Team **CARROT**:

Compact Aerial Radio Relay for Obscure Terrain

Test Readiness Review

March 1, 2023 Customer: John Mah

Project Manager: Jared Seefried Tyler Mckay Lucas Pereira Eric Lozano Luis Alvidrez Kushal Kedia

Systems Engineer: Elena Bauer Talen Fischer Chris Lolkema Abby Moonan Marguerite Adwan Carson Sexton

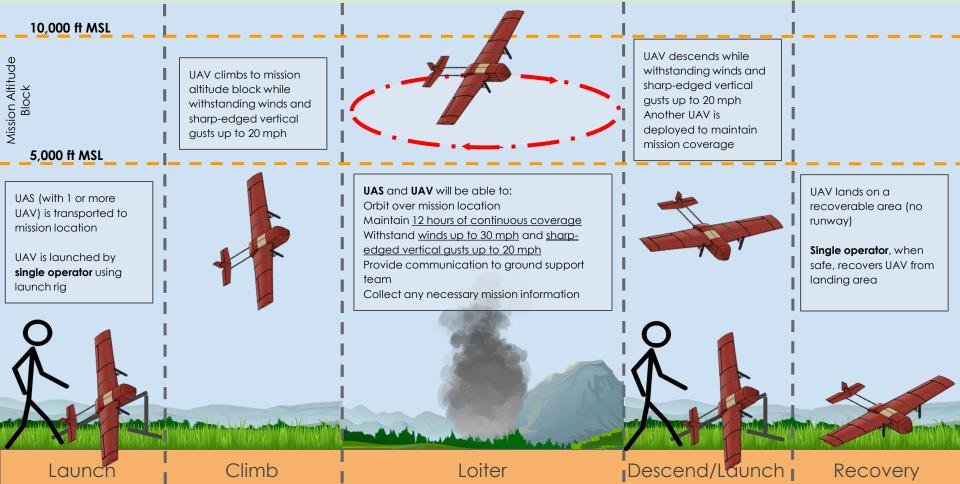
Project Overview

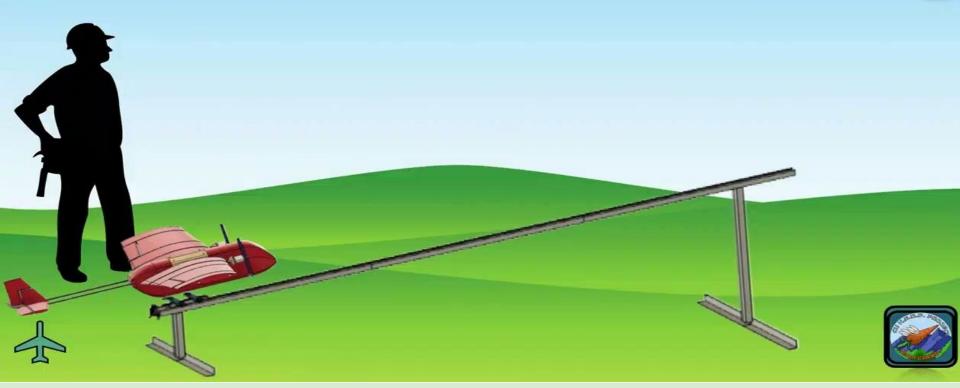
The goal of **CARROT** is to develop a human-portable, manufacturable, low-cost, and rapidly deployable unmanned aircraft system (UAS).

This system will be utilized to assist with multiple mission profiles, including search and rescue. The aircraft will be capable of meeting the demands of the mission including agility, low-costs, high persistence, and broad coverage capability.

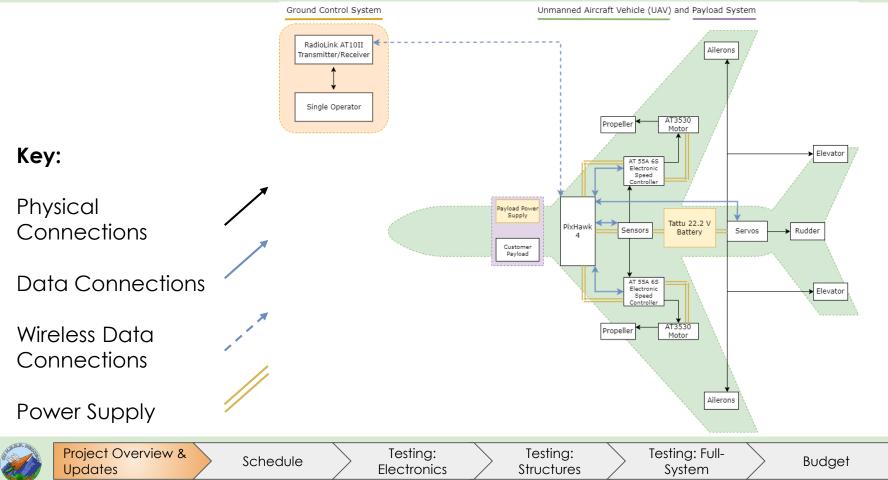
Objectives

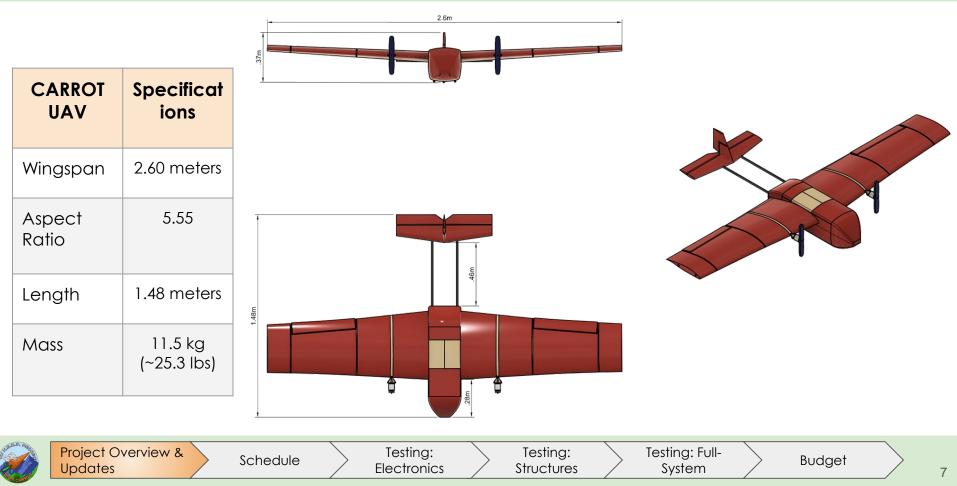
- Ease of transportability
- Ease of manufacturability
- Cost efficient
- High endurance for continuous overwatch

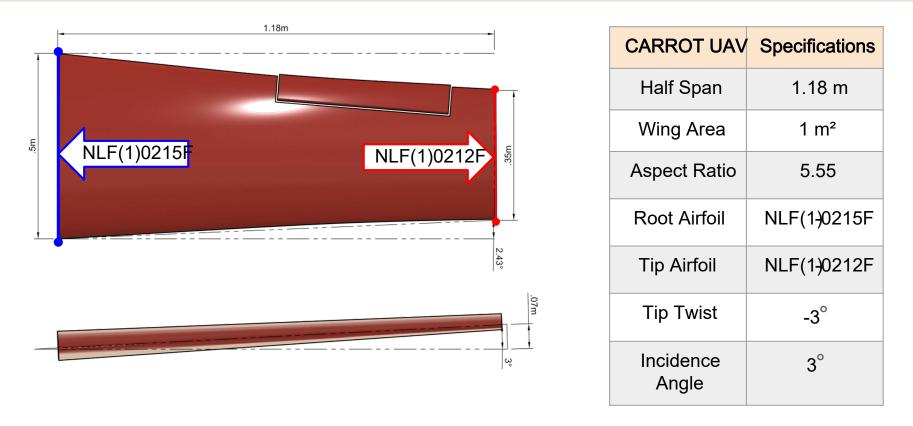



Customer CONOPS

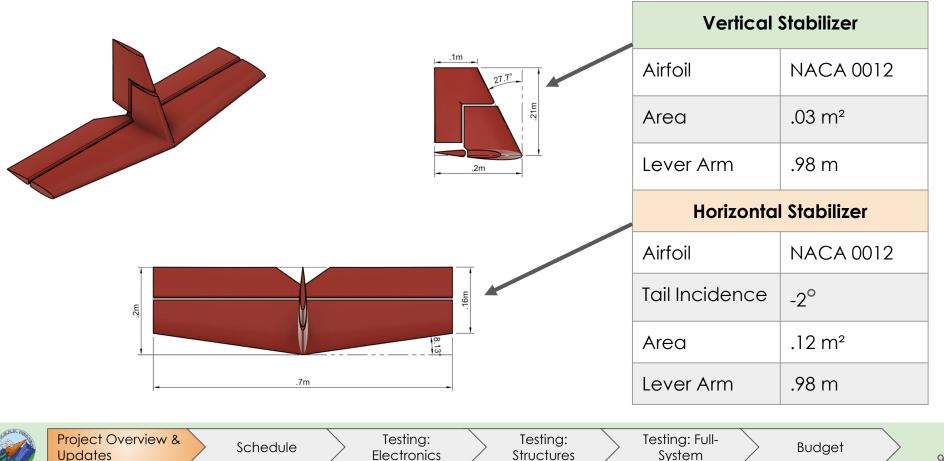
A day in the Life CONOPS




Functional Block Diagram


Baseline Design

Design Solution - Wing



Design Solution - Empennage

Critical Project Element	Description	Functional Requirement
CPE 1: Operability	Achieve operability by following FAA 14 CFR Part 107 and MIL-F-8785C requirements	F.R. 1
CPE 2: Design - Minimizing size and weight of aircraft	Achieve lightweight and portability features utilizing appropriate materials and modularization	F.R. 1 F.R. 2 F.R. 3
CPE 3: Manufacturing	Achieve manufacturing and repairability ease by the end user by utilizing low-cost, COTS materials and additive manufacturing methods	F.R. 4 F.R. 6
CPE 4: Design - Maximizing endurance through aerodynamics and propulsion	Meet endurance goals through extensive aerodynamic design & modeling and propulsion system design & modeling	F.R. 7
CPE 5: Design - Maintaining durability	Ensure structural integrity throughout flight profile given disturbances, weather variation, temperature, and maintaining static stability	F.R. 8

Testing:

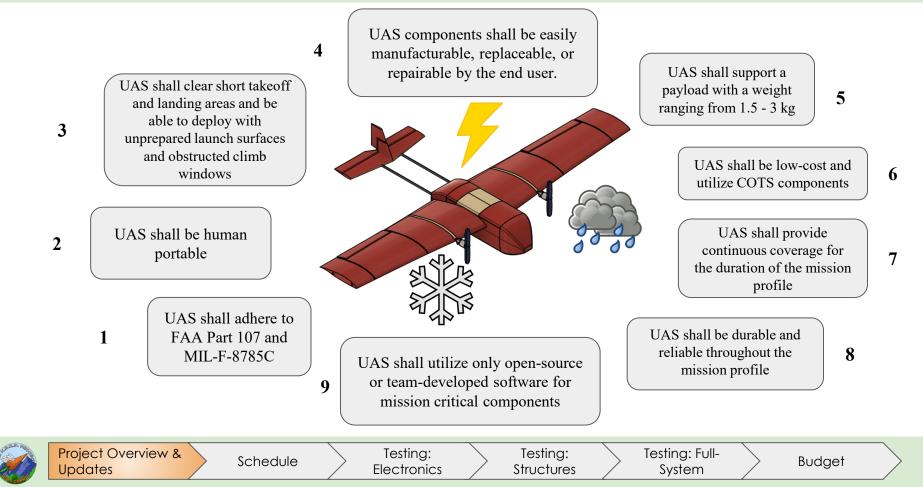
Structures

Testing: Full-

System

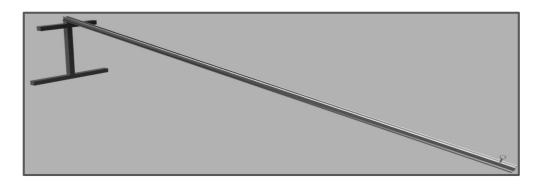
Testing:

