

<u>Spectropolarimeter</u> <u>T</u>elescope Observatory for <u>Ultraviolet</u> Transmissions

Presenters:

- Andrew Arnold 1.
- 2. Matt Funk
- 3. lan Geraghty
- 4. Andrew Lux
- 5. Ryan Lynch
- 6. Dawson Stokley

Advisor:

Francisco López Jiménez Observatory

Team Members:

- 1. Zach Allen
- 2. Caleb Beavers
- 3. Darin Brock
- 4. Josh Bruski-Hyland
- Matt Normile 5.

<u>Customer</u>:

UCAR High Altitude

- Phil Oakley 1.
- Scott Sewell 2.

Project Overview

Motivation & Project Statement

Motivation:

- Unpredictable solar weather presents a large risk to ground and space based assets present in modern society
- Measurements of UV spectra at varying polarization angles can be used to model solar magnetic field structure
- These models can be used to determine the preconditions to solar weather activity

Project Statement:

- To design and manufacture a 6U CubeSat style payload capable of collecting variable polarization UV spectra measurements at various points across the solar surface and operating in high-altitude balloon flight conditions
- The team will utilize a variety of ground tests that simulate the expected high altitude environment in order to calibrate the module's data collection systems and verify the its flight readiness.

NASA Gondola

Mission

- ➤ Ground: 8 Hours
 - Powered on and systems check
- ➤ Ascent: 2 hours
 - Launched from Fort Sumner, NM
- ➤ Flight: 2 weeks at ~40 km
 - Gondola platform puts the system FOV within +/- 5° of the Sun
 - Solar irradiance data collected
 - Polarized UV spectra collected
- ➤ Descent: 1 hr
 - Customer retrieves data

Pointing Explanation

CONOPS

Levels of Success

Subsystem	Functional Requirement	Level Met
Structure	Dimensions of the instrument are 10 x 20 x 30 cm	3
Environmental Control	Module survives temperatures of -70°C and pressures of 10Pa	3
Attitude Determination	Measure attitude relative to Sun with accuracy of <= 0.05°	3
Optics	Take spectral measurements over the 270 - 400 nm range	3
	Rotate polarizer with accuracy of <= 0.5°	2
	Isolate a <= 1' spot in the FOV	1
Pointing Pointing capabilities of +/- 1° in azimuth and +/- 5° in elevation		1

Design Solutions

Functional Requirements

- FR 1: The system shall integrate with RADIANCE module
- FR 2: The system shall take spectral UV measurements at varying polarization angles and at various points on the Sun
- FR 3: The system shall determine its attitude
- > **FR 4:** The system shall take environmental measurements
- FR 5: The system shall survive the environmental conditions of a high altitude balloon flight to 40 km
- FR 6: The system shall record data
- FR 7: The system shall interface with the NASA balloon gondola

Functional Block Diagram

System Overview

Summary

Parameter	Values	
Dimensions	10x20x30 cm	
Mass	5.6 kg	
Power Consumption	74.5 W	
Flight Environment	-70 °C - 20 °C	
Materials	Aluminum 6061 (Structure) Polyisocyanurate (Insulation)	

Optics

Rotating Polarizer 200-400 nm Spectrometer Doublet Lens 40 µm Pinhole 180

Components

- Thorlabs UV Doublet Lens: Focuses UV light
- Ultra Broadband Wire Grid Polarizer: Linearly polarizes UV light
- Thorlabs Stepper Motor Rotation Mount: Rotates polarizer with an accuracy of 0.14°
- Thorlabs Precision Pinhole: Reduces FOV to 55 +/- 0.1"
- Avantes Collimating Lens: Focuses light into the spectrometer
- Avantes Avaspec-Mini Spectrometer: Measures light intensity as function of wavelength over 200 - 400 nm
- Thorlabs Optics Cage: Mounts and aligns optical components

Changes

 A lens tube spanning the length of the optical train has been added to minimize stray light

Design Description

Attitude Determination System

Components

- Solar Mems Sun Sensor: Determines Sun's position in the system's FOV
- Quadrant photodetector used to measure off-sun angles from generated photocurrents

Changes

Sun sensor moved down to allow mounting of the camera

Environmental Monitoring & Control System

Internal Temperature Sensors

Components

- > 8 Internal Temperature Sensors
- > 2 External Temperature Sensors
- ➤ 1 Pressure Sensor
- > 1 Humidity Sensor
- 2 Resistive Heat Pads: Keep module at an operable temperature

