TEAM SEVEN TEST READINESS REVIEW

<u>Advisors</u> Professor Mah Professor Rafi Hunter Ray

<u>Sponsor</u> Mr. John Mah TEAM SEVEN Ty Banach, Maklen Estrada, Max Gerber, Sam Hatton, Alex Hubben, Collin Hudson, Mike Miller, Kevin Pipich, Bennett Spengler, Ethan Temby, Alessandro Villain, Jacob Wilson

PROJECT OVERVIEW

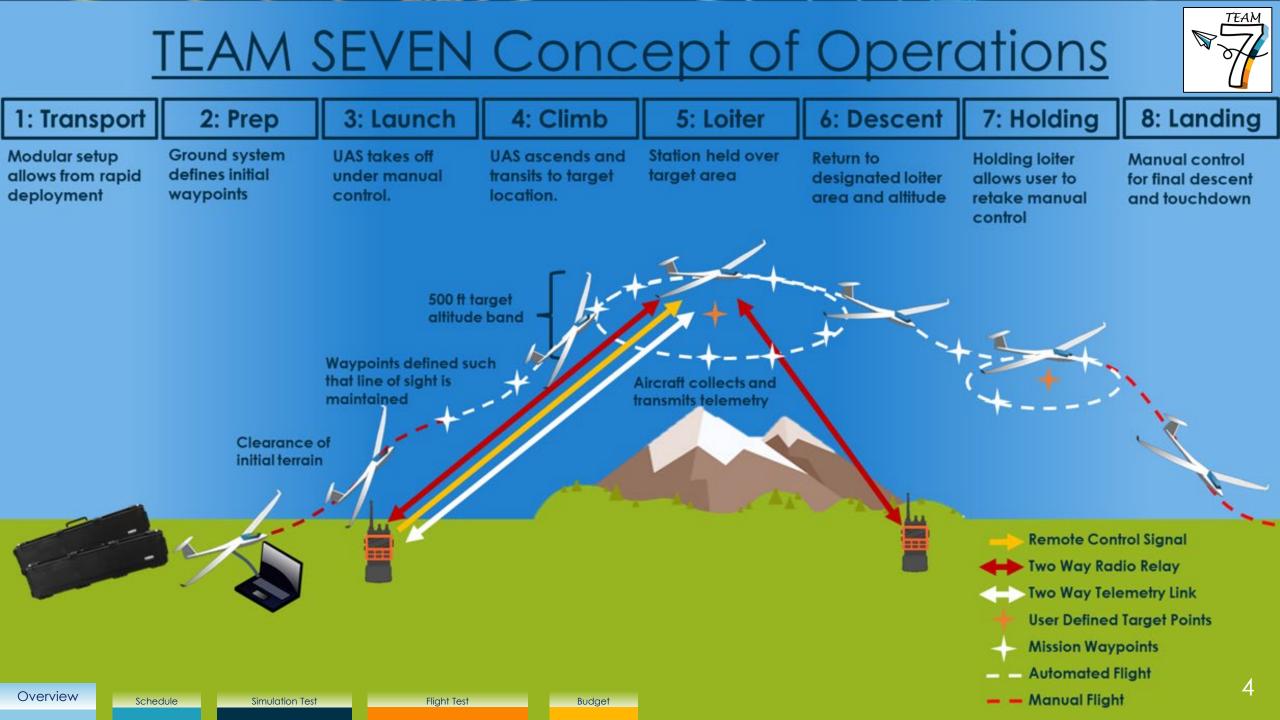
PROJECT OVERVIEW

Project Purpose

- Develop a navigation system to improve the energy efficiency of an unmanned aerial system
- Deploy system to extend lifespan of fixed wing drone, serving as communications relay for first responders in remote locations

Specific Objectives

- Develop navigation software to optimize flight trajectory to increase vehicle endurance
- Utilize in-situ wind measurements to dynamically update flight plans
- 20% improvement of endurance from baseline flight will prove the systems' efficacy



Testing Location: CU Boulder South

Overview

Simulation Te

/

Optimization Concept of Operations

Initial Circular Orbit

Optimized Orbit

Flown at constant groundspeed while taking initial wind data Updated orbit profile uploaded from ground station.

Budget

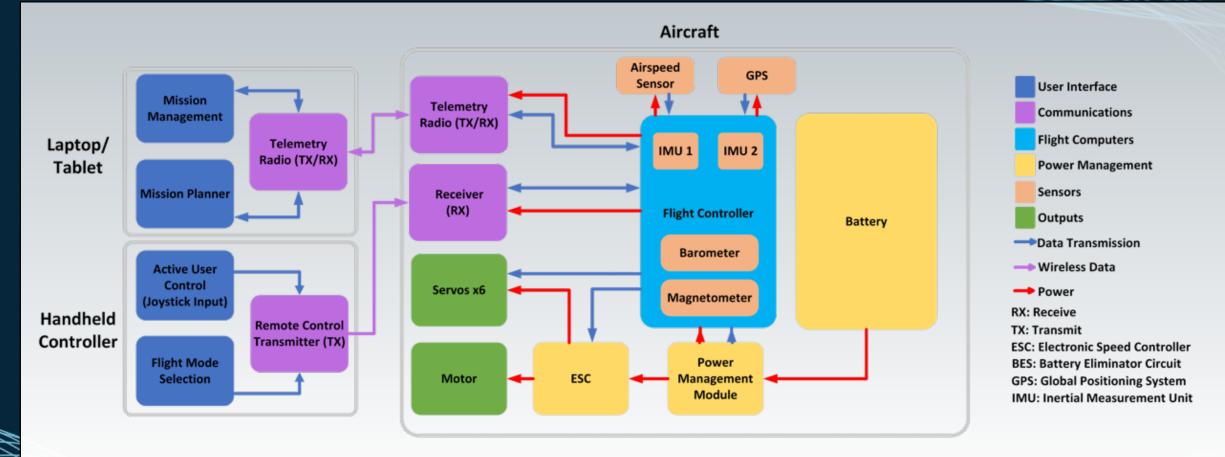
Flight Test

Constant airspeed near Pr_min with crab angle minimized

Mission Waypoints

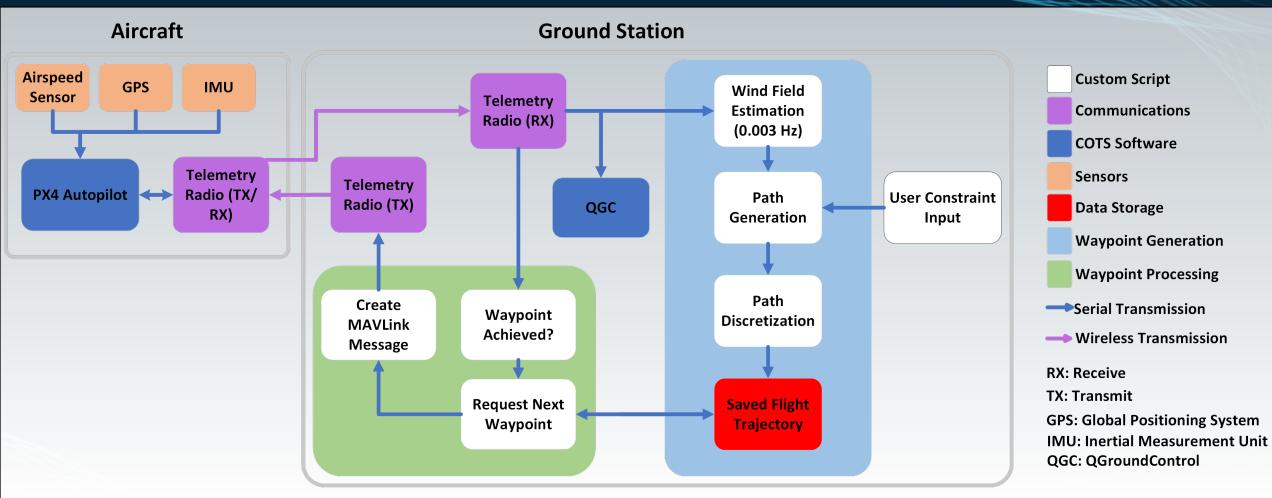
Y Airspeed

Groundspeed


👉 Wind

*Waypoints consist of position and commanded groundspeed

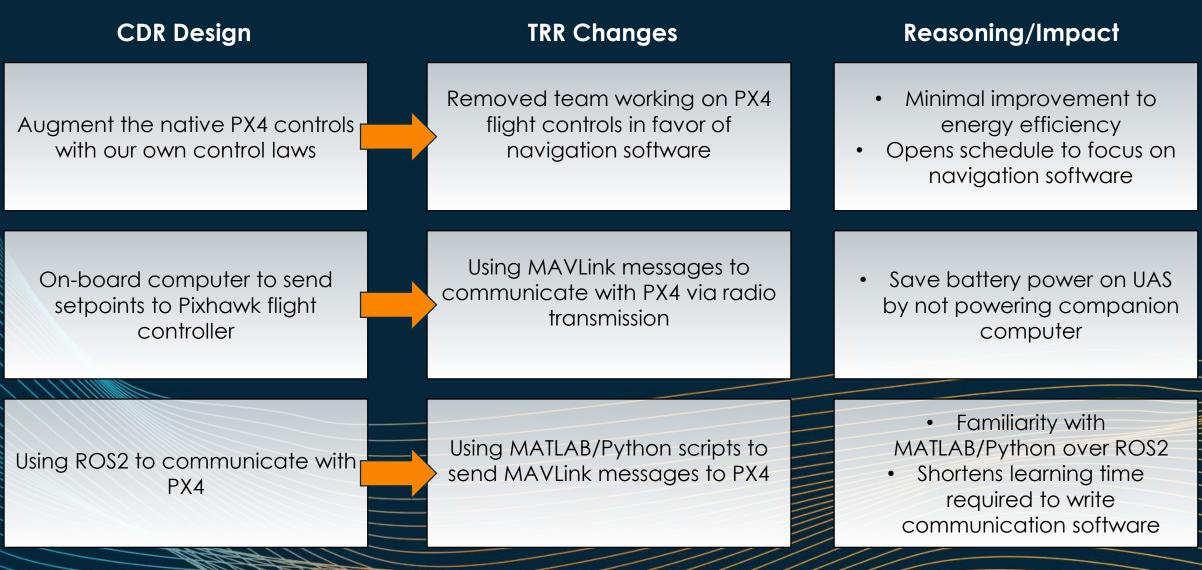
Overview	Schedule	Simulation Test	


HARDWARE FBD

Schedule

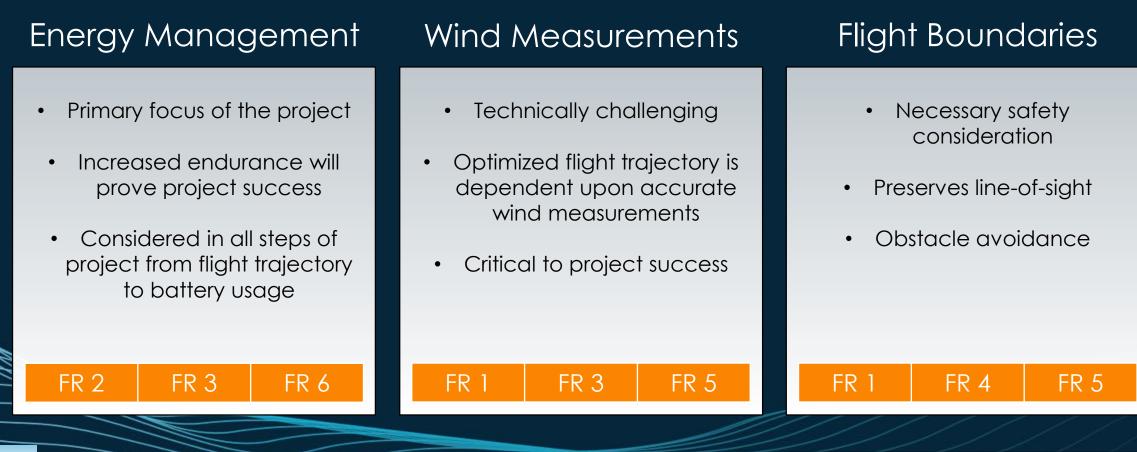
6

SOFTWARE FBD


Schedule

Budget

7


MAJOR DESIGN CHANGES

CRITICAL PROJECT ELEMENTS

Overview

PROJECT SCHEDULE

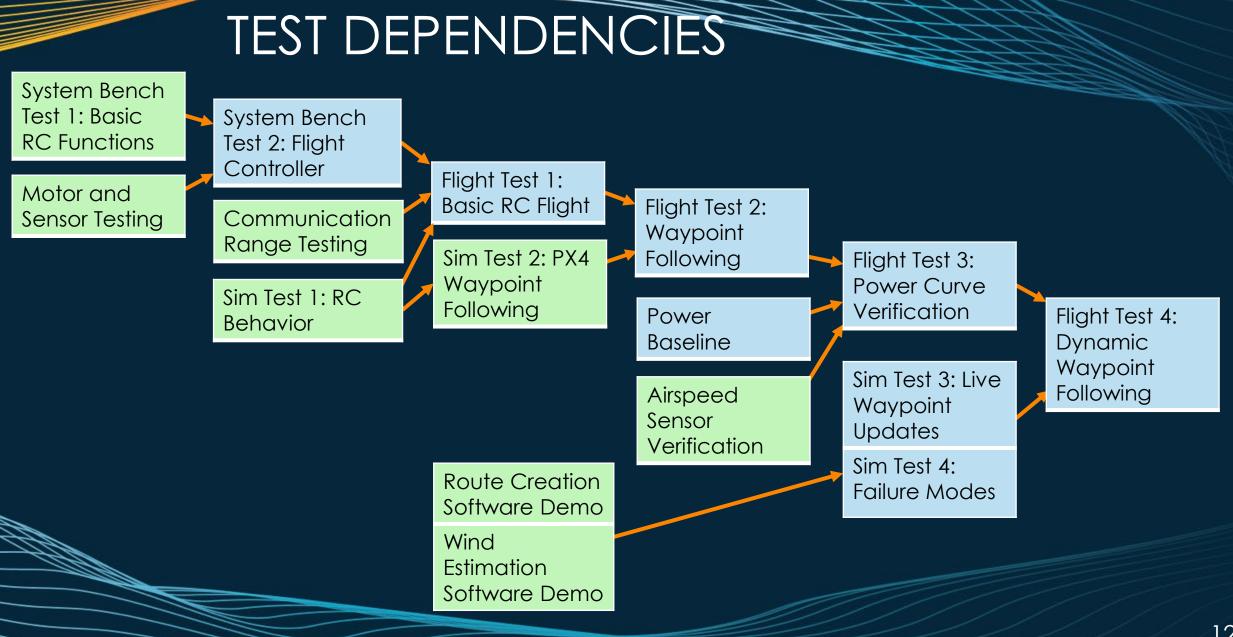
TEST EVENTS

TEAM

Component Testing Motor Characterization 2/13 Communication Range Testing 2/28 2/22 Attitude Sensor Verification 2/22 **GPS** Position Verification Inertial Velocity Verification 2/22 **Body Rotation Verification** 2/22 Airspeed Sensor Verification 2/24 Route Creation Software Demo 3/6 Wind Estimation Software Demo 3/20

Bench Tests

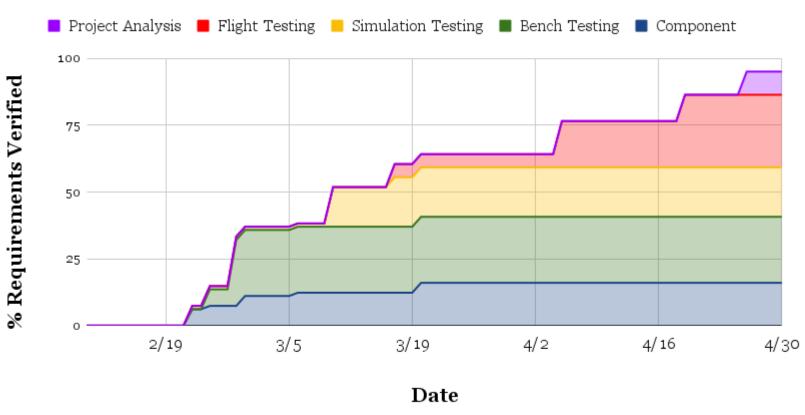
System Bench Test 1: Basic RC Functions	2/24
System Bench Test 2: Flight Controller Integration	2/27
Power Baseline	3/6


mulation Test

Simulation Tests

Sim Test 1: Remote Control Behavior	2/13
Sim Test 2: PX4 Waypoint Following	2/22
Sim Test 3: Live Waypoint Updates	3/10
Sim Test 4: Failure Mode Analysis	3/17
Flight Tests	
Flight Tests Flight Test 1: Basic RC Flight	3/17
	3/17 4/5
Flight Test 1: Basic RC Flight	-

Completed


Presenting On Today

VERIFICATION PLAN

Verification Timeline

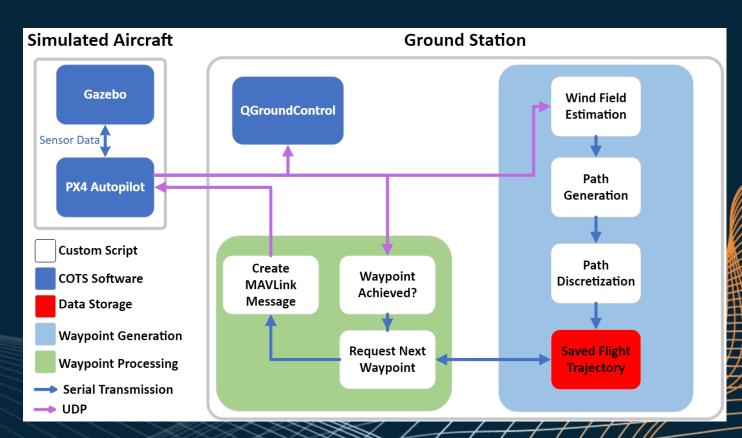
	TASK NAME	TASK DATES	Feb	9 10	Mar 11 12 13	Apr 14 15	May 16 17 18 19 20 21	Z2 TEAM
	Project: TEAM SEVEN Project Schedule	Feb 10 - Apr 29		Today	Project: TEAM SEVEN Project Schedule			
	Test Readiness Review	Feb 27		TRR				
	Spring Final Review	Apr 24					🔶 SFR	
	Component Testing	Feb 10 – Mar 22	(Component Testing				
Simulation Testing	Motor Characterization	Feb 10 - Feb 13	Motor Characterization					
	Antenna Range Verification	Feb 20 - Feb 21	Anter	nna Range Verification				
Sim Test 1 - RC Control	Attitude Sensor Verification	Feb 20 – Feb 22		de Sensor Verification				
Sim Test 2 - Waypoint Following	GPS Position Verification	Feb 20 – Feb 22	GPS F	Position Verification				
	Inertial Velocity Verification	Feb 20 – Feb 22	Inerti	al Velocity Verification				
Sim Test 3 - Live Waypoint Updates	Airspeed Sensor Verification	Feb 21 – Feb 23	Airs	speed Sensor Verification				
Sim Test 4 - Failure Modes/Safety Fe	Route Creation Test	Feb 26 – Mar 8		Route Creation Test				
	Wind Vector Analysis/Path Updates	Mar 12 – Mar 22			Wind Vector Analysis/Path Updates			
Flight Testing	System Testing	Feb 24 – Mar 3		System Testi	ng			
Project Analysis	Bench Test 1 - Actuator Control	Feb 24 – Mar 1		Bench Test 1 - Actuator Cont	rol			ct Analysis
	Bench Test 2 - Full Hardware Setup	Feb 27 – Mar 3		Bench Test 2 - Full Hard	dware Setup			
Flight Test 1 - Basic RC Flight	Simulation Testing	Feb 10 – Mar 22	1	Simulation Testing				
Flight Test 2 - Waypoint Following	Sim Test 1 - RC Control	Feb 10 - Feb 13	Sim Test 1 - RC Control					
	Sim Test 2 - Waypoint Following	Feb 24 – Mar 1		Sim Test 2 - Waypoint Follow	ing			
Flight Test 3 - Power Curve Test	Sim Test 3 - Live Waypoint Updates	Mar 10 – Mar 15		Si	m Test 3 - Live Waypoint Updates			
Flight Test 4 - Dynamic Waypoint Fo	Sim Test 4 - Failure Modes/Safety Fe	Mar 17 – Mar 22			Sim Test 4 - Failure Modes/Safe	ety Features		point Following
	Flight Testing	Mar 17 – Apr 29				Flight Testing		point anothing
Software Development	Project Analysis	Apr 26					🔶 Project Analysis	
Navigation/Topology Software Integra	Flight Test 1 - Basic RC Flight	Mar 17 – Mar 22			Flight Test 1 - Basic RC Flight			
Tenelogi Constrainte	Flight Test 2 - Waypoint Following	Apr 5 – Apr 12				Flight Test 2 - Waypoint Fo	llowing	
Topology Constraints	Flight Test 3 - Power Curve Test	Apr 16 – Apr 20				Flight	Test 3 - Power Curve Test	
Waypoint Generation Software	Flight Test 4 - Dynamic Waypoint Fo	Apr 23 – Apr 29					Flight Test 4 - Dynamic Waypoint Following	
Dynamically Updating Waypoint Sof	Software Development	Feb 12 – Apr 6	_		levelopment			
Dynamically Opdating Waypoint Sol	Navigation/Topology Software Integra	Mar 4	-		igation/Topology Integ	gration		
Waypoint Integration with Topology	Topology Constraints	Feb 12 – Mar 3	Topology Constraints	s 7				
	Waypoint Generation Software	Feb 12 - Feb 18	Waypoint Generation	n Software				
	Dynamically Updating Waypoint Sof	Feb 20 – Mar 3	Dyna	mically Updating Waypoint Sof	tware			14
	Waypoint Integration with Topology	Mar 6 – Apr 6		La Waypoint	Integration with Topology			

SIMULATION TEST – WAYPOINT UPDATES

TEST OVERVIEW

Main Goals

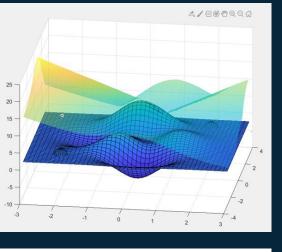
- 1. Generate and send waypoint plans to UAS
- 2. Gather and verify flight data and telemetry
- 3. Verify that waypoint plans avoid exclusion zones
- 4. Verify that waypoint plans can be generated with given sensor data

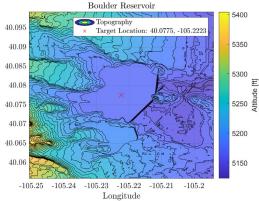


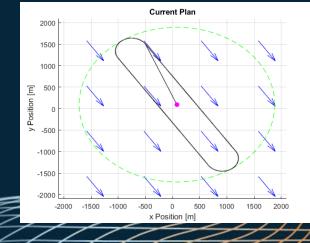
16

RISK BUYDOWN

- Flight software failure
 - Reduces risk of failure in flight during future flight tests
- Mission Management Safety
 - Directly evaluates that mission management can create trajectories that avoid userdefined obstacles
- Software Integration
 - Verifies communication between mission management, QGroundControl, and PX4 autopilot.


Schedule

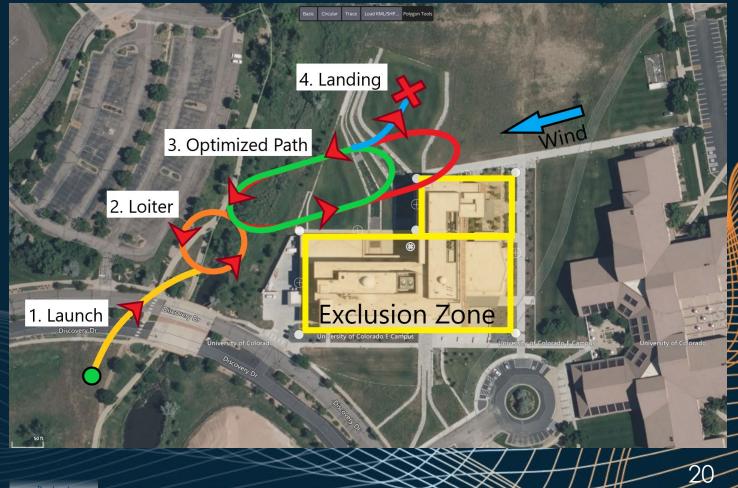

1



CRITICAL PREREQUISITES

- Simulation Test 2: Waypoint Following
 - PX4 autopilot is capable of following waypoints defined before flight.
 - Testing environment can accurately simulate PX4 waypoint following.
- Mission Management- Path Creation
 - Mission Management Software can create path with consistent LOS.
 - Paths respect exclusion zones.

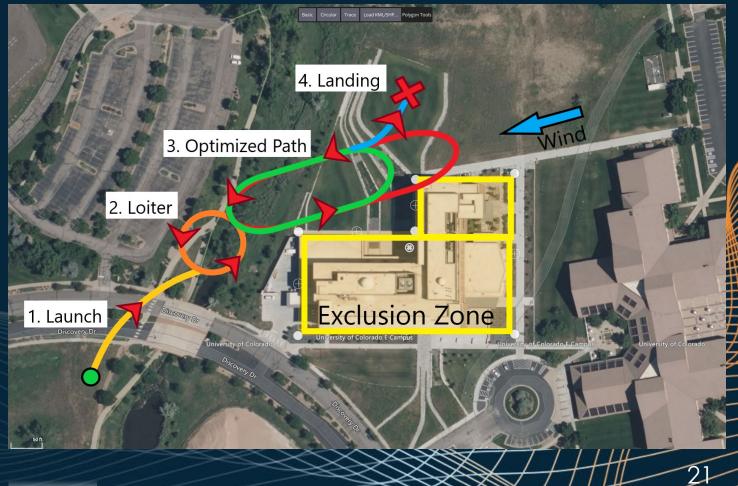
dget


REQUIREMENT EVALUATION

	Expected Results	Requirements Validated
Path Generation Requirements	Avoids local terrain obstacles by 50 meters and exclusion zones by 25 meters .	2.2.2, 2.2.3
	Orbit waypoints are separated by at most 150 meters .	2.2.7
	New plan generation at least every 5 minutes	2.3.2
Communication Requirements	UAS executes waypoint path in offboard mode	1.4.2
	Navigates to within 20 meters of waypoints	5.3.1
Mission Execution	Autonomous Flight	Mission Objective
	Flight Boundaries	Mission Objective

PATH GENERATION REQUIREMENTS

- Obstacles and Exclusion Zone
 - Waypoint plans within 50 meters of obstacles and 25 meters of Exclusion Zones are not sent
 - Verified with simulated telemetry [x,y,z] data
- Waypoint Separation
 - Euclidian distance between ٠ sequential waypoints < 150meters
 - Verified with distance calculation between all generated sequential waypoints

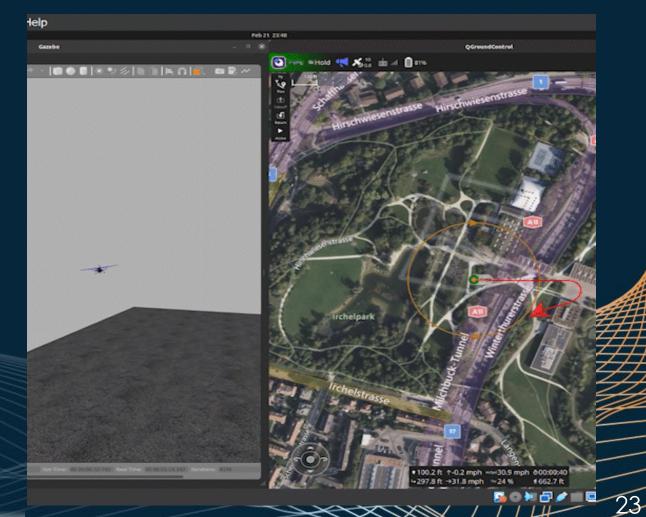


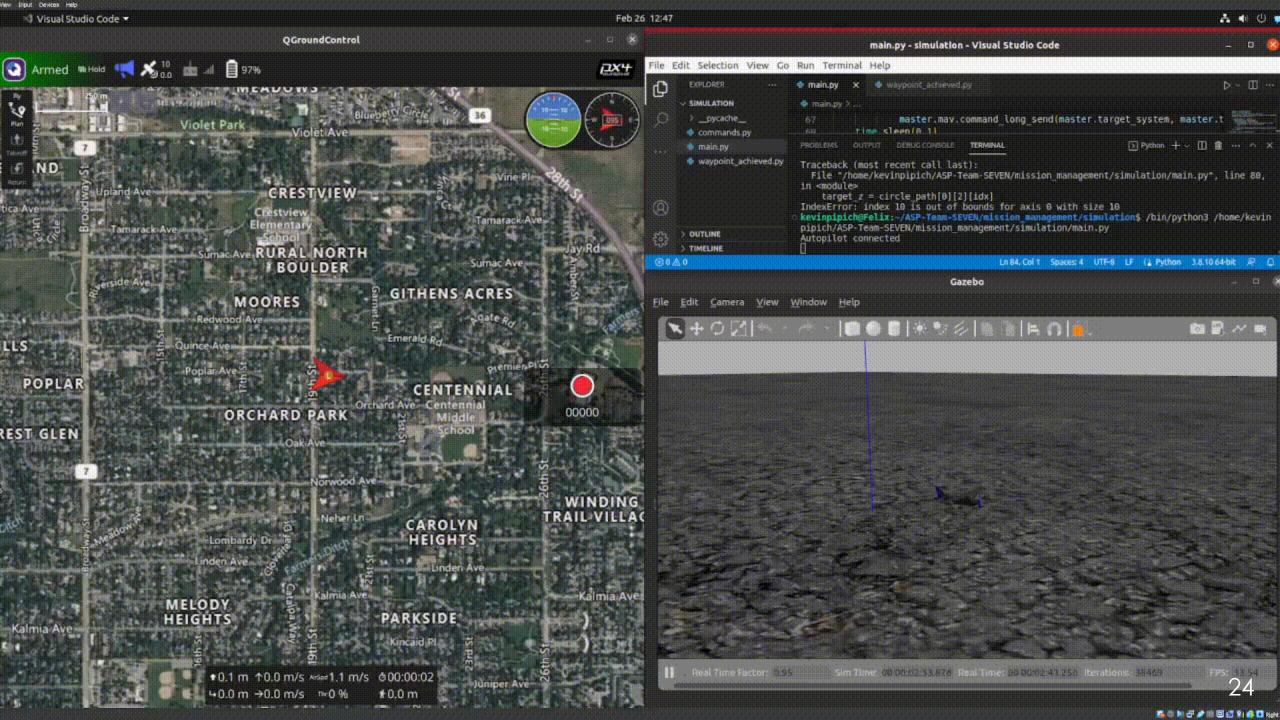
COMMUNICATION REQUIREMENTS

• Offboard mode

- MAVLink messages and commands are received by simulation at > 2 Hz
- Verified with Mode setting in QGroundControl and MAVLink message log file
- New Plan Generation
 - Optimized Path is generated in < 5 minutes after entering Loiter
 - Verified with elapsed time
 during execution in MATLAB

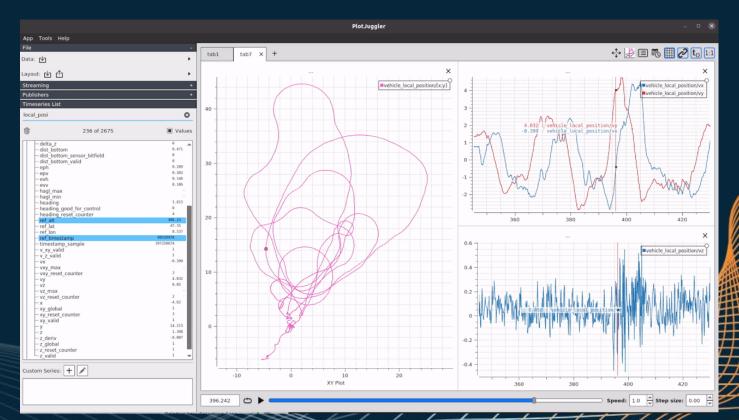
MISSION EXECUTION


- Flight Tolerance
 - Aircraft navigates to within 20 meters of waypoints
 - Verified with simulated telemetry [x,y,z] data
- Autonomous Flight
 - The entire Software in the Loop test will be autonomous
 - Shows command of a full mission without operator intervention
- Flight Boundaries
 - Validates the safety of the project by disallowing unsafe trajectories
 - Allows user constraints to trajectory that can avoid dangerous areas



TEST EQUIPMENT/FACILITIES

- Linux Computer running:
 - QGroundControl
 - PX4 Software-in-the-Loop Gazebo Simulation
 - MATLAB script (path generation)
 - Python script (MAVLink messages)
- Safety
 - There are no safety risks for this test, as it is all simulated on a computer.



DATA ACQUISITION

- Flight telemetry data and MAVLink message logs will be downloaded from QGroundControl as a .ulg log file.
- Log file analyzed using the PlotJuggler data visualizer.
- Data exported as csv from PlotJuggler for further analysis.

PlotJuggler gif courtesy of the PX4 User Guide

 $+\pi$

FLIGHT TEST – POWER CURVE TESTING

TEST OVERVIEW

Main Goals

- 1. Validate power vs. airspeed shape from Tempest model
- 2. Satisfy high level mission objectives
 - Generate full system power curve (power draw vs. airspeed)
 - Determine operable
 airspeeds
 - Determine stall safety margins

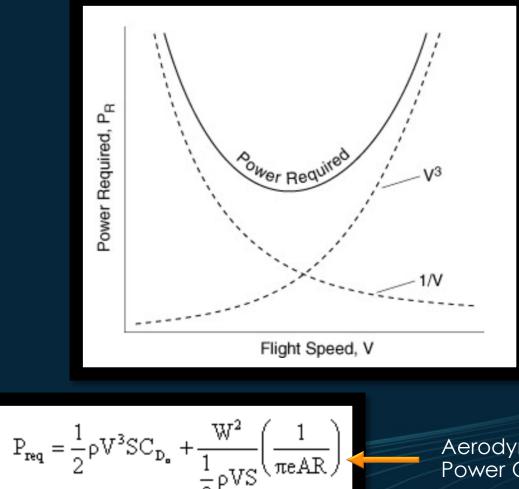
Flight Test

Power Curve Model Validation

- Generate full system power curve
- Compare to Tempest model

Range of Operable Airspeeds

- **20% endurance improvement** (DR 2.1)
- Monitor battery voltage [V] and current [mA] (DR 2.1.2)


Monitor Stall Conditions

- Incorporate safety margins to avoid stall
 - Minimum commanded speed must be at least 1.5X stall ٠ velocity (DR 2.1.1)

Flight Test

Validate mission objective for flight safety

TESTING RATIONALE

Aerodynamic Power Only

PREREQUISITE TESTING

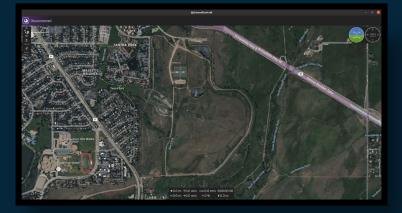
Airspeed Sensor Verification Test

- Accuracy and reliability
- True airspeed vs. indicated airspeed
 Adjust for air density?

$$V_{\infty,sl} = \sqrt{\frac{2(P_0 - P)}{\rho_{sl}}}$$
$$V_{\infty,boulder} = \sqrt{\frac{\rho_{sl}}{\rho_{boulder}}} \sqrt{\frac{2(P_0 - P)}{\rho_{sl}}}$$

Preplanned Waypoint Sequence Flight Test

- Testing PX4's ability to fly autonomously and follow waypoints
- Data logging functionality
- Testing telemetry downlinking
 - Reliability, data rates, accuracy



EQUIPMENT AND FACILITIES

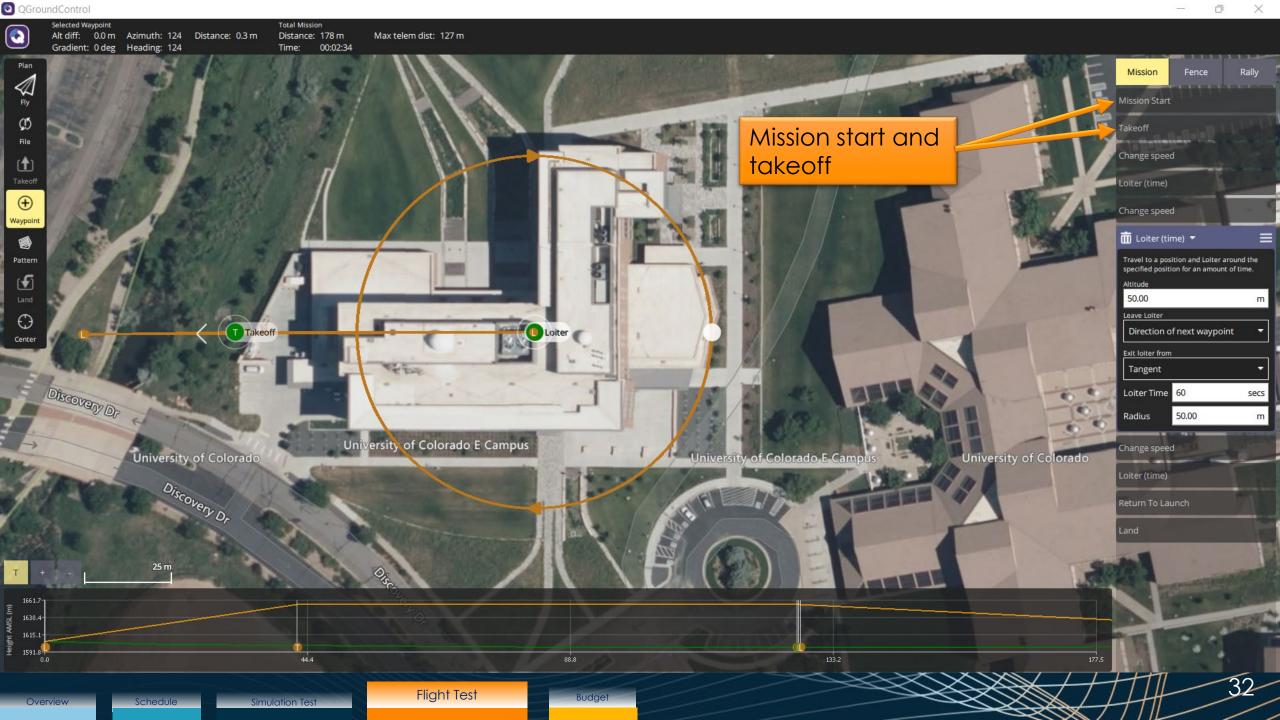
Equipment and Facilities

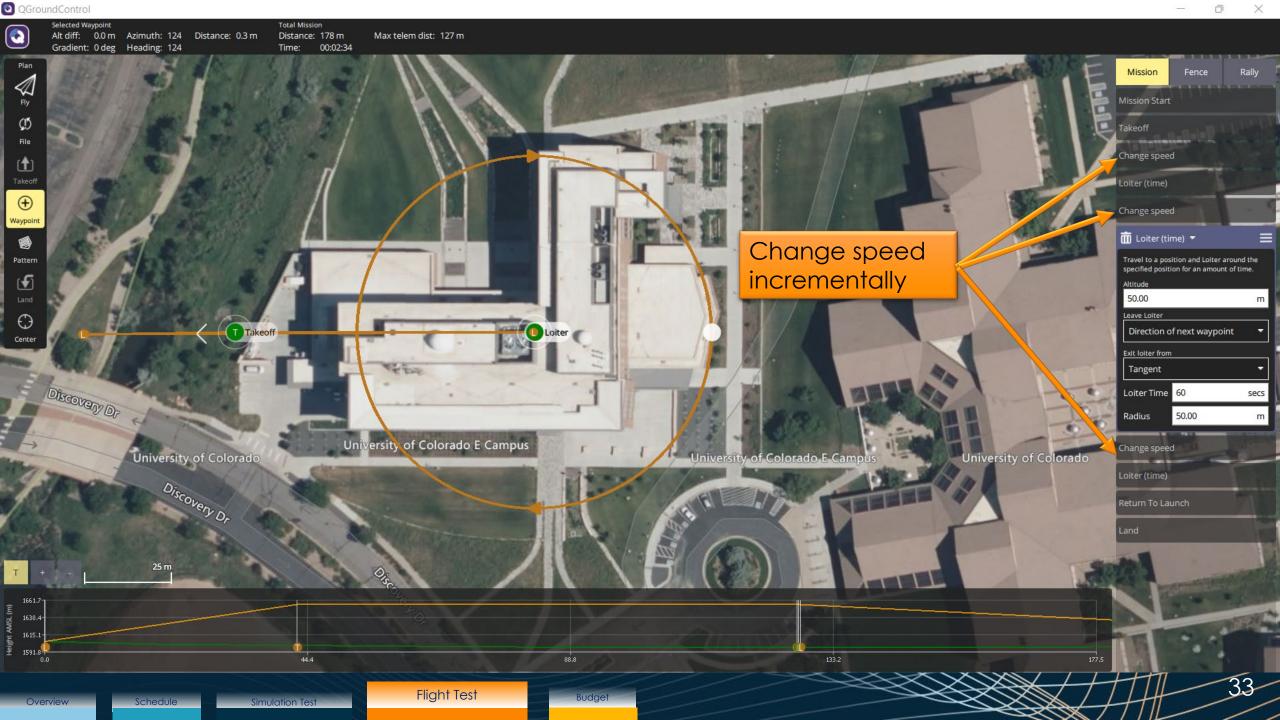
- Ground station laptop (with QGC)
- Handheld RC controller (and pilot)
- CU Boulder South (Facility)
- Phoenix 2400 (with sensors)

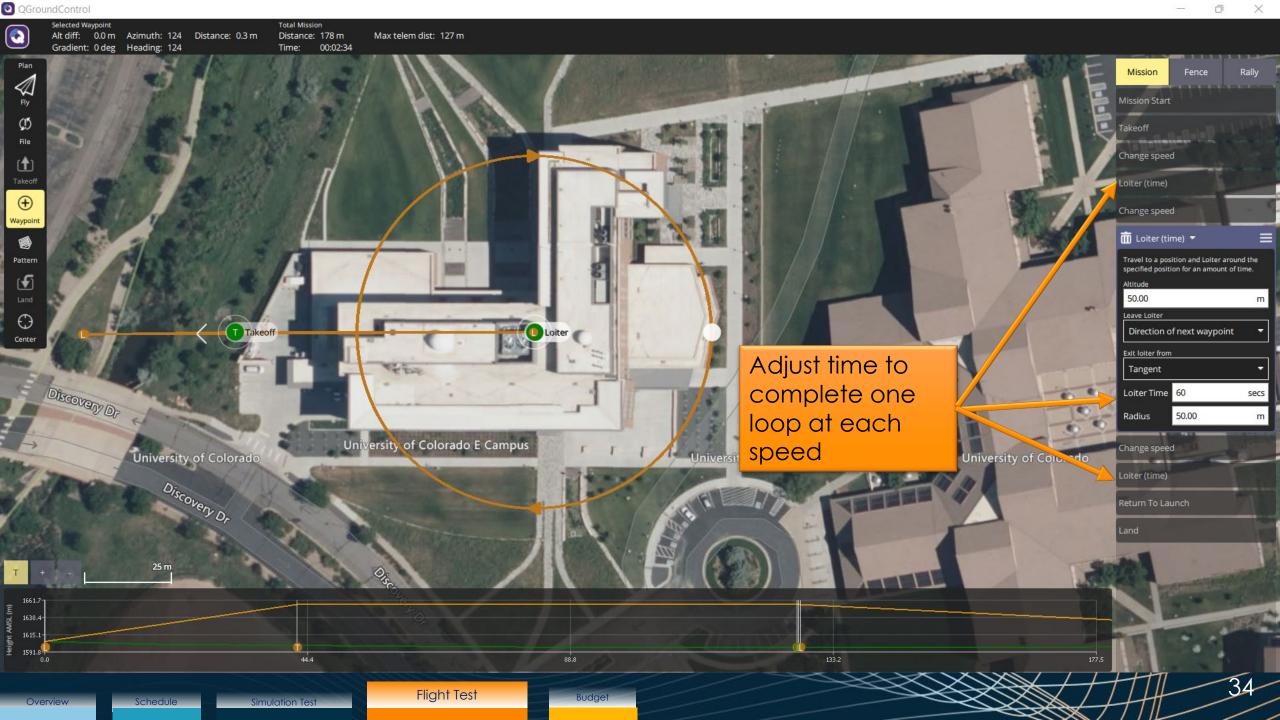
Safety Procedures -Special Flight Release (SFR)

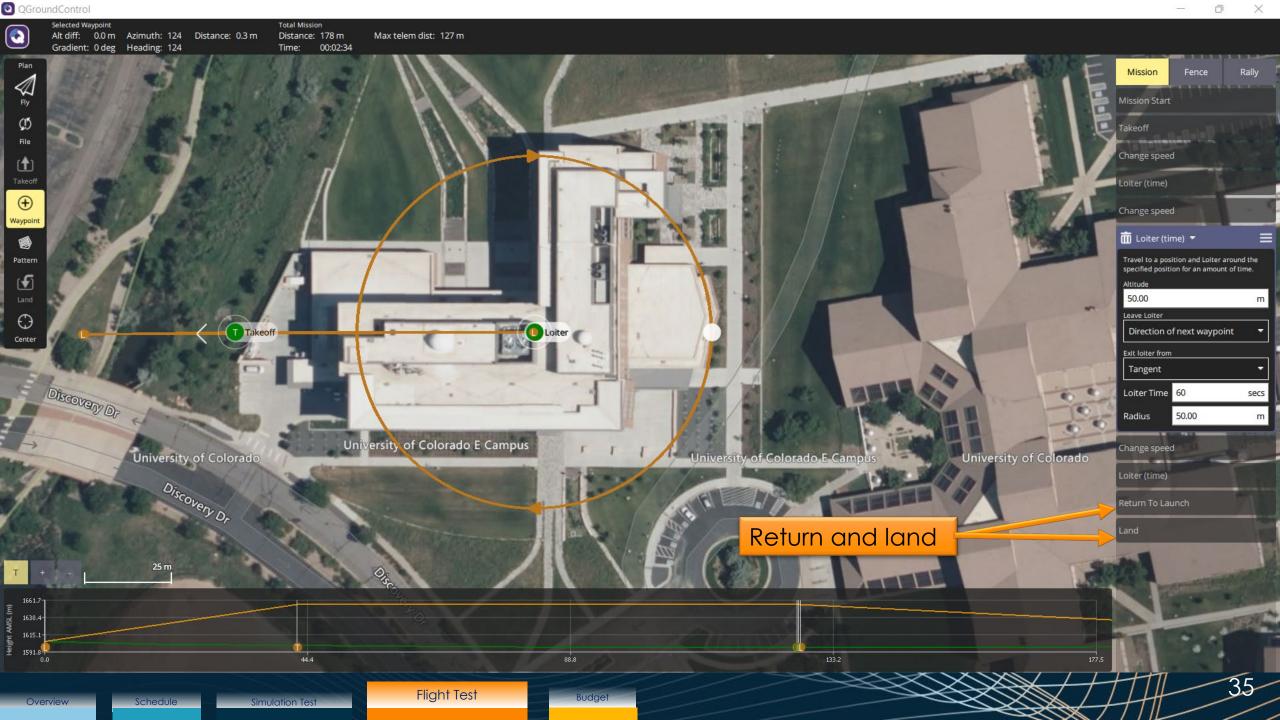
- Fly at <500 ft AGL
- Bring safety equipment to test site
 - Fire extinguisher, sand bucket, replacement parts, etc.
- Pre-flight checklist and equipment inspection
- Monitor weather (winds <5 knots, clear skies, etc.)
- Constant LOS and stand-by for manual control

DATA ACQUISITION


Sensors / Data Acquisition


- Airspeed sensor
- Holybro PM02 power module
 - Measures battery voltage and current
- Default logging functionality within PX4
 - MAVLink Messages to QGC
 - 50 KB/s @ 50 Hz


Overview of Procedures


- Build flight path in QGroundControl
- Fly path at different speeds, collecting airspeed and battery data
- Download MAVLink message logs

MAVLink inspector – 🗆 😣							
Inspect real time MAVLink messages.							
1			Message: Component:	LOCAL_POSITION_NED (32) 50.0Hz 1			
1	ATTITUDE	50.0Hz	Count:	1100			
1	ATTITUDE_QUATERNION	50.0Hz	Name	Value	Туре	Plot 1	Plot 2
1	ATTITUDE_TARGET	50.0Hz		26176 -0.0062114	uint32_t float		
1	AUTOPILOT_VERSION	0.0Hz		-0.0118037 0.0276637	float float		
1	AUTOPILOT_VERSION	0.0H2	z vx	0.00557198	float		
1	BATTERY_STATUS		vy	-0.0297566	float		
1	COMMAND_ACK	0.0Hz		0.0441573	float		
1	COMPONENT_INFORMATION	0.0Hz					
1	CURRENT_EVENT_SEQUENCE	0.2Hz					
1	ESC_INFO	2.0Hz					
1	ESC_STATUS	2.0Hz					
1	ESTIMATOR_STATUS	0.8Hz					
1	EVENT	0.0Hz					
1	EXTENDED_SYS_STATE	1.0Hz					
1	GLOBAL_POSITION_INT	50.0Hz					
1	GPS_GLOBAL_ORIGIN	0.0Hz					
1	GPS_RAW_INT	1.0Hz					

QGroundControl QGroundControl Back < Analyze Tools Log Download Log Download allows you to download binary log files from your vehicle. Click Refresh to get list of avai	EXPECTED RESULTS			
GeoTag Images Id Date Size Status MAVLink Console Battery voltage data [V] MAVLink Inspector Battery current data [mA]	250 Tempest Power vs Airspeed at 5000ft Aerodynamic Power Required Power Required Accouting for Propeller Efficiency Losses POSSIBLE Constant System Power Required			
 Airspeed data [m/s] Logged data will appear in QGroundControl after the flight Plot battery power draw (P = I*V) with respect to airspeed 	POSSIBLE Deflection Surface Power Required POSSIBLE Full System Power Required			
Overview Schedule Simulation Test	Budget			

ED RESULTS

EXPECTED RESULTS

37

Evaluation	Criteria	Mission Objective
Power curve can be generated from test flight	Pass/Fail : Aircraft must return battery and airspeed data	 Endurance Improvement DR 2.1.2 (monitor battery current and voltage)
Power curve validates Tempest model	Pass/Fail : The power curve resembles a typical parabola shaped power curve	Endurance ImprovementModel Validation
Operable airspeeds are determined from power curve	Pass/Fail : A range of operable airspeeds are available from the power curve	 DR 2.1* (+20% from baseline) Endurance Improvement
Stall event monitoring (> 1.5X stall velocity requirement met)	Pass/Fail : Stall does not occur due to 1.5X stall speed minimum allowed speed	 2.1.1* (>1.5x stall velocity) Flight Safety

*These requirements are not validated yet. Instead, this test lays the groundwork for them to be validated in the finished ground station code.

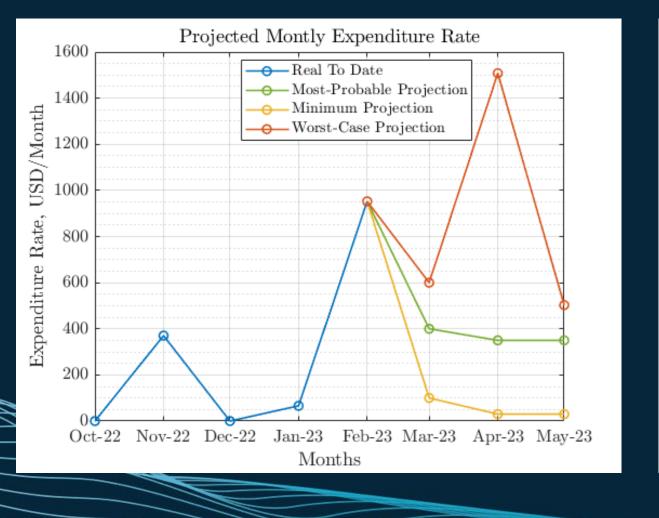
Flight Test

PROJECT BUDGET

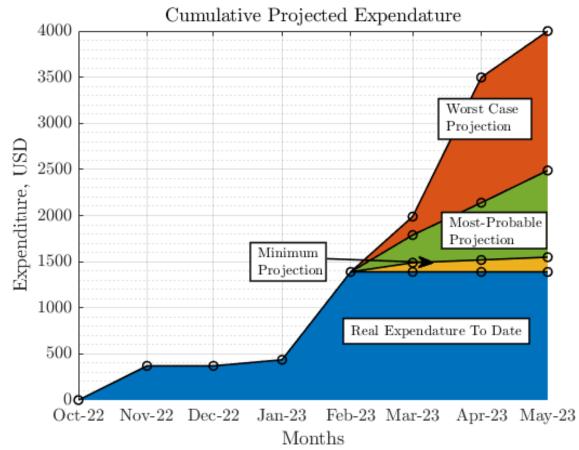
Cost Plan – Real Expenditure

- Current budget allocation: \$1,528
- Current real expenditure: \$1,389
- Remaining budget:

Subsystem	ltem		Cost	Purchased	Pacaivad	Purchase Window	
SUDSYSTEM	Zee 3200 2-Pack Battery	¢	43.99	Y	Y	WINGOW	
	<u>Battery for TX16s</u>		24.50	-	Y	Nov-22	
	RadioMaster TX16s		219.99	Y	Y		
	FRSKY SPort tool		15.90	-	Y		
RC Control	FrSky S8R Receiver		57.99	Ý	Y		
	XT60 Connectors		7.99	Ý	Ŷ		
	Additional wires, batteries,	Ψ			·		
	bits, etc	\$	-				
	Total:		370.36				
Companion	BeagleBone Rev C		65.99	Y	Y		
Computer	Total:		65.99			Jan-23	
	Pixhawk 6c + PM07		349.99	Y	Х		
	M8N GPS	\$	59.99	Y	Х		
	Power Module 02	\$	18.99	Y	Х		
Flight	Better Antennas	\$	234.00	Y	Х	Jan-23 to	
Computer	Additional Sensors					March-23	
	Additional wires, batteries,						
	bits, etc						
	Total:	\$	648.97				
	Replacement Parts					Jan-23 to	
Airframe	Running Costs						
	Total:	\$	-			May-23	
	CO2 Class BC Fire			Y	Y		
	Extinguisher	•	204.00	I	I		
Safety	Class ABC Fire Extinguisher	\$	144.00	Х	Х	Feb-23 to	
Equipment	Ground wind speed sensor			Y	Х	April-23	
	equipment	•	80.50		Λ		
	Total:		428.50				
	Overall Total:	\$	1,513.82				



\$2,411


Cost Plan – Projected Expenditure

Schedu

mulation Tes

Budget

QUESTIONS?

Table of Contents

Project Overview

<u>Project Purpose/Objectives</u> <u>CONOPS</u> <u>Hardware FBD</u> <u>Software FBD</u> <u>Major Design Changes</u> <u>CPEs</u>

Project Schedule

<u>Test Events</u> <u>Test Dependencies</u> <u>Verification Plan</u> <u>Gantt Chart</u>

Project Budget

<u>Cost Plan</u> <u>Budget Graphs</u>

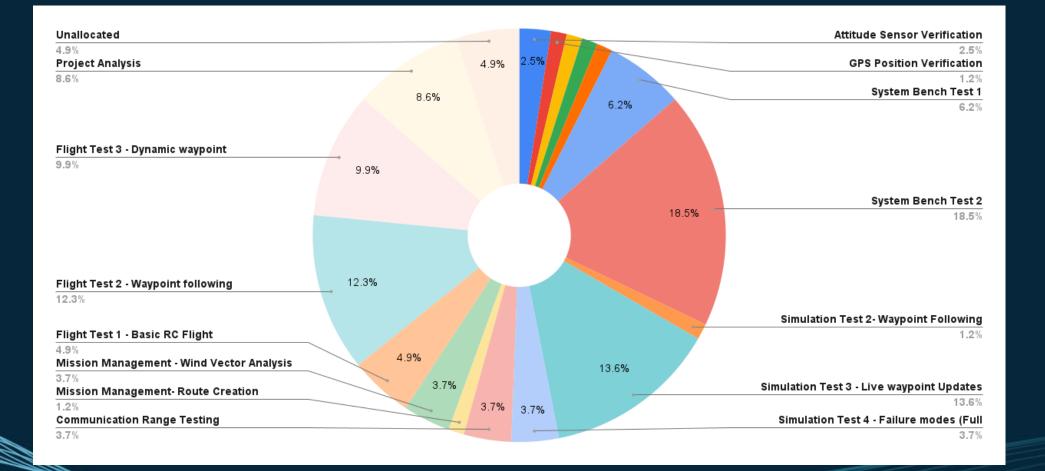
Simulation Test

<u>Test Overview</u> <u>Risk Buydown</u> <u>Requirement Evaluation</u> <u>Path Generation Requirements</u> <u>Communication Requirements</u> <u>Mission Objectives</u> <u>Simulation Overview</u> <u>Data Acquisition</u> <u>Test Facilities/Equipment</u> <u>Critical Prerequisites</u>

Test Readiness

Flight Test

<u>Test Overview</u> <u>Testing Rationale</u> <u>Critical Prerequisites</u> <u>Test Facilities/Equipment</u> <u>Data Acquisition</u> <u>Flight Plan</u> <u>Expected Results</u>



Functional Requirements

FR #	Requirement
1	The UAS shall be capable of receiving commands and transmitting telemetry to and from a controller
2	The UAS shall manage aircraft trajectory based on energy state and specified mission parameters to improve flight endurance
3	Flight operation shall minimize user workload and need for active user input throughout its entire mission profile
4	The UAS shall adhere to all relevant guidelines and implement measures to protect the safety of the UAS itself as well as people and objects in the surrounding area
5	The UAS shall be fully operational in austere environments with the ability to adapt to varied conditions and remain in a continual standby posture when unused
6	The initial cost and complexity for users to assemble, configure, operate, and maintain the UAS system shall be minimized and shall seek to significantly undercut prices of existing long endurance drone systems

TEST EVENT ALLOCATION

mulation Test

ight Test Bu

SIMULATION TEST HIGH LEVEL REQUIREMENTS

Message Transmission

- Telemetry from UAS to GS
 - 1.2
 - 1.2.3
 - 1.7
 - 1.7.1
- Flight plan from GS to UAS
 - 1.3

Waypoint Generation

- Valid path to target point
 - 2.2.1
 - 2.2.4
- Obstacle avoidance
 - 2.2.2
 - 2.2.3
- Valid orbit
 - 2.2.7
- Generation every 5 minutes
 - 2.3.2

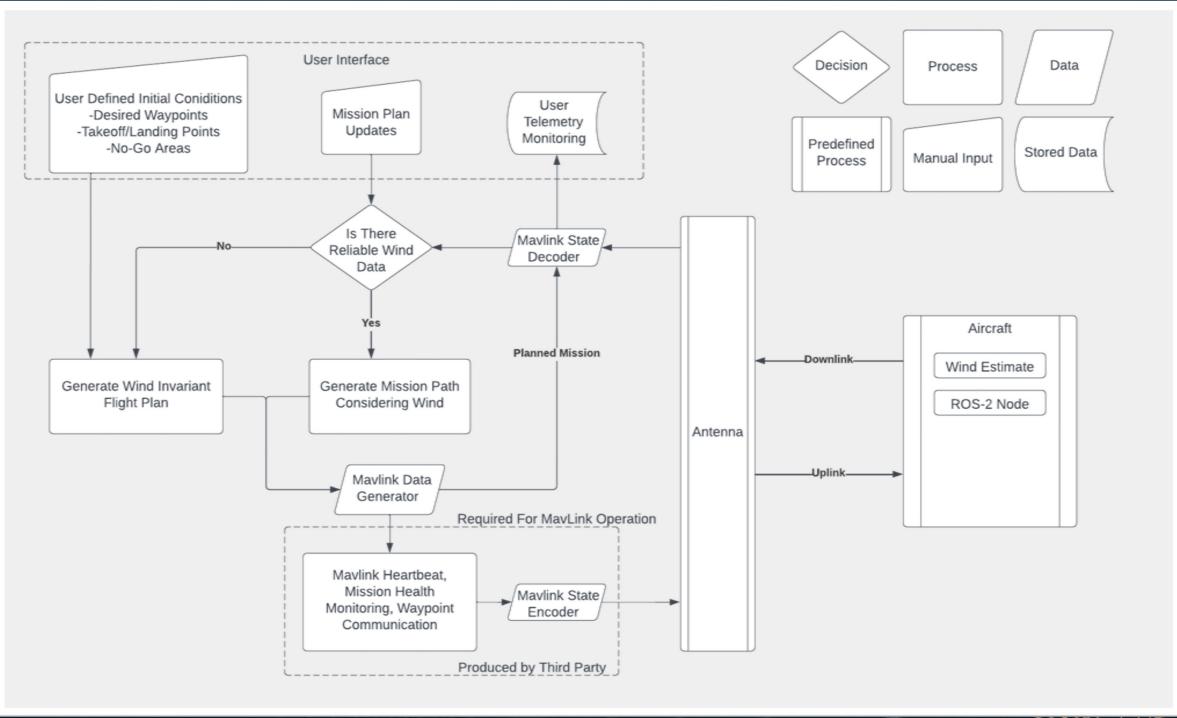
Autopilot Capability

- UAS executes waypoint path
 - 1.4.2
 - 5.3.1
- Autonomous Flight mission objective
- Flight Boundaries mission objective

SIMULATION TEST CARD

TEST PROCEDURE Start PX4 and Gazebo simulation by typing 1. "make px4 sitl gazebo-classic plane" in the terminal of the PX4-Autopilot folder. Launch QGroundControl app image 2. Ensure QGroundControl is connected to Gazebo simulation 3. and aircraft mode is "Ready To Fly" Hardcode wind into Gazebo and MATLAB MM code, test to see if Topology code 4. can generate an optimal path based on a known wind field. Launch vehicle manually and place into loiter pattern 5. Load custom software to set PX4 into offboard mode, sending MAVLink messages 6. at > 2HzRun full flight plan 7. 8. Collect data and import into PlotJuggler Analyze data to ensure requirements are met, tweaking code as necessary 9. 10. **Record** results

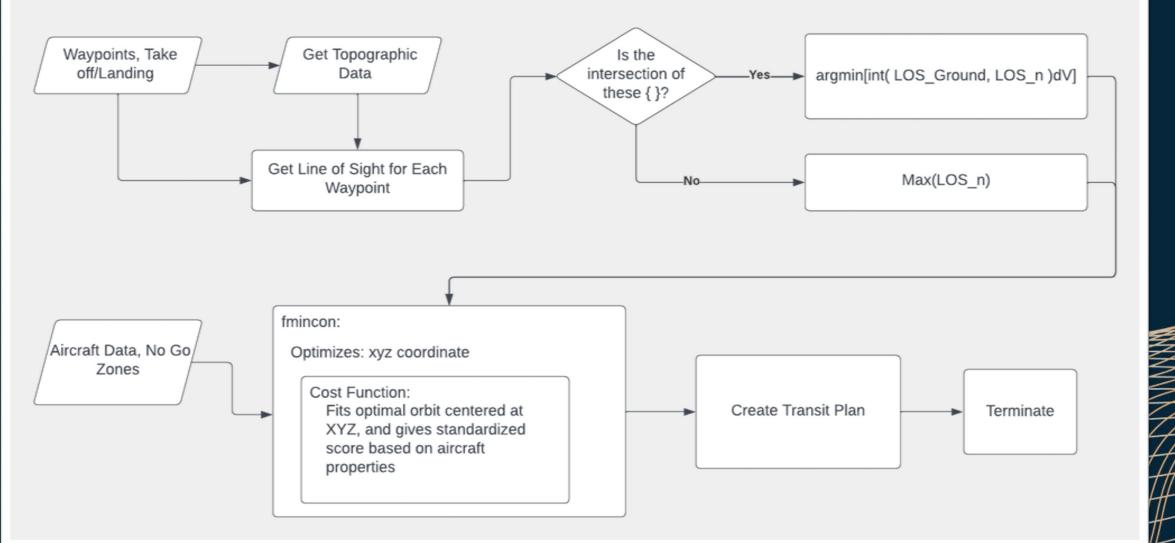
Schedule


47

FLIGHT TEST CARD

TEST PROCEDURE	
1.	Ensure winds to be uniform and calm using handheld anemometer (<5 knots, no greater deviation over 1 minute than 1.5 knots)
2.	Connect the PM02 PDB to the battery to power aircraft; connect aircraft to QGC; arm aircraft (logging will start when armed by default)
3.	Complete preflight checklist
4.	 Assign and upload predefined waypoints and accompanying groundspeeds from QGroundControl to plane The flight plan will be a large circle with each loop having a differing commanded airspeeds Slow to high ground speeds and back to slow to account for differing motor and ESC efficiencies at changing battery voltages (decreasing during flight) Will likely require two different tests since the battery may not last for the entire flight
5.	Perform a hand launch takeoff from within 20 m of the centroid of the flight region and fly aircraft in a holding pattern.
6.	Enable autonomous flight if QGC indicates adequate connection to drone.
7.	Return to manual control after the commanded flight plan has been achieved.
8.	After path testing is completed, retake control and perform a pseudo traffic pattern loop to line the aircraft up for landing. Ensure that a second go-around is not required and perform a landing within 30 meters of the centroid of the flight region (Prioritize a clear landing area that is well away from flight boundaries and potential crash hazards).
9.	Download telemetry log from QGC.
10.	Compare to measured voltages and current drawn from the battery at each point •Only use power draw from steady state (takes increase/decrease in power to accelerate/decelerate) •Data should be from all power drawn system wide – This is what we want

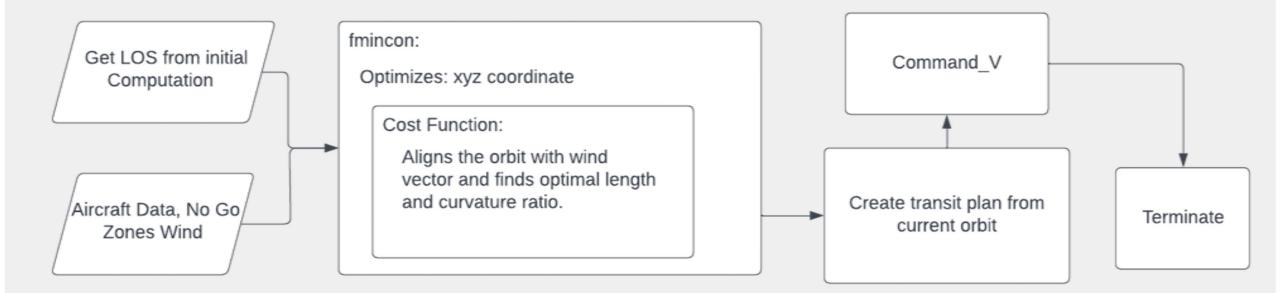
Schedule


TEAM

Generate Wind Invariant Flight Plan

In: Waypoints, Take off/Landing points, No go zones, Aircraft Data, Loiter Times

Out: Flight Plan Vector



50

Generate Wind Informed Flight Plan

In: Waypoints, Take off/Landing points, No go zones, Aircraft Data, Loiter Times, wind data

Out: Flight Plan Vector