Electronics


Schedule

Budget

Functional Requirements



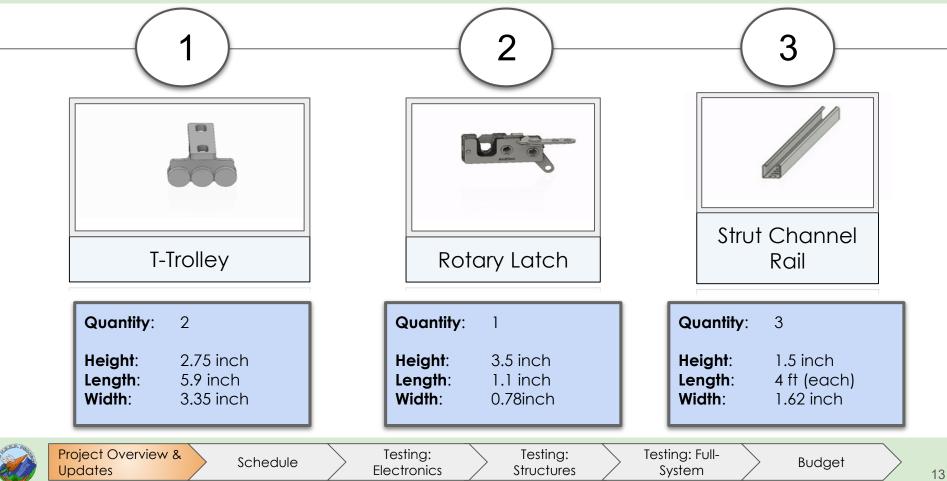
11

Changes Since CDR - What we presented in the Fall

- Dimensions **
 - \succ 10 degree angle
 - Creates optimal angle of attack
 - \succ 3 m length
 - Requires 280 N elastic force

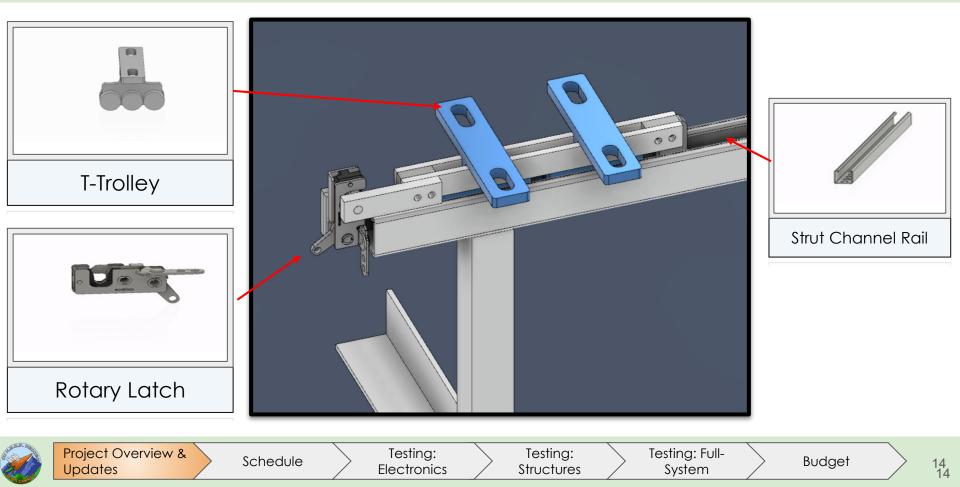
- ♦ At Takeoff
 - Place aircraft and retention pin
 - Stretch bungee/elastic around UAS
 - Increase throttle to highest setting
 - Release retention pin

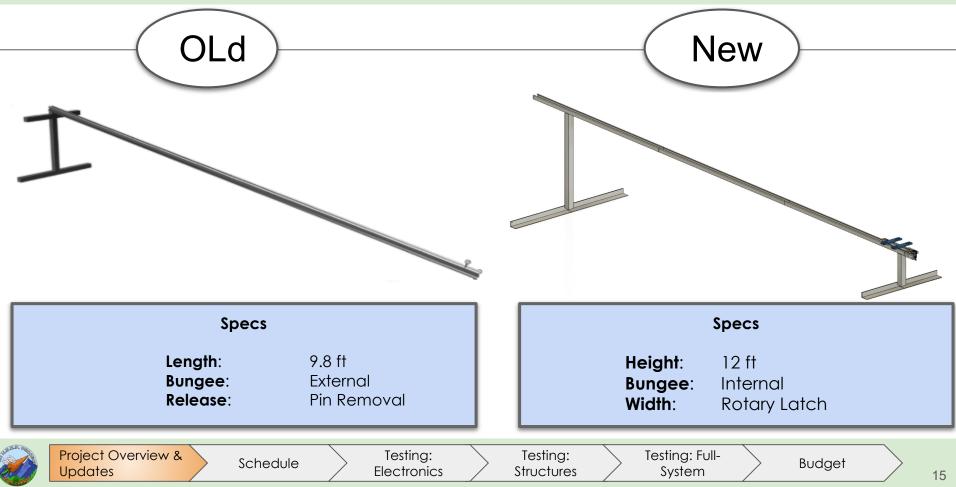
Updates


Testing: Flectronics

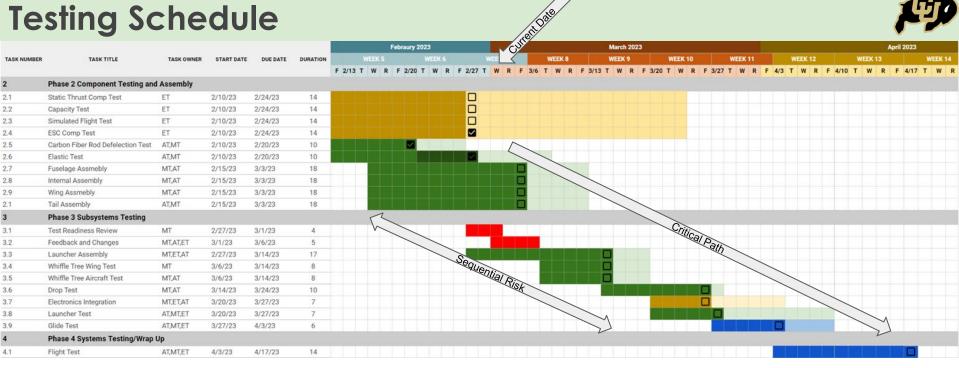
Testing: Structures

Budget


What Changed ?


All Together

Rail Change Summary



Schedule

Testing Schedule

Critical Path

Testing: **Electronics**

Testing: Structures

Budget

Testing: Full-

System

Test Readiness

Test Status

Tests	Status	
Carbon Fiber Rod Deflection	Completed	
Elastic Band	Completed	
Capacity Test	In Progress	
Static Thrust	In Progress	
Simulated Flight Endurance Test	In Progress	Test 1
Whiffletree Test	Prepping	Test 2
Drop Test	Prepping	
Electronics Integration	Prepping	
Glide	Prepping	
Flight Test	Waiting Approval and Prepping	Test 3

Test Readiness: Electronics

Rationale for Testing: Summary

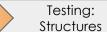
Test Name	Reason for Test
Statia Thruat Teat	Validate Physics Model
Static Thrust Test	Validate Motor & Prop Selection
Capacity Tests	Validate Manufacture Specs
	Determine Safe Battery Cut-off
Simulated Flight Endurance Test	Validate Endurance Models
	Determine Loiter Capacity Safe Return

Testing: Electronics

Rationale for Testing:

Functional Reg. 7: UAS shall provide continuous coverage for the duration of the mission profile

Design Reg. 7: Maximize endurance for **4 hours** flight time (without autonomous control) at 6,000 ft MSL


Metrics of success:

- Test stand tests power draw matches model within ± 10% 1.
- 2. Battery mock-flight is able to achieve at least 1.7 ± 0.2 hours of endurance

Updates

Testing: **Flectronics**

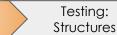
Budget

Rationale for Testing:

Functional Req. 7: UAS shall provide continuous coverage for the duration of the mission profile

Design Req. 7: Maximize endurance for **4 hours** flight time (without autonomous control) at 6,000 ft MSL

Matlab models currently show 1.7 ± 0.2 hours of flight time

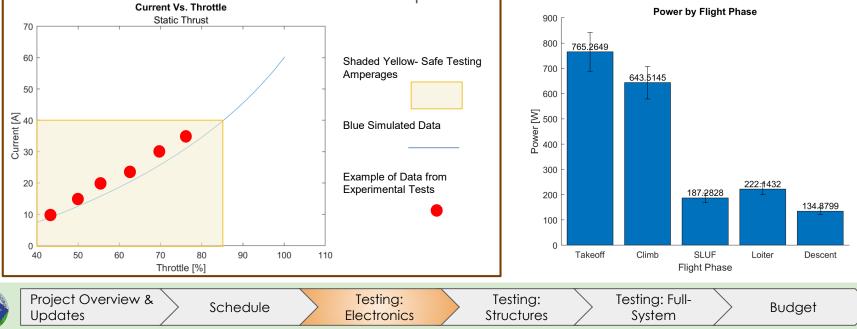

Verified by:

Project Overview &

Updates

- 1. Refining Matlab model using experimental thrust and power measurements
- 2. Full characterization of actual power draw using endurance test
 - a. Determination of battery cutoff point
 - b. Full mock-flight on test stand to confirm battery endurance

Testing: Full-

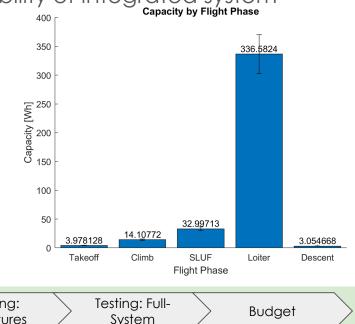

System

Rationale for Testing:

- Thrust-based endurance models show 1.7 ± 0.2 hours of endurance
- True capability needs to be verified by experimental data
 - Verifies model as well as predictability of integrated system.

Rationale for Testing:

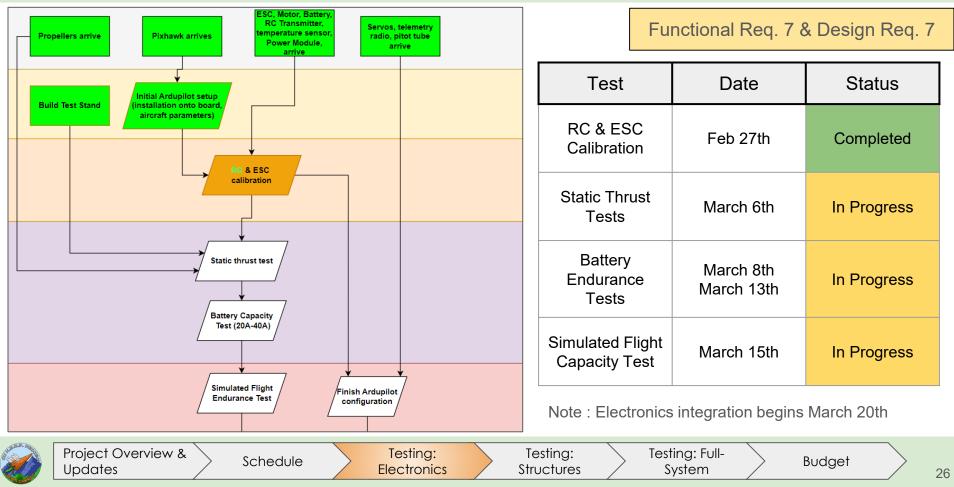
Functional Req. 7 & Design Req. 7


- Thrust-based endurance models show 1.7 ± 0.2 hours of endurance
- True capability needs to be verified by experimental data
 - Verifies model as well as predictability of integrated system

Flight Model Assumptions:

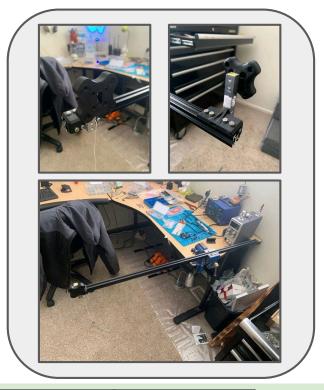
Project Overview &

Updates


- Takeoff: 2.72 kg thrust for 17.7 seconds
- Climb: 2.06 kg thrust for 75.5 seconds (5 deg climb)
- SLUF Flight Phase: 0.78 kg thrust for 5 min
- Loiter: 0.88 kg thrust for remaining capacity
- Descent: 0.63 kg thrust for 75.5 seconds (5 deg descent)

Testing: Electronics

Test Readiness - Electronics: Test Flow

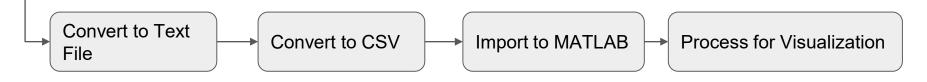


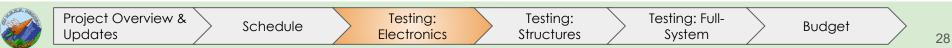
Test Readiness - Electronics:

Functional Req. 7 & Design Req. 7

Prerequisites for Testing:

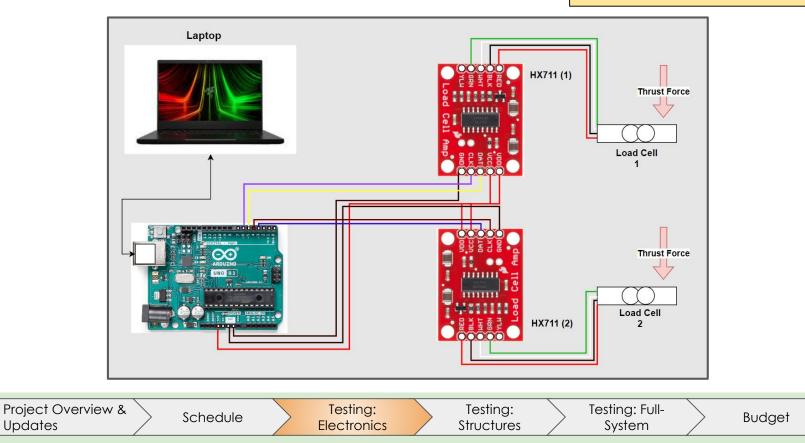
- Calibrated load cells
- Arduino scripts to read and save load cell data.
- ESC and RC calibration
- Integrated electronics: arduino, amplifier, load cells, hobbyboard, thermocouples.
- Test Procedures
- Test Cards
- Test Safety Procedures
- Integration with Test Stand in Engine Test Cell


Testing: Electronics Testing: Structures

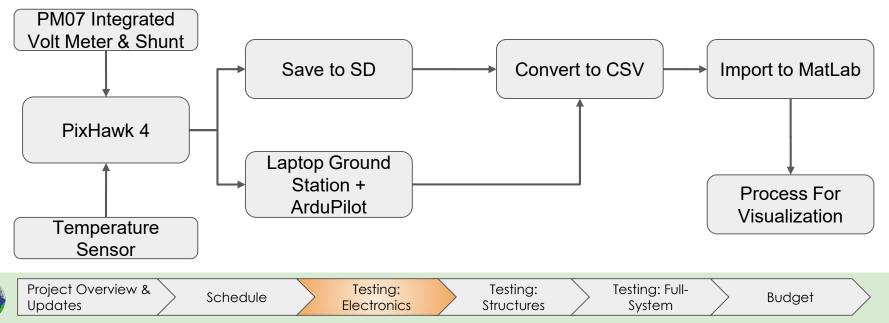


Data Acquisition: Arduino

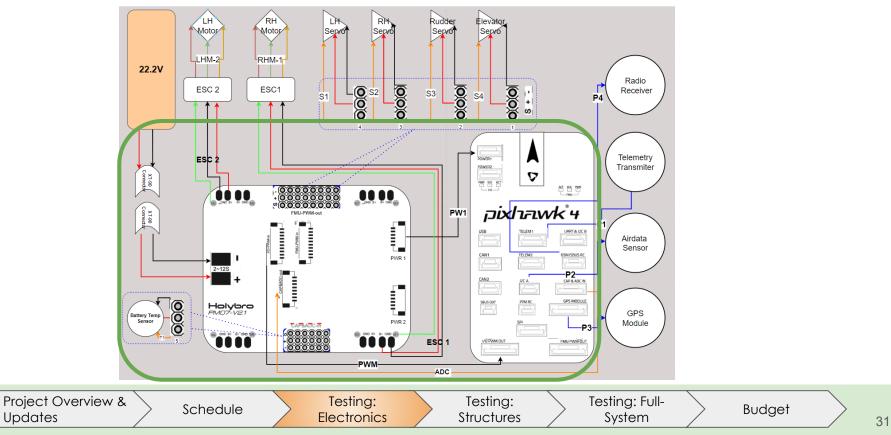
Functional Reg. 7 & Design Reg. 7


Load Cell \rightarrow provides Thrust data: Arduino ADC Load Cell HX711 amplifier Arduino Serial Monitor

Data Acquisition: Arduino - Diagram

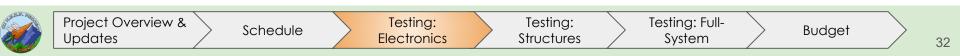


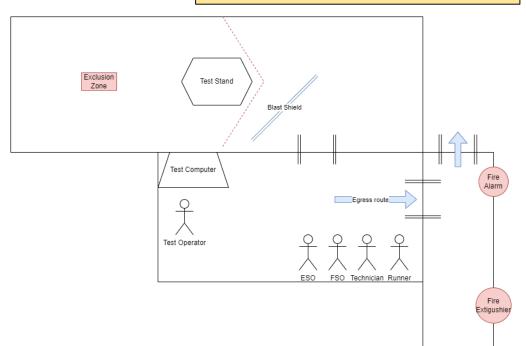
30


Data Acquisition: PixHawk 4

- Battery Thermocouple \rightarrow Provides Battery Temperature Data:
- Battery Voltmeter \rightarrow Provides Nominal Load/Unload Battery Voltage
- Battery Integrated Shunt \rightarrow Provides Battery Current Measurement

Data Acquisition: PixHawk 4 - Diagram

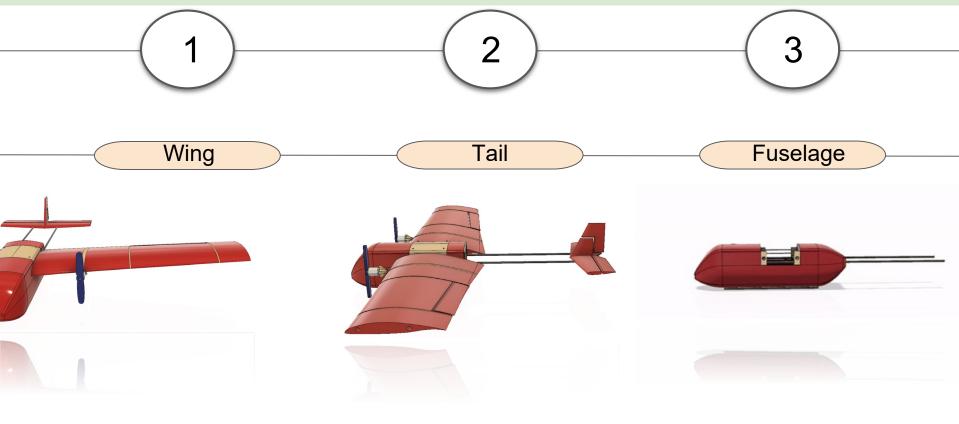

Test Readiness - Electronics

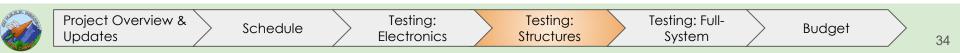


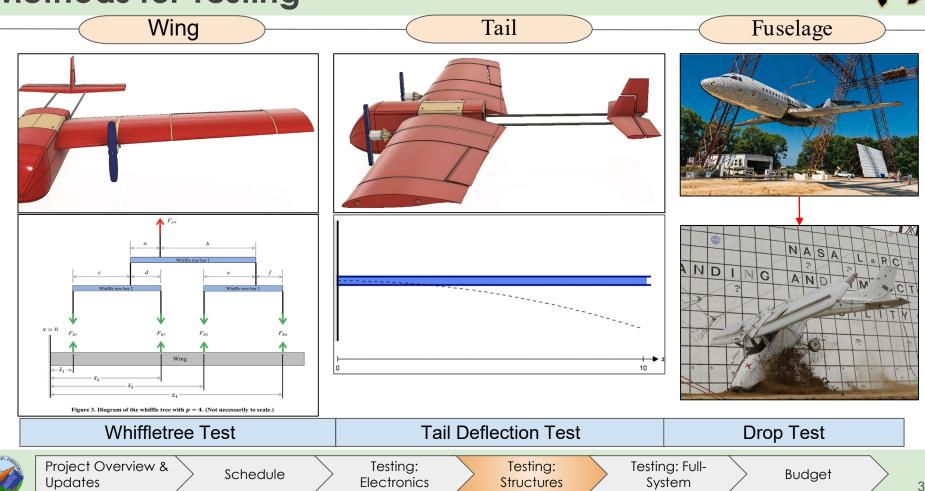
Functional Req. 7 & Design Req. 7

Test Safety:

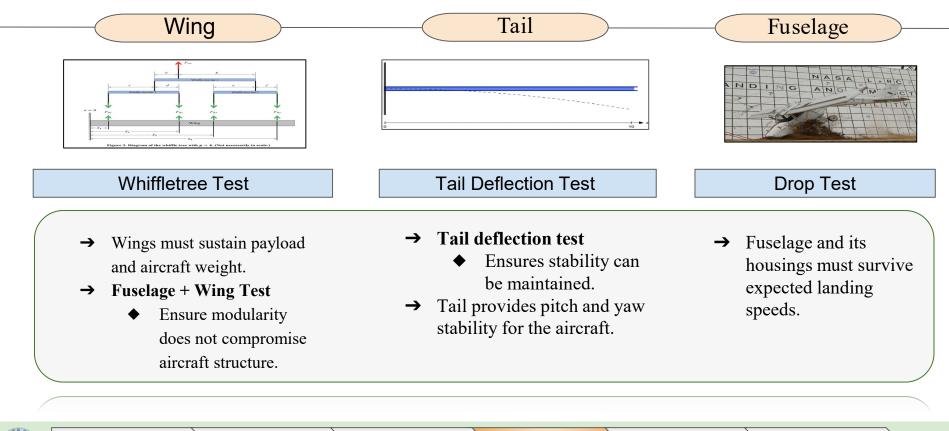
- Test Safety Procedures: <u>HERE</u>
- Fire Safety Procedure: <u>HERE</u>
- Health Emergency Procedure <u>HERE</u>
- Pre-test Safety Item Checklist <u>HERE</u>
- Test Procedure <u>HERE</u>




Test Readiness: Structures


Structural Test

Methods for Testing



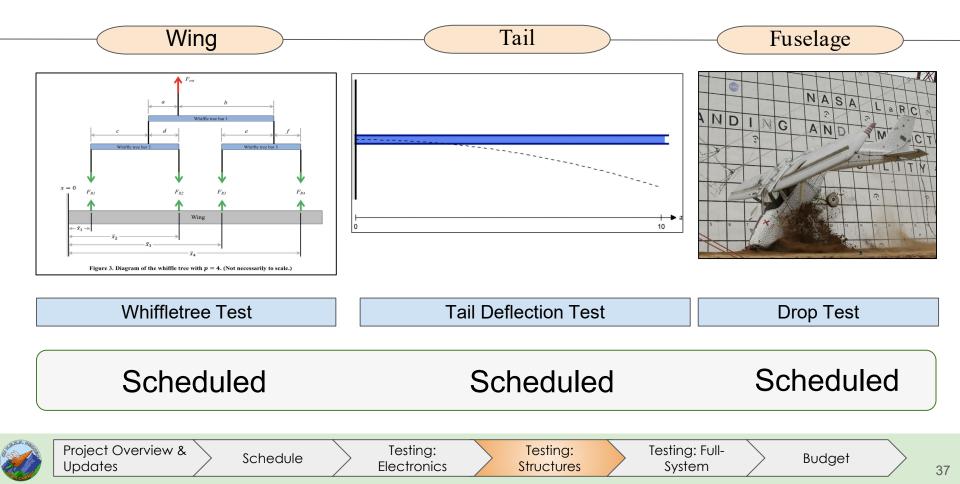
Reason for Testing

FR8, DR8

Testing:

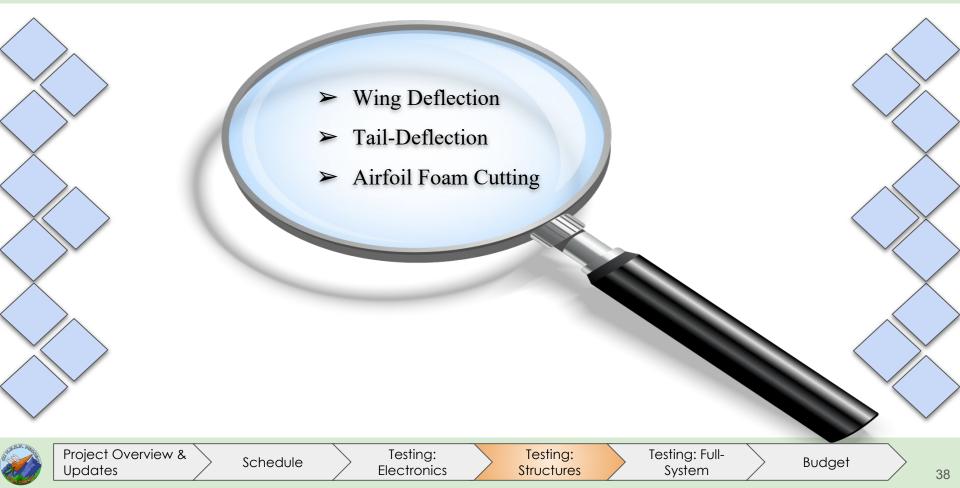
Flectronics

Schedule

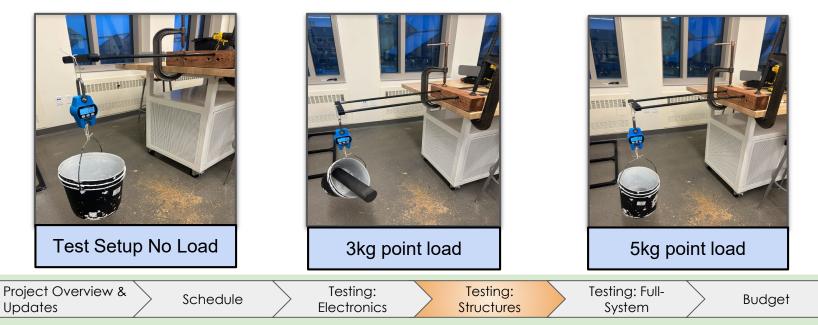


Testing: Full-

System


When are we testing?

