

Ann and H.J. Smead Aerospace Engineering Sciences

TALON: Tactical Autopilot Long-Term Overwatch Network (HERD-CU)

Testing Readiness Review 14 February 2022

Customer: Professor John K. Mah

Selmo Almeida Nicholas Boender Anthony Danna Ethan Fleer Collin Kasunic John Oliver

Jason Peloquin (Project Manager)

Vyacheslav Rychenko Patrick Tippens Zachary Vanlangendonck Dante Vigil Christian Williams

Presentation Outline

- 1. Overview
- 2. Design Solution Updates
- 3. Schedule
- 4. Testing Readiness
 - a. Avionics/Battery
 - b. Structures
 - c. Propulsion
 - d. Full-System Integration
- 5. Budget

Overview and Design Solution Updates

Overview and Updates	Schedule	Testing: Electronics	Testing: Structures	Testing: Power and Propulsion	Testing: Full-System	Budget	>
-------------------------	----------	-------------------------	------------------------	-------------------------------------	-------------------------	--------	---

Project TALON's purpose is to develop a high endurance, human-portable, rapidly deployable unmanned aerial vehicle. The aircraft will be capable of supporting multiple mission overwatch profiles that demand agility, low cost, high persistence, and broad coverage capability.

Overview and Updates	Schedule	Testing: Electronics	Testing: Structures	Testing: Power and Propulsion	Testing: Full-System	Budget
-------------------------	----------	-------------------------	------------------------	-------------------------------------	-------------------------	--------

TALON CONOPS

Overview and Updates	Schedule	Testing: Electronics	Testing: Structures	Testing: Power and Propulsion	Testing: Full-System	Budget	
-------------------------	----------	-------------------------	------------------------	-------------------------------------	-------------------------	--------	--

Project Overview - Functional Requirements & Levels of Success

Category	Level 1	Level 2	Level 3
	The UAS shall provide a cor	tinuous overwatch window of 12 hours thro	ough the use of one or more UAVs.
FR 1	UAV maintains 1 hour of continuous overwatch.	UAV maintains 3 hours of continuous overwatch.	UAV maintains 4 hours of continuous overwatch.
FR 2	UAS shall be transported, launche	d, recovered, and operated by a single pe minute launch window per UAV.	erson to satisfy Requirement 1 under a 10
	UAS shall have short takeoff ar obs	nd landing capabilities to deploy in areas v tructed climb windows as specified by the	with unprepared launch surfaces and customer.
FR 3	UAS shall be able to takeoff in an open clearing with a 100 ft. radius and clear a 10 ft. obstacle at the end of launch radius.	UAS shall be able to takeoff in an open clearing with a 75 ft. radius and clear a 15 ft. obstacle at the end of launch radius.	UAS shall be able to takeoff in an open clearing with a 50 ft. radius and clear a 20 ft. obstacle at the end of launch radius.
FR 4	UAS	shall provide a payload bay to house a se	ensor suite.

Overview and Updates Schedule	Testing: Electronics	Testing: Structures	Testing: Power and Propulsion	Testing: Full-System	Budget	\rangle
----------------------------------	-------------------------	------------------------	-------------------------------------	-------------------------	--------	-----------

Project Overview - Functional Requirements & Levels of Success

Category	Level 1	Level 2	Level 3				
	UAS sho	Ill operate up to a maximum altitude of 1	0,000 ft. MSL.				
FR 5 FR 6 FR 7 FR 8	UAS shall be capable of operating at a minimum altitude of 5,000 ft. MSL.	UAS shall be capable of operating at a minimum altitude of 7,500 ft. MSL.	UAS shall be capable of operating at a minimum altitude of 10,000 ft. MSL.				
FR 6	UAS shall adhere to FAA 14 C	CFR Part 107, SMALL UNMANNED AIRCRAF	T SYSTEMS, contingent on waivers.				
	UAS shall maintain a minimum of 80% operational capabilities in customer specified environmental conditions.						
FR 7	UAS shall maintain a minimum of 100% operational capabilities at room temperature.	UAS shall maintain a minimum of 80% operational capabilities in a temperature range between 32 and 90F	UAS shall maintain a minimum of 80% operational capabilities in a temperature range between -20 and 110 F				
FR 8		UAS will maintain a FMC standby postu	ire.				
FR 9	UAS total flyaway cost shall not	exceed 5,000 USD for a single air vehicle recover system.	e along with the required launch and				

Overview and Updates Schedu	e Testing: Electronics	Testing: Structures	Testing: Power and Propulsion	Testing: Full-System	Budget	\rangle
--------------------------------	---------------------------	------------------------	-------------------------------------	-------------------------	--------	-----------

Project Overview - Critical Project Elements

CPE	Description	Functional Requirement
Aerodynamics	Maximizing lift-to-drag decreases power required enhancing endurance.	FR1
Electronics and Batteries	Inefficient electronics waste energy which could be used for propulsion. Custom batteries allow for compact packaging and efficient discharge.	FR1
Propulsion System	Propulsion must provide adequate power to climb, without being oversized for cruise.	FR1 & FR3
Structures	Aircraft structures must survive turbulence and landing while minimizing mass and maintaining portability.	FR2, FR3 & FR4

Overview and Updates Schedule	Testing: Electronics	Testing: Structures	esting: Power and Propulsion Testing: Full-System	Budget
----------------------------------	-------------------------	------------------------	---	--------

Design Solution - Functional Block Diagram

Design Solution - Final Design Overview

Focus: Provide seamless access to electrical components and a volume for a mission specific payload. Features: Rapidly removable canopy for ease of access into electronics bay and interchangeability payload bay for various user defined payloads.

Overview and Updates	Schedule	Testing: Electronics	Testing: Structures	Testing: Power and Propulsion	Testing: Full-System	Budget	>
-------------------------	----------	-------------------------	------------------------	-------------------------------------	-------------------------	--------	---

Design Solution - Wing Harness

Focus: Integrating the wing with fuselage while providing enhanced structural support.

Features: Three piece system based on dovetail connections for rapid interchangeability and servicing. Structural reinforcement for wings at critical shear point along the fuselage interface.

Overview and Updates Schedule	Testing: Testing: Electronics Structures	Testing: Power and Propulsion Testing: Full-System	Budget
----------------------------------	---	--	--------

Focus: Providing pitch and yaw stability while minimizing flow disturbance.

Features: Aerodynamic sleeving leading up to the empennage decreases turbulent flow to tail. Reinforced control surfaces with upper mounted servos to ensure survival and reusability upon landing.

Overview and Updates	Schedule	Testing: Testing: Structures	Testing: Power and Propulsion	Testing: Full-System	Budget	>
-------------------------	----------	------------------------------	-------------------------------------	-------------------------	--------	---

Critical Project Element Modifications

Overview and Updates Schedule Testing: Electronics	Testing: Testing: Power Structures Propulsion	Testing: Full-System Budget	>
--	--	--------------------------------	---

Design Solution - Original Wing Design

Original Design:

• Segmented carbon fiber rods and bars

Concerns:

- Original Design was susceptible to greenstick fracture/failure
- Forces experienced within the airfoil cannot travel into the fuselage, resulting in force build up within the wing, increasing the probability of a structural failure
- Foam delamination/fatigue may occur over time due to large wingtip deflections

New Design:

- Contiguous Rods
- Rib at 40in

Features:

- CF bars will be inserted & secured inside of CF tubes, creating a continuous structure
- Force will be transferred through the wing and dissipated throughout the harness/fuselage
- CF tubes have been extended further out towards the wingtip to minimize deflection
- CF tube thickness was increased to improve rigidity

Schedule

G

Schedule - Manufacturing Update

1st Prototype Wing Complete:

- Addresses structural concerns from CDR
- Implemented hybrid "wing box" configuration

Front Fuselage has been refined:

- Decreased weight through rib structure design
 - Fuselage: 37.5% reduction in weight
 - Canopy: 61.5% reduction in weight

Empennage has been optimized:

- Weight has been decreased by 35% through Lw-Pla
- Top mounted servo configuration has been conceptually proven through a basic tail mock up

Other Notables:

- Propulsion testing continues
- All ordered components have been delivered

Assembly & Test Focused Gantt

Overview and Updates Schedule	Testing: Tes Electronics Strue	ing: tures Testing: Power and Propulsion	Testing: Full-System	Budget	
----------------------------------	-----------------------------------	---	-------------------------	--------	--

CU HERD PHASE 1A

Propulsion Testing

Battery Design Finalization Final Motor/Prop/Battery Test start

02/01/22

02/01

02/01

02/01/22

02/01

02/01

02/13/22

02/13

02/13

02/24/22

02/24

02/24

03/01

03/01

03/06

03/06

03/12/22

03/12

03/19/22

03/19

03/22

03/26

03/26

04/03/22

04/03

04/18

04/21

04/22

Avionics Testing

Servo Configuration Testing Battery Cell Testing

Structures Testing

Wing Structural Testing Fuselage Structural Test

Sub System Assembly

Battery Assembly Final Wing Assembly Wing Harness Assembly Tail Assembly Electronics Assembly Payload Cnfg

