LunaSim Critical Design Review

University of Colorado Boulder December 5th, 2022

Presenters: Parker Randolph, James Perkins, Chandler Jeep, Kevin Lane, Brennan Zill, Paul Flora, Lauren Daniels, Max Bergman

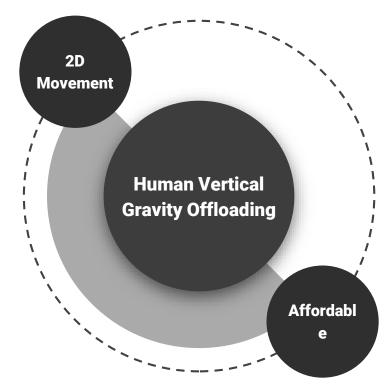
Non-Presenting Team Members: Blake Wilson, Ian Wong, Mia Lawrence, Zoe Bloomfield

> Academic Advisor: Dr. Anderson Sponsor: EchoStar

Overview

- Project Purpose & Objectives
- Design Solution
- Critical Project Elements & Risks
- Design Requirements & Satisfaction
- Verification & Validation
- Project Planning

Project Purpose & Objectives



olution 💙 Project Risks

Design Requirements and Satisfaction Verification & Validation

Project Planning

Project Definition & Objectives

 LunaSim
 Project Overview
 Design Solution
 Project Risks
 Design Requirements and Satisfaction
 Verification & Validation
 Project Planning

4

Background

- Artemis 1 has launched, meaning humanity's return to the moon is fast approaching
- New generation of untrained astronauts
- Gravity in particular is difficult to train for, and can cause serious safety concerns

Apollo astronauts experienced difficulties maneuvering in lunar gravity.

Project Overview

Design Solution > Project

Project Risks

Design Requirements and Satisfaction

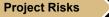
Verification & Validation

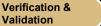
Project Planning

5

Calibrate System

Stage 3 Perform Training Tasks w/ Offloading


Stage 1 Take Measurements & Prep User Stage 4 User Doffs Harness & Shuts Down System

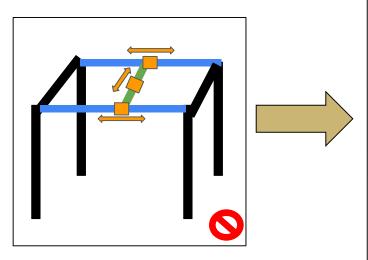

LunaSim

CONOPS

Design Solution

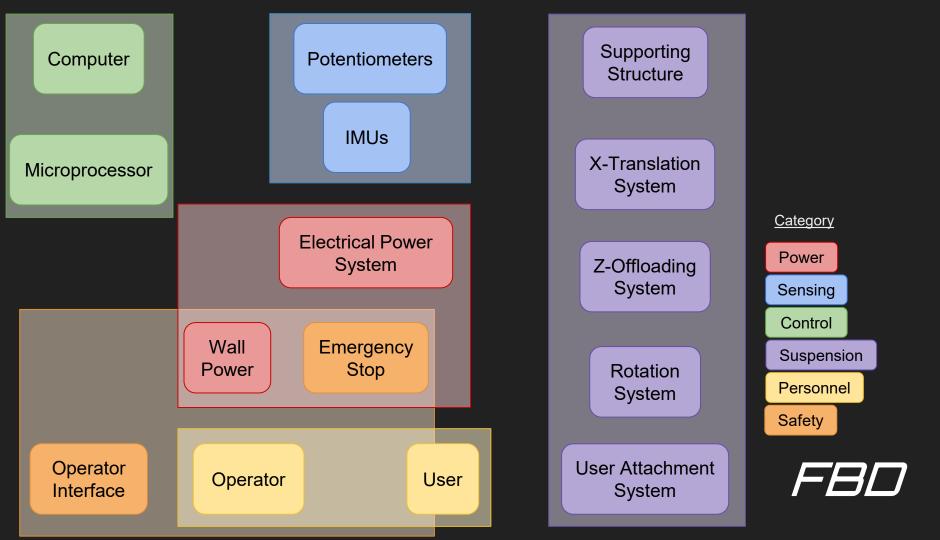
7

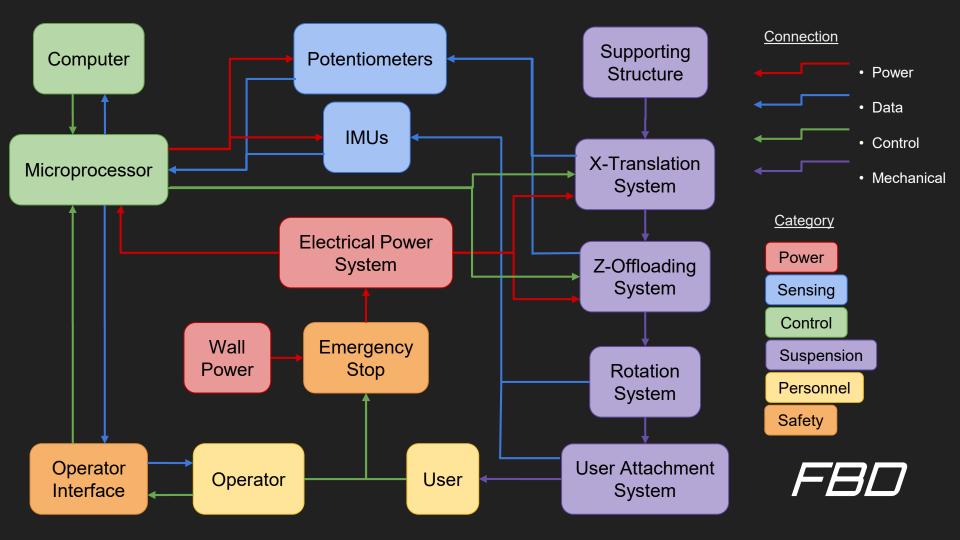
Scope Adjustments

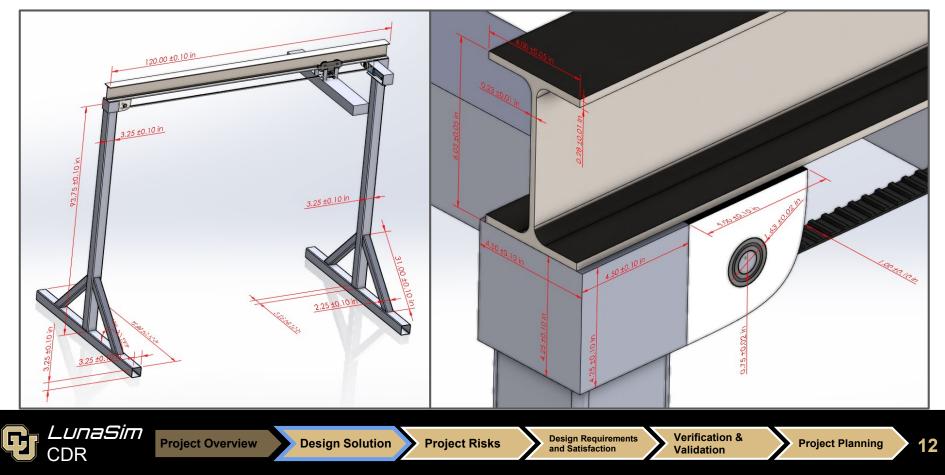

Reasoning

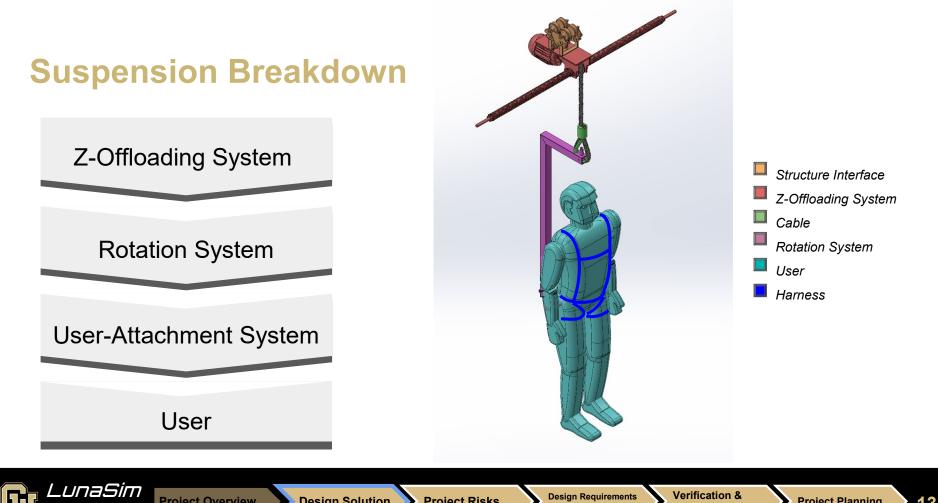
- Timeline Constraints
- Budget Constraints
- Anticipated Integration Challenges
- Design Space Constraints

Requirements Modified


- Preserved vast majority of requirements
- Maintained > ~90% per level
- Approved by customer


X-Axis Gantry Design



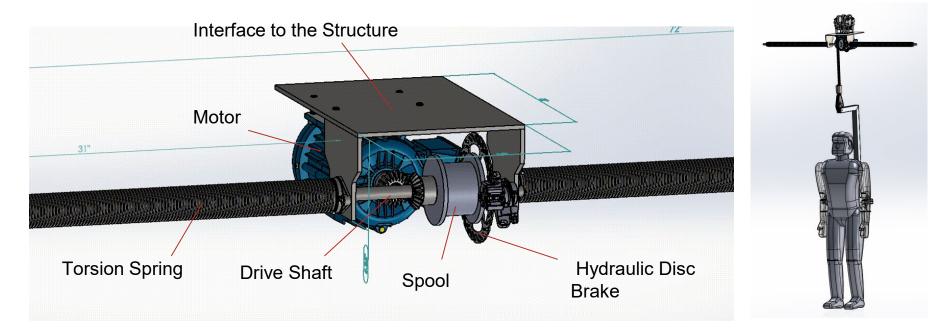


Structures CAD and Specs

Project Overview

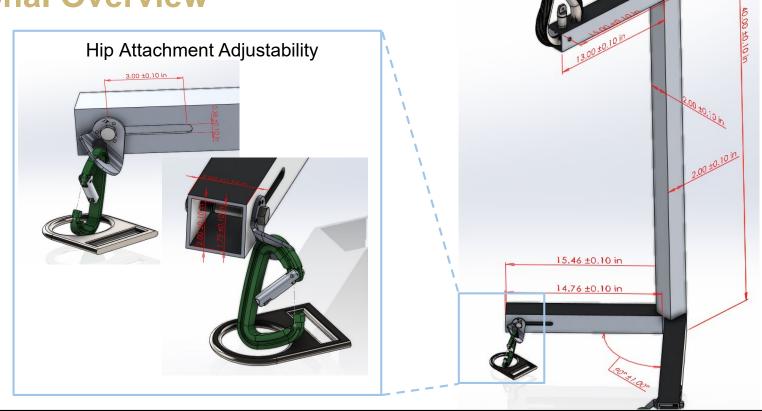
CDR

Design Solution

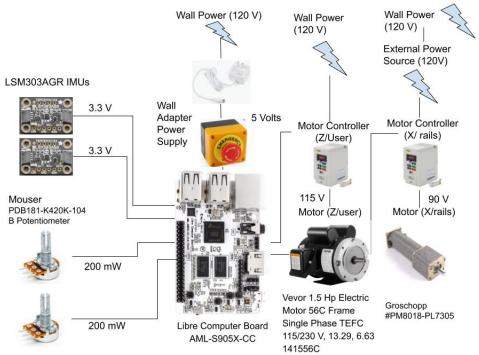

Project Risks

Verification & Validation

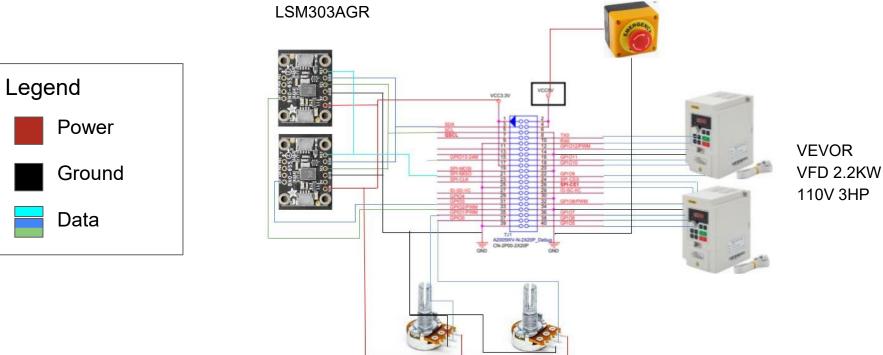
Project Planning


13

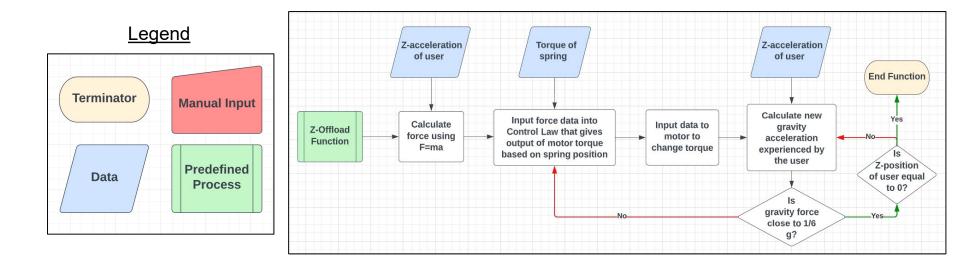
Z-Offloading System: Functional Overview



User Attachment System: Functional Overview



Electronics System: Design Overview


Pin Out Diagram

Software FBD

Gr

Critical Project Elements & Risks

Design Solution

Project Risks

Verification &

Validation

Design Requirements

and Satisfaction

Functional Requirements

RQMT #	Requirement Statement		
Objectives			
L0-01	The system shall simulate the gravity of the lunar environment.		
L0-02	The system shall allow sufficiently free user motion to accomplish simulated tasks expected during a mission on the lunar surface.		
L0-03	The system shall provide an environment suitable for operational training.		
L0-04	The system shall enable continuous use for one hour.		
Constraints			
L0-05	The system shall be constructed in a manner that allows for future integration with a hybrid reality (HR) system.		
L0-06	The system shall obey all relevant rules and regulations surrounding its operation, including those responsible for ensuring user safety.		
L0-07	The system shall remain at or below the total project budget of \$4,000.		

Critical Project Elements

Critical Element	Critical Element Rationale	
Gravity Offloading	Most important baseline functionality of the system desired by customer	L0-01
Training Viability Broad-view utility of the final system, justification to build in the first place		L0-02, L0-03
User Safety	Essential for ethical and program viability reasons	L0-06
Cost	Inflexible constraint critical to project success	L0-07

Risk Measurement

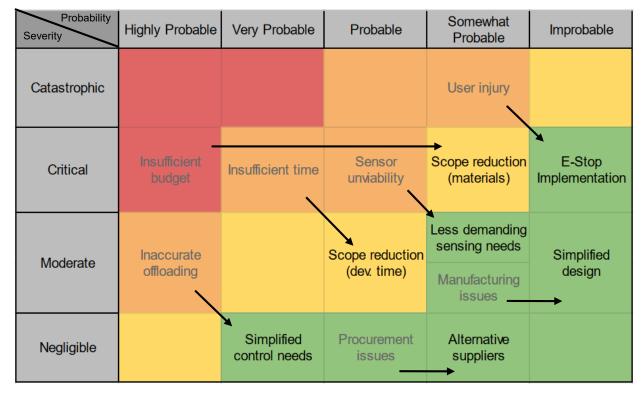
Severity	Definitions Examples		 	Probability
Catastrophic	Total program failure or massive reduction in scope	tion depletion of budget		Highly Probab
	Major delays,	without viable prototype Unexpectedly constrained		Very Probabl
Critical significant reduction in scope, fundamending engineering iss requiring redes		budget, significant schedule shift, unviable late-stage prototypes		Probable
Moderate	very challenging engineering problems manufacturing capability Minor delays, Shipping delays			Somewhat Improbable
Negligible				Improbable

Probability	Definitions	
Highly Probable	Very likely to occur once, several occurences likely	
Very Probable	Likely to occur, several occurences possible	
Probable	Moderate probability to occur, several occurences less likely	
Somewhat Improbable	Unlikely to occur, several occurences very unlikely	
Improbable	Very unlikely to occur even once, multiple occurences nigh impossible	

Risk	Mitigation Strategy	Relevant CPEs
Insufficient budget	Scope reduction results in vastly decreased material costs, particularly for the structure	Cost
Insufficient time	Scope reduction results in reduced development and testing time in all areas	Gravity Offloading, Training Viability
User injury	Implementation of a user- and operator-controlled E-stop as well as software stops mitigates injury risk	User Safety

Other risks addressed:

- Sensor unviability
- Inaccurate offloading
- Manufacturing issues
- Procurement issues

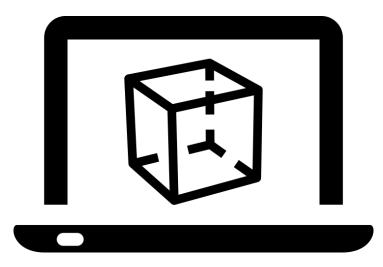


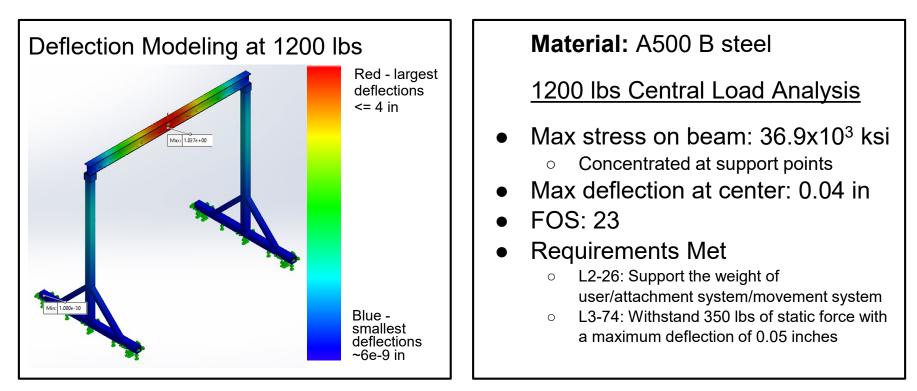
Risk Matrix - Before Mitigation

Probability Severity	Highly Probable	Very Probable	Probable	Somewhat Probable	Improbable
Catastrophic				User injury	
Critical	Insufficient budget	Insufficient time	Sensor unviablility		
Moderate	Inaccurate offloading			Manufacturing issues	
Negligible			Procurement issues		

Risk Matrix - After Mitigation

Design Requirements & Satisfaction

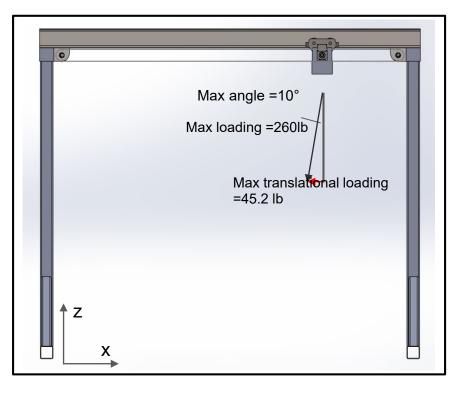



26

Detailed Requirements and Models

- Structural Modeling
 - Static Loading
 - Dynamic Loading
 - Column Buckling
- X-Axis Belt System Model
- Z-Axis Offloading Model
- IMU Combination Testing
- User Interface Model

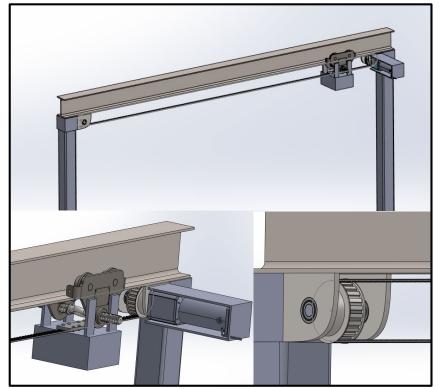
Static Load Modeling



Project Overview

Design Solution

Dynamic Load Modeling


Lateral loading conditions

- Forces in translational x-direction
 Moment & horizontal forces
- Max 45.2lb in x-direction with max weight and angle
- Max stress concentration: 378 psi

Requirements

- L2-27: Support reactive forces of user
- L3-75: Withstand dynamic loading

Belt System and Proofs

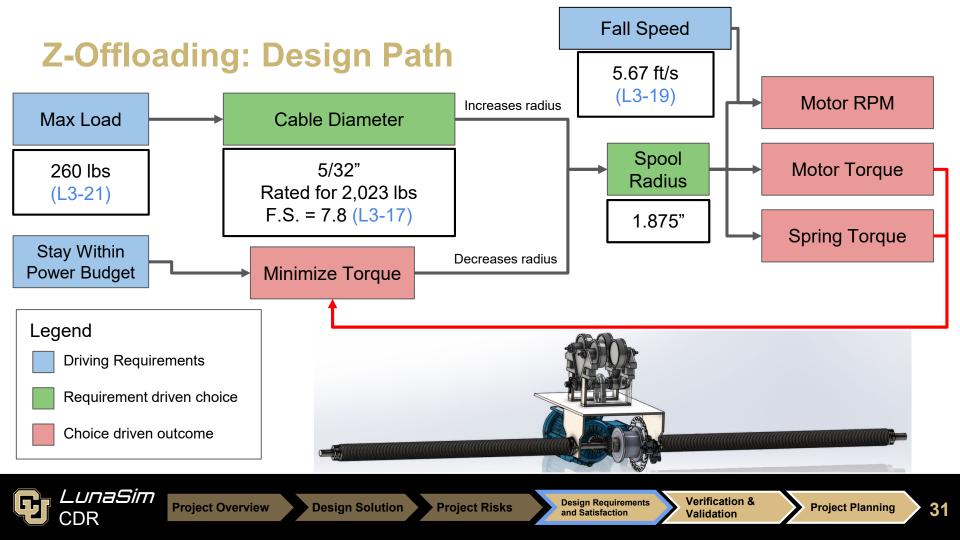
Belt System Structure

- Timing belt w gears
 - Attached to blackbox on trolley

Justification

- Max predicted tension: 124.5 N
- Max allowable tension in 1" belt: 1100 N

Requirements


- L2-29: Sufficiently free user motion
- L2-37: Interface w/ movement system

Project Overview

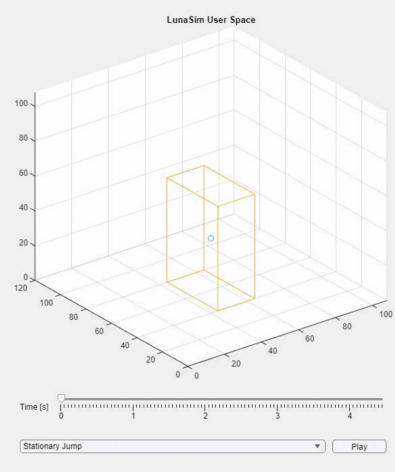
Design Solution P

Project Risks

Z-Offloading Dynamics Model

Spool Size: R = 1.875 [in] Spring Constant: 5.6 [in*lbf/rad] Motor Size: ~1 HP* (~746 W)

Requirements:


CDR

L2-17 (offload weight) L2-18 (simulate Lunar gravity) L3-18 (simulate g=1.62 m/s²) L3-19 (max speed = 5.67 ft/s)

* to meet torque and RPM requirement, a 4:1 gear reduction is required

LUNASIM Project Overview

Design Solution

Project Risks

Verification &

Validation

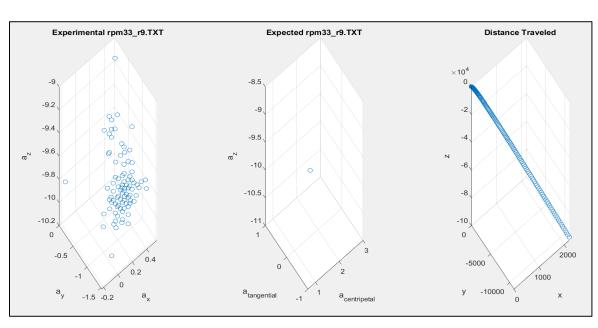
Design Requirements

and Satisfaction

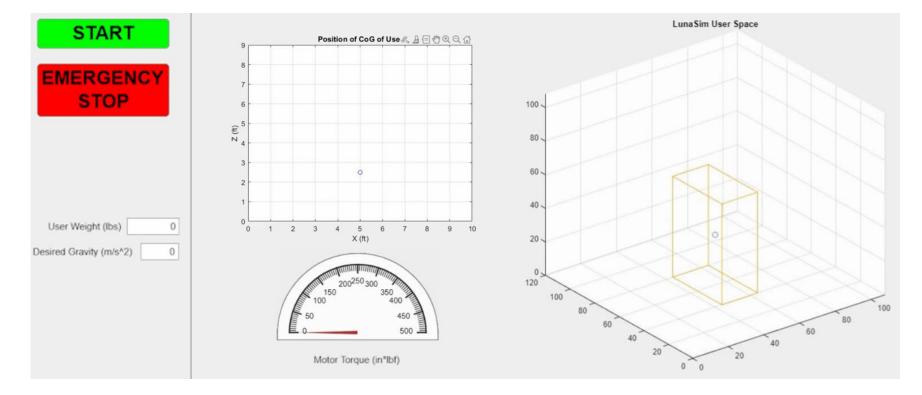
Electronics - IMU Combination Testing

Accelerometer Chosen: LSM303AGR

Data acquired from previous Colorado Space Grant experiment using same sensor.


Individual Accuracy: ~0.5 m/s²

Combined accuracy will increase: however, for our testing we only had one IMU to test, which limits the ability to test combined data.


Requirements:

L2-50: The sensors shall collect data to characterize user position.

L2-51: The sensors shall collect data to characterize user motion.

Software - UI and Animation

Project Overview

Design Solution

Project Risks

Design Requirements and Satisfaction Verification & Validation

Project Planning

Verification & Validation

Project Risks

Design Requirements and Satisfaction Verification & Validation

Project Planning

35

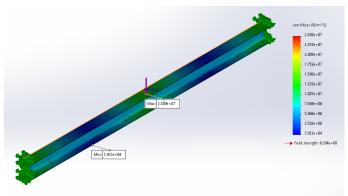
Overall Test Plan

Design Area	Tests and Summary	Driving Requirement
Structure	Stability & structural integrity testing	L2-26, L2-27
Suspension	Gravity simulation accuracy test	L3-18
Electronics	Motor characterization, sensor testing	L1-01, L1-03, L2- 50, L2-51
Software	Hard and soft stop testing	L3-96

Structures System Verification

Purpose

- Verify structural integrity of overhead structure
- Verify Stability of entire structure


Plan

- Statically load structural components
- Dynamically load structure at key stress points
- Safety lead on-site

Driving Requirements

CDR

- L2-26: The supporting structure shall be able to support the weight of the combined user, user attachment system, and movement system.
- L2-27: The supporting structure shall be able to support the reactive forces due to the actions of the user and response from the movement system.

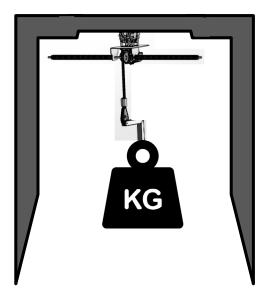
Stress

URES (mm) 3.027e-0 2.724e-01 2.422e-01 2.119e-01 1.816e-0 1.514e-01 1.211e-01 9.081e-02 6.054e-02 3.027e-02 0004-20

Deflection

Suspension System Verification

Purpose


• Prove accurate gravity simulation

Plan

- Attach test weight onto cable
- Drop from max height to ground
- Slow motion video to determine fall time

Driving Requirements

• L3-18: The z-offloading system shall be able to simulate an acceleration due to gravity of 1.62 [m/s/s] ±10%.

Electrical Tests - Motor Characterization

Objective: Determine the relationship between torque, rpm, and current to ensure motors can perform well at the predicted speed and current.

Requirements Met:

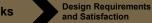
L1-01: The system shall dynamically offload the user's weight to simulate lunar gravity.

L1-03: The system shall allow the user to maintain free translational movement within its spatial bounds. Steps:

- Measure coefficient of friction between floor and mass
- Use motor to move mass across floor
- Measure speed of the mass
- Calculate torque

Facilities Required:

• Classroom space, wall power


Safety Risks:

- Personnel safety risks associated with moving parts
- Potential damage to motor if proper precautions are not taken

Project Overview

Design Solution Project Risks

Electrical Tests - IMUs and Potentiometers

Objective: Determine the accuracy of the IMUs and Potentiometers

Requirements Met:

L2-50: The sensors shall collect data to characterize user position. L2-51: The sensors shall collect data to characterize user motion. Steps:

- Attach sensors and microprocessor to ASEN 3200 Inertial Wheel.
- Start recording data with the microprocessor and the Inertial Wheel Odometer.
- Spin the wheel.
- After 10 seconds, stop recording data.
- Compare sensor measurements to predicted values based on speed and radius of wheel.

Facilities Required:

• ASEN 3200 Inertial Wheel

Safety Risks:

- Personnel safety risks associated with moving parts
- Potential damage to sensors if they are not properly attached to the wheel.

Project Overview

Design Solution Project Risks

Software System Verification

Objective

Determining if the hard and • soft stops are activated and run correctly if the user were to jump too high.

Safety Risks:

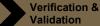
CDR

Potential damage to the • structure and equipment

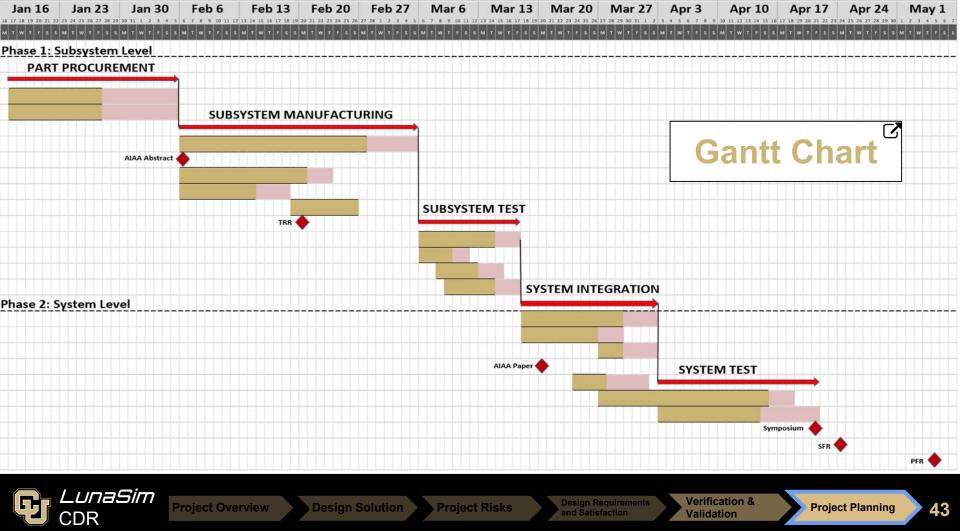
Plan

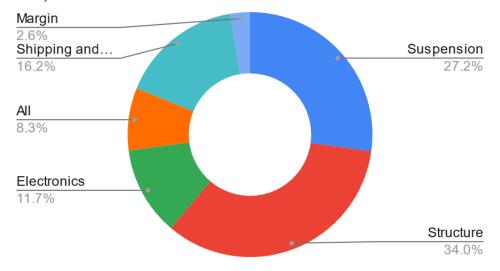
- Attach test weight onto cable
- Throw the weight up with enough force to initiate the soft stop and not the hard stop
- Throw the weight up with enough force to initiate the hard stop

Driving Requirements


L3-96: The software shall command the actuators to slow the user's movement in the z-direction to prevent the user from moving outside of the system space.

41


Project Planning


Project Planning

Cost Plan

	Actual Budget	Minimum Budget	Maximum Budget	
Suspension	1086.95	1079.19	2548.45	
Structure	1360.00	1360.00	2920.00	
Software	0.00	150.00	150.00	
Electronics	469.50	395.29	1773.00	
All	330.00	280.00	810.00	
20% Buffer (Shipping, etc)	649.29	652.90	1640.29	
Margin	104.26	82.63	-5841.74	

Expected Costs

Test Phase	Expected Date	Facility	Access
Component Testing	Early March '23	AERO 140	\checkmark
Electronics/Software Testing	March '23	AERO 140	\checkmark
Structure/Suspension Testing	March '23	ТВА	•••
Full System Integration Test	Late March '23	ТВА	•••
Safety Testing	Early April '23	ТВА	•••
Human Testing	April '23	ТВА	•••

Acknowledgements

Dr. Anderson - Advisor and Customer, CU Assistant Professor

Sandor Nemethy - VP, Mission Management at EchoStar

Matt Rhode - Aerospace Mechanical Design & Manufacturing Lab Manager

Nate Coyle - Aerospace Machine Shop and Fabrication Instructional Lab Coordinator

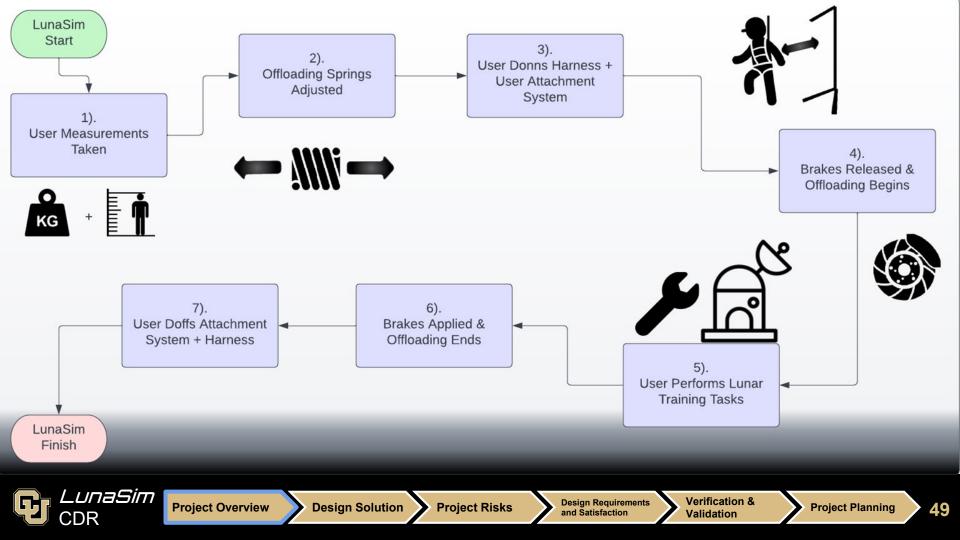
Trudy Schwartz - Associate Teaching Professor

Bobby Hodgkinson - Assistant Teaching Professor

Dr. Wingate & Dr. Muldrow - CU Boulder Professor's

Jasmin Chadha - CU Boulder Masters Student & TF

TF Team - CU Boulder Senior Design


Questions?

Additional Slides

Verification & Validation

Backup: Z-Translation System Trade Matrix

Z-Offloading: Design Change - Trade Matrix

Metric	Weight	Static Load	Spring Offload	
Cable Management	0.25	2	5	
Size of Offloading System	0.20	3	4	
Reliability	0.20	4	3	
Manufacturing Simplicity	0.15	4	3	
Mass	0.10	1	4	
Structural Modification	0.10	3	5	
Weighted Total	1.00	2.90	4.00	

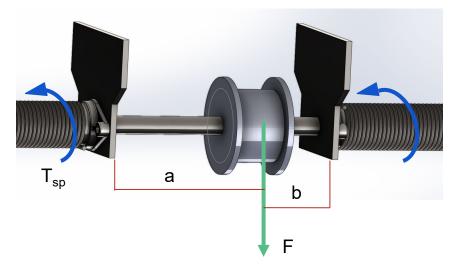
Project Overview

Design Solution

Project Risks

Design Requirements and Satisfaction Verification & Validation

Z-Translation System - Trade Matrix Scale Definitions


Metric	1	2	3	4	5
Cable Management	The cable required exceeds 20 ft between maximum and minimum range	The cabld required exceeds 15 ft between maximum and minimum lengths	The Cable required exceeds 12 ft between maxmimum and minimum lengths	The cable required exceeds 10 ft between maximum and minimum length	The cable required exceeds 6 ft between maximum and minimum length
Size	The system extends 2 ft outside of or into the footprint of the structure	The system extends 1 ft outside of or into the footprint of the structure	The system extends 1/2 ft outside of or into the footprint of the structure	The system extends 1/2 ft outside of or into the structure, but does so in unused space	The system can lie entirely within the structure and not require extra space
Reliability	≥9 points of failure	7-8 potential points of failure	5-6 potential points of failure	3-4 potential points of failure	1-2 potential points of failure
Design/ Manufacturing Simplicity	The system requires specialized manufacturing from an external company	The system can be manufactured entirely within Smead AES capability, but requires significant research, training, or time	The system requires little assistance from manufacturing experts, and requires special equipment training	The system requires little assistance from manufacturing experts, and requires basic equipment training	The system can be constructed entirely by the team using Smead AES workshops
Mass	The offloader adds >=400 lbs to the structure	The offloader adds >=300 lbs to the structure	The offloader adds >=200 lbs to the structure	The offloader adds ≻=100 lbs to the structure	The offloader adds <100 lbs to the structure
Structural Modification	Requires 5 or more modifications to function with a simple gantry with a mobile crossbar		Requires 3 or more modifications to function with a simple gantry with a mobile crossbar	Requires 2 or more modifications to function with a simple gantry with a mobile crossbar	Requires 1 or more modifications to function with a simple gantry with a mobile crossbar

Backup: **Z-Translation System Drive Shaft** Model

Z-Translation System - Drive Shaft Stress and Strain Modeling Inputs

Input	Value
Spool Radius, r	1.875 [in]
Drive Shaft Radius, c	0.375 [in]
Drive Shaft Length, L	48 [in]
Torque from each Spring, T _{sp}	-203 [in-lb]
Weight of the User and Attachment, F	260 [lb]
Distance from Center of Spool to Left Support, a	6.53 [in]
Distance from Center of Spool to Right Support, b	2.97 [in]

Z-Translation System - Drive Shaft Stress and Strain Modeling Intermediate Outputs and Equations

Applied Torque from User and V-Clamp: $T_{ua} = Fr \Rightarrow T_{ua} = 487.5 [in lb]$

Net Torque on Shaft: $T_{net} = 2 * T_{sp} + T_{ua} \Rightarrow T_{net} = 81.5 [in lb]$

Polar Moment of Inertia: $J = \frac{\pi}{2}c^4 \Rightarrow J = 0.497 [in^4]$

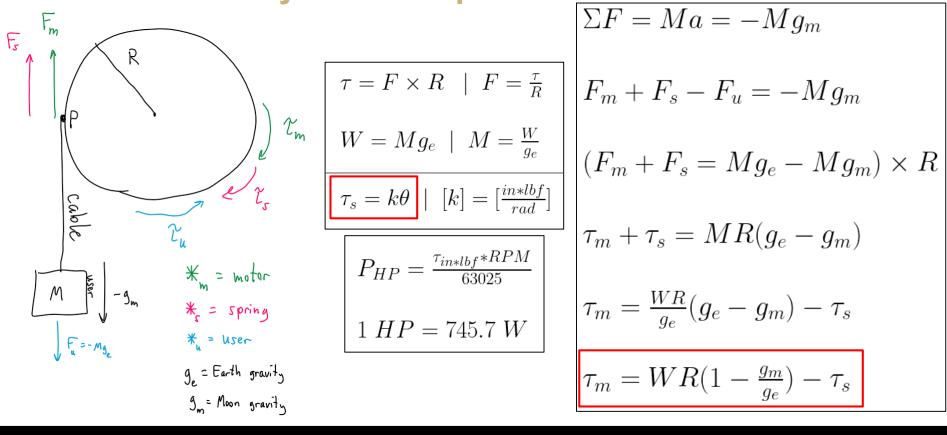
Angle of Rotation Between Ends: $\phi = \frac{T_{net}L}{GJ} \Rightarrow \phi = 0.622^{o}$

Bending Moment: $M = \frac{Fab}{a+b} \Rightarrow M = 530.8 [in lb]$

Z-Translation System - Drive Shaft Stress and Strain Modeling Results

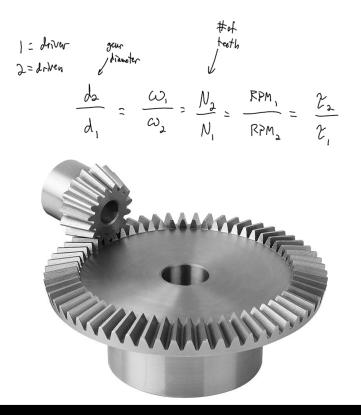
Selected Material: Nitride-Coated 1045 Carbon Steel				
Material Property Value [ksi]				
Yield Strength, Y 45				
Elastic Modulus, E 29,900				
Shear Modulus, G 11,600				

Calculated Variable	Value	Safety Factor, SF	
Maximum Shear Stress, $\tau_{\rm max}$	0.9839 [ksi]	45.74	
Maximum Shear Strain, _{Ymax}	0.0049°	-	
Maximum Bending Stress, σ_{\max}	12.82 [ksi]	3.51	
Maximum Bending Strain, ε_{\max}	0.00043 [in/in]	-	
Maximum Deflection, δL_{max}	0.00016 [in]	-	


$$\tau_{max} = \frac{T_{net}c}{J} \quad \gamma_{max} = \frac{\tau_{max}}{G} \quad \sigma_{max} = \frac{32M}{\pi(2c)^3} \quad \varepsilon_{max} = \frac{\sigma_{max}}{E} \quad \delta L_{max} = c \, \varepsilon_{max} \quad SF = \frac{Y}{value}$$

Backup: Z-Translation Dynamics Model Equations

Z-Translation Dynamics Equations Derivation



CDR

Backup: Motor Gearbox

Motor Gearbox

$$\frac{N_2}{N_1} = \frac{\tau_2}{\tau_1} = \frac{143.53}{36} = 4.05$$

Project Overview

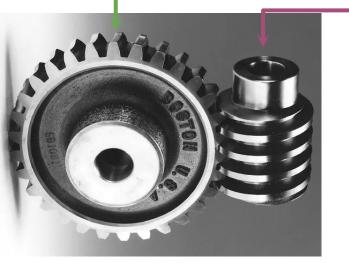
LunaSim

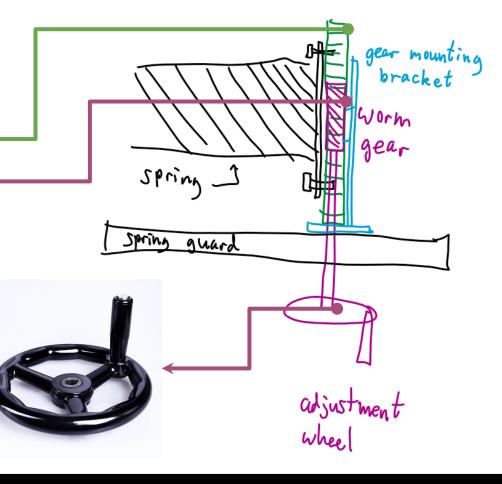
CDR

<u>F</u>i

Design Solution

Project Risks


Verification & Validation


Project Planning

Backup: Spring Adjustment Mechanism

Spring Adjustment Mechanism

Project Overview

Design Solution

Project Risks

Design Requirements and Satisfaction Verification & Validation

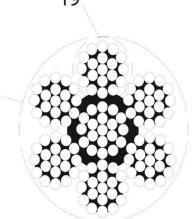
Project Planning

62

Backup: Cable and Spool Selection

Suspension Cable and Spool Selection

Cable:


Material: Professional marine grade-316 exterior stainless steel Rated Load: 2,023 lbs Diameter: 5/32 inch Wire Configuration: 7x19

Spool:

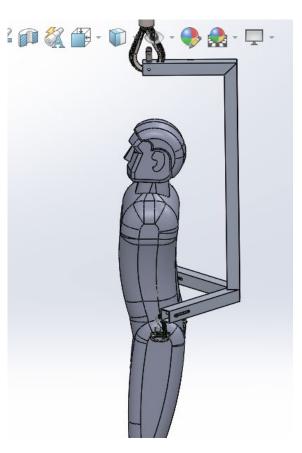
Radius: 1.875 inch

5/32" dia.

Backup: Rotation System

Project Planning

Rotation System: Interfacing User and Offloader


Rated Load: 2,200 lbs Opening Wd: 15/16" Usable Lg: $5 \frac{3}{8}$ " Eye ID: $1 \frac{1}{2}$ " Eye Thickness: $\frac{1}{2}$ "

Requirements Met: L3-35: The rotation system shall allow the user full 360 degree yaw rotation

User Attachment

Verification & Validation

Design Heritage

Project Overview

Design Solution

Project Risks

Design Requirements and Satisfaction

Verification & Validation

Project Planning

Backup: User Attachment System (Harness)

Harness - Trade Options

Points for consideration when narrowing down harness options:

- Certified to industry standards
- Company credibility
- Durability
- Ratings and reviews
- Size options
- Modifications needed
- Loading direction on body

Project Overview

• Cost

LunaSim

CDR

5.

TORNADO	THUNDER	HURRICANE	SCORPION
ANSI TESTED?	\checkmark	✓	\checkmark
DORSAL D-RING?	\checkmark	\checkmark	\checkmark
SIDE D-RING?	\checkmark	\checkmark	
CHEST D-RING?			
BACK Support?		\checkmark	
BUCKLE PASS-THROUGH BUCKLE	PASS-THROUGH BUCKLE	PASS-THROUGH BUCKLE	PASS-THROUGH BUCKLE

Harness - Trade Matrix

Metric	Weight	KwikSafety HURRICANE Safety Harness	KwikSafety THUNDER Safety Harness	KwikSafety SCORPION Safety Harness	KwikSafety TORNADO Safety Harness
Level of Modification Needed	0.40	3	3	3	1
Options for attachment points or level of support	0.30	4	5	3	3
Cost	0.20	3	4	3	4
User Comfort (Level of Padding)	0.10	3	1	1	1
Weighted Total	1.00	3.30	3.60	2.80	2.20

Key Requirements:

- L0-2: Free user motion
- **L0-4:** 1-hour continuous use
- L0-6: Safety

Key Constraints:

• Interfacing complexity

Key Interfaces:

- Rotation system
- User

Harness - Trade Matrix Scale Definitions

Metric	1	2	3	4	5
Level of modification needed	Additional modifications must be made to add and remove components without the need of sewing		Additional modifications must be made to add components without the need of sewing		No modifications needed.
Options for attachment points or level of support	The harness does not have hip attachments on the sides or a back attachment	The harness does not have hip attachments on the sides, but there is an attachment point on the back	The harness has hip attachments on the sides but no attachment on the back	The harness has three or more attachment points but not in the desired location	The harness has three or more attachment points in the desired locations
Cost	The cost is more than \$100	The cost is between \$75-100	The cost is between \$50- 75	The cost is between \$25-50	The cost is between \$0-\$25
User Comfort	The harness has exposed webbing everywhere it contacts the user.		Some parts of the harness offer padded webbing while other sections are just webbing.		All points of contact with the body are padded.

User Attachment: Harnessing

- ANSI/ASSE Z359.11-2014 standards
- OSHA compliant
- Meets human adjustability requirements - one size fits all
- May need to add additional waist belt to distribute loads

KwikSafety Thunder Safety Harness

Design Solution

Project Risks

Backup: Suspension Tests

Suspension/User Attachment Test(s)

Suspension

• Weight drop test

Rotation System

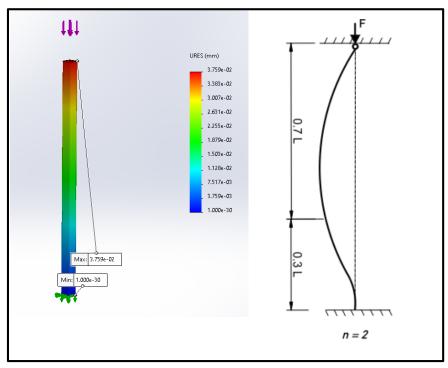
- Weld strength test
- Load bearing test
- Joints strength/freedom of movement

Harness

- Comfort test
- Forced sitting test

Backup: **Structure Material** Selection and **Moment Analysis**

Backup: Lateral Moment Test


A			
	X X		
9Ft	X		
	P		
В	3Ft		
	,		
402.6 IbF			

 $M_{P,A}$ = Fd = 65.35(9) = 588.14 lb-ft $M_{P,B}$ = Fd = 402.6(3) = 1207.68 lb-ft $M_{P,tot}$ = M_A + M_B = 1207.68 - 588.14 = 805.08 lb-ft

Conclusion: Structure is laterally stable

Column Buckling and Tipping Moment Model

Buckling Calculations:

 $F_{\text{buckle}} = n\pi^2 EI / L^2$

- One end fixed: n = 0.7
- E = 27.5x10³ ksi
- I = 6.94 in⁴

Max static buckling load: 113000 lbs

Moment Calculations:

• A lateral force of 400 lbs would be required to cause the structure to tip over

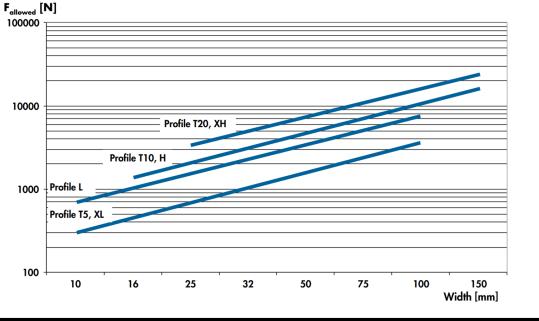
Material Selection

A500 B Steel:

- Young's Mod: 27.5x10³ ksi
- YS: 46 ksi
- TS: 58 ksi
- Does not warp to TS over time

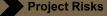
Wood

- Flexural Mod: 8.56 ksi
- YS: 6000 psi
- TS: 305 psi
- Warps over time and repeated usage


Backup: Belt Selection and Tensile data

Belt Empirical Data

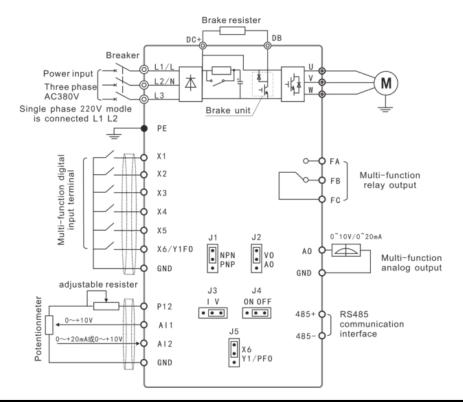
Diagram 4.3.1: T and imperial profile, permitted tensile forces F_{allowed} depending on profile and width in a simplified representation


1 in width = 25.4 mm

Max tension: 1100 N

Max predicted tension: 124.5 N

Backup: Electronics



Power Budget

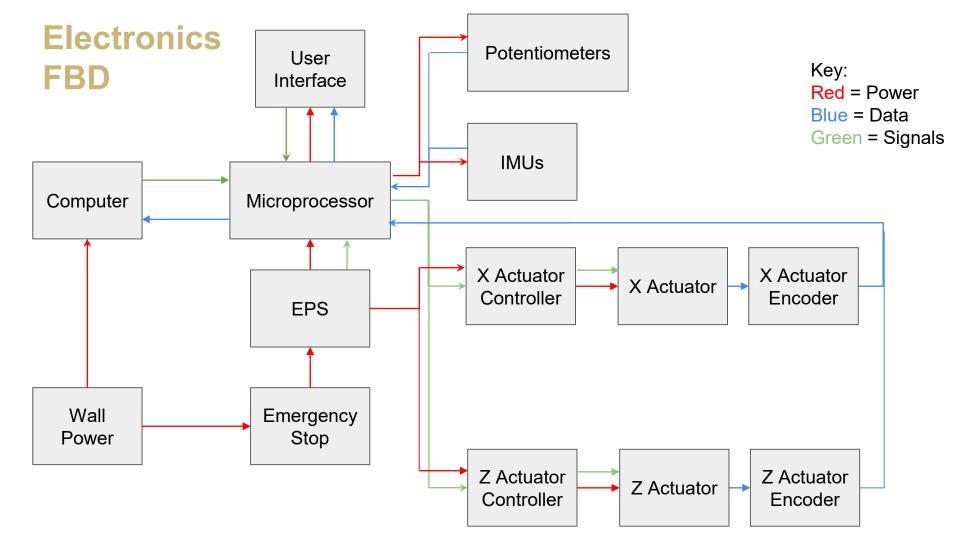
Part	Quantity	Continuous Current (A)	Peak Current (A)	Voltage (V)	Power (W)	Peak Power (W)
Microprocessor	1	0.4	0.82	5	2	4.1
Motor (x)	1	0.98		90 VDC	88.25	
Motor (z)	1	9.73	15.2	115 V	1118.55	1748
VFD	2	0.150	0.150	12	1.8	1.8
Potentiometers	2	.000625	.001	3.3	0.125	.2
IMUs	2	0.00123	0.00123	5	0.00615	0.00615

VFD Controller Pinout

LunaSim (CDR

Gi

Project Overview


Design Solution > Project Risks

isks Desig

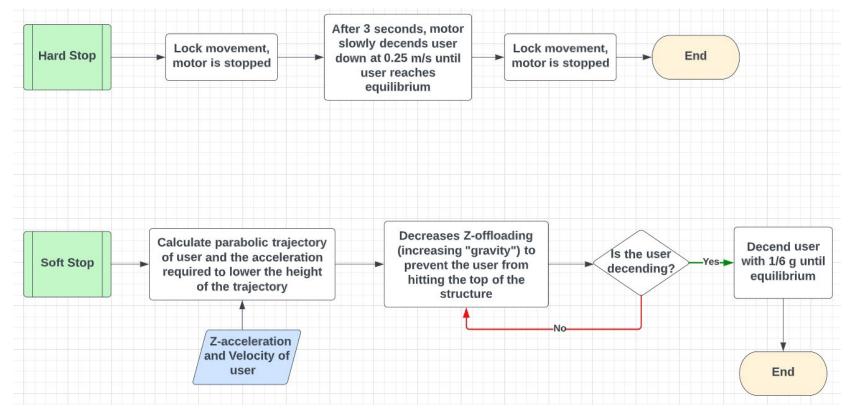
Design Requirements and Satisfaction

Verification & Validation

Project Planning

Backup: Software Slides

Project Overview

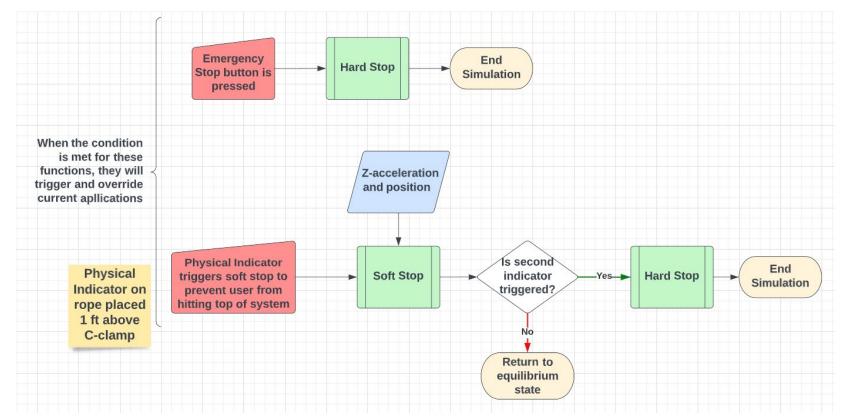

Design Solution

Project Risks

Design Requirements and Satisfaction Verification & Validation

Project Planning

Software FBD


Project Overview

LunaSim

CDR

5.

Software FBD

Verification & Validation

Software - X-Translation, the "Joystick"

- Small angle sensor detects when the user begins to move in the x-direction
- Activates motor to move along with user
- Angle sensor detects once the user comes to a halt, then slows down the motor to a halt

Requirements: L3-92 The software shall command the movement system to move to the x-position of the user.

Software - Soft and Hard Stops

- Physical indicators placed along to prevent the user from hitting the top of the system
- First indicator is placed 1 ft above the V-clamp. When this passes through the joystick, it activates the soft stop
- Second indicator is placed directly above the V-clamp. This cannot pass through and when it hits the joystick, it activates the hard stop

Requirements: L3-96 The software shall command the actuators to slow the user's movement in the zdirection to prevent the user from moving outside of the system space