Critical Prerequisite Tests Completed

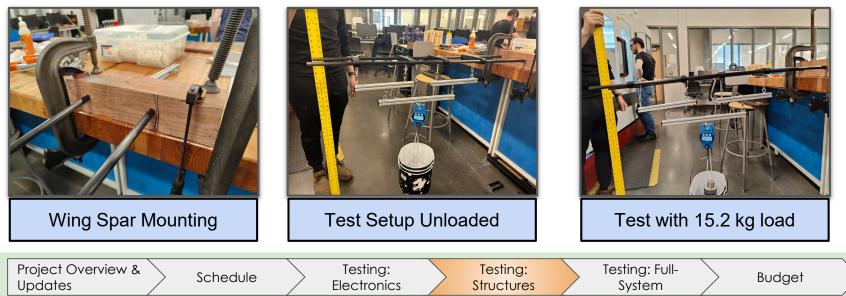


Pre Test - Tail Spar Deflection

Objective: Verify tail spars can withstand expected loads independently prior to full structure test

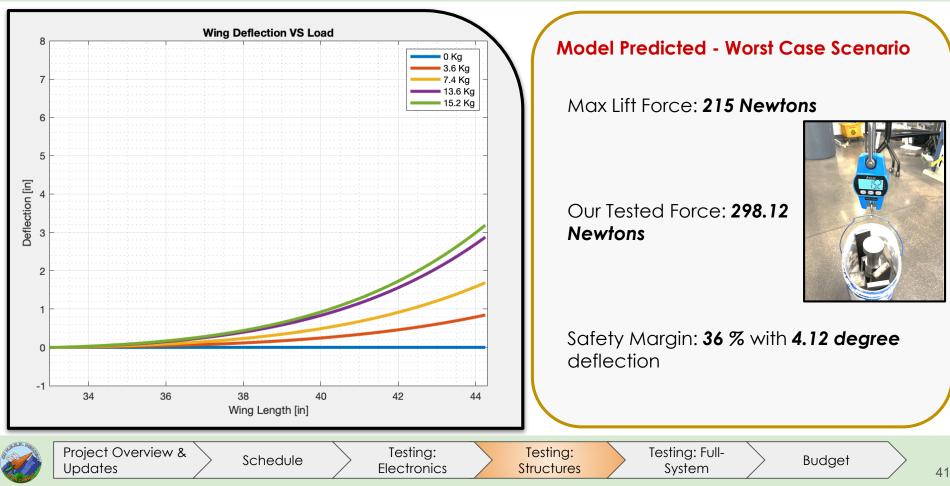
Expected Loading: **2.4 kg** point load on the end of the spars

Loads Applied: 5 kg point load at the end of one set of spars

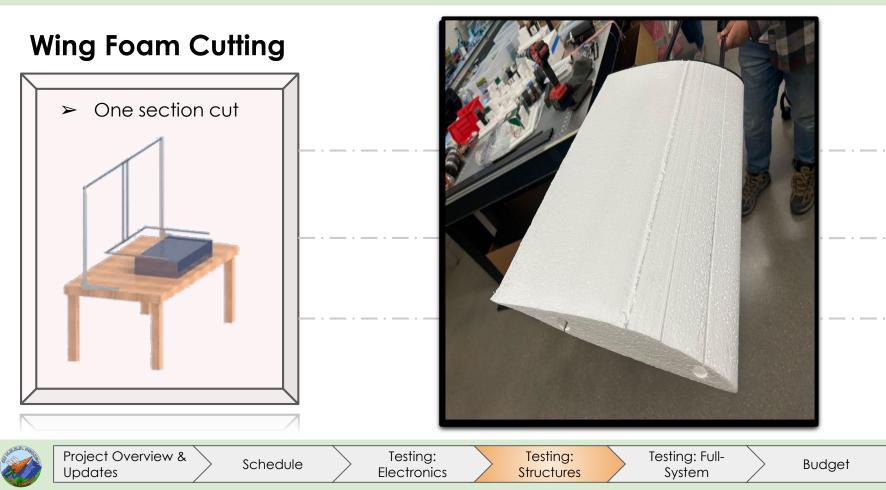

Pre Test - Wing Spar Deflection

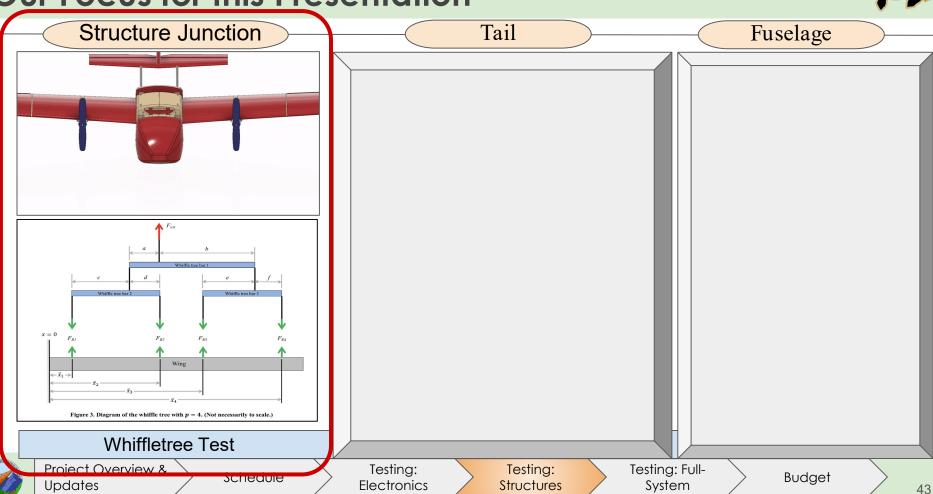
P

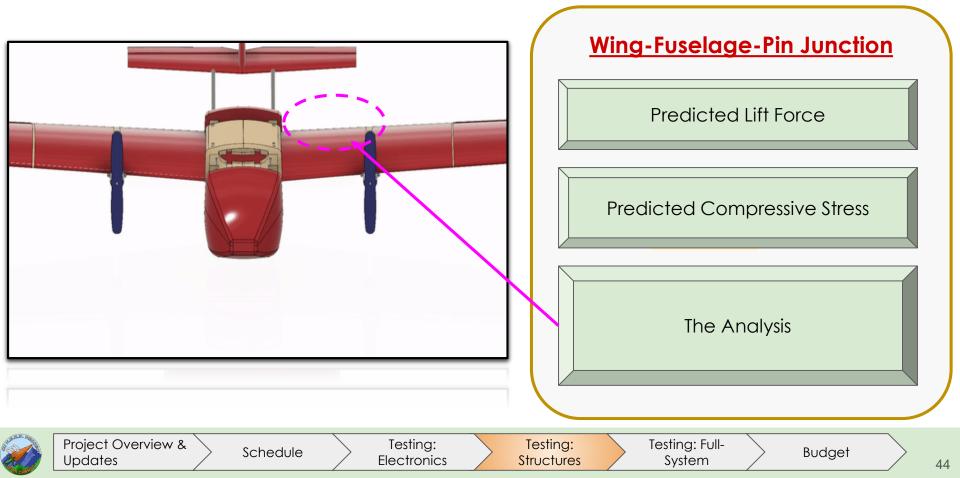
Objective: Verify wing spars can withstand expected loads independently prior to full structure test


Expected: 11 kg distributed load on each pair of spars

Loads Applied: 15 kg distributed load to one pair of spars


Pre Test - Wing Spar Deflection


One Procedure Completed

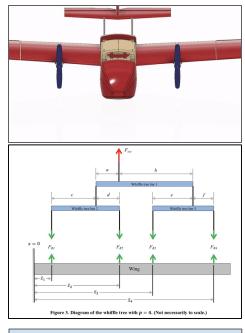

42

Our Focus for this Presentation

What we are Looking For:

Test CONOPS

What we are Testing



46

Procedures - Safety Risks - Mitigation

Wing & Fuselage : Whiffletree

Whiffletree Test

	Procedure	Safety Risk	
1.	Have Structure	• Structure Fails or Cable	
2.	Secure structure (clamp	Snaps	
	ribs)	• Clamp Failure	
3.	Attach loading housings	• Structure Falls	
	around wings		
4.	Outermost bar attached	Mitigate By	
	to bucket.	- Wear closed toe shoes	
5.	Fill bucket until wing	- Wear glasses (debris)	
	snaps or reaches desigr	- Ensure tight clamp	
	limit (215 Newton)s		

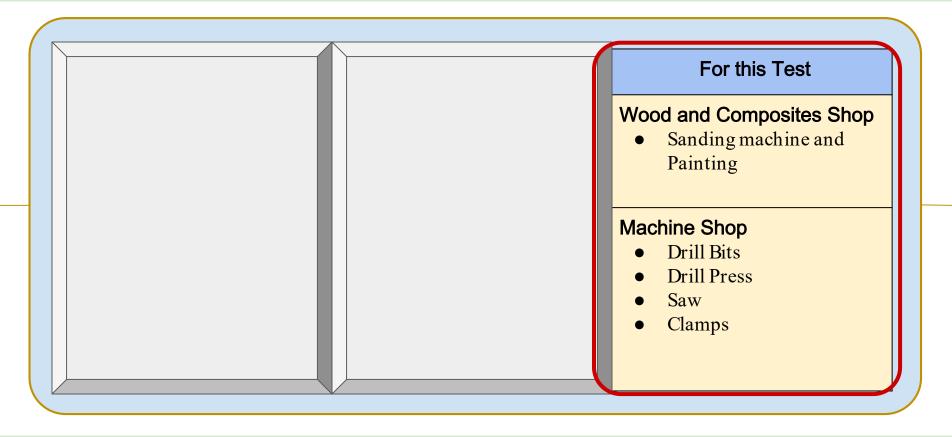
> Schedule

Testing: Electronics Testing: Structures Т

Budget

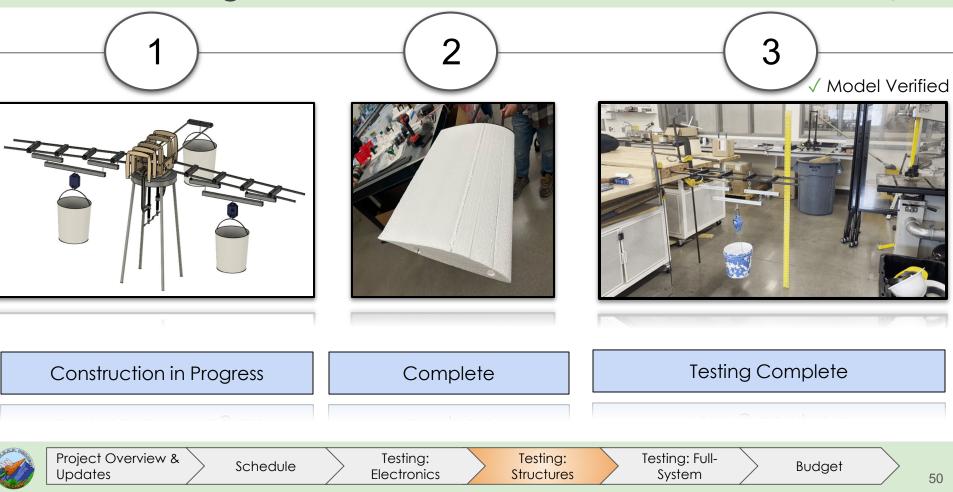
Mitigation Example

Wing	g and	l Fuse	lage


General Ch	necklist
-------------------	----------

	Yes	No	N/A	Comment	Student Initials				
1 Safety Glasses On?				Everyone has safety glasses on.	X.X				
2 Others with you?				All team is here and faculty staff aware of our test.	X.X				
Clothing Checklist									
	Yes	No	N/A	Comment	Student Initials				
1 Closed Toed-Shoes?				Everyone is wearing closed toed shoes	X.X				
2 No hanging jewelry?				Everyone has appropriate clothing and no dangling jewelry.	X.X				
Procedure									
	Yes	No	N/A	Comment	Student Initials				
1. Attach Clamps				They have been attached and double checked for tightness.	X.X				
2 Get Measuring device				We have a ruler, it was attached to background reference.	X.X				

Full Checklist


Test Equipment and Facilities

Structures Progress Timeline

Test Readiness: Full-System

Rationale for Testing:

- Functional Reg. 1: UAS shall adhere to FAA Part 107 and MIL-F-8785C
- **Functional Reg. 5**: UAS shall support a payload with a weight ranging from **1.5 3 kg**
- **Functional Reg. 8**: UAS shall be durable and reliable throughout the mission profile
- **Design Req. 2**: Modularization of airframe wings, weight limit of **15.8 kg**
- **Design Reg. 8:** Static and Dynamic Longitudinal Lateral Stability
- Metrics of success:

Updates

- CARROT UAS achieves stable flight 1.
- CARROT UAS experiences minimal damage to control surfaces/structure/fuselage during Take-2. off, flight and landing

System

Prerequisites for Testing: PASS Whiffletree, Static Thrust, Glide, Launcher Test, Drop Test

No prohibiting NOTAMs, No Red Flag conditions, winds less than 8 m/s (17mph), certified Boulder EMS Pilot

Purpose of Prerequisites:

- Whiffletree Structure can withstand expected forces
- Static Thrust Wiring correct and motors capable of required thrust
- Glide UAS capable of transmit and receive. Confirm Airframe stable
- Launcher Subsystem 'Safe' and capable of placing aircraft in flight
- Drop Test Battery Secure
- Lower the risk of Radio Frequency interference, Fire, and UAS being 'stuck' further away

Testing: Electronics

Budget

Scope of the Testing Tasks:

- Full flight test, test cards for flight maneuvers.
- Operational/Functional CARROT UAS, Boulder Model Airport Access
- Launcher to place UAS in Flight, Test Cards to verify maneuverability and control surface functionality. First full landing.
- Focus on durability and being flight capable

Red - Area where no escort required. Faster response to crash

Blue - Dirt patch. Desired area for controlled crash low fire hazard

Green - Launcher placement and direction **Orange - Flight path**

Testing: Full-

System

Fire extinguisher and smothering sand will be in place and ready to respond to crash

Maintain constant communication with pilot and observer(s) with binoculars

Designated steps in test cards verify performance/cancel test

Monitor Battery to remain at or below 110 F during flight

Designated Emergency responders with fire extinguishers and smothering sand ready

Updates

Testina: Structures

- Phase 1 Set up
 - Pre-Brief Safety
 - Pre-Position Equipment
 - UAS Pieced together
 - System Checkout
 - Hook up Battery
 - Power on
 - Check transmission Range
 - Verify UAS will continuously Receive commands and transmit telemetry

Functional Reqs. 1, 5 & Design Req. 2

T

• Phase 2 - Launch

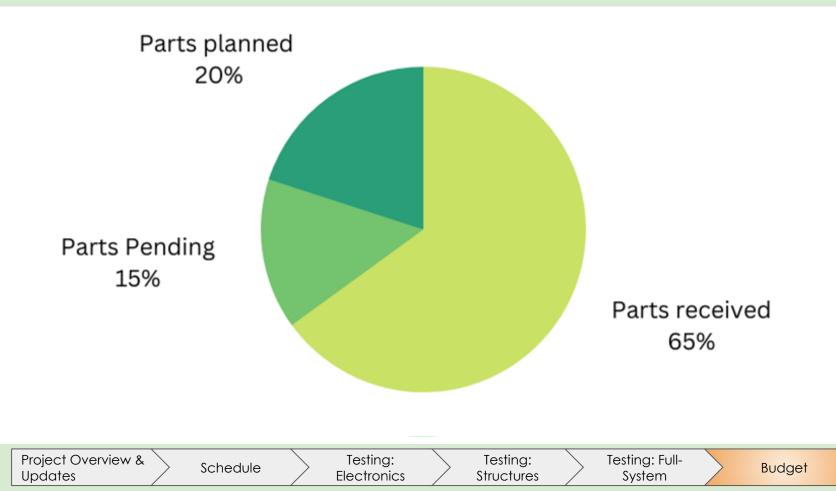
- Launch Rail configured
- CARROT Loaded
- Launch
- Phase 3 Flight
 - 16 m/s (36mph) at 122 m (400 ft) AGL
 - 4 Deg angle of attack
 - No lower than 91m (300 ft) AGL
 - Multiple test cards
 - PID Calibration
 - Slow Climb and Dive
 - Slow bank to left and right
 - Multiple points to check with pilot and observers for test cancellation

Functional Req. 8 & Design Req. 8

Functional Req. 8

- Phase 4 Landing
 - Coordinate Landing area in dirt field
 - Fire response ready
 - Verify battery survival
 - Verify Propeller survival
 - Check overall damage
 - Modify/repair as required

- If significant damage sustained
 - FR#4, Easy manufacture and repair



Budget Analysis

Test Readiness - Budget Analysis

Test Readiness - Budget Analysis

- Carbon Fiber Rods
- PLA Filament
- Launch Rail
- Battery
- Pixhawk
- ✓ ESC
- Motors

1 1/2 Week Lead Time

77% Replaceability

Functional Regs. 3, 7, 8 & Design

Req. 3, 7, & 8

Questions?

Test

1.Battery Comprehensive Test

2.Static Thrust Test

3.ESC Test

4.Whiffletree Component Test

5.Whiffletree Wing Test

6.Whiffletree Full Body Test

7.Drop Test

8.Launcher Test

9.Glide Test

10.Flight Test

11. Car Test

12. Elastic Test

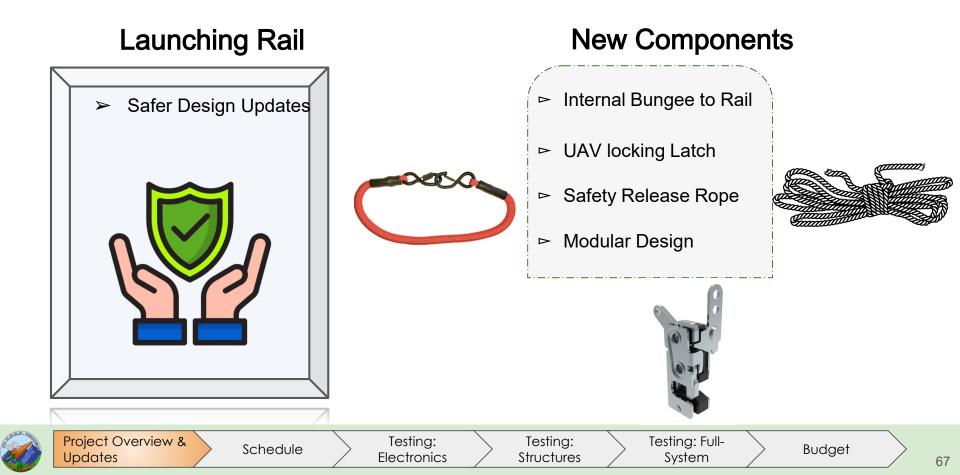
What has Changed Since CDR?:

- Electronics Component Testing has been pushed to occur in the month of February and early March
- Component testing has been done in February rather than March
- Sub system testing is the main focus now for the Month of March
- Full System Test is occurring at the start of April now instead of Late March to Allow team more time

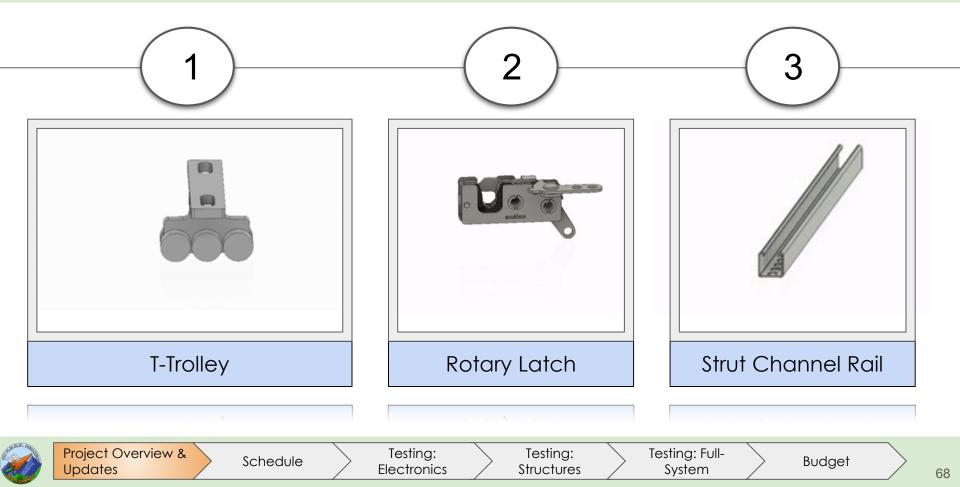
Critical Path and Dependency:

- Assembly of the Aircraft is our highest priority, if not done Subsystems Test are put on stand by till completion
- Big margins for the Assembly phase, these will affect the Flight Test mainly

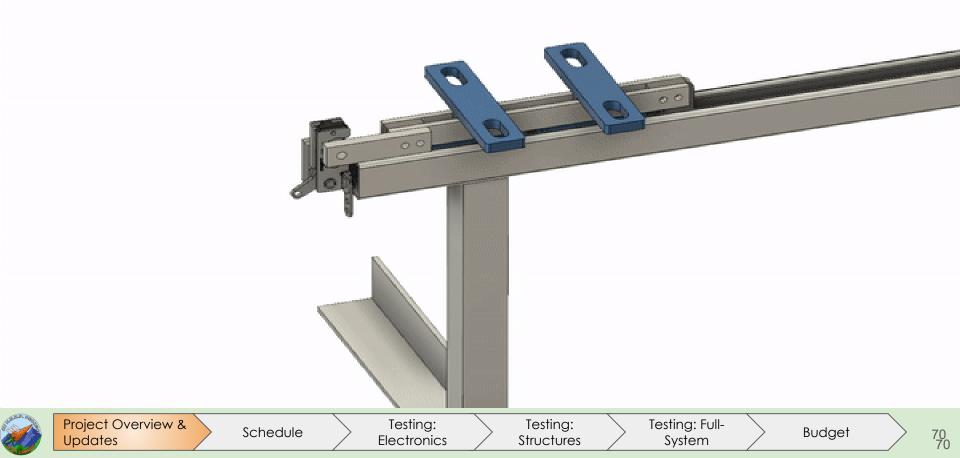
Hidden Slides



Systems Engineering


Changes Since CDR - Our Improvements


The New Components


What Changed ?

All Together

Manufacturing

Backup Slides Electronics Tests

Rationale for Testing:

• To verify MATLAB thrust and power models

Prerequisites for Testing:

- Calibrated load cells
- Arduino scripts to read and save load cell data.
- ESC and RC calibration
- Integrated electronics: arduino, amplifier, load cells, breadboard.

Scope of the Testing Tasks:

- Test Fixtures:
 - Custom mounting attachment for test stand inside engine test cell
- Test equipment:
 - Pixhawk, Arduino UNO, HX711 amplifier, battery, SMEAD engine test cell, load cell (2), motor, propeller, ESC
- Test safety procedures on hand https://docs.google.com/document/d/lkoiVchc_i4zeOp6/ZrNLoZtorCjkap-tWB8YLxxbGQw/edit
 - Fire Safety Procedure: <u>HERE</u>
 - Health Emergency Procedure <u>HERE</u>
 - Pre-test safety item checklist

Scope of the Testing Tasks:

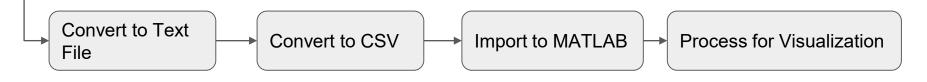
Sensors:

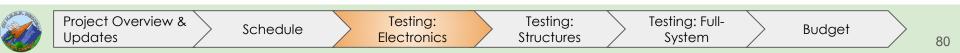
- Sparkfun LOAD CELL 10KG STRAIGHT BAR TA
 - Calibration complete
 - Open source Arduino IDE code to determine a calibration factor.
 - Known weight was placed on cell and calibration factor adjusted until read weight matched known weight (+/- .05 pounds).

• Temperature sensor:

- Calibration and Pixhawk integration complete
- Data automatically acquired digitally by Pixhawk and Ardupilot

Test Readiness - Electronics: Comprehensive Battery Endurance Validation


Data Acquisition: Arduino

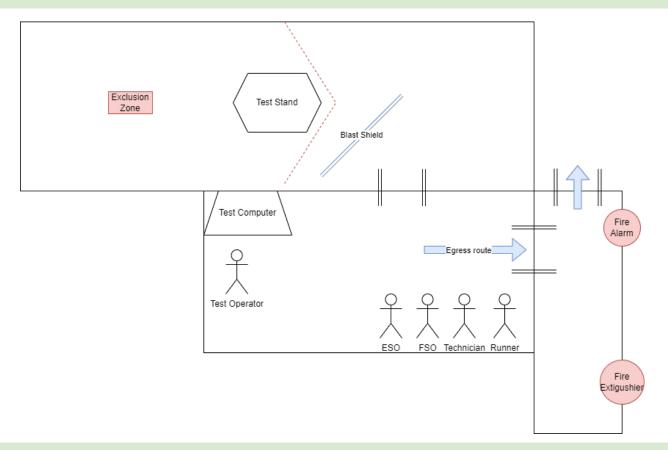

Functional Req. 7 & Design Req. 7

 Load Cell → provides Thrust data:

 Image: Construct data

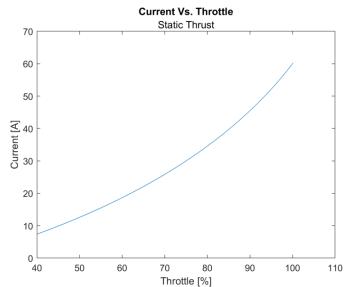
 <

P


Test Procedure Overview:

- 1. Connect sensor equipment and motor to test stand
- 2. Connect Pixhawk to ground station laptop and RC transmitter
- 3. Slowly ramp up throttle to 100% and back down to zero
- 4. Monitor motor and battery temperature
 - a. Stop test if motor temperature reaches 100 C or battery reaches 110 C
- 5. Monitor current draw
 - a. Stop test if current draw reaches 40 A
- 6. Repeat 3 times
- 7. Compare thrust measurement to power and current draw to verify model

Test Readiness - Static Thrust Test - Diagram



Requirements Verification:

Functional Req. 7: UAS shall provide continuous coverage for the duration of the mission profile

- **Design Req. 7:** Maximize endurance for **4 hours** flight time (without autonomous control) at 6,000 ft MSL
 - Matlab endurance models based on thrust
 - Need experimental data to confirm power draw and thrust models
 - Verification of models allows for greater fidelity of endurance target

Fire Safety Procedure

- Remotely terminate the test
 - First terminate through software/controls
 - If that fails, terminate by cutting electrical power
- Emergency Operations Officer will call Matt Rhodes and send the Runner for notification of a fire emergency.
- Fire Safety Officer will assess fire
 - Is fire isolated to the battery bunker or LiPo bag?
 - If YES, Wait for for further instructions from Matt Rhodes
 - **DO NOT** enter test cell.
 - Monitor from Operations bunker
 - Technician, Runner, and Emergency Officer will exit the Operations Bunker and wait in the hallway.
 - Proceed to Operations bunker and wait until smoke stops completely
 - If NO, evacuate all personnel from the area. Communicate with Matt Rhodes for further instructions.
 - Has fire spread beyond the test operations area to other areas of the test cell?
 - If YES, is the state of fire a spreading battery fire?
 - If YES
 - Evacuate personnel (do NOT attempt to extinguish).
 - Call 9-1-1
 - Give address below
 - Inform Fire department this is at CU
 - <u>3775 Discovery Dr, Boulder, CO 80303</u>
 - Have runner go outside of building and coordinate with fire department personnel when they arrive

If a health emergency occurs, the Emergency Operations Officer will immediately contact 9-1-1 and stay next to the individual experiencing a health emergency.

Is the health emergency due to a spreading fire? If YES, evacuate to a safe area.

DO NOT CONDUCT LIFE SAVING MEASURES IN AN UNSAFE LOCATION

- Remove injured and remaining personnel from the unsafe environment
- Contact 9-1-1
 - Coordinate using the following address <u>3775 Discovery Dr, Boulder, CO 80303</u>
 - Have runner go outside of building and coordinate with Emergency Response personnel when they arrive
- Test Operator will terminate test and retrieve AED + Medical kit
- Fire Safety officer will contact Matt Rhode: 303-492-7556
- All personnel will follow any instructions from the 9-1-1 operator.

Pre-test Safety Checklist

- Is all safety equipment in working order? 1.
 - Goggles
 - Welding gloves
 - Polycarbonate shield
 - Fire extinguisher- Class D
 - Smothering Sand and bucket
 - First aid kit
 - Burn treatment 0
 - Gauze and tape 0
 - Surgical gloves 0
- Are all personnel in proper clothing? 1.
 - No open toe footwear ۲
 - Full length pants and long sleeve top ۲
 - No synthetic clothing •
 - No baggy clothes
 - Long hair tied up
 - No dangly jewelry
- Is all test equipment in good condition? Has a pre-test brief been conducted?
- 2.
- Is the battery in a LiPo-safe bag? 3.
- 4. Are all non test related combustibles at a safe distance from battery and projectile zone?
- 5. Are all personnel in the operations bunker?

Rationale for Testing:

• To calibrate motors and RC system to Pixhawk and Ardupilot

Prerequisites for Testing:

- Ardupilot installed and configured on Pixhawk
- RC transmitter calibrated to Ardupilot

Scope of testing tasks:

- Test fixture:
 - Custom mounting attachment for test stand inside engine test cell
- Sensors and data acquisition:
 - No data collected, ESC and Pixhawk calibrate ESC automatically

Procedure overview:

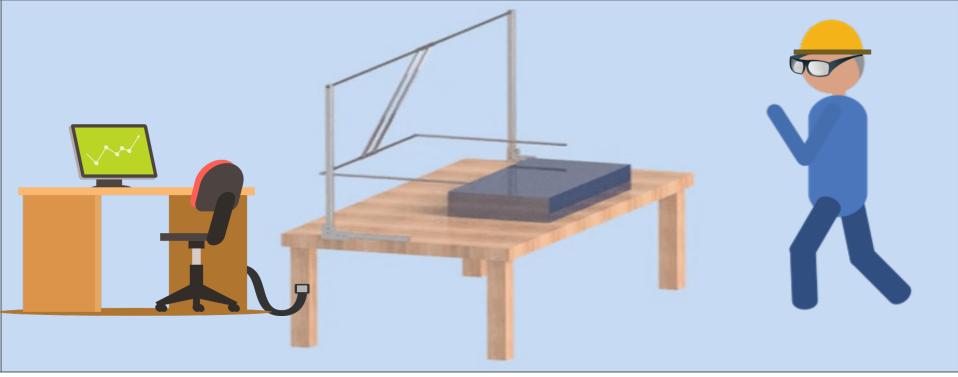
- 1. Connect motor (WITHOUT PROPS) to test stand Pixhawk to power module
- 2. Connect RC and telemetry radio to Pixhawk. Connect Pixhawk to Mission Planner.
- 3. With ESC disconnected from power, move throttle stick to maximum
- 4. Connect ESC to power, wait for beeps, then return throttle quickly to zero
- 5. Ensure ESC calibration successful by slowly raising throttle and motor should spin

Requirements Verification:

- No requirements directly verified
- Calibration ensures accurate and precise control over motors

Test Readiness - Full System Integration

- Validation of connectors
- Servo operability
- Lights
- Range of motion test



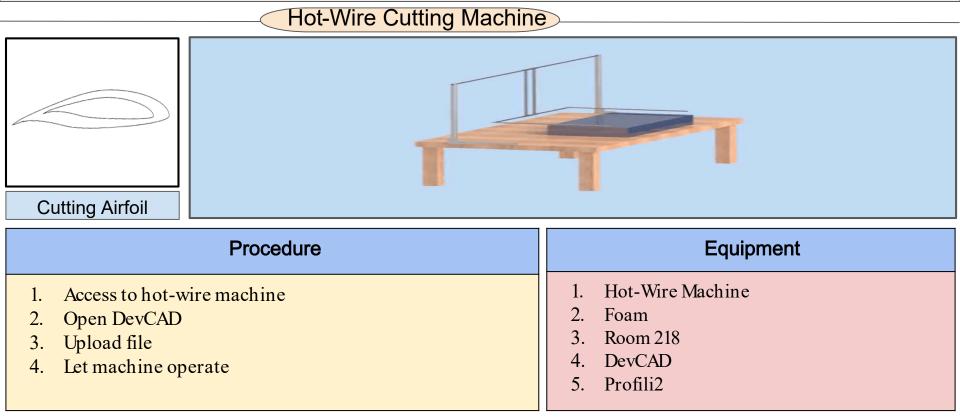
Backup Slides Manufacturing Test

Hot-Wire Cutting Machine CONOPS

Operator	Safety Wear	Computer + Software	Hot-Wire Machine	Foam	Connection	
----------	-------------	---------------------	------------------	------	------------	--

Procedures and Safety Risks

Wing HotWire Machine


Foam Cut Wing

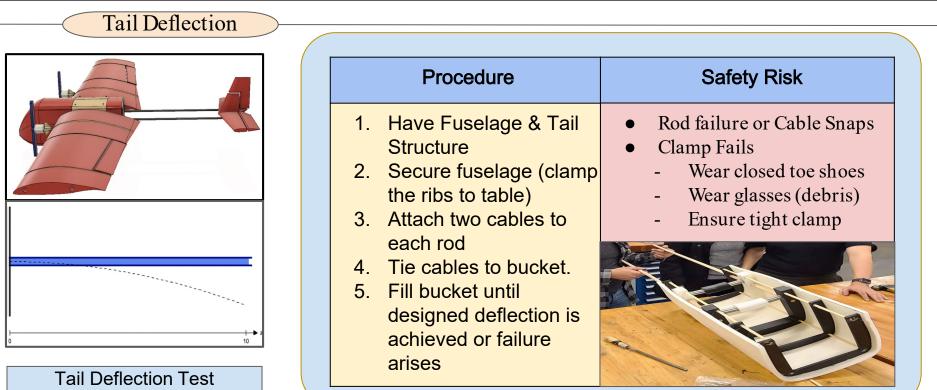
Procedure	Safety Risk
 Access to hot-wire machine Make sure nothing obstructs the machine's path Open DevCAD Upload file Let machine operate 	 Machine: High Temperature Burn & Fire Stay vigilant of surroundings. So nothing gets caught on fire. Wear glasses Keep fingers and hands out of the way.

Procedure and Equipment

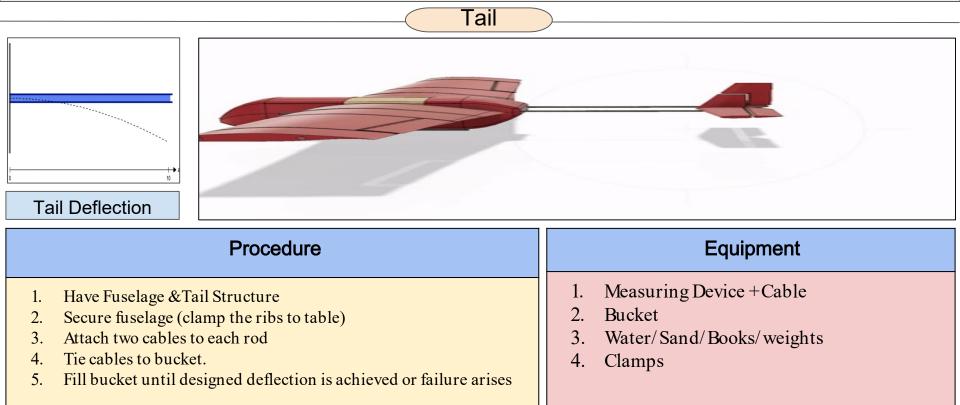
Safety Checklist

				Hot-Wire Machine	
				General Checklist	
	Yes	No	N/A	Comment	Student Initials
1 Have you done x?					
2 ls x on?					
				Clothing Checklist	
	Yes	No	N/A	Comment	Student Initials
1 Have you done x?					
2 ls x on?					
				Electrical Checklist	
	Yes	No	N/A	Comment	Student Initials
1 Have you done x?					
2 ls x on?					