Changes

 Removed logic level shifters and replaced with MOSFET capable of lower trigger voltage (heat pad circuits)

External Temperature Sensors

Design Description

Pointing Controls

Components

- Custom Cage System Gimbal Mount
- 2 Haydon Kerk Pittman Hybrid
 Stepper Motor Non-Captive Linear
 Actuator
- ➤ Custom Motor Casings
- Custom Motor Gimbal Mounts
- Custom Cage System Pusher Arm
- Hephaist Spherical Rolling Joints

Changes

- Removed the rear motor casing mount due to encoder fit
- Added a collar and guide rods to the motor mounts to constrain motor lead rotation

CPU and Data Acquisition

Components

- ≻ UDOO x86 Ultra
 - 2.56 GHz Quad Core processor for control computation
 - Intel Curie Microcontroller for motor control
 - \circ USB 3.0 for fast write rates
- USB Thumbdrives for data storage
 - One MX-ES Ultra 64 GB
 - One Samsung Fit 64 GB
- Sabrent 4 Port USB 3.0 Externally Powered Hub
- ➤ RADIANCE Spectrometer
- 2 MP Visible Camera

Changes

- ➤ Added a second USB Hub
- Temperature data recording moved to the embedded Arduino
- ADS sensor moved from UART to USB

Design Description

Electrical Power System

Components

- Custom PCB to distribute power to subsystems
 - 3.3V for environmental sensors
 - 12V for motor controllers and UDOO
 - 5V for USB hub and motor encoders
 - 28V for resistive pad heaters

Changes

Mounting points to bottom plate

Structure

Exterior Structure Gondola Integration tabs

Components

- Aluminum 6061: Exterior plates and interior struts
- > Tabs attach to balloon gondola

≻ None

Design Description

STOUT

Design Description

Critical Project Elements

Critical Project Element	Concern	Mitigation
ADS/Optics Calibration	Allocated time for calibration, complexity of calibration techniques	Sommers-Bausch testing week of 4/23
Software	Final Integration, Verifying Pointing algorithm	SBO Testing and Full TVAC
Electrical	Completing PCB before SBO testing, wire shorts, disconnections, static discharge	Completing PCB by 4/23, validating wire connections, using electrical tape on electrostatic sensitive components

Test Overview & Results

Test Overview & Results: Subsystem Tests

DAQ Integration Overview

FR6: The system shall record data

Purpose

> Verify UDOO x86 functionality for taking and storing relevant data

Equipment and Facilities

➤ UDOO x86 and STOUT electronics package

Process

- > Run all sensors simultaneously and record read and write times
- Read and write times include EMCS sensors, ADS, 2 spectrometers, and camera (31 kB data size)

Risks Reduced

Shows the STOUT module data collection subsystems operate simultaneously

DAQ Integration Test Results: Timing

Operation	Predicted Time (ms)	Measured Time (ms)	Required Time (ms)
Read	207	98	N/A
Write	230	665	N/A
Total	437	763	1000

Test Implication

Completion of DAQ Integration demonstrates system ability to operate sensor package USB 3.0 drive actual write speed less than benchmarked speed

Requirement Verified

FR2 The system shall take polarized UV spectrum measurements

- 6.1 The system shall record temperature data
- 6.2 The system shall record pressure data
- 6.3 The system shall record attitude data
- 6.4 The system shall record visible images
- 6.5 The system shall timestamp all data

Subsystem Testing

EPS Test Plan

FR7: The system shall interface with the NASA balloon gondola

Purpose

> Verify power board provides the correct voltage to each component

Equipment and Facilities

> Assembled power board, DC power supply (35V, 5A), multimeter, and oscilloscope

Process

- > Plug in power supply to Vcc and ground wires with a current limit of 3.5 A
- Measure output of each individual converter pin using a multimeter and compare to manufacturer's datasheet to determine if the integrated circuit is properly configured and functioning
- > Connect individual components to their corresponding converter tests
 - o 29-28 V: Pad heaters
 - o 28-12 V: UDOO & motor drivers
 - 12-5 V: USB hub
 - 5-3.3 V: Environmental sensors
- Take multimeter measurements and oscilloscope waveforms of voltage and current of through each component

EPS Test Plan

Test Implication

Completion of PCB verifies power distribution to subsystems

Requirement Verified

7.4 The system shall be able to interface with NASA Gondola Power Source

Subsystem Testing

SBO 1: Validate ADS System

FR3: The system shall record its attitude relative to the center of the Sun

Purpose

- Verify ADS sensor accuracy
- Calibrate out misalignments between SBO and ADS due to mounting errors

Equipment and Facilities

- Sommers-Bausch Telescope with SkyX Pro control software
- ➤ SBO Mount
- Fully assembled STOUT module

Risks Reduced

Shows the STOUT module can accurately locate the position of the center of the Sun with an accuracy of 0.05°

External Factors

 Need a cloudless sky for ADS sensor to take accurate measurements

SBO 1: Test Setup

Sommers-Bausch Telescope with STOUT

STOUT Telescope Mount

Subsystem Testing

SBO 1: Test Setup

Data Source Sampling **Data Collected** Rate Sun Sensor 10 Hz Off Sun Angles $\alpha \& \beta$ **Specifications** (deg) Sommers-Bausch telescope has accuracy > 20 " ~ 0.0055° **Telescope Control** Hand-written Angular deviation ➤ Accuracy of Sun sensor: from Sun center Software for each 18" ~ 0.005° \succ actuation Total accuracy: 38" ~ 0.0105° \succ $D_{FOV} = 10^{\circ}$ δ_{γ} Sun α δ_x = 0.5° STOUT Module x Legend Sensor₁ Axis Sommers-Bausch $Telescope_{\perp} Axis$ Telescope Sun Sensor FOV

SBO 1: Test Procedure

Procedure

- 1. Point telescope at Sun center
- 2. Slew telescope vertically until the ADS elevation angle reads <= 0.0105°
 - Save ADS elevation angle
- 3. Point telescope at Sun center
- 4. Slew telescope horizontally until the ADS azimuth angle reads <= 0.0105°
- 5. Save measured elevation and azimuth angles as the misalignment factors

 $D_{FOV} = 10^{\circ}$

SB01Test Results: Azimuth Angle

SB01Test Results: Elevation Angle

Subsystem Testing

SBO 1: Test Results

Test Implication

- Validated ADS operation and sensor linearity
- Alignment must be repeated at the beginning of each SBO test

Requirement Verified

 7.4 The off-sun angle shall be determined to within 0.05 degrees of Sun center

Offset as seen in Software Bisque - TheSkyX Observatory Control Software

Sun center

SBO pointing location

Test Overview & Results: Integration Tests

Environmental Testing Overview

FR5: The system shall survive the environmental conditions of a high altitude balloon flight to 40 km

Purpose

- > Model the flight conditions of the ascent, cruise, and descent phases
- Validate that the thermal control system keeps the module at survivable temperatures during ascent and descent
- > Validate that the thermal control system keeps the module at operable temperatures during cruise
 - Spectrometer: 0 °C Polarizer Mount: 5 °C Motors: -10 °C Motor Encoders: -20 °C
- > Verify previous thermal modeling by comparing them to resultant test chamber data

Key Requirements

- > 5.1 During ascent and descent the system shall survive temperatures ranging from -65°C to 20°C
- ➤ 5.2 During cruise the system shall operate at temperatures ranging from -25°C to -15°C
- > 5.3 The system shall operate at pressures ranging from 100 kPa to 100 Pa

How it Reduces Risk

Shows the system can survive the simulated flight profile of 40 km flight, enabling the fulfillment of mission requirements

Associated Model: SolidWorks Thermal Model

Integration Testing: Environmental

Environmental Testing: TVAC

Thermal Vacuum Chamber Specifications

- ➤ UCAR HAO Facility
- Models temperature down to -20 C, and pressure as low as 130 Pa
 - O Used to model cruise phase of flight

Data Source	Sampling Rate	Data Collected			
Internal Component Temperature Sensors (2)	Every 1 second (1 Hz)	Temperature of UDOO and Sun Sensor			
Internal Environment Temperature Sensors (4)	Every 1 second (1 Hz)	Temperatures at polarizer mount, motors, spectrometer			
External Temperature Sensors (2)	Every 1 seconds (1 Hz)	Chamber temperature			
Pressure and humidity sensor	Every 1 second (1 Hz)	Pressure and humidity (functionality checks)			

Environmental Testing: TVAC Data

- Lowest chamber temperature: ~ 9 °C
- Lowest chamber pressure: ~ 130 Pa

Test Implication

System can survive near vacuum conditions

Requirement Verified

5.3 The system shall survive pressure values ranging from 100 kPa to 10 Pa

Equipment limitation did not allow testing to 10 Pa but results are sufficient

Integration Testing: Environmental

Environmental Testing: ETC

ETC Specifications

- ➤ Team ACES test chamber
- > Styrofoam cooler with dry ice
- Decreases temperature to -78.5 °C and outputs temperature every 0.75 seconds
- Used to validate EMCS through temperature conditions of ascent flight phase

Data Source	Sampling Rate	Data Collected			
Internal Component Temperature Sensors (4)	Every 2 seconds (0.5 Hz)	Internal temperature of Spectrometers, UDOO, Polarizer Mount, Motors			
External Module Temperature Sensors (2)	Every 2 seconds (0.5 Hz)	Module temperature during ascent			
External Cooler Temperature Sensors (4)	Every 0.75 seconds (1.33 Hz)	Atmospheric temperature during ascent			

Environmental Testing: ETC Data

- > Testing occurred at atmospheric pressure
- Lowest chamber temperature: ~ -63 degrees C

Dry Ice Cooler Thermal Test

Thermal control maintains operable internal temperatures

Requirement Verified

- 4.1 The system shall measure internal pressure and temperature
- 5.1 The system shall survive temperatures ranging from -65C to -15C

Integration Testing: Environmental

Environmental Testing: ETC Model Analysis

Dry Ice Cooler Model

Model Comparison ~ 1 hr

Component	Predicted Temperature (C)	Measured Temperature (C)			
Outer Structure	-20	-20			
Polarizer Mount	-9	13			
Spectrometer	4	8			

Model Implication

Outer

Structure

• Tested at desired temperature, longer duration, and higher pressure

Spectrometer

• Thermal model validated

Polarizer

Mount

- Testing showed operable interior temperatures
 - Higher than model predicted

Model Discrepancies

- Low familiarity with software
- Oversimplification of components
- Electronics heat dissipation unaccounted for
- Lower thermal model mass, wiring unaccounted for

Integration Testing: Environmental

Environmental Testing: TVAC Model Analysis

Cruise Thermal Model No Heaters

Model Implication

- Transient thermal simulation to model cruise environment at 40 km altitude
- Demonstrates heaters not needed at cruise altitude
- TVAC Thermal model not validated
 - Longer test duration required for steady state
- Testing showed operable interior temperatures
 - Higher than model predicted

Model Discrepancies

- Low familiarity with software
- Oversimplification of components
- Electronics heat dissipation unaccounted
- Lower thermal model mass, wiring unaccounted for

SBO Testing: Overview

FR2: The system shall take polarized UV spectrum measurements at multiple points on the Sun

Note that the ADS sensor is assumed to be calibrated relative to SBO Telescope at this point in the testing procedure

Objectives

- > Calibrate optical system pointing relative to ADS Sun Sensor
- > Validate pointing control response to an external pointing deviation

Key Requirements

> 2.4 Pointing capabilities of +/- 1° in azimuth and +/- 5° in elevation

How it Reduces Risk

> Ensures that the optical system will point at the desired locations relative to ADS measurements

SBO 2: Calibrate Optical Axis Zero - Test Setup

Background

- Cannot use spectrometer for optics system calibration
- Replace spectrometer with UV photodiode in optics train
- Sensor outputs voltage with corresponding photocurrent generation
- Will indicate when optical axis is pointing at a location on the Sun

Linearizing Photodiode Circuit

SBO 2: Calibrate Optical Axis Zero - Test Setup

Assumptions

Sun Sensor and Optical axis can be level mounted to ±0.25° so that optical axis will be on the Sun when ADS axis at the Sun center

Specifications

- ➤ Total ADS accuracy: 38" ~ 0.0105°
- Optics Pointing Accuracy: 2.25' ~ 0.0375°
- Total Pointing Angle Error: 2.883' ~ 0.048°

10 Hz	Off Sun Angles α & β
	(deg)
Unknown	Pointing position relative to Sun center
10 Hz	Light intensity dependent voltage
 0.5°	

STOUT Module w/ Photodiode

Sommers Bausch Telescope

Procedure

- 1. Point STOUT at an arbitrary point in the sky away from the Sun
 - Read photodiode bias voltage Ο

Angle

Time

Procedure

Procedure

4.

5.

Integration Testing: Sommers-Bausch

Time

Procedure

7. Calculate elevation offset angle $\theta_{offset,Y}$ and program into pointing control software

8. Repeat steps 1-8 until offset angles $\theta_{offset,X}$ and $\theta_{offset,Y}$ converge to where any additional changes will be smaller than total pointing angle errors < 2.883'

0.5° STOUT Module w/ Photodiode *Note that image is not to scale. Axes will be practically parallel. Sommers Bausch Telescope

Procedure

- 1. Initialized ADS on Sun's right edge
 - SBO telescope position will be locked

Procedure

- 1. Initialized ADS on sun's right edge
 - SBO telescope position will be locked
- 2. Lock optical axis on left edge of Sun
 - Validated by constant photodiode voltage

Procedure

- 2. Lock optical axis on left edge of Sun
 - Accomplished through photodiode voltage
- 3. Initiate optics cage sweep
 - Validates internal solar angle sweep
 - Sweep concludes on left ADS exit

Procedure

- 3. Initiate optics cage sweep
 - Validates internal solar angle sweep
 - **Note:** The sweep only covers the diameter of the sun (0.5°)
- 4. Initiate ADS 3.5° from Sun's right edge
 - SBO Telescope position will be locked

Procedure

- 4. Initiate ADS 3.5° from Sun's right edge
 - SBO Telescope position will be locked
- 5. Lock optical axis on left edge of Sun
 - Validated by constant photodiode voltage

Procedure

- 5. Lock optical axis on left edge of Sun
 - Accomplished through photodiode voltage
- 6. Initiate optics cage sweep
 - Validates full angle sweep
 - Sweep concludes on left ADS exit

Systems Engineering

Systems Engineering

Concept Exploration

Functional Objectives:

- ➢ Locate Sun center
- Collect variable polarization UV spectrum measurements
- Operate in the flight environment of a high altitude balloon

Concept of Operations & Requirements

CONOPS:

- Describes the characteristics of the STOUT system at a high level from stakeholder perspective
- Kept team aligned with project goals and customer requirements

Requirements

- ➤ Stemmed form CONOPS
- ➤ "Shall" statements
- Describe what system shall do, not how it will be done

High Level/Detailed Design

Component Testing

Key Tests

- ≻ Sun Sensor
- ➤ Thermal Pad Heaters
- ➢ Rotating Polarizer Mount

Subsystem Verification

Key Tests

- ≻ ADS
 - Sun locating functionality validation and calibration
- ► EMCS
 - Partial verification
 - Survive -60 °C and 130 Pa environment
- ≻ DAQ
 - Data collection and storage

System Verification & Validation

Pointing Control Validation Test

Goals:

- Alignment of optical axis and Sun sensor axis
- ➤ Validation of pointing algorithm
- ➤ Validation of pointing accuracy
- Characterization of pointing response time

Results:

> Incomplete

CDR High Level Risks

Risk	Risk Description	Risk Mitigation
R8	Manufacturing creates pointing precision errors	 High precision machined gimbal mounts Calibrate errors out in software & machine shop Contact with AES machining faculty
R7	Manufacturing/Calibration/Test Delays	 Utilize machining, testing and staff resources Finalize test plans early in Spring Semester Follow hard timeline
R4	Over-heating of CubeSat Internal Components	Conduct thorough thermodynamic analysisExplore use of peltier devices

Types of Risks		Severity					
X Budget			1	2	3	4	5
X Technical	ikelihood	5				R8 —	
		4				R7	
Safety Schedule		3				R4	
X Schedule		_				R4	
		2				+	
		1					

Issues and Challenges

Weather

Required clear skies for Sommers-Bausch Observatory

Faulty Components

- UDOO x86 became inoperable due to faulty power cable providing incorrect voltage/current
- Motors did not come with specified dimensions
- Motor company applications engineer advertised the units as performing without need for rotational constraint of the lead

Delays

- Environmental chamber access lost due to Graduate projects
- SBO access lost due to Astronomy day
- PCB Manufacturing
 - Lack of funds for fully manufactured PCB
 - Backordered parts
- Changes from UDOO Raspberry Pi UDOO

69

Lessons Learned

Systems Engineering Lessons

- > A thorough trade study assists in initial design
- ➤ Really assess the feasibility of requirements
- Define more thorough requirements
 - Pointing accuracy requirement was ambiguous
- Scope the project appropriately
- Problems compound quickly
- ➤ Keep strong communication with customer

Improvement Strategies

- Monitor/tackle problems with an "Issues" Log
- ➤ Include a larger time and budget margin
- Finalize design more during the fall semester

Project Management

Management Process Approach

- > Was hands off, avoided excessive micromanaging
 - Let members determine own work tasks, stepped in to redirect when heading in wrong direction
- Extensive work with most subsystems allowed an understanding of challenges and time requirements

Communication

- ➤ 1-2 official full team meetings per week
 - Frequently had more with smaller portions of team
- ➢ Primarily used Slack for communication
- ➤ Frequent email communications with the customer
- Delivered status updates to customer in the form of a quad chart every 1-2 months

Subsystem Structure

- > Every team member was a subsystem lead
- Team members worked across various subsystems when needed
- > Leadership roles changes significantly as the year progressed

Management Successes/Difficulties

Successes

- Completed a highly complex project with many moving parts
- Kept team morale high
- Found roles to suite each team member's talents

Difficulties

- > Maintaining schedules
- Deliverables were completed last minute, need to plan ahead
- Knowing the status of each team member's current work
- Communication across subsystems

Lessons Learned

- Add more margin to timelines, estimates for nearly every task were lowballed, even when they already included substantial margins
- Keep a closer eye on team spending
- Spend less time on technical work and more time managing
 - Man hours lost from team members working on unnecessary tasks without an indication that a new focus was needed
 - Some important tasks needed a better distribution of team member time and expertise

Team Hours

Total hours: 5613.75 Average total hours: 510.34

Total Hours by Person 800 700 600 ---- 1 ----- 2 500 ---- 3 ----- 4 sinoH ---- 5 ---- 6 ---- 7 ---- 8 ---- 9 300 ---- 10 ---- 11 200 100 0 0 2 4 6 8 10 12 Team Member

*Dashed line represents the fall semester, solid line represents the spring semester

Project Management

Team Hours

Total hours: 5613.75 Average weekly hours: 18.90

Project Management

CDR Budget vs Current Budget

Subsystem	Projected Cost (\$)	Procured (\$)	To be Procured (\$)	Effect (%)	Effect on Budget (\$)	
ADS	909.95	909.95	_	0	0	
Optics	2,715.49	2,690.87	_	- 0.91 %	- 24.62	
Thermal	272.60	378.24	-	+ 38.8 %	+ 105.64	
Structure	1,033.27	1,927.14	-	+ 86.5 %	+ 893.87	
EPS	162.50	150.92	_	- 7.67 %	- 11.58	
System	56.00	94.01	_	+ 67.9 %	+ 38.01	
Various	100.00	128.35	50	+ 78.4 %	+ 78.35	
Controls	524.60	507.51	_	- 3.37 %	- 17.09	
DAQ	429.48	528.35	-	+ 23.0 %	+ 98.97	
Totals	6,203.89	7,315.34	50	+ 18.7 %	+1,161.45	
Final Expenditure: \$		7,365.34	External Cos (Customer		~\$7,000	
Original Bud	get:	\$7,377	-	-		
Remaining M	argin \$11.	66 (0.158 %)	Project Cos	5C:	~\$14,365.34	

Equivalent Industrial Cost

Cost Per Work Hour: \$31.25 Determined using yearly wage of \$65,000 and average of 2080 hours/year

Thank you for listening! We appreciate your feedback.

Are there any questions?

Table of Contents

Sections	Backups
<u>Overview</u> CONOPS	ADS Calibration Model
Levels of Success	ADS Component Verification
Design Solutions Optics	Thermal Models
ADS	Control Software Flow
EMCS Pointing	Software Flow
DAQ EPS	FlatSat Test
<u>Structure</u>	PCB Pin Voltages
Test Overview & Results DAQ	Pointing Animation
<u>EPS</u> ADS	Pointing Control Hardware
EMCS SBO	Optical System Components
Systems Engineering	<u>Pictures</u>
Project Management	
<u>Budget</u>	

Backup Slides

ADS Calibration Model Full Scan Check

- Move ADS FOV center on center of Sun and scan along the black doing full scan
- Verify incoming and outgoing photodiode reading slopes are the same

Integration Testing: Sommers-Bausch

ADS Calibration Model Redundant Pattern

ADS Component Verification

 Verify that code converts hexadecimal values from last RX into the angle measurements below

ON RX STOP	Bit Rate: Parity:		Sensor: 19200	~	SET
nber: ISS-D5-B0073	Stop bits: Identifier:	1 ~	None 1	> > >	SET SET SET
DATA 0 08 00 07 85 CA : 00 00 03 3F 00 FE FF 9A		- · · [10 v H	z	
X Angle Y F	Radiation	Temperatu	re Ac	dition	al info
99 ° -0.149 °	831 W/r	m2 25	5.4 °C		0
9	00 00 03 3F 00 FE FF 9A X Angle Y F	00 00 03 3F 00 FE FF 9A FF 6B FF 9D X Angle Y Radiation 9 ° -0.149 ° 831 W/r	00 00 03 3F 00 FE FF 9A FF 6B FF 9D FF 6B 89 4F X Angle Y Radiation Temperatu 9 ° -0.149 ° 831 W/m2 25	00 00 03 3F 00 FE FF 9A FF 6B FF 9D FF 6B 89 4F X Angle Y Radiation Temperature Ac 9 ° -0.149 ° 831 W/m2 25.4 °C	00 00 03 3F 00 FE FF 9A FF 6B FF 9D FF 6B 89 4F X Angle Y Radiation Temperature Addition 9 ° -0.149 ° 831 W/m2 25.4 °C

Integration Testing: Sommers-Bausch

ADS Component Verification

- Check for non-linearities by moving test mount in one dimension from ADS FOV end to end and recording opposite dimension
- Mounting ADS on stable tripod resulted in correction in ADS angle outputting code

ADS Component Verification

Move test frame from right to left then back

Move test frame from bottom to top then back

Thermal Simulations: Ascent

- Concerned about spectrometer survival during ascent
- Two simulations were ran simulating the environmental conditions of ascent; one with heaters on and one with heaters off
- With active heater control, we will be able to keep spectrometers at survivable temperature

Spectrometer 2

Outer Structure

Ascent Heaters On

Spectrometer 1

Integration Testing: Sommers-Bausch

Controls Software Flow

Software Flow: Single-Board Computer

Software Timing: Single-Board Computer

Software Flow: Microcontroller

Software Path Forward

- Continue code development
 - UDOO (Linux) interrupts
 - Sensor interfaces
 - Watchdog timer
- Begin testing
 - Sensor unit tests
 - Controls tests
 - Timing evaluation

System tests

Most challenging to complete

PCB Test Results

Test	Input (V)	Expecte d (V)	Measured (V)
29 - 28 V	29.0	28.0	28.06
28 - 12 V	28.04	12.0	In Progress
12 - 5 V	12.0	5.0	In Progress
5 - 3.3 V	5.0	3.3	In Progress

FlatSat Test

- > **Purpose:** Determine that all of the components integrate and operate functionally
- > Procedure
 - Integrate electronics outside of the CubeSat structure
 - Verify expected voltages and currents with a multimeter
 - Calculate and verify expected power draws

PCB: Lessons Learned

- Surface-mount parts rather than throughhole
- Separate PCB for prototypes needed rather than simply breadboarding
- Hard to troubleshoot
- PCB size reconfiguration

Test Readiness: FlatSat

EPS Path Forward

- Converter prototype troubleshooting and testing
- PCB redesign for size (concurrent)
- Flatsat testing
- Order PCB
- PCB unit testing and troubleshooting
- Flatsat PCB

97

PCB Converter Pin Voltages

Converter	Pin	Expected Voltage	Actual Voltage
29-28	1	29.0	29.07
	2	1.75	1.724
	3	1.25	0.00
	4	0.00	0.00
	5	29.0	29.11
	6	21.3	21.19
	7	21.3	21.19
	8	29.0	29.11

PCB Converter Pin Voltages

Converter	Pin	Expected Voltage	Actual Voltage
28-12	1	28.0	28.00
	2	1.75	1.986
	3	1.25	0.006
	4	0.00	0.00
	5	28.0	28.06
	6	20.3	20.18
	7	20.3	20.18
	8	28.0	28.06

Test Readiness: FlatSat

Needle Roller Bearing Specs

Parameter	Values
Shaft Diameter	1⁄8"
Width	1/4"
Width Tolerance	-0.01-0"
Shaft Tolerance	-0.0003-0"

Needle Roller Bearing CAD 1/4"+0.00 -0.01 0.25" -0.125"+0.0000 MCMASTER-CARR. CAP. NUMBER 5905K331 http://www.mcmaster.com Needle-Roller © 2017 McMaster-Carr Supply Company Bearing Information in this drawing is provided for reference only.

Integration Testing: Sommers-Bausch

Mainline Time							
Requirements							
	Data Size		Read Time	Write Rate	Interrupt	Subtotal	
Process	[B]	Quantity	[ms]	[MB/s]	Time [ms]	[ms]	
						17.500116	
Internal Temp.	2	7	2.5	120	0	67	
E. 17	,	-	2.5	420	-	5.0000666	
External Temp.	4	2	2.5	120	0	67	
Pressure	3	1	8.22	120	0.5	8.720025	
Camera	600000	1	15	120	0	20	
Polarizer	0	1	1	120	0	1	
						0.2533333	
Spectrometer - Visible	10000	1	0.17	120	0	333	
						52.473541	
					Total:	67	
ISR1 (ADS)							
	Data Size	Comm. Rate	Subtotal				
Operation	[B]	[B/s]	[ms]				
			1.1111111				
Request ADS Data	16	14400	11				
Wait for Data	0	0	5				
Write ADS Data to			1.1111111				
USB	16	14400	11				
Calc. Required							
Actuation			1				
Send Actuation			0.5555555				
(Serial)	8	14400	556				
Arduino Interrupt			0				
			8.7777777				
	Integrat	Total:	78				

ISR2 (Spectrometer)						
Operation	Data Size [B]	Comm. Rate [B/s]	Subtotal [ms]			
Config. Spectrometer			0			
Signal Measurement			0			
Spectrometer Exposure			300	Not included in total		
Spectrometer Sampling			3			
Data Transmission			4.6			
Save Data (2x)	20000	12000000	0.1666666667			
		Total:	0.1666666667			
ISR3 (Humidity)						
Operation	Data Size [B]	Comm. Rate [B/s]	Subtotal [ms]	Main Total:	61.69579722	ms
Grab Humidity Data	4	14400	0.277777778	Max Allowable Total:	100	ms
Save Data	4	120000000	0.00003333333 333			
		Total:	0.2778111111			

Pointing Control: Animation

Controls Components

Optics Components

Hours Remaining:

12 (20% Margin)

Summary

- ➢ Optics must still be assembled
- Need to validate 3D printed components to prevent breaking
- Remaining hours account for threading 3D printed parts and precise pinhole alignment, actual assembly will take ~3 hours

Critical Parts

Gimbal Assembly

- McMaster-Carr Needle Roller Bearings
- ➤ Pusher Arm
- ➤ Spherical rolling joints

Critical Parts

Needle Roller Bearing

Possible Issue(s):

> Bearing slack leads to inaccuracies in pointing angle

Solution(s):

- ➤ Undersized gimbal holes
- ➢ Press fit into each gimbal
- Oversized pin press fit into bearing
- Minimizes bearing slack
- Manufacturing inaccuracies calibrated out

1/4"

Critical Parts

Spherical Rolling Joint

- Skeptical to Component Conformance: "Each joint comes with a certificate of conformance indicating the actual tested accuracy" - Myostat Motion Control
- Concern: Relating error propagation in Rolling Joints, Pusher Arm, and Roller Bearings to optical pointing errors
- > Monte Carlo simulation has been developed

MODEL (units: mm) A B C D E F G H I J K M N WIDTH ACROSS FLATS SRJ004C 19 15 3.8 2.5 10 6 M3x0.5 3.6 2 1.5 2 6 1.5 4

Integration Testing: Sommers-Bausch

Manufacturing: Electrical

Electrical Overview

Component Overview:

- ➢ PCB designed using Altium
- Manufactured components: converter prototypes
- Procured components: Sub-system sensors and equipment, power PCB, and circuit prototype components.
- Design and validation assistance from Dr. Erickson (EE)

Integration Plan

- Iterative process of breadboarding and FlatSat testing,
- Once PCB design is validated it will be procured from Advanced Circuits to include designed converters

Electrical Hardware Manufacturing Overview

Electrical Manufacturing Integration Plan

PCB Design

29 - 28 V Converter

28 - 12 V Converter

12 - 5 V Converter

5 - 3.3 V Converter

Sommers-Bausch Campaign Data Accuracy of ADS during calibration maneuvers

Actuate telescope by known angle, compare to angle swept by Sun Sensor

Y Axis X Axis Telescope Sun Sensor Data Error [%] Telescope Sun Sensor Error Actuation Actuation Data [%] Angle Angle 30 arcminutes 31.56 and 32.28 6.4 30.6 and 32.34 4.9 30 arcminutes arcminutes arcminutes 10 arcminutes 10.8 arcminutes 8 1 arcminute 1.02, 1.14, 1.08, 8 and 1.08 1 arcminute 1.14, 0.98, 1.2, and 11.5 arcminutes 1.08 arcminutes 30 arcseconds 32.4 arcseconds 8 5 arcseconds 3.6, 3.6, and 3.6 28 arcseconds

Integration Testing: Sommers-Bausch

Test Results:

Test Results: