive a shock of 30 Gs without damage	Derived safety requirement	Inspection - from manufacturer
	-	1.2.2	Panel mounting interface shall be able to withstand a shock of 30 Gs without damage	Derived safety requirement	Inspection - from manufacturer
	-	1.2.3	Battery shall be able to withstand a shock of 30 Gs and temperatures of 20-40 degrees C without damage or loss of power	Derived safety requirement	Testina

3/9/2023

Trades

Moving Forward

Appendix

68

Requirements Breakdown (cont.)

2	-	-	System shall fit into the provided panel structure without obstructing deployment or changing the dynamics of the system	Customer-defined requirement	Demonstration
	2.1	-	System shall be contained within a 30x20x0.5cm volume	Derived size requirement	Inspection
	2.2	-	System shall weigh less than 300g	Customer-defined weight requirement	Inspection
	2.3	-	System shall have a known moment of inertia	Derived requirement for modal analysis	Testing
3	-	-	System shall cost less than \$750 per unit.	Customer-defined requirement	Inspection
	3.1	-	Sensors shall cost less than \$TBD	Derived constraint	Inspection
	3.2	-	Processors shall cost less than \$TBD	Derived constraint	Inspection
	3.3	-	Mounting system shall cost less than \$75	Derived constraint	Inspection
4	-	-	System shall be quickly removable/replaceable from panel to be tested.	Customer-defined requirement	Demonstration
	4.1	-	Sensor suite shall be able to be comfortably removed or installed within 5 minutes	Derived constraint	Demonstration
		4.1.1	Sensors shall be easily detatched from panel assembly without damage to either	Derived constraint	Demonstration
5	-	-	System shall be able to record data for up to an hour, with an additional hour of standby	Customer-defined requirement	Demonstration
	5.1	-	System shall have sufficient battery life to record data for 1 hour and stand by for 1 hour	Derived constraint	Demonstration
	5.2	-	System shall have sufficient on-board storage for 1 hour of data recording	Derived constraint	Demonstration
			~		

Appendix

Moving Forward

69

Battery Power Thermal Analysis

Worst case scenario, completely enclosed box with 10mm thick walls of 3D printed ABS — assuming an ambient temperature of 20 C there is an increase of **1.3 C** (relatively negligible).

$$k=\frac{Q\Delta x}{A(T_{amb}-T_{interior})}$$
 k = 0.17 $\frac{W}{m^2/K},~Q=P\Delta t$, Δx = 10 mm, A = 0.133 m^2

Coding Language Trade Study Matrix

Software Language Trade Study											
Language	Prefrence	Pref. Weight	Ability	Ab. Weight	Processor Compatibility	PC Weight	Speed to Write	S2W Weight	Speed to Run	S2R Weight	Total
MATLAB	5	0.05	5	0.2	1	0.4	5	0.05	2	0.3	2.5
С	1	0.05	2	0.2	4	0.4	1	0.05	5	0.3	3.6
C++	3	0.05	3	0.2	5	0.4	2	0.05	5	0.3	4.35
Python	4	0.05	4	0.2	4	0.4	4	0.05	4	0.3	4
Notes:	haavilu dana	ndont on the co	(h	ala ability ta yur	ite efficient and a not just the	anad of the la	ita a lif				
- Speed to run is neavily dependent on the software team's ability to write efficient code, not just the speed of the language itself - The selected processor may completely dictate which language we use and elimiate any choice we have to make											
Arduino Pro Mini: C++											
Raspberry Pi Pico: C/C++, Python											
Raspberry Pi Zero: C/C++, Python											
Beaglebone: C/C++, Pyhton											

Processing Trade Study

Metric	Description	Weight	Requirement	())
8				Ľ
User interface	Ease of use (sufficient documentation)	0.2	D1.1	
Mass	Weight of the microcontroller/microprocessor	0.1	FR2, D2.2	
Power consumption	Current draw at nominal voltage	0.3	FR5, D5.1	
	Maximum clock frequency & computational			
Processing speed	efficiency estimate	0.25	D1.1	
Dimensions	Size of the microcontroller/microprocessor	0.1	FR2. D2.1	
Cost	Price and lead time	0.05	FR3, D3.2	

Metric	Arduino Pro Micro	Teensy 4.1	RPi Pico	RPi Zero 2W	Feather 32u4
User interface					
(0.2)	3	4	2	2	4
Mass (0.1)	4	3	5	3	5
Power					
consumption					
(0.3)	5	3	1	0	5
Processing					
speed (0.25)	2	4	3	5	2
Dimensions					
(0.1)	2	2	5	3	1
G@\$1(0305)	4	4	4	3	4 72
TOTAL =	3.4	3.4	2.65	2.4	3.6
Sensor Trade Study

Metric	Description	Weight
Sensing capabilities	Amount of Gs the sensor is capable of sensing	0.2
Shock survivability	Amount of G's the sensor can withstand before breaking	0.01
Dimensions	Dimensions of the sensor	0.1
Mass	Weight of the sensor	0.08
Microcontroller/microprocessor interface	Type of communication to/from sensor (Digital vs. Analog)	0.08
Axis	Amount of axis the sensor is capable of sensing	0.2
Ease of attachment	How easy the sensor is to mount to a PCB board	0.05
Voltage range	Range of input voltage the sensor needs for functioning	0.1
Output data rates range	Range of the speed of obtaining output data	0.1
User interface	Ease of use (sufficient documentation)	0.08