STOUT

<u>Spectropolarimeter</u> <u>Telescope</u> <u>Observatory for</u> <u>Ultraviolet</u> <u>Transmissions</u>

Presenters:

- 1. Andrew Arnold
- 2. Caleb Beavers
- 3. Matt Funk
- 4. Ian Geraghty
- 5. Dawson Stokley

Customer:

NCAR High Altitude Observatory

- 1. Phil Oakley
- 2. Scott Sewell

Team Members:

- 1. Zach Allen
- 2. Darin Brock
- **3**. Joshua Bruski-Hyland
- 4. Andrew Lux
- 5. Ryan Lynch
- 6. Matthew Normile

Advisor:

Francisco López Jiménez

Motivation

Critical

Project

Elements

EMCS

- Solar phenomena present catastrophic risks to ground and space based systems
- Models can be used to determine preconditions in the magnetic structure that lead to solar phenomena
- Solar photosphere and transition region (solar atmosphere) emit UV light
- UV light passes through the sun's magnetic field and is polarized to align with the field vector
- Measurements of UV spectra at varying polarization angles can be used to model solar magnetic field structure

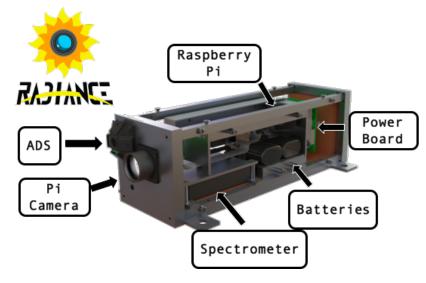
Optical

System

Pointing

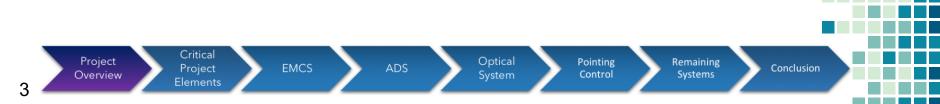
Control

Remaining


Systems

Project

Overview


RADIANCE Module

Project objective: 3U CubeSat-style payload to collect solar irradiance data

Systems to be Modified and Integrated with STOUT

- Environmental Monitoring and Control
- Raspberry Pi (pointing control and data acquisition)
- Spectrometer (spectra measurements)
- Attitude Determination (pointing feedback)
- > Data Storage
- Electric Power System
- > Structure

Mission Statement

STOUT will design and manufacture a 3U CubeSat-style payload capable of high-altitude balloon flight, which integrates with last year's RADIANCE project. The module will scan the body of the sun to measure sunlight intensity as a function of position on the sun, polarization angle, and wavelength. Ambient atmospheric data, pointing attitude information, and images will be recorded as well. The team will utilize a variety of ground tests that simulate the expected high altitude environment in order to calibrate the module's data collection systems and verify the payload's flight readiness.

EMCS

ADS

Optical System

Pointing Control Remaining Systems

Project Objectives

Critical

Project

Elements

STOUT shall be capable of...

- **1.** Integrating with RADIANCE module and NASA high altitude balloon gondola
- 2. Enduring and collecting data during the conditions of a 40 km high-altitude balloon flight
- 3. Determining its attitude relative to the sun

EMCS

- 4. Collecting variable polarization UV spectra at various points on the sun's surface
- 5. Capturing images of the sun in the visible spectrum
- 6. Surviving a descent under parachute and impact with the ground so data is retrievable by customer

Optical

System

Pointing

Control

Remaining

Systems

Project

Overview

Concept of Operation: **Mission CONOPS**

Critical Project Optical EMCS Project Overview System Elements 6

Pointing Control

Remaining Systems

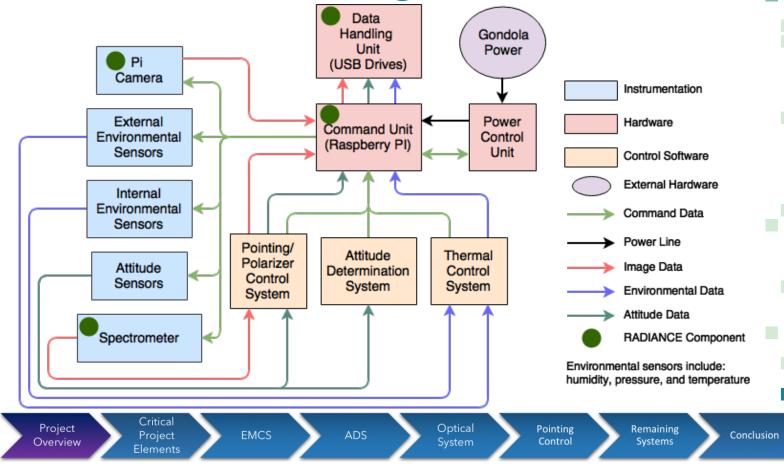
Ascent

Power on and receive continuous power from NASA Gondola

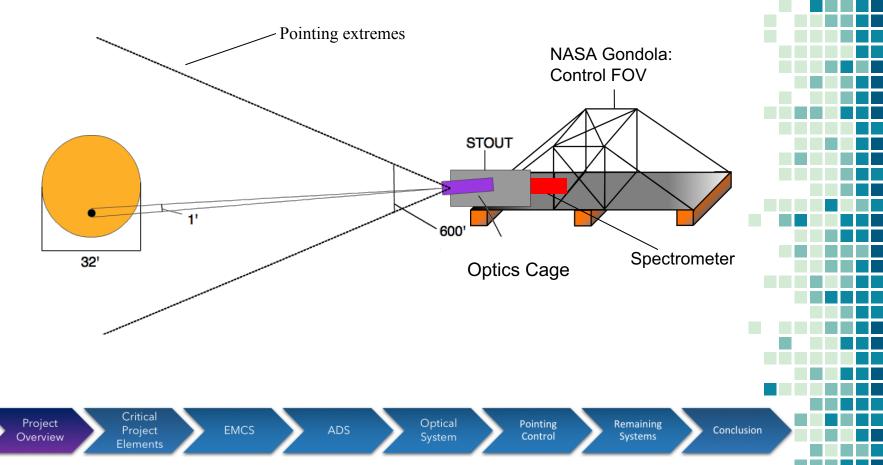
Float

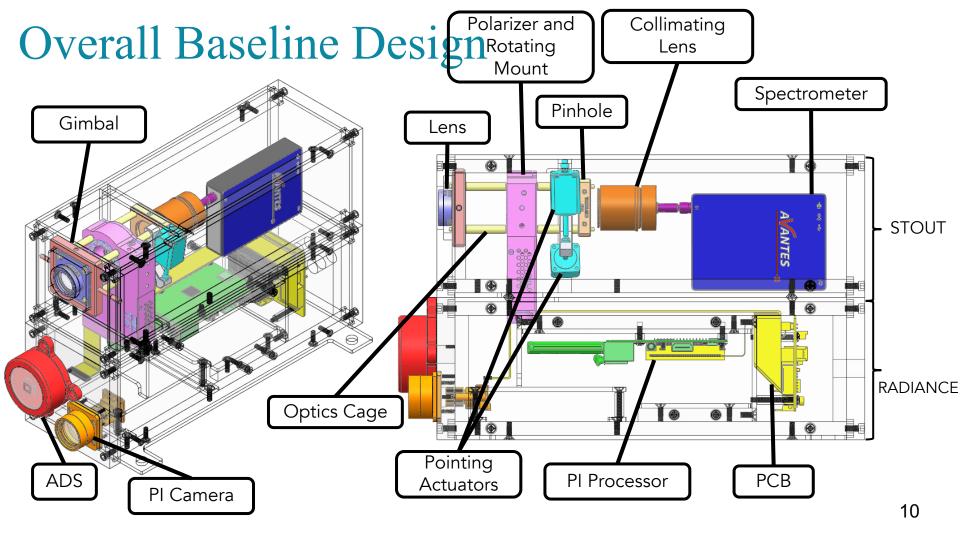

Complete mission operations at 40 km for approximately 2 weeks. Gondola controlled to keep Sun in ±5° FOV during daylight hours

Descent

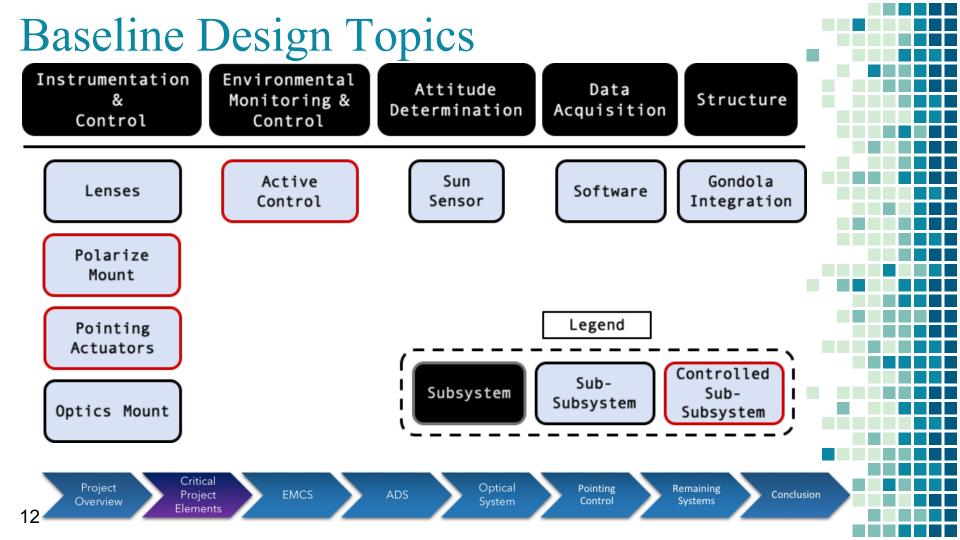

Power down, mission operation data storage survives 5g parachute landing, customer collect and analyze data

Mission Operations




Functional Block Diagram

8

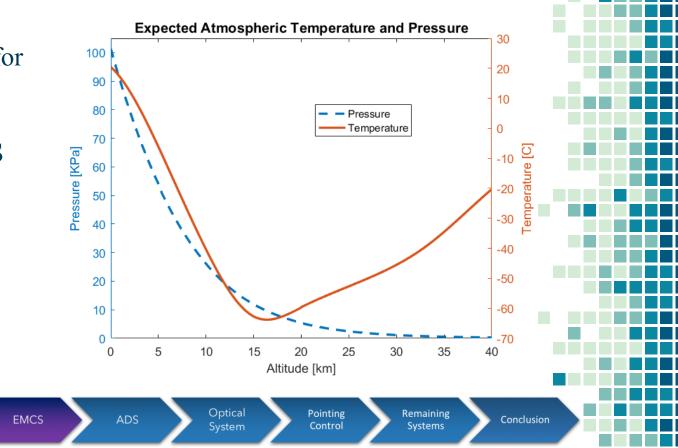

Pointing Explanation

Identification of Critical Project Elements

EMCS Requirements

FR5: The system shall survive the conditions of a high altitude balloon flight up to 40km

Requirement	Description
5.1	During ascent and descent the system shall survive external temperatures ranging from -70°C to 20°C
5.2	During cruise the system shall operate under external temperatures ranging from -25°C to -15°C
5.3	The system shall operate at pressure values of 100 kPa to 10 Pa

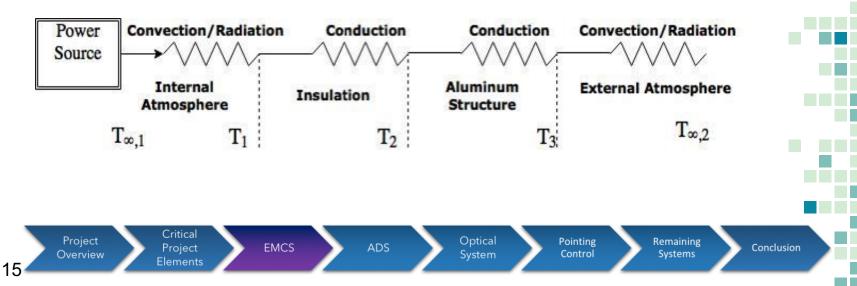

Atmospheric Model

- Flight conditions for Fort Sumner, NM launch
- Based on 2001 US Navy Model (temperature) & COESA Model (Pressure)

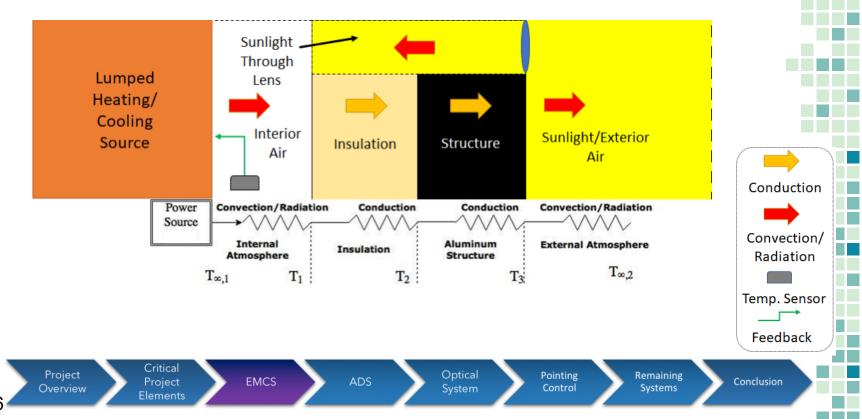
Critical

Project

Elements

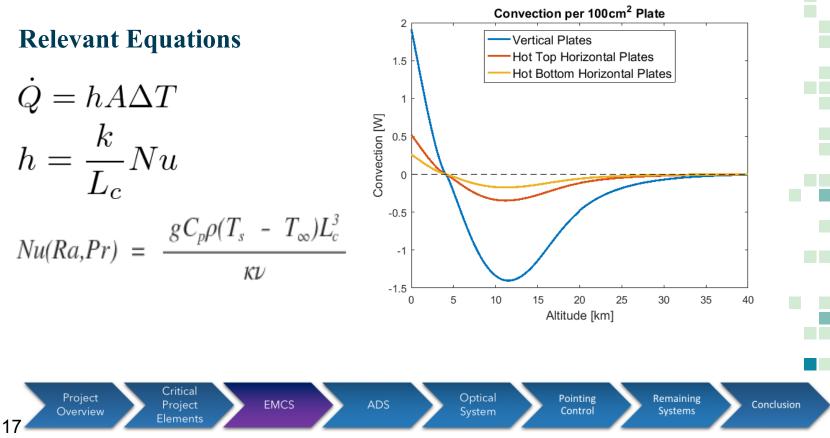


Project


Overview

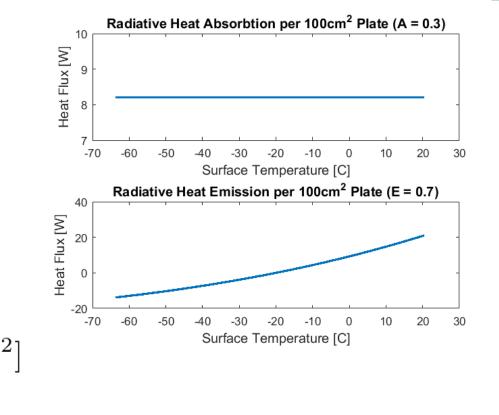
EMCS Baseline Design

- Assumptions:
 - Bulk temperatures (no variation within components)
 - No forced convection (wind)
 - Thermal conductivity of air varies linearly with respect to pressure

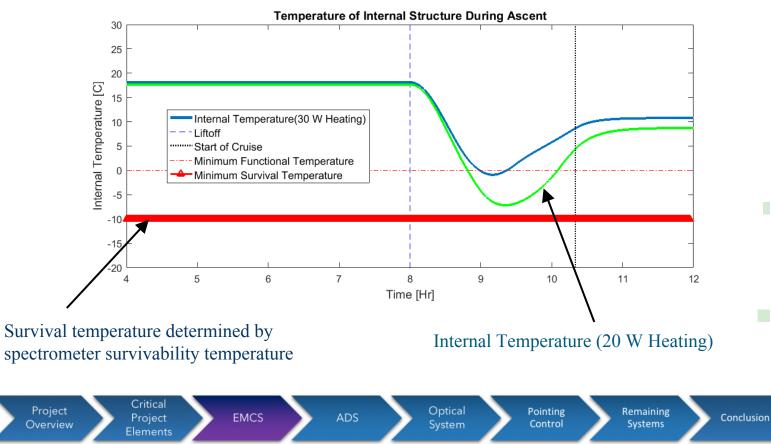



EMCS Baseline Design