Full System Integration

Full A/C Integration

Full Scale Testing

Static Avionics Testing Simulated Landing Stress Test Small Scale Refinement/ Reprint Misc. Testing

Flight Testing

Full Scale Flight Tests AES Symposium Spring Final Review Filnal Report

Current Primary Sub System Test Plan

	Large Scale Sub System Testing Schedule											
Subsystem	Test	Goals	Dates	Location	Equipment	Progress						
Propulsion	Thrust Testing on Static Test Stand	• Verify 5S capability • Determine flight envelope	2/1/22 - 2/17/22	Aerospace Building - Test Cell	Static Test Stand Motors & Props Spektrum Avionics Equipment	In Progress						
Structures	Wiffle Test Fatigue Test	• Analyze final wing structural/material properties	2/13/22 - 2/20/22	ITLL / Aerospace Building	ITLL material testing machines Cyclic Testing equipment Full Scale Composite wing	In Progress						
Structures	Landing Simulation	• Determine if the airframe can successfully belly land under normal conditions	2/13/22 - 2/20/22	Aerospace Building/Parking Lot	Elevated Platform, support system, ropes and full A/C	In Progress						
Electronics	Battery Analysis	 Determine battery cell true capacity & resistance Estimate overall capacity 	2/1/22 - 2/17/22	Aerospace Building	XSTAR VC4S battery charger/grader	In Progress						

Full Scale Flight Testing

	Full Scale Flight Testing											
Subsystem	Test	Goals	Dates	Location	Equipment	Progress						
Whole UAV	Environmental Testing	• Determine operability in adverse conditions as specified by customer	3/19/22 - 4/1/22	Arvada Airpark Sod Farm Local Ranch	Entire UAS Spare Battery Packs	Not Started						
Whole UAV	Portability testing	• Determine aircraft portability and single user operation	4/1/22 - 5/6/22	Outside/Hiking Trails	Full UAS Hiking Gear	Not Started						
Whole UAV	Time to Assemble Testing	• Determine the time it takes to assemble a UAV in the field	4/1/22 - 5/6/22	Outside/Hiking Trails	Full UAS Hiking Gear	Not Started						
Whole UAV	Initial Flight Test	• Confirm UAV airworthiness and analyze flight characteristics	4/1/22 - 5/6/22	Arvada Airpark Sod Farm Local Ranch	Entire UAS	Not Started						

TALON Test Readiness

Overview and Updates Schedule <u>Testing:</u> Electronics	Testing: Structures Testing: Pow and Propulsion	er Testing: Full-System	Budget	\rangle
---	---	----------------------------	--------	-----------

Test Readiness - Key Focus Areas

1	 Individual battery cell analysis Final battery capacity projection
2	 Wing failure & fatigue test Fuselage failure test
3	• Quantify thrust & amp draw for final propulsion configuration
4	Full Scale Flight Testing • Layered "Day in the life" testing
	Overview and UpdatesScheduleTesting: ElectronicsTesting: StructuresTesting: Power and PropulsionTesting: Full-SystemBudget

Testing Readiness Electronics: Battery

Overview and Updates	Schedule	Testing: Electronics	Testing: Structures	Testing: Power and Propulsion	Testing: Full-System	Budget	>
-------------------------	----------	-------------------------	------------------------	-------------------------------------	-------------------------	--------	---

Rationale For Testing:

- Abnormal battery cell variation can have catastrophic effects on constructed battery characteristics
 - Safety risks
 - Performance degradation

Equipment & Facilities:

• XTAR VC4S - Battery Charger & Tester

Overview:

- XTAR VC4S Battery Tester measures actual capacity, resistance and voltage of each battery cell
 - Individual battery metrics are contrasted against manufacture specifications
 - Averages derived from the sample population are utilized to estimate the TALON's overall 45 cell battery pack capacity, voltage and resistance

XTAR® VC4S 4863mah 4930mah 0000mah

Charge

28

Grade Mode

VC4S displays "REAL CAPACITY" of the battery after " Charge→Discharge→Fully Charge".

Discharge

Battery Testing - Procedure

Battery Grading Procedure:

- Up to 3 individual battery cells are placed into the XTAR VC4S battery 1.) grader at a time
- 2.) XTAR VC4S is placed into "Grade" mode
- 3.) Batteries undergo a full charge cycle
- 4.) Batteries are discharged to safe minimum voltage
- 5.) Batteries are fully charged again and true capacity, internal resistance and voltage are measured
- Battery metrics are recorded for later statistical analysis 6.)
- 7.) Batteries are discharged to a safe storage voltage

Battery Testing - Expected Results

Expected Results:

- Graded batteries will feature:
 - Capacity between 4,800 5,000 mAh
 - Nominal Voltages of 3.65V
 - Internal resistance $\leq 20 \text{ m}\Omega$

Statistical Analysis:

- Two Tail T tests will be conducted to determine the following metrics
 - Confidence intervals
 - \circ Mean & σ

Preliminary Results:

- Status:
 - 13 out of 50 cells tested
- Faulty cells:
 - Lower than expected voltage has been discovered in 1 cell so far

Lishen 21700 Battery	Sample Means	95% Confidence Interval	Manufacturer Specifications
True Capacity	4,919 mAh	4,888 - 4,950 mAh	4,800 - 5,000 mAh
Nominal Voltage	3.71V	3.65 - 3.76 V	3.65 V
Internal Resistance	18.9 mΩ	16.1 - 21.7 mΩ	≤20 mΩ

Battery Testing - Risk Mitigation

Safety Risks:

- Battery overheating
 - Individual cells with higher than normal internal resistance increase heat dissipation
- Excess charge and discharge rates of the battery cells
 - Increased pressure build up results in battery "swelling"
 - Alteration of chemical properties results in fires

Performance Degradation:

- Large capacity variation within individual cells
 - Decreases overall capacity of TALON, impeding on flight times

Risk Mitigation:

- Down selection of battery cells reduces the probability failure and increases confidence in the TALON's performance
 - Statistical battery analysis will allow for the standardization of the TALON power system going forward

Model Validation:

• Theoretical Battery Endurance and Performance Model

Battery Testing - Functional Requirements

	Validation of Functional Requirements Through Battery Testing:
FR1	The UAS shall provide a continuous overwatch window of 12 hours through the use of one or more UAVs.
DR 1.2.1	The UAV's power supply shall provide 70 amps of continuous discharge
FR8	UAS will maintain a Fully Mission Capable standby posture
DR 8.1.1	The UAV's entire avionics suite (including the power supply) shall be installable and removeable by hand and/or using hand tools
DR 8.2	The UAV's power supply shall maintain 95% capacity after being stored for 120 hours
	Verification of Functional Requirements
FR1 & FR8	FR1 - Verified by Full System Testing FR8 - Verified after manufacturing and before Full Scale Testing

Overview and Updates	Schedule	Testing: Electronics	Testing: Structures	Testing: Power and Propulsion	Testing: Full-System	Budget	
-------------------------	----------	-------------------------	------------------------	-------------------------------------	-------------------------	--------	--

Testing Readiness: Structures

Overview and Updates	Schedule	Testing: Electronics	Testing: Structures	Testing: Power and Propulsion	Testing: Full-System	Budget	
-------------------------	----------	-------------------------	------------------------	-------------------------------------	-------------------------	--------	--

Testing Structures - Whiffletree Test

Rationale For Testing:

• Simulate max stress condition on wing during climbout

Test Fixture:

- 3D printed harness to connect wing and Whiffle tree Equipment and Facilities:
 - Whiffletree test fixture, C-Clamps
 - Lockheed Martin Senior Projects Storage Room

Overview:

• Whiffletree allows for even distribution of load across the wing for accurate wing loading

Whiffletree test setup

Testing Structures - Whiffletree Test

Procedure:

- Insert wing in to 3D printed harness 1.
- 2. Flip wing upside down and secure root to table
- Hang whiffle tree from wing harness 3.
- Apply loads until failure to measure a FoS 4.
- 5. Mesure wing deflection at a load of 37.8N

Whiffletree test setup

Testing Structures - Whiffletree Test

Expected Results

- Wing must sustain load of 37.8N
- Wing will withstand 56.7N load for a 1.5 FoS

Models to Be verified:

- ANSYS wing bending model
- MATLAB beam bending model

Risk Reduction:

• Demonstrates that the wing is capable of withstanding the most extreme forces found in normal flight

Testing Status:

- Wing is built and ready for testing
- Using whiffle tree software to determine proper loading

	Warning Length Factor	2 s 3*1.15*1.1	Ca	tia Scale:	25.4	Dec	cimal L: imal W:	9 2 0	Clear	Clear All	He	elp	
s	Start/Start Over Whiffletree	Multi-Whiff	letree	Modify I	Finish/Upda	ate ID	Mat	erial Data	Rod Edit/U	pdate Tree	Check	CATIA	
D	Name	Weight	Х	Y	Ζ	Load	Dist	Rod					
1	Harness	300.00	606.91	-79.79	243.42	1138.5	7.74						
2	Structure 1	150.00	600.80	-71.00	221.92	569.3	15.49				7.74 in	1139 g	Structure
3	Structure 2	150.00	600.80	-87.45	221.92	569.3	12.95			9.78 in	1708 g		
4	Structure 3	150.00	613.20	-71.00	201.92	569.3	12.95						
5	Structure 4	150.00	613.20	-87.45	201.92	569.3	23.25				15.49 g	569 g	Payload 1
6	Structure 5	110.00	618.47	-78.90	256.20	417.5	31.70		1.56 in	2846 g			
7	Wing tip	36.00	629.68	-68.60	267.87	136.6	40.06						
8	1+2			-76.86	236.25	1707.8	9.78				12.95 in	569 g	Payload 2
9	3 + 4			-79.23	211.92	1138.5	14.67			14.67 in	1139 g		
10	5 + 6			-83.83	224.88	986.7	5.55						
11	7 + 10			-81.98	230.11	1123.32	3.95		3970 g		12.95 in	569 g	Payload 3
12	8 + 9			-77.80	226.52	2846.25	1.56						
13	11 + 12			-78.99	227.54	3969.57							
	S										23.25 in	569 g	Payload 4
										5.55 in	987 g		
									1000				0
									3.95 in	1123 g	31.7 in	417 g	Structure 2
										40.06 in	13/ g		item of IV

2D Whiffletree setup calculator

Testing Structures - Cycling Test

Rationale For Testing:

• Accurately reflect rapid wing loading during sharp vertical gusts and simulate multiple flights on wing structure

Test Fixture:

C-Clamps and Piston

Equipment & Facilities:

- C-Clamps, Piston, Software/hardware required for piston
- Aerospace Building Facilities

Overview:

• Test the structural longevity of the wings under small, rapid loading conditions similar to flight

Overview and Updates Scher	e Testing: Electronics	Testing: Structures	Testing: Power and Propulsion	Testing: Full-System	Budget	
-------------------------------	---------------------------	------------------------	-------------------------------------	-------------------------	--------	--

Testing Structures - Cycling Test

Procedure:

- 1. Fix wing root end of wing
- 2. Fix actuator rod end to wing tip
- 3. Set travel distance for actuator to maximum tip deflection from whiffletree test
- 4. Cycle actuator 500 times
- 5. Check for any structural failure

Expected Results:

- No permanent deformation, delamination, or material separation Risk Reduction:
 - Demonstrates that the wing is capable of withstanding repeated deflection to combat vertical gusts and multiple flights

Testing Status:

- Wing is built and ready for testing
- Source actuator, required hardware/software

Testing Structures - Fuselage Drop Test

Rationale For Testing:

• Landings and crashes pose risks to overall vehicle structural integrity and reusability

Test Fixture:

• Drop test from elevated platform

Equipment & Facilities:

• Elevated surface and a pull string

Overview and

Updates

• Suitable elevated surface and a representative landing zone

Overview:

- Binary test to determine maximum height of fuselage in a free-fall scenario
- Full fuselage assembly with mock electronics, batteries, linkages, etc.
- Will:
 - Display overall structural integrity of design
 - Uncover areas of high stress concentrations, if present, for redesign
 - Evaluate electronics placement for optimal survivability

Schedule

Testing Structures - Fuselage Drop Test

Procedure:

- 1. Add weight to fuselage to simulate full A/C weight
- 2. Fix fuselage above ground at set height
 - a. Tilt fuselage to simulate pitch angle for landing
- 3. Drop fuselage in a wings-level configuration
- 4. Record damage
- 5. Increase height and repeat process until structural failure

Expected Results:

- No permanent deformation or compromised payload bay from 3 ft. Risk Reduction:
 - Determines greatest height TALON can survive in a freefall
 - Establishes limitations for TALON landing operations

Testing Status:

- Fuselage is constructed
- Ready for testing

G Structures Testing - Functional Requirements

	Validation of Functional Requirements Through Structures Testing:				
FR3	The UAV shall have short takeoff capabilities as specified by the customer				
DR 3.3.1	The UAV shall be capable of absorbing an impact to the belly while 'fully loaded' from a height of 3 ft. without a structural failure				
DR 3.3.2	The UAV shall be capable of withstanding 10 impacts to the belly while 'fully loaded' from 1.5 ft.without a structural failure				
FR7	UAS shall maintain a minimum of 80% operational capabilities in customer specified environmental conditions				
DR 7.3	The UAV shall withstand 100 rapid and successive 30 feet-per-second sharp vertical wind gust cycles without failure				
	Verification of Functional Requirements:				
FR3 & FR7	FR3 - Verified through Full System Testing FR7 - Verified by testing individual DR's in adverse environments				

Overview and Updates Schedule Testing: Electronics	Testing: Structures Testing: Po and Propulsio	on Testing: Full-System	Budget	\rangle	40
--	---	----------------------------	--------	-----------	----

Testing Readiness - Propulsion

Overview and Updates	Schedule	Testing: Electronics	Testing: Structures	Testing: Power and Propulsion	Testing: Full-System	Budget	>
-------------------------	----------	-------------------------	------------------------	-------------------------------------	-------------------------	--------	---

41

Rationale For Testing:

- Measuring static thrust of various propeller and motor configurations allows for adequate propulsion system down selection
- Extensive testing allows for thrust optimization to satisfy functional requirements while minimizing amp draw

Test Fixture:

• Smead Aerospace Test Cell

Equipment and Facilities:

- Static thrust stand, arduino, 3D printed test mount, ESC, motor, propeller, mini crane force scale
- Smead Aerospace Garage

Overview:

- Various motor and propeller configurations are being tested to determine thrust and corresponding amp profiles
 - First round of 5S battery pack testing completed
 - Targeting 470kv, 17X7E, 5S battery combination

Overview and Updates Schedule Testing: Testing: Electronics Structures	Testing: Power and Propulsion Testing: Full-System Budget	4
--	--	---

Propulsion Testing

Procedure:

- 1.) Static test load cell calibration test via mini crane force tool
- 2.) Securely fasten motor mount to static test stand and connect ESC and battery to motor
- 3.) Ensure propeller secured to mount
- 4.) Connect Arduino to load cell with Arduino battery unplugged
- 5.) Remove wooden stopper
- 6.) Insert micro SD card into Arduino, then plug in battery
- 7.) Insure all persons outside the testing room
- 8.) Begin throttling motor via transmitter at time = 0 sec.
- 9.) After testing, power down motor and set transmitter to 'safe'
- 10.) Retrieve micro SD card for data collection
- 11.) Analyze test data in Python

Propulsion Testing - Preliminary Results

Battery Sizing Results

• 18x8E propeller was chosen to maximize motor strain and amp draw

- Thrust for 4S 14.8V = 10.7 lbs
- Thrust for 6S 22.2V = 17.6 lbs

Testing Results:

- Spektrum 480kv, 5S, 17x7E propeller combination
 - Maximum thrust: 10.2 lbf
 - Thrust Margin: 24.5%
 - Motor saturation at 100% throttle
- Spektrum motor features lightweight magnets which result in inconsistent thrust at 100% throttle
 - Spektrum 480kv is not viable motor at this time

Conclusions:

- E-Flite Motor needs testing
 - Testing was halted due to unsafe mounting on propeller (damaged part)
- Collection of amp data is cumbersome for 5S
 - 5S test pack is not 'Smart Battery'
 - Lacks real time telemetry capability

Note: Spektrum was tested to minimize weight, over 100 grams lighter than E-Flite

Propulsion Testing - Risk Mitigation

Risk Reduction through testing:

- Proves the adequacy of the TALON propulsion system
- Thrust & Amp draw metrics can be used to optimize the TALON's propulsion system
- Thrust & Amp Margins can be determined
 - Compensates for model assumptions and adverse flight conditions

Expected Results:

• Low KV motor, 5S battery and large propeller combinations are capable of generating over the required 8.0 lb of thrust while minimizing amp draw

Model validation:

- Propulsion Model: Thrust required for flight
- Rate of climb model: Thrust required to meet various levels of success
- Battery Model: Efficiency approximation (amps per lb of thrust)

Expected Results: 5S Battery

Data	Expected	Required
Max Thrust	Greater than 14.0 lbs	8.1 lbs
Peak Amps	Less than 67.0A	Less than 70A

	v	
	Expected	Required
Max Thrust	Greater than 10.0 lbs	8.1 lbs
Peak Amps	Unknown	Less than 70A

Propulsion Testing - Functional Requirements

Validation of Functional Requirements through Propulsion Testing				
FR1	The UAS shall provide a continuous overwatch window of 12 hours through the use of one or more UAVs.			
DR 1.1.1	The UAV's power supply shall be capable of providing at least 120% of the maximum expected amperage draw of the UAV			
DR 1.2.1	The UAV's power supply shall provide 70 amps of continuous discharge			
DR 1.3.1	The UAV's motor and propeller combination shall provide no less than 53 Newtons of thrust at full throttle			
FR3	The UAV shall have short takeoff capabilities as specified by the customer			
Verification of Functional Requirements				
FR1 & FR3	FR1 & FR3 will be verified during Full System Testing			

Overview and Updates Schedule Testing: Testing: Electronics Structures	Testing: Power and Propulsion Testing: Full-System	Budget	
--	--	--------	--

Full System Test

Overview and Updates	Schedule	Testing: Electronics	Testing: Structures	Testing: Power and Propulsion	Testing: Full-System	Budget	
-------------------------	----------	-------------------------	------------------------	-------------------------------------	-------------------------	--------	--

Full System Test

Rationale: A full scale test proves TALON airworthiness and a simulated CONOPS will allow the team to identify areas for improvement.

Test Fixture: N/A

Equipment and Facilities:

- TALON system
- Locations (Pending Pilot Selection and Capabilities)
 - North Table Mountain
 - Platteville, CO
 - South Boulder Campus
 - Dillon Reservoir (High Altitude Tests)
- Pilot List based on FAA Certifications and Availability
 - IRISS/RECUV Pilots
 - Hobbyist Pilots
- Dates
 - o 03 April 06 May

Overview and
UpdatesScheduleTesting:
ElectronicsTesting:
StructuresTesting:
and
PropulsionTesting:
Full-SystemBudget49

Procedure:

- 1.) Assemble TALON UAS in fully mission capable standby posture
- 2.) Transport UAS to the designated area of interest
- 3.) Conduct an in field assembly of the TALON
- 4.) A designated operator will hand launch the TALON
- 5.) TALON climbout will be measured against a known obstacle for reference
- 6.) The TALON will fly in a circular orbit at 300 ft AGL and establish communications with operators on the ground through the aircrafts LilyGo radio payload
- 7.) A simulated search and rescue field operation will be conducted with the TALON in the overwatch position
- 8.) After search and rescue operations have concluded the TALON will descend & land
- 9.) The UAS will be disassembled and stored in a safe standby configuration
- 10.) A post flight battery analysis will be conducted and TALON endurance will be quantified

Expected Results:

- **TALON Assembly Time:** \leq 10 minutes
- **TALON Endurance**: \geq 3 hours
- TALON climb out:
 - Takeoff radius \leq 75 ft. \cap
 - Climbout ≥ 15 ft at the end of launch Ο radius
- **Communications Payload:** Single node • communication radius > 3 miles

Risk Reduction:

- A full scale TALON "day in the life" test will • provide performance metrics for the aircraft and allow for functional requirement verification.
- Full scale flight testing will highlight areas of ۰ weakness within the TALON aircraft

Key Functional Requirements to be Verified:

FR1: The UAS shall provide a continuous overwatch window of 12 hours through the use of one or more UAVs.						
	Level 1	Level 2	Level 3			
0,	1 hour of verwatch.	3 hours of overwatch.	4 hours of overwatch.			
FR 2	FR 2 3 UAS shall be transported, launched, recovered, and operated by a single person to satisfy Requirement 1 under a 10 minute launch window per UAV.					
FR3 unprepo	FR3 :UAS shall have short takeoff and landing capabilities to deploy in areas with unprepared launch surfaces and obstructed climb windows as specified by the customer.					
	Level 1	Level 2	Level 3			
Altitude	e of 10 ft. within 100 ft.	Altitude of 15 ft. within 75 ft.	Altitude of 20 ft. within 50 ft.			
FR 4	UAS	shall provide a pavload bay to h	ouse a sensor suite.			

UAS shall provide a payload bay to house a sensor suite.

Budget

Propulsion	Overview and Updates Schedu	e Testing: Electronics	Testing: Structures	Testing: Power and Propulsion	Testing: Full-System	Budget
------------	--------------------------------	---------------------------	------------------------	-------------------------------------	-------------------------	--------

52

Status:

• All components have been ordered and have been delivered

Budget:

- 75% of budget has been expended
 - Includes testing materials & extra components
- Remaining balance: \$1,244

Vehicle Cost:

• Final TALON production cost: \$2,284

Margin:

- Margin has been applied to the remaining budget reserves and estimated replacement cost
 - Electronics salvage allows a backup TALON to be produced for as little as \$300
 - A near total loss of a TALON aircraft can be reproduced for \$900

Overview and Updates Schedule Testing: Electronics	Testing: Structures	esting: Power and Propulsion Testing: Full-System	Budget		53
--	------------------------	---	--------	--	----

TALON Budget Summary										
Sub System	Actual			Margin						
Electronics	\$	1,178.65	\$							
Structures	\$	2,576.91	\$	-						
Total Spent	\$	3,755.56	\$	-						
Total Budget	\$	5,000.00	\$	-						
Remaining Balance	\$	1,244.44	\$	1,057.77						
Approxiamte Cost To Replace Crashed Vehicle	\$	911.98	\$	1,048.78						
Remaining Budget after 1 TALON Replacement	\$	332.46	\$	9.00						

Cost Plan - Itemized Budget

Item	Vendor Pri	ce	Price Margin Quan	ntity Sh	nipping	Shipping Margin To	otal	Tota	I Margin	Use	Purchase Status	Order Number
Spektrum RC DX8e G2 2.4GHz DSMX 8 Channel Radio System	Action Hobbies RC Aircraft Ce \$	309.99	0	1 \$	-	0.00 \$	309.99	\$	309.99	Transmitter for ground to vehicle controls	Recieved	N/A
Spektrum RC AR8020T DSMX 8 Channel Air Telemetry 2.4GHz Receiver	Action Hobbies RC Aircraft Ce \$	89.99	0	1 \$	-	0.00 \$	89.99	\$	89.99	Recieves transmitter signal on vehicle	Recieved	N/A
Spektrum RC Avian 120 Amp Brushless Smart ESC	Action Hobbies RC Aircraft Ce \$	99.99	0	1 \$	-	0.00 \$	99.99	\$	99.99	Regulates power and yields telemetry data	Recieved	N/A
D645MW Servo	https://www.horizonhobby.com \$	39.99	0	5 \$	-	0.00 \$	199.95	\$	199.95	Moves vehicle control surfaces	Recieved	#114-6690257-5568218
Lishen 21700 5000mAh 9.6A Battery (LR2170SD)	Lishen 21700 5000mAh 9.6A [\$	4.25	0	50 \$	12.42	0.00 \$	224.92	\$	224.92	Batteries for vehicle	Recieved	#274565
Spektrum Avian 4260-480Kv Outrunner	Action Hobbies RC Aircraft Ce \$	99.99	0	1 \$	-	0.00 \$	99.99	\$	99.99	Vehicle's main motor	Recieved	N/A
Nylon/Glass Propeller, 15 x 8E	Action Hobbies RC Aircraft Ce \$	8.42	0	1 \$	-	0.00 \$	8.42	\$	8.42	Vehicle's main Propeller	Recieved	N/A
Nylon/Glass Propeller, 16 x 8E	Action Hobbies RC Aircraft Ce \$	7.10	0	1 \$	-	0.00 \$	7.10	\$	7.10	Vehicle's main Propeller	Recieved	N/A
PHROZEN 3D Printer Rapid Aqua-Gray 4K Resin	Amazon.com: PHROZEN 3D F \$	35.99	0	9 \$	173.48	0.00 \$	497.40	\$	497.40	Resin for printing feusilage	Recieved	#PHZ179232022
ColorFabb Black LW-PLA Filament	ColorFabb Black LW-PLA Filar \$	54.99	0	2 \$	-	0.00 \$	109.98	\$	109.98	PLA for printing farious components	Recieved	101-0000194-4207001
Clevis Pin with Retaining Ring Groove 3/16" X 1-5/8" (Pack of 5)	McMaster-Carr \$	9.10	0	2 \$	-	0.00 \$	18.20	\$	18.20	Pins for Wing and nose	Recieved	0105EFLEER
Clevis Pin with Retaining Ring Groove 3/16" X 3" (Pack of 1)	McMaster-Carr \$	7.25	0	4 \$	-	0.00 \$	29.00	\$	29.00	Pins for Feusilage	Recieved	0105EFLEER
Carbon Fiber Tube 0.465" OD 72" long	McMaster-Carr \$	75.73	0	2 \$	67.46	0.00 \$	218.92	\$	218.92	Rods for Feusilage assembly	Recieved	0105EFLEER
Carbon Fiber Tube 0.378" OD 72" long	McMaster-Carr \$	83.33	0	6 \$	-	0.00 \$	499.98	\$	499.98	Rods for Wing assembly	Recieved	0105EFLEER
Carbon Fiber Bar 39" long	McMaster-Carr \$	13.11	0	3 \$	-	0.00 \$	39.33	\$	39.33	Bars for wing support	Ordered	0105EFLEER
Foam Wings (5 sets)	Foam Wing Cores MohrCom \$	732.50	0	1 \$	-	0.00 \$	732.50	\$	732.50	Wings for vehicle	Recieved	1459060410
Weather-Resistant Hook and Loop	McMaster-Carr \$	16.59	0	1 \$	-	0.00 \$	16.59	\$	16.59	For Nose Enclosure	Recieved	0105EFLEER
MonoKote Black 6'	Action Hobbies RC Aircraft Ce \$	18.99	0	1 \$	-	0.00 \$	18.99	\$	18.99	Coating for wings	Recieved	N/A
Nylon Shaft Grommet	McMaster-Carr \$	2.61	0	2 \$	-	0.00 \$	5.22	\$	5.22	For Pin to rod interface	Recieved	0105EFLEER
Liquid Electrical Tape, 4oz	McMaster-Carr \$	11.55	0	1 \$	4	0.00 \$	11.55	\$	11.55	Securing electronics	Recieved	N/A
Robart Hinge Point Hinge system Aileron Pins	Action Hobbies RC Aircraft Ce \$	31.11	0	1 \$	-	0.00 \$	31.11	\$	31.11	For Aileron	Recieved	N/A
Du-Bro Heave Duty Hinges	Action Hobbies RC Aircraft Ce \$	8.25	0	1 \$	-	0.00 \$	8.25	\$	8.25	For Aileron	Recieved	N/A
MonoKote Platinum 6'	Action Hobbies RC Aircraft Ce \$	21.99	0	1 \$	-	0.00 \$	21.99	\$	21.99	Coating for wings	Recieved	N/A
Insta-Cure+ Gap Filling Medium CA	Action Hobbies RC Aircraft Ce \$	9.99	0	1 \$	-	0.00 \$	9.99	\$	9.99	For securing Resin Components	Recieved	N/A
Super-Gold+ Gap Filling Medium Foam-Safe CA	Action Hobbies RC Aircraft Ce \$	8.99	0	1 \$	-	0.00 \$	8.99	\$	8.99	For securing Foam Components	Recieved	N/A
Zip Kicker CA Accelerator	Action Hobbies RC Aircraft Ce \$	6.99	0	1 \$	-	0.00 \$	6.99	\$	6.99	For setting the CA Glue	Recieved	N/A
Carbon Fiber 3/16" Drill bit - Brad Point	McMaster-Carr \$	26.50	0	1 \$	-	0.00 \$	26.50	\$	26.50	For Drilling into CF Rods	Recieved	0105EFLEER
Ultra-Low Friction Teflon PTFE Tape, 15'	McMaster-Carr \$	16.50	0	1 \$	-	0.00 \$	16.50	\$	16.50	Securing electronics Under Wing	Recieved	0105EFLEER
Fabric Grommets (Pack of 50)	McMaster-Carr \$	5.33	0	1 \$		0.00 \$	5.33	\$	5.33	For Pin to rod interface	Recieved	0105EFLEER
TTGO T-Beam 915Mhz WiFi Bluetooth Module	https://www.amazon.com/gp/g \$	48.50	0	3 \$	8.32	0.00 \$	153.82	\$	153.82		Recieved	#114-9238862-1625069
PHROZEN 3D Printer Rapid Aqua-Blue Resin	Amazon.com: PHROZEN 3D F \$	37.99	0	4 \$	-	0.00 \$	151.96	\$	151.96	Resin for printing feusilage	Recieved	#114-6296214-0405056
Misc Build Hardware	McGuckin Hardware \$	76.12	0	1 \$	-	0 \$	76.12	\$	76.12	Hardware and supplies for vehicle construction	Recieved	
Overview and Updates	Schedule	$\mathbf{\Sigma}$	Testing: Electronics		>	Testing: Structures	$\boldsymbol{\Sigma}$	Tes	ting: Po and	ower Testing: Bu Full-System Bu	udget	54

Propulsion

Questions?

Appendix

Notes from Emma and Le Moine Meeting:

- Critical Path needs emphasis one slip pushes everything
- Swap order for Testing Gantt and Testing Tables
- Overall Emma feels like we are missing details on test design and setup
- Emma is not seeing expected results and model validation
 - Battery Unclear what your data output is here. Pick a pass criteria for your battery, make it explicit (1 sigma etc)
 - Cycling test Unclear on Pass Criteria be more specific and clear on pass fail for all tests.
 - Cycling Are you really validating any models with this? We need to clear this up. Can the composite wing design survive this test
 - Drop Test What constitutes a successful landing? What's our Criteria and pass fail? Say your pass fail!
 - Propulsion Flow was odd, procedure is in a weird place
- Full System Test More quantitative, flight path? Establish Comm Network? What data are you looking to get? How are you looking to get it? What is success with this one?

Sub system slide order

- Test rationale
- Design and setup
- Procedure
- Expected results
- Risk reduction to project
- •

Design Requirement - Endurance through Electronics

Goal

 Efficient power usage through select component choices and custom battery

Power Budget Assumptions

- High loading takeoff conditions
- No adverse wind effects
- No losses in wiring
- Ideal battery
- Ideal motor
- Constant current draw
 - Servos
 - ESC = motor current draw

Solution

- Account for all losses with the margin
 - 20% contingency power

Overview and Updates	Schedule	Testing: Avionics	Testing: Structures	Testing: Power and Propulsion	Testing: Full-System	Risk Management	Budget	58
-------------------------	----------	----------------------	------------------------	-------------------------------------	-------------------------	--------------------	--------	----

Aerodynamics - Backup

Verification and Validation - Structures

Objective	Accurately reflect wing loading conditions during climbout, flight, and descent
Description	Test bending, tension, and compression limits of full wing with added structural support of carbon fiber
Model Comparison	ANSYS Wing launch simulation, expected flight loads from lift, sharp-edged vertical gusts and banked turn
Key Results	Structural failure, wing deflection, permanent deformation, material separation, surface delamination
Validation Against FRs	Validates wing can support loading conditions for climbout, flight, and descent - satisfying FR3

Design Requirement - Endurance through Aerodynamics

Endurance of Propeller Driven Aircraft

$$E=rac{\eta}{c}rac{c_L^{3/2}}{c_D} [2
ho_\infty s)^{1/2} \Bigl(W_1^{-1/2}-W_0^{-1/2}\Bigr) \hspace{1.5cm} \longmapsto \hspace{1.5cm} E=fig(C_L,C_D^{-1}ig)$$

Goals:

• Design Highly Efficient Aerodynamic Bodies

Assumptions:

• Steady Unaccelerated Flight

Limitations:

Ignores Propulsion System & Propeller Efficiency

Design Elements:

- Airfoil: NACA 4412 & NACA 4406
- Taper Ratio: 0.40
- Aspect Ratio: 14.25

Wing Tip Stall:

Design Requirement - Endurance through Aerodynamics

I Verification and Validation - Aerodynamics

Aero: Computational Fluid Dynamics	Objective	Qualitatively Understand Wing Tip Stall
 3D Wing SST k-ω Atmosphere at 10,000ft cruise 	Description	Extend 2D techniques to 3D, and create high fidelity simulation of wing tips including fine boundary layer resolution.
 AOA: 0, 3, 6, 9 Velocity: 12.2 m/s Boundary Conditions 	Model Comparison	Compare to literature on low R _e airfoils.
 Inlet: Freestream Velocity Vector Outlet: 0 Gauge Pressure Wall: No Slip 	Expectation	Understand whether aerodynamic twist effectively mitigates separation and increases efficiency.
• Wall. NO Silp	Validation Against FRs	Successfully mitigate wing tip stall increasing efficiency FR1 & increasing maximum lift FR3

Verification and Validation - Aerodynamics

Aero - Computational Fluid Dynamics

Aerodynamics - Backup Prior Reynolds Number Analysis

65

Appendix Slide

Aerodynamics - Estimation of Body CL and CD

Stanford Model:

• Wetted Area and Flat Plate Skin Friction

• CFD: Sensitivity analysis

Cruise: 4.8° AC	DA / 16.4 m/s	Max: 11.5	° / 22 m/s
C _L (Cruise)	0.7991	C _L (Max)	1.402
C _D (Cruise)	0.0319	C _D (Max)	0.0716
C _L /C _D (Cruise)	25.06	C _L /C _D (Max)	19.59
Lift (Cruise)	72.1 (N)	Lift (Max)	199.7 (N)
Drag (Cruise)	5.9 (N)	Drag <mark>(Max)</mark>	22.9(N)

Objectives: CFD model verification

• Total Elements = 45,000

Objectives: CFD model verification

• Standard sea level atmospheric conditions applied

	General	Viscous Model	×
		Model	Model Constants
	Mesh	Inviscid	Alpha*_inf
	Scale Check Report Quality	Laminar	1
		 Spalart-Allmaras (1 eqn) 	Alpha_inf
	Display Units	k-epsilon (2 eqn)	0.52
		k-omega (2 eqn)	Beta*_inf
	Solver	O Transition k-kl-omega (3 eqn)	0.09
	Type Velocity Formulation	Transition SST (4 eqn)	a1
	Pressure-Based Absolute	Reynolds Stress (5 eqn) Scale-Adaptive Simulation (SAS)	0.31
	O Density-Based O Relative	 Detached Eddy Simulation (DES) 	Beta_i (Inner)
		Transition SST Options	User-Defined Transition Correlations
	Time 2D Space	Roughness Correlation	F_length
	Steady Planar	Options	none 🔻
	O Transient O Axisymmetric	Curvature Correction	Re_thetac
	Avisymmetric Swirl	Corner Flow Correction	none
		 Production Kato-Launder 	Re_thetat
		✓ Production Limiter	none
7 1111 1 1	Gravity	ОК Са	ncel Help

e Name											
et											
omentum	Thermal R	adiation	Spe	ecies	DPM	Multiphase	Potential	Structure	UDS		
V	elocity Specific	ation Met	hod	Magr	nitude a	nd Direction			-		
	Refe	erence Fra	me	Abso	lute				Ŧ		
	Veloc	ity Magnit	ude	[m/s]	143.74	ł			•		
Super	sonic/Initial Ga	uge Press	sure	[Pa]	0				•		
X-C	component of F	low Direc	tion	0.990	04				•		
Y-C	component of F	low Direc	tion	0.137	79				•		
	Turbulence										
	Specifica	ation Meth	od	Intern	termittency, Intensity and Viscosity Ratio						
	1	Intermitter	ncy	1					•		
	Turbu	lent Inten	sity	[%] 5					•		
	Turbulent Vi	scosity Ra	tio	10					-		

Close Help

Objectives: CFD model verification

×

🥌 Velocity In	let							×
Zone Name								
inlet								
Momentum	Thermal	Radiation	Species	DPM	Multiphase	Potential	Structure	UDS
Ve	locity Spe	cification Met	hod Ma	gnitude a	nd Direction			*
	F	Reference Fra	ame Ab	solute				-
	Ve	elocity Magni	tude [m/	s] 143.74	ł			•
Supers	sonic/Initia	Gauge Pres	sure [Pa] 0				•
X-Co	omponent	of Flow Direc	ction 0.9	904				•
Y-Co	omponent	of Flow Direc	ction 0.1	379				•
	Turbulen	ce						
	Spec	ification Meth	nod Inte	rmittency,	Intensity and	d Viscosity F	Ratio	•
		Intermitte	ncy 1					•
	Tu	rbulent Inten	sity [%]	5				•
	Turbulen	t Viscosity Ra	atio 10					•

Apply Close Help

outlet										
Momentun	Thermal	Radiation	Sp	ecies	DPM	Multiphase	Potential	Structure	UDS	
	Backflow R	eference Fran	ne	Abso	lute					
		Gauge Pressu	ire	[Pa]	0				•	
	Pressure	Profile Multipl	ier	1					•	
Backflow I	Direction Spec	ification Meth	od	Norn	nal to Bo	undary			-	
Ba	ckflow Press	ure Specificati	on	Tota	Pressu	re				
Preve	nt Reverse Flo	w								
Avera	ge Pressure S	pecification								
Targe	Mass Flow R	ate								
Turbu	lence									
	Speci	fication Metho	d	Interr	nittency,	Intensity and	d Viscosity F	tatio	*	
Backflow Intermittency					y[1]					
	Backflow Tu	rbulent Intensi	ty	[%] 5					-	
			. (

Apply Close Help

	Scheme					
	Coupled					
	Flux Type					
Pressure Outlet	Rhie-Chow: distance based					
Cone Name	Spatial Discretization					
outlet	Gradient					
Momentum Thermal Bartistics Spacies DDM Multiphase Potential	Least Squares Cell Based					
Herman Herman Raulauun Species Drei Muluphase Potenual	Pressure					
Backflow Reference Frame Absolute	Second Order 🔹					
Cause Procesure [Pa]	Momentum					
Gauge riessure [ra] 0	Second Order Upwind					
Pressure Profile Multiplier 1	Turbulent Kinetic Energy					
Packflow Direction Constitution Method Normal to Doundary	Second Order Upwind					
Backnow Direction Specification Method Normal to Boundary	Specific Dissipation Rate					
Backflow Pressure Specification Total Pressure	Second Order Upwind Intermittency Second Order Upwind Momentum Thickness Re					
Prevent Reverse Flow						
Average Pressure Specification						
Target Mass Flow Rate	Second Order Upwind					
Turbulence	Transient Formulation					
Specification Method Intermittency, Intensity and Viscosity Rat	i 🔹					
Backflow Intermittency	Non-Iterative Time Advancement					
Backflow Turbulent Intensity [%] 5	Frozen Flux Formulation					
Backflow Turbulent Viscosity Ratio	Pseudo Transient					
	Warped-Face Gradient Correction					
	High Order Term Relaxation					
Apply Close Help	Structure Transient Formulation					

Aerodynamics - Backup

	Objectives: CFD model verification								
	•								
Residual Monitors				×	🚭 Yplus/Ystar Register		×		
Options	Equations				Name volus refinement				
 Print to Console 	Residual	Monitor	Check Converg	ence Absolute Criteria	Tuno				
✓ Plot	continuity	✓	\checkmark	1e-07	a velo	O Mitan			
Curves Axes	x-velocity	v	\checkmark	0.0001	Yplus	U Ystar			
Iterations to Plot	y-velocity	v	\checkmark	0.0001	Wall Zones	Filter Text	= = =		
1000 🌲	k	✓	✓	0.001	-life it				
	omega	✓	\checkmark	0.001	arroll				
Iterations to Store	intermit	~	\checkmark	0.001					
1000	retheta	✓	\checkmark	0.001					
					Min	Мах			
					0	0			
					Min Allowed	Max Allowed			
	Convergence	Conditions]		0	100			
	Show Advand	ced Options				100			
	ОК	lot Cance	l) Help		Save/Display Save	Compute Display Options	Close Help		

me y_plus	Frequency (iteration) 20
finement Criterion yplus_refinen	nent
arsening Criterion yplus_coarse	ment
Yplus/Ystar Register	×
Name yplus_coarsement	
Гуре	
Yplus	○ Ystar
Wall Zones	Filter Text 🗾 🖶 🗮
airfoil	
Min	Max
0	0
	Max Allowed
Min Allowed	

Objectives: CFD model verification

- Mesh refinement can be seen
- Total number of cells now 45,735

Objectives: CFD model verification

• Resulting Y+ and Coefficient of Pressure distribution

Verification and Validation - Aerodynamics - Backup

Aero - Wind Tunnel

Setup

- 3D printed model of wing scaled according to Reynold's number
- Use Smead Wind tunnel or TBD

Objective	Verify Aerodynamic Characteristics of Wing and Body			
Description	Quantify Lift and Drag			
Model Comparison	Potential Flow Estimates of Lift and Drag			
Expectation	Increase in Predicted Drag			
Validation Against FRs	Aerodynamic surfaces optimize lift and minimize drag to meet FR1 & FR3			

Propulsion - Backup

Motor Selection

Criteria:

- \circ Power
- Thrust
- Current Draw
- Weight
- Battery Needed
- \circ Size
- Cost

Target Climbout Power	950-1050 W
Target Climbout Thrust	8.2-8.8 lbf

Propulsion: Max Endurance - Backup	Results	IMP	SI
	T_{req} Endurance	.901 lbf	4.00 N
Endurance Maximizing Velocity (Minimum P _{req}) [1]	P_{req} Endurance	.109 hp	81.6 W
$C_{\rm D} = \frac{1}{k} k C_{\rm L}^2$ well $k = \sqrt{\frac{2W}{k}} k = \frac{1}{k}$	V_{req} Endurance	27.3 mph	12.2 m/s
$C_{Do} = \frac{1}{3} \kappa C_L evend = \sqrt{\rho S} \sqrt{3C_{D0}} and \pi \cdot e \cdot AR$	CL_{req} Endurance	1.42	1.42
Coefficient of Lift (Lift = Weight) [2]	T_{req} Climbout	8.20 lbf	36.5 N
$C_{T} = \frac{W}{W}$	P_{req} Climbout	1.28 hp	957 W
$\mathcal{O}_L = \frac{1}{2} \rho \cdot vel_{end}^2 \cdot S$	CL_{req} Climbout	.975	.975
Thrust (Thrust = Drag) [1]	V _{req} Climbout	35.1 mph	15.7 m/s
$T = D = q * S * (C_{D0} + (k \cdot C_L^2))$ where $q = \frac{1}{2} \cdot \rho \cdot vel_{end}^2$	T_{req} Headwind	0.78 lbf	3.47 N
Power [2]	P_{req} Headwind	0.121 hp	90.4 W
$P_R = TV_{end} = q_{\infty}SC_{D0}V_{end} + q_{\infty}SV_{end}\frac{C_L^2}{\pi e_A R} \qquad P_{req} = \frac{P_A}{n_{max}}$	CL _{req} Headwind	.871	.871
πeAR $\eta prop$ Endurance Flight satisfies ER1	V_{req} Headwind	35 mph	15.6 m/s

G r	Propulsion: Headwind	Results	IMP	SI
		T_{req} Endurance	.901 lbf	4.00 N
	Requirement for Headwind: 30 mph Headwind		.109 hp	81.6 W
		V_{req} Endurance	27.3 mph	12.2 m/s
	$C_L = \frac{W}{1 - \frac{W^2}{1 - W^2$	CL_{req} Endurance	1.42	1.42
	$\frac{1}{2}\rho \cdot vel_{wind}^2 \cdot S$	T_{req} Climbout	8.20 lbf	36.5 N
	$T = D = q^* S^* (C_{D0} + (k \cdot C_L^2))$	P_{req} Climbout	1.28 hp	957 W
D	$where q = \frac{1}{2}\rho V_{wind}^2 S$	CL_{req} Climbout	.975	.975
•	V_{win} $D_{wind} T_{wind} V_{wind}$	V_{req} Climbout	35.1 mph	15.7 m/s
	d $\Gamma_{req} = \frac{1}{\eta_{prop}}$	T_{req} Headwind	0.78 lbf	3.47 N
		P_{req} Headwind	0.121 hp	90.4 W
		CL _{req} Headwind	.871	.871
		V_{req} Headwind	35 mph	15.6 m/s

Motor Selection

- T-Motor winner of down-selection process
 - Real-world problems
- Scorpion a strong 2nd place
- E-Flite is a valuable resource for testing

E-Flite 470KV

Scorpion SII-4025-520KV

T-Motor AM480 650KV

Propulsion - Backup

Scorpion SII 520KV with 15x8E APC Propeller

Performance Criteria	Motor Specification	Target Specification(climbout)	
Power [W]	925.9	950	
Thrust [grams]	3970	3950	
Current [amps]	50	Lower is Better	
Weight [grams]	353	Lower is Better	Ţ
Cost [\$]	150	Lower is Better	Ø5.98
Compatible Battery	6s 3500-5000mah	Smaller is Better	1

Propulsion - Backup

Static Testing

Goal: Obtain quantitative data for thrust dependent of current draw and percent throttle as a means to validate motor specs and pick ideal propeller size

Static Testing

Static Testing

Thrust Vs. Amps Metrics

Electronics - Backup

Electronics - Servo Selection (Assumptions) - Backup

Key Assumptions:

- The induced forces on the control surface will be applied to the trailing edge
- When servo is torquing, no jitters from the control surfaces will be experienced (i.e. equilibrium condition is satisfied)
- Air density is set at sea level ($\rho_{sl} = 1.225 \text{ kg/m}^3$)
- Control surface with largest area will drive calculations

• A_{Wing} = 2 in. x 48 in. (modeled after Tempest Aircraft)

Electronics - Servo Selection (Assumptions) - Backup

Appended Assumptions:

- Aircraft will experience **Incompressible Flow**
- Reynolds Number = 1×10^5
- Wing geometry of NACA 4412 airfoil
- Airfoil experiences total velocity of V_{total} = 25.144 m/s
- Average chord length, $\overline{c} = 8$ in = 0.2032 m
 - Control surface is hinged at 75% of wing chord

Electronics - Payload

915Mhz

LILY GO T-BEAM:

- Portable Long Range Radios
- 18650 Battery: 72 hours of power
- Multiple frequencies available
 - 433/868/915 Mhz
- GPS Capable
- Weight: 82.2g (2.82 oz)
- Working Temp: -40°C + 85°C
- **Cost Effective:** \$40 per radio

Electronics - Servo Selection (Torque Calculations) - Backup

Hinge Moment/Span:

- $\frac{M_{hinge}}{b} = -0.01455 \cdot \left(\frac{1}{2} \cdot \rho_{SL} \cdot V_{SL}^2 \cdot \bar{c}^2\right)$
- -0.1672 Nm/span
- -0.1698 Nm = -24.05 oz-in.

Selected Servo Properties:

- Factor of Safety (FoS) = 2
- Thin design
- Lightweight

Verification and Validation - Electronics / Servos - Backup

Servo Parameters

- V_{cruise} = 16.4 m/s
 Max Gust Speed = 9.144 m/s

$$\eta_{servo} = \frac{P_{out}}{P_{in}} = \frac{P_{mech}}{P_{elec}} = \frac{\tau \cdot \omega}{V \cdot I}$$

Estimated HS-125MG Servo Performance and Efficiency @ 6.0V

Objective	Model servo performance based on manufacture mechanical and electrical details.				
Description	Analyze input and output power of servo to calculate servo efficiency and determine operational range.				
Model Comparison	N/A. This model is uniquely affected by the aircraft's flight path and weather conditions.				
Expectation	High servo loading correlates to high amperage draw and low loading reflects low current draw.				
Validation Requirements	Place inline current sensor within circuit during test flight to analyze true amperage demand of servos.				

Li-Po vs Li-Ion Batteries - Backup

- Best capacity per mass battery:
 - LG F1L1865 (18650)
 - 3350 mAh
 - 4.87 A (Too small)
 - \$6.99
 - ∎ 45 g
 - Lishen LR2170SD (21700)
 - 5000 mAh
 - 9.6 A
 - \$4.99*
 - ∎ 68 g

Final selection: Lishen LR2170SD

* Bulk order discount (~ 15 %)

CAD Model - Backup

TALON - Electronics Housing Design - Backup

Focus: Provide seamless access to electrical components such as battery, motor, and flight controller without complete disassembly or hassle Features: Rapidly removable canopy for ease of access into electronics bay

TALON - Payload Bay Design - Backup

Focus: Provide a mass and volume for user to fill with mission specific payload while not disturbing aircraft dynamics and flight characteristics Features : Provides rapid interchangeability and spacious room for various user defined payloads

Concepts Considered: 3D printing clips

Focus: Provide access to crucial components without jeopardizing mission performance Features: Rapid removal and securing for minimal down time between service and operation

TALON - Wing Integration Design - Backup

Concepts Considered: Integrated Wing and FishBAC Control Surfaces

Focus: Integrating the wing with fuselage while providing structural support

Features: Three piece system based on dovetail connections for rapid interchangeability and servicing. Structural reinforcement for wings at critical shear point along the fuselage interface

Aircraft Dynamics - Backup

Objective: Maintain controllability and establish inherent stability to reduce flightpath deviation and energy draw for correction

Aircraft Dynamics - Backup

Objective: Maintain controllability and establish inherent stability to reduce flightpath deviation and energy draw for correction

	Volume coefficient	Surface Area [ft^2]	Span [ft]	Weight [lbs]
Horizontal Tail Estimates	0.40	0.85	1.69	0.35
Vertical Tail Estimates	0.02	0.36	0.73	0.15

Appendix Slide

Aircraft Dynamics - Backup

Objective: Maintain controllability and establish inherent stability to reduce flightpath deviation and energy draw for correction

- $Cm_alpha = -1.9849$
- Neutral Point = 51.1% Chord
- SM = 0.3377 % chord = 4.05 inches

Carbon Fiber Bar Carbon Fiber Rod Clevis Pin

🔁 Manufacturing - Backup

Build plan developed to provide a repeatable procedure and maintain similar weight between wings

BUILD PLAN

Wings

Measure spar hole diameters

Front:_____

• Aft:_____

Measure wingspan, chord lengths and thicknesses

- Wingspan:_____
- Root Chord Length:_____
- Tip Chord Length:_____
- Root Thickness:_____
- Tip Thlckness:_____

Weigh foam wing

Weight:

Test fit servo (dry)

• Fit Check: []

Test fit CF Rods (0.378" OD)

- Fit Check: []
- · Once in place, scribe the root cut and pinhole

Test fit CF Bar

Fit Check: []

Remove all hardware

Cut CF Rods and bars to length, sharpen rod ends and weigh them

- CF Front rod Weight:_____
- CF Rear rod Weight:_____
- CF Front bar Weight:_____
- CF Rear bar Weight:_____

Test fit CF Rods (0.378" OD)

- Fit Check: []
- Test fit CF Bar
- Fit Check: []

Remove all hardware

Design Requirement - Endurance through Aerodynamics

Predicted A	erodynam	ic Characte	eristics - Po	tential Flow Theory	
Cruise: 4.8° AC	Cruise: 4.8° AOA / 16.4 m/s		° / 22 m/s	Albatross (Bird)	7
C _L (Cruise)	0.7991	C _L (Max)	1.402	• 20:1	
C _D (Cruise)	0.0319	C _D (Max)	0.0716	U-2 (Spy Plane):	- +
C _L /C _D (Cruise)	25.06	C _L /C _D (Max)	19.59	• 25.6:1 (12 Hrs)	
Lift (Cruise)	72.1 (N)	Lift (Max)	199.7 (N)	Rutan Voyaaer	
		Drag (Max)	22 9 (NI)	• 27:1 (216 Hrs)	
Drag (Cruise)	5.9 (N)	Diag (Max)	22.7(13)		

Structures - Backup

ANSYS Wing Setup - Landing

- Fixed support at wing harness
- Acceleration determined to be:
 - 5.00 m/s² (+y)
 - 4.90 m/s² (-z)
- Standard Earth gravity
- Large deflections ON account for nonlinear behavior
 - Stiffness changes as material deforms
- Simulation run until 1% solution convergence

Limitations

- Assumed entirely solid wing
- Unable to test inclusion of carbon fiber supports
 - Meshing limitations with complex geometry
- Used typical XPS foam values
 - \circ $\rho = 48 \text{ kg/m}^3$
 - E = 80.12 MPa
- 3D Print properties difficult to estimate Wing harness set as ABS plastic

G

Verification and Validation - Structures - Landing

Wing Launch - Total Deformation [Top] / Wing Bending Stress [Bottom] / Harness Bending Stress [Bottom-Right]

ANSYS Fuselage Setup - Landing

- Fixed support on furthest side of simulated soil from fuselage
- Velocity of fuselage set to:
 - 0.5 m/s (-y in ANSYS coordinates)
 - 10.0 m/s (+z in ANSYS coordinates)
- Standard Earth gravity over entire system
- Large deflections on to account for potential nonlinear behavior
- Used typical values of soft clay for soil composition
 - \circ ρ = 1.3 g/cm³
 - E = 3 MPa
 - Coefficient of static/dynamic friction: 0.3/0.2

Limitations

- Assumed primary fuselage thickness of 0.5 in.
- Assumed solid ABS plastic for tail connection
 - Meshing limitations with complex geometry
- Main fuselage was assumed to be high density polyethylene plastic with similar properties to 3D printing materials
- External forces applied for weight of wings and tail

Fuselage Landing - Fuselage deformation on impact

Fuselage Landing Simulation	Results
Max. Tail Connector Deflection	0.6 in

Fuselage Landing - Normal Stress [Top] / Shear Stress [Bottom]

Wing Launch Simulation	Results
Max. Shear Stress [MPa]	0.447
Max. Normal Stress [MPa]	1.916
Max. Shear Strain [m/m]	0.000749
Max. Normal Strain [m/m]	0.000343

Verification and Validation - Structures

Objective	Confirm that XPS foam reinforced with carbon fiber rods satisfies our aircraft structural requirements
Description	Perform tensile testing on a sample of XPS with carbon fiber rods and strips inserted
Model Comparison	Confirm that tensile testing results are consistent with previously found flexure testing results.
Expectation	Yield Strength greater than 298 kPa with an acceptable factor of safety of 1.5
Validation Against FRs	Wing able to support the takeoff loads imparted by level 3 success of FR3

Rectangular Wing Lift Distribution:
$$W(x) = w_0(1 - \frac{x^2}{L^2})$$

Bending Stress: $\sigma_{bend} = \frac{M * (t/2)}{I}$
Bending Stress Along Wing: $\sigma_{bend}(x) = \frac{M(x)\frac{t(x)}{2}}{I}$

Moment of Inertia of Wing:
$$I = \frac{L(\frac{t_{root}+t_{tip}}{2})^3}{12}$$

Bending Stiffness: $K = \frac{AppliedForce}{Displacement}$

Structures Backup Slide

V_climbout = 16.4m/sTime to 50 feet = 3.05sUpwards acceleration to 20ft: $1.31m/s^2$ L = m(g + a_z) = $6.4kg(9.81m/s^2 + 1.31m/s) = 75.6N = 37.8N/wing$

Payload - Backup

Testing Payload: Scope

Rationale For Testing:

• Establish node system for 3 LilyGo LoRa radios

 Verify long range radios work and interface properly before flight testing

Equipment & Facilities:

- 3 LoRa LilyGo Radios
- Any outdoor space

Overview:

- Assemble LilyGo radios
- Solder LCD screens
- Establish mesh network
- Confirm Range & Fuselage Transmissivity

Testing & Risk Reduction Payload: LilyGo Radios

Measuring LoRa Radio Characteristics:

- Determine approximate communications range of the LoRa radios
- Determine transmissivity of LoRa radio through TALON payload bay

Risk Reduction Through LoRa Radio Testing:

- Testing verifies the payloads capabilities before flight operations
 - Proves a mesh communications network can be established with multiple TALONS before implementation
- Determination of radio node spacing through range tests provides a baseline requirement for the amount of TALON aircraft required to provide sufficient communications coverage

Verification and Validation - Operator Launch - Backup

Goals:

Simulate an operator overhead TALON launch

Test Parameters:

- Controlled Repeatable Launch
 - 1 Step overhead throw Ο
 - Minimal launch angle Ο
- 20lb Med ball
 - 1.33X TALON weight 0

Testing:

- Non fatigued Launch
 - Launch under normal heart rate \cap
- Launch under operational stress
 - Upper body workout + 1 mile run Ο
 - No rest \cap

Results:

- Controlled launch velocity of 6.1 m/s (20 ft/s)
 - 39% of the required 15.7 m/s TALON launch Ο velocity

Risk Matrix Criteria - Scoring - Backup

TALON - Risk Matrix Unmitigated

Highly Likely				Crash During Full Scale Test	
Likely			Wing Structural Integrity		Harness/Structures Failure
Low Likelihood			Component/ Battery Overheating		Battery Malfunction
Improbable					
	Minimal	Minor	Major	Serious	Catastrophic

Talon Specific Risk Matrix

Dominant Risks:

Crash During Full Scale Test

- Damage due to hard landing Harness/Structures Failure
 - Total Loss of aircraft

Wing Structural Integrity

- Wing durability
- Excessive deflection

attery

- Total Loss of aircraft due to electronics fire
- Inaccurate charging CL/CD
- Lift loss due to tip stall
- Basic models do not quantify total drag rise

		Talon S	pecific Ris	k Matrix		<u>Reducing Risk:</u>
Near Certain Highly Likely						Crash During Full S Individual cor Margin impler Ground base Margin to bui Harness/Structures Load simulation
Likely		Over Estimated CL/CD	Crash During Full Scale Test			 Conduct fatig Incorporation Wing Structural Into Load simulation
Low Likelihood			Wing Sstructural Integrity	Harness/Structures Failure		 Integrated co Fatigue and f
Improbable		Component/Battery Overheating		Battery Malfunction		 Battery Collaborate v servicing cust Use of battery
-	Minimal	Minor	Major Consequence	Serious	Catastrophic	 CL/CD Excess thrust
Overv Up	view and odates	Schedule	Testing: Electronics	Testing: Structures	Testing: Power and Propulsion	Testing: Risk Full-System Manage

Crash During Full Scale Test

- Individual component test/verification
- Margin implemented across all subsystems •
- Ground based workup/pre-flight checklist
- Margin to build multiple aircraft

larness/Structures Failure

- Load simulations performed in ANSYS
- Conduct fatigue and failure testing
- Incorporation of safety factor

Ning Structural Integrity

- Load simulations performed in ANSYS
- Integrated composite reinforcements
- Fatigue and failure testing

Risk

Management

3attery

- Collaborate with IRISS on building and servicing custom batteries
- Use of battery management system (BMS) CL/CD
- Excess thrust & design reduces tip stall

Budget

123

Manufacturing - Timetable

Source	Items	Shipping Lead-times	Shipping Location
Mohr Composites	Foam Wings	1 week	USA
Plastic Anvil Workshop	3D printed materials	6 days	N/A
Mcmaster Carr	Carbon fiber, Misc. hardware	2 days	USA
Hobbytown	Electronics	N/A	N/A
Amazon	Resin for 3D printing	1 day	USA
Fleer Auto Reconditioning	Painting and Monokote	2 days	N/A
Horizon Hobby	Electronics	3 days	USA

Manufacturing - Task List

Task	Time Required	Reliance on prior task completion
Materials Testing	1 day	No
Wind Tunnel Testing	1 day	No
Wing assembly	11 days	Yes
Wing Testing	5 days	Yes
Electronics Harness assembly	3 days	No
Electronics Stress Test	2 days	Yes
Full Vehicle Assembly	14 days	Yes
Full Vehicle Test	3 days	Yes

Sources

[1] Traub, Lance W., et al. "Range and Endurance Estimates for Battery-Powered Aircraft." *Journal of Aircraft*, 22 May 2012, https://arc.aiaa.org/doi/10.2514/1.C031027.

[2] Anderson, J. D., & Bowden, M. L. (2022). Introduction to flight. McGraw-Hill.

[3] PROPDRIVE v2 5050 580KV Brushless Outrunner Motor. (n.d.). Retrieved October 8, 2021, from https://hobbyking.com/en_us/propdrive-v2-5050-580kv-brushless-outrunner-motor.html#qa[bW9kZT03JnBhZ2U9MSZxdWVzdGlvbl9zZW FyY2hfY29udGVudD0=].

[4] Performance data. APC Propellers. (2021, March 9). Retrieved October 8, 2021, from <u>https://www.apcprop.com/technical-information/performance-data/</u>

[5] T.H.G. Megson, in Aircraft Structures for Engineering Students (Sixth Edition), 2017

[6] W. C. Young, Roark's Formulas for Stress & Strain, McGraw-Hill, 6th ed., 1989, p. 34.

[7] S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed., McGraw-Hill, New York, 1969, Sec 109.