Tail Deflection CONOPS

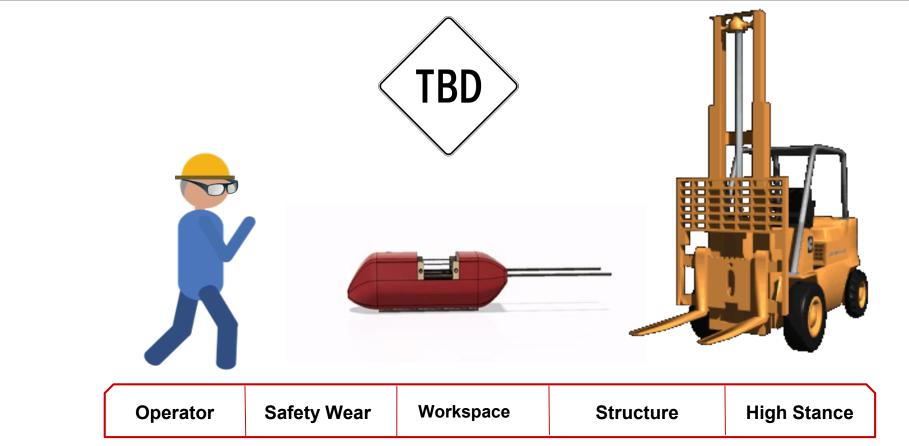


Operator	Safety Wear	Table/Workspace	Tail	Clamp	Whiffletree	Bucket	
----------	-------------	-----------------	------	-------	-------------	--------	--

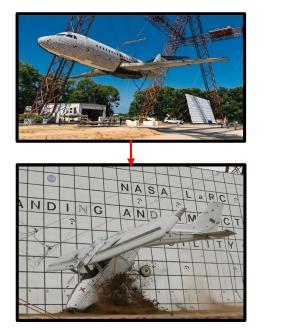

Procedures and Safety Risks

Procedure and Equipment

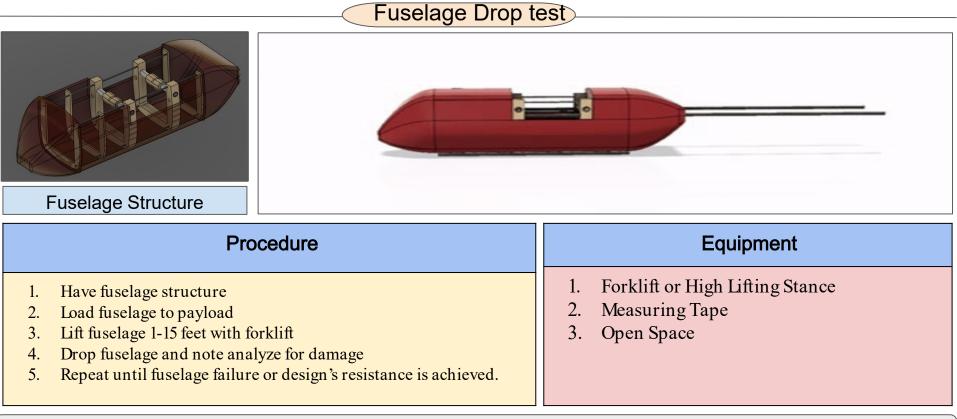
Safety Checklist



	Tail Deflection					
				General Checklist		
	Yes	No	N/A	Comment	Student Initials	
1 Have you done x?						
2 ls x on?						
				Clothing Checklist		
	1	1	1			
	Yes	No	N/A	Comment	Student Initials	
1 Have you done x?						
2 ls x on?						
				Electrical Checklist		
	Yes	No	N/A	Comment	Student Initials	
1 Have you done x?						
2 ls x on?						

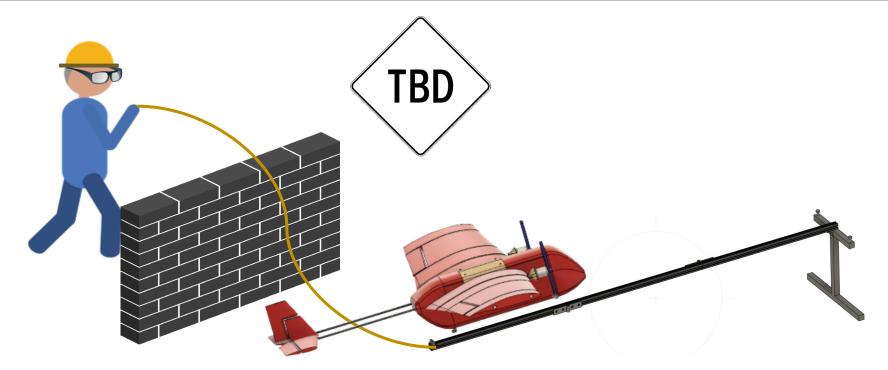


Procedures and Safety Risks


Fuselage Drop Test

Drop Test

Procedure	Safety Risk					
 Have fuselage structure Load fuselage to payloa Lift fuselage -115 feet with forklift Drop fuselage and note analyze for damage Repeat until fuselage failure or design's resistance is achieved. 	e i					


Procedure and Equipment

Launch Rail CONOPS

C	perator	Safety Wear	Workspace	Structure	Shield
---	---------	-------------	-----------	-----------	--------

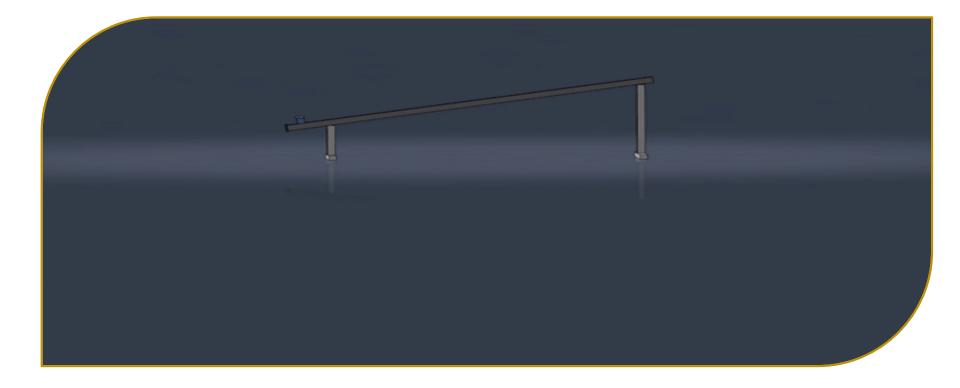
Launching Rail

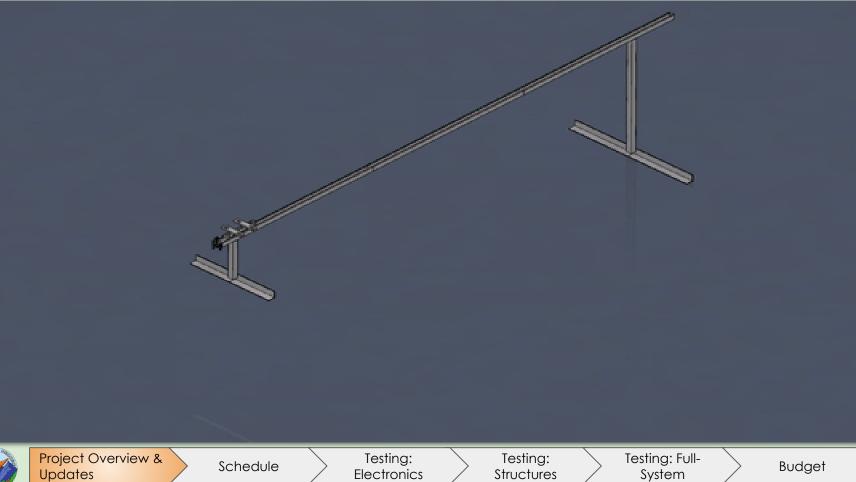
Ĩ

Procedure	Safety Risk
 Unfold 80-20 rail (unfold hinges) Place 8020 on rail stand Get bungees and secure 	 High Tensioned Bungee Wear closed toe shoes Wear glasses (debris)
them to the two stand hooks	 Aircraft is On Standing too close can
 Put bungees over plane hook. And pull back into position 	be cause for injury. - Stay behind shield or carry
 Stand behind shield (plywood or any form of protector) 	shield with you if possible
6. Release Aircraft	- Have others observing

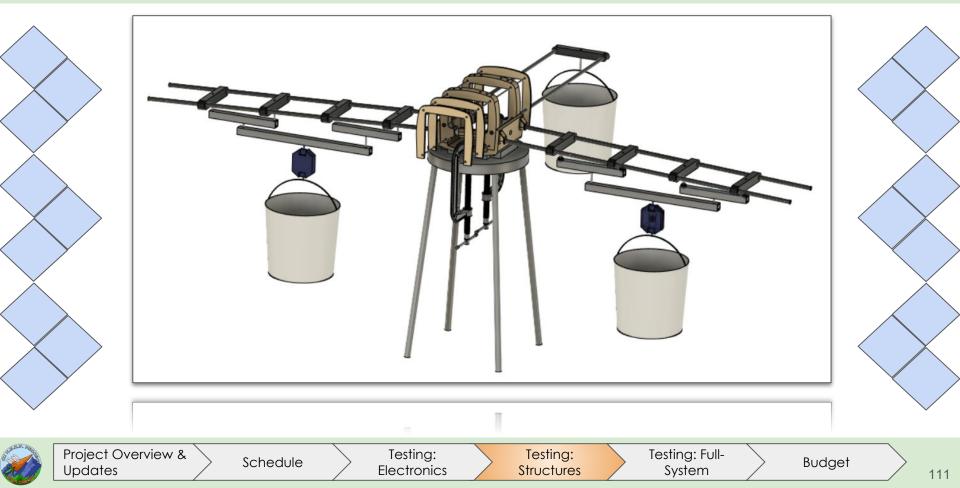
Wing Foam Cutting

Whiffletree Equipment + Fuselage & Wing Test Preparation

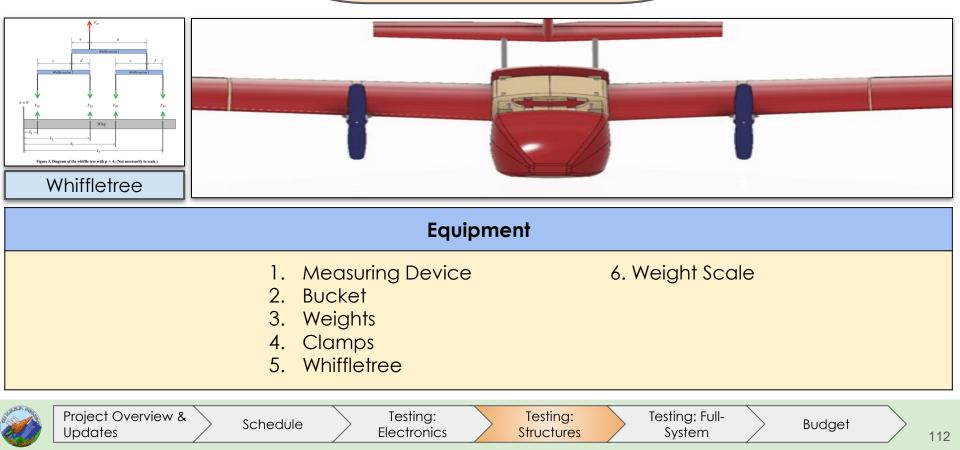




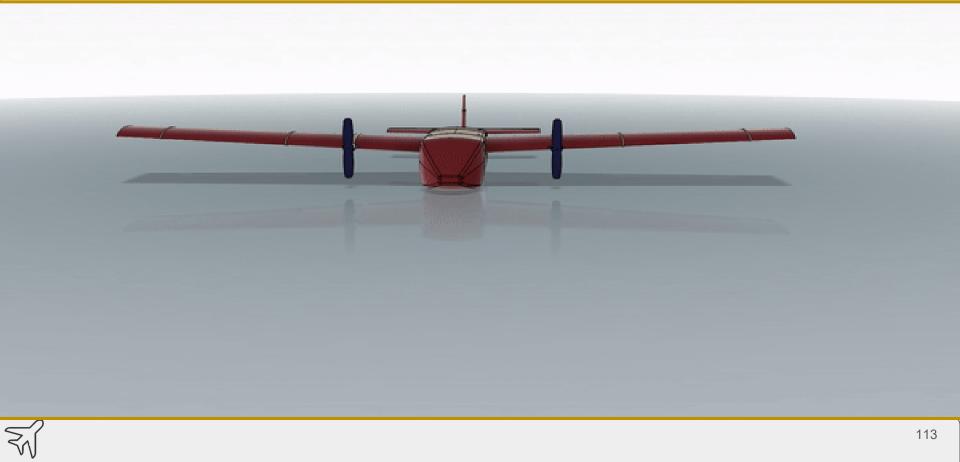
Our New Design:


All Together

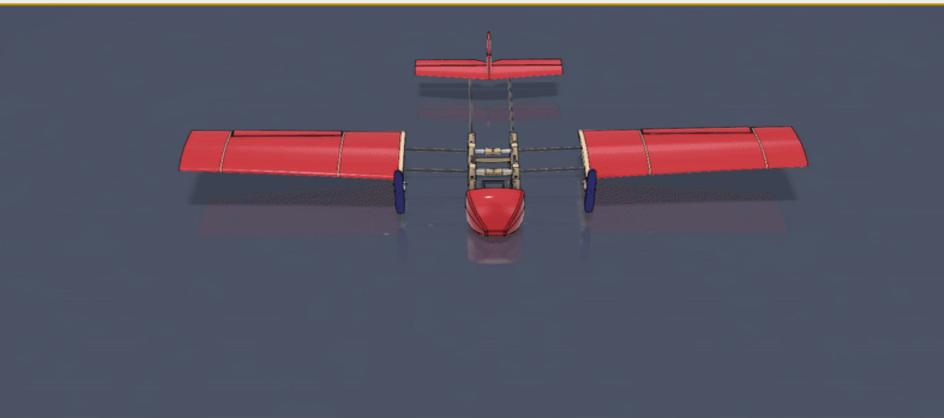
What it will Look Like?



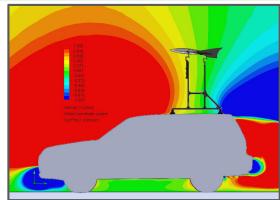
Test Equipment



Wing & Fuselage : Whiffletree


Our Model

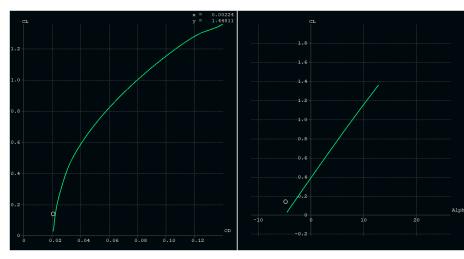
Our Model


Backup Slides Aerodynamic Test

Rationale for Not Conducting the Test:

- The airflow seen by the UAS during the test is not indicative of an actual flight
- Too many sources of error
 - The test stand isn't rigid enough and produces a lot of vibrations
 - Ground effect
 - Crossflow
 - Resulted in VORTEX having a standard deviation of at least 2 in their load cell data
- Fuselage required modifications/compromised to conduct test disturbing airflow further
- The time it would take to improve/conduct the test better spent on Launcher and Glide test

*Image courtesy of team VORTEX



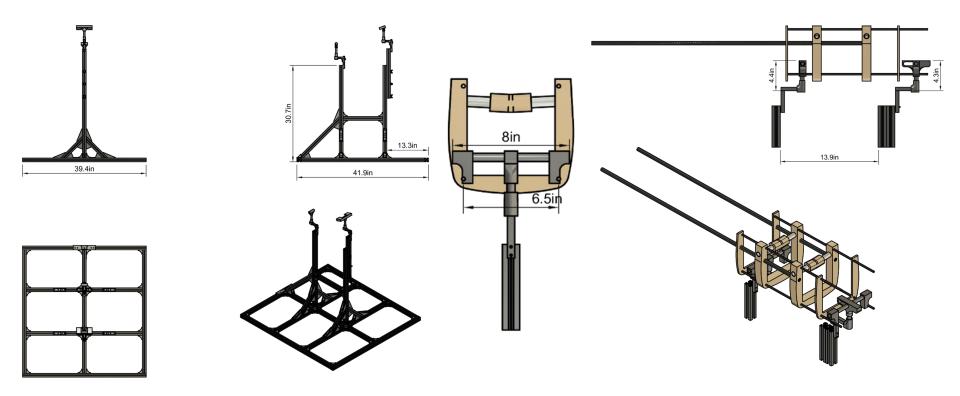
Functional Req. 7 & Design Req. 7

Rationale for Testing:

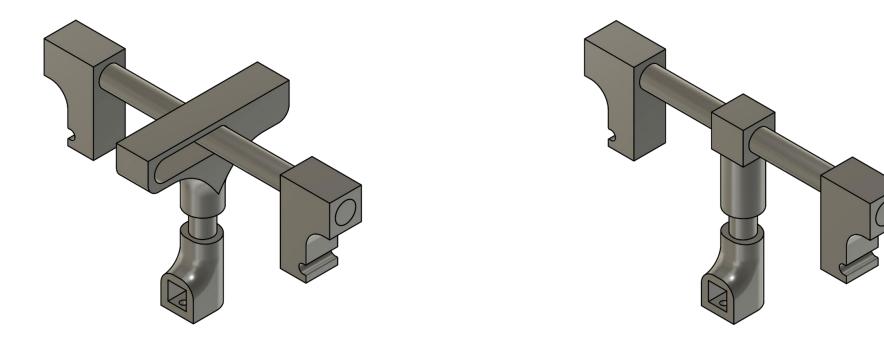
- To obtain through physical means the lift and drag slope of the aircraft
- Increase confidence in XFLR5
 modelling
- Better determine what the expected endurance of the UAS is

Requirement	Description
DR #7	Maximize endurance for 4 hours flight time

*Lift and Drag Characteristics Predicted by XFLR5



*Image Courtesy of 2019 Team VORTEX



121

Functional Req. 8 & Design Req. 10

No location secured.

Will coordinate with PAB on procedure if/when location to conduct test is secured.

Waiting on responses for: Aero, Discus range, Table Mesa Location

Rationale for Testing:

• To determine through experimentation if the aircraft is dynamically stable during flight

Prerequisites for Testing:

- A full scale model of the UAS
- Suitable testing environment for conducting the test
 - Wind no greater than 5 mph and at least 20 meters of altitude above ground level

Scope of the Testing Tasks:

- Design of test fixtures, selection and calibration of sensors, data acquisition plans
- Test equipment and/or facilities needed
- An overview of the test and safety procedures

Describe how test will reduce risk to meeting requirements, expected results, and how models will be validated:

• Functional Requirement 8 states that the UAS must have static and dynamic longitudinal and lateral-directional stability naturally

Test Readiness - Full-System Flight #2 and #3

Testing:

Electronics

Test Flight #2

- **Battery Characterization while flying** _ (Servo Power draw)
- **Climb Angles/Speed** _

Test Flight #3

Project Overview &

Updates

- Lift/Drag Profile _
- Test Stall, Velocity and AoA _

Schedule

g	x = 0.00224 y = 1.46411 1.2 1.0 0.8 0.6 0.4	EL 1.0 1.4 1.4 1.2 1.0 0.8 0.6 0.4 0.4					
	,	Description					
	FR #3	Short Take Off and Landing					
	DR #3	Min Time Set up 800 ft Range 30m Height					
	DR #7	Endurance					
Testing: Structures	Testing: Glide Test	Budget 124					

https://docs.google.com/spreadsheets/d/1ZDexDB7CJlagfgYeeEVnTCXhxhqPNrOj3FR00FAOfY/edit?usp=sharing

Budget

Team & Item Category	Item	Cost [USD C	ost Mar	Vendor (Link)	Quan	Shipping [US	Shipping N	Total [USD]	Total Margin [Use	expected delivery da	ate
irframe / manufacturing	replace wing set: ~250											
	foam for wing 3x	\$25.50	\$2.55	https://foammart.com	2	33	3.3	\$84.00	\$8.40	foam to construct the wing	std shipping	
	foam wing 4x - shipping as of 2/8	\$54.50	\$5.45	https://foammart.com	2	0	0	\$109.00	\$10.90	foam to construct the wing		
	Diameter : .250", Length : 96", Resin : Epoxy	\$17.95	\$1.80	https://store.acpcom	1	\$37.54	\$3.75	\$55.49	\$5.55	Structural support in fuselage	2/9	50 50
ossibly rebuy after trr	Dimensions : .625" OD X .515" ID, Length : 48	\$37.72	\$3.77	https://store.acpcom	4	Shipping incl	uded in first	\$150.88	\$15.09	Structural support in wings]		
	Dimensions : .500" OD X .394" ID, Length : 48	\$39.58	\$3.96	https://store.acpcom	2	Shipping incl	uded in first	\$79.16	\$7.92	Structural support in tail		
	Epoxy - 8 oz. ClearWeld Pro	\$21.98	\$2.20	https://www.homede	1	In-store picku	N/A	\$21.98	\$2.20	Glue Biding mechanism	2/24	
nding rails - hold off on this	Dimensions : .625" OD X .515" ID, Length : 48	\$37.72	\$3.77	https://store.acpcom	2	Shipping incl	uded in first	\$75.44	\$7.54	Structural support		
	Bungee Cord	25\$	3\$	https://superbungee	2	In-store picku	N/A	59.38	5.938	UAV launch	2/24	
	pla - gave to manu team	20\$	2\$	https://www.amazon	1						2/8/23	
	launch shield - contact Matt Rhodes or Josh M	Aellin										
	fee for paved road? - eric is finding out on mo	nday		make mellow arrang	emen	t						
	launch rail	38\$	4S	https://www.mcmast			2.7	1295	13\$	launch rail component	2/19	
aiting on tax exemption ema	t bolt -can make on own	7\$	15	https://shop.southco	2			155	5 15	launch rail component		
	launch rail component: R4-10-30-705-10	18\$		https://shop.southco				205		launch rail component		
	6 Wheel T Type Trolley Assembly Electric Hoi			https://www.amazon				755		launch rail component	2/22	
	Hinges	5\$		https://www.mcmast				205		launch rail component		
	6x6x0.3125 Aluminum	13\$		https://www.mcmast				145		cart on launch rail		
	0.25x0.875x24 Aluminum	6\$		https://www.mcmast				75		launch rail		
	0.375x1x6 Alumium	3\$		https://www.mcmast				45				
	Latches	9\$		https://www.mcmast				105				
	U-bolt	6\$		https://www.mcmast				75	· · · ·			
	U-bolt Plate	2\$		https://www.mcmast				25				
	Angled Bracket	1\$		https://www.mcmast				25				
	Rail Leg Base Short (2ft)	29\$		https://www.mcmast				325				
	Rail Leg Base Long 3	42\$		https://www.mcmast				465				
	Rail Legs short	423		https://www.mcmast				225				
	Rail Legs Long	48\$		https://www.mcmast				535				
alky talkies?	get from bobby	409	50	mps.//www.monast					, Ja			
	get from bobby	4505	450					1655	5 17\$			
mposium poster		150\$	15\$					1653	1/\$			
lectromechanical											0.000	
lain ESC - i paid - waiting on		\$30		https://store.tmotor.c			N/A	\$60		Motor power	2/20	
light Controller + GPS - got				https://www.droneco			\$0.00	\$0		Flight Controller and GPS	delivered	
fain Motor i paid - waiting		\$100		https://store.tmotor.c		free	N/A	\$200		Motor	2/20	
fain Propeller - i paid - waitin		\$3.97		https://www.apcprop				\$14.06		Propellor	in preshipment phas	60
C Receiver (Appropx.)	FrSky X4R-SB	\$37		https://www.amazon		Free with prin		\$37		RC Controls receiving	2/9	
	3DR 500MW Radio Telemetry Kit	\$87		https://www.amazon		Free with prin		\$87		Telemetry data tx/rx	2/9	
andheld Controller (Approx.		\$127		https://www.amazon		Free with prin		\$123	4	Control of A/C	2/10	
attery	Tattu 22.2V	\$475		https://genstattu.com				\$522		Power	delivered 2/13	
	mRo I2C Airspeed Sensor JST-GH-MS4525D			https://store.mroboti			N/A	\$87		Speed Sensing	1-5 days, ordered or	n 2/3/2
nticollision lights	Arc "V" Drone Strobe Light Full Navigation Kit			https://www.amazon		Free with prin		\$13		FAA regulations for visability	March 1	
ervos	8 kg thin wing servo	\$29.99		https://www.amazon		Free with prin		\$59.98		Acuation of control surfaces	2/9	
lotor wire	8 guage red / black	\$26.98		https://www.amazon		Free with prin	N/A	\$26.98		Power wire from supply to ES		
t90-S Connector - reorder a		\$12.99		https://www.amazon				\$14.29	\$1.43	connect to battery to board	2/10	
prong terminal MT60	ESC to motor connector	\$8.99		https://www.amazon						connect esc to motor		
emperature sensor	TSYS01	\$21.48	\$2.15	https://www.te.com/u	1	Free		\$23.63		battery temp sens for telemme	5-7 days , ordered o	n 2/3/2
ower Managment Board - i o	Powers Everything	\$42.00	\$4.20	https://shop.holybro.	1	24	2.4	\$72.60	\$7.26	power module for entire aircra	f ordered 2/13	
IBEC Convertor	Powers the Servo Rail	\$17.99	\$1.80	https://www.amazon	1	0	0	\$19.79	\$1.98	powers servos via rail. connec		
ervos Tail	Rudder/elevator	\$14.99	\$1.50	https://www.amazon	1	0	0	\$16.49	\$1.65		2/21	
Servo hardware	Aileron/Rudder/Elevator	\$10.38	\$1.04	https://www.amazon	1	0	0	\$11.42	\$1.14		2/21	

P

Budget

Long rods - wait	TBD		\$0.00		1			\$0.00	\$0.00			
GPS module - hear from talor	GPS antenna for Pixhawk	\$30.00	\$3.00	https://www.amazon	1	\$0.00	\$0.00	\$30.00	\$3.00	Any M8N GPS module will wor	2	28
RC Transmitter battery	FrSky 2000mAh 7.2v NiMH Battery for Tarania	\$24.98	\$2.50	https://www.amazon		\$0.00	0	\$24.98	\$2.50	Battery for handheld controller	2	23
lipobag	Battery Bag	\$11.99	\$1.20	https://www.amazon	1	0	0	\$13.19	\$1.32	safety precaution for battery		I
	Cost	Margin										
Airframe / manufacturing	1382.1192	138.21192										I
Electromechanical	1606.0812	160.60812										
Total Cost (including margin):	2988.20											
Total Budget	\$4,000.00											_
Remaining Balance	\$1,011.80					money	spent w	ithout margin			\$2,364.74	
						with m	with margin				\$2,601.21	
						money	money left including margin				\$1,398.79	
Key:						-						
complete and delivered							good lef				386.99	
ordered						cost le	ftover (in	cluding margir			\$1,011.80	
amazon reorder						cost of	crticical	item:				
not ordered						battery						
						3d filar	nent					

carbon fiber rods

