## SWARM-EX Spring 2023 Mid-Semester Review

3/13/2023

Maggie Zheng, Zach Wiens, AJ Cuddeback, Raj Kedia













Dr. Scott Palo, PI & Faculty Advisor palo@colorado.edu



Dr. Marcin Pilinski, Co-PI marcin.pilinski@lasp.colorado.edu





Maggie Zheng Project Manager



**Raj Kedia** Systems Engineering



Zach Wiens Systems Engineering



AJ Cuddeback CDH



**Dr. Jeffrey Thayer, Co-PI** jeffrey.thayer@colorado.edu



# Project Overview





Smead Aerospace



### SWARM-EX Mission

The Space Weather Atmospheric Reconfigurable Multiscale Experiment (SWARM-EX) is a National Science Foundation (NSF) sponsored CubeSat mission distributed across six colleges and universities in the United States.





University of Colorado Boulder



- Persistence and correlation in Equatorial Ionization /Thermospheric Anomaly (EIA/ETA) features
  Changes in
- Changes in EIA/ETA
  features that
  occur over
  timescales of
  <90 minutes</li>
  - Intercollegiate CubeSat Mentoring Program
  - Efforts to track student engagement/progress







#### **CON-SWARM-EX**



**Global Scale** Measurements



#### Principal System Requirements

| Req. ID | Requirement                                                                                                                                                          | Rationale                                                                                                            | Parent                                         |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| SAT-02  | The CubeSat shall be designed to meet the selected <b>dispenser specifications</b> and requirements                                                                  | CubeSat must meet dispenser specifications in order to fit, remain protected before deployment, and deploy properly. | Dispenser ICD                                  |
| SAT-11  | Uplink communications shall be encrypted.                                                                                                                            | NSA requirement as a result of propulsion.                                                                           | NSA                                            |
| SAT-15  | The CubeSats shall have an operational on-<br>orbit <b>lifetime</b> of approximately 8.5 months<br>(150 days for primary mission, 100 days for<br>extended mission). | The specified mission duration is required for accomplishing all mission objectives.                                 | PSQ-1 & PSQ-2<br>(Persistence &<br>Timescales) |
| SAT-17  | The CubeSats shall have a <b>power positive</b> orbit configuration.                                                                                                 | A power positive orbit configuration is required for achieving all mission objectives.                               | SAT-16<br>( <b>Regulated Power</b> )           |
| SAT-32  | CubeSat design shall adhere to the <b>preferred practices</b> listed in this document in the Preferred Practices tab.                                                | Required for successful CubeSat development in accordance with the processes defined by the project's PIs.           | PI                                             |

#### Key Requirements Imposed on other Subsystems

| Req. ID   | Requirement                                                                                                                                               | Driver                                                                | Rationale                                                                                                                                                                                                 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROP-03   | The <b>propulsion</b> subsystem shall be capable of performing all <b>maneuvers</b> required by science and technology demonstrations.                    | SAT-15 & SAT-28<br>( <b>Mission Lifetime</b> &<br><b>Propulsion</b> ) | Propulsion system specifications must be sufficient for meeting science measurement and formation flying goals                                                                                            |
| OGNC-05.3 | The formation-keeping and formation<br>reconfiguration functions shall<br>produce closed-form maneuver plans<br>that <b>minimize delta-v</b> consumption. | OGNC-05 & SAT-15<br>( <b>Mission Lifetime)</b>                        | Delta-v usage must be minimized to allow for all<br>mission phases to be met and to leave enough for<br>emergency collision avoidance procedures.                                                         |
| CDH-01.4  | The CDH shall be capable of <b>autonomously switching modes</b> based on the <b>State of Charge</b> .                                                     | CDH-01 & SAT-20<br>( <b>Safe Mode</b> )                               | Autonomous mode switching into the Safe Mode or<br>Phoenix Mode operational orbits is required to occur<br>autonomously to preserve the spacecraft in case of<br>battery discharge and enable recharging. |
| CDH-02    | CDH shall have a <b>hardware</b><br>watchdog timer to reset the CDH.                                                                                      | SAT-18<br>(Autonomous non-<br>OGNC Control)                           | Required in case of anomalies and to ensure spacecraft can reboot on orbit.                                                                                                                               |



# Project Organization





Smead Aerospace





team is a combined team for SWARM-EX and MAXWELL



#### CU Team Org Chart



# Spring 2023 Deliverables/Milestones





Smead Aerospace



### SYS: Day in the Life Test Plan





> SCT

• DiTL testing ensures that all the subsystems are running as expected and simulates the functions that would happen in orbit while the system is still on the ground.



Antenna Deployment Test



DiTL

Phase

Tasks

PIR

Solar Array Deployment credit: esa

24hrs

Simulations

Tasks





### SYS: ADCS Task Function

- Logic to determine pointing mode
- Enables autonomous decision making
- Determines inputs to our ADCS system (XACT-15) at any time
  - Primary and secondary pointing vectors
- Completed:
  - Table, Flow Diagram MATLAB scripts
  - 34 paths/outcomes
  - 15 unique pointing modes



Example of Sun Pointing



credit: scitechdaily.com

#### Example of Ground Station Pointing



credit: breakingdefense.com



Smead Aerospace



X-Band Antenn



 $\overrightarrow{r}_1$  $10^{\mu} + a_{max}$ ) Case 4:  $(90^{\mu} + a_{max}) \le \delta \le 180$ 

igure 11: Different cases for the development of the constrained guidance law.

### SYS: ADCS Task Function – Next Steps

#### Simulate the ADCS Task Function in action



STK (credit: David Fitzpatrick)



MATLAB (credit: me from ASEN 5010)



Smead Aerospace



### CDH Team Deliverables: System Interfacing



### **CDH Progress**

#### FIPEX Flight Software (FSW)



#### **Backplane Development**



## Challenges



| Originally<br>Planned<br>Date |
|-------------------------------|
| 10/19                         |
| 2/20                          |
| 9/20                          |
| 3/21                          |
| 12/21                         |
| 3/22                          |
| 9/22                          |
| 3/23                          |
|                               |

Communication

Schedule Shift



# Questions?





Smead Aerospace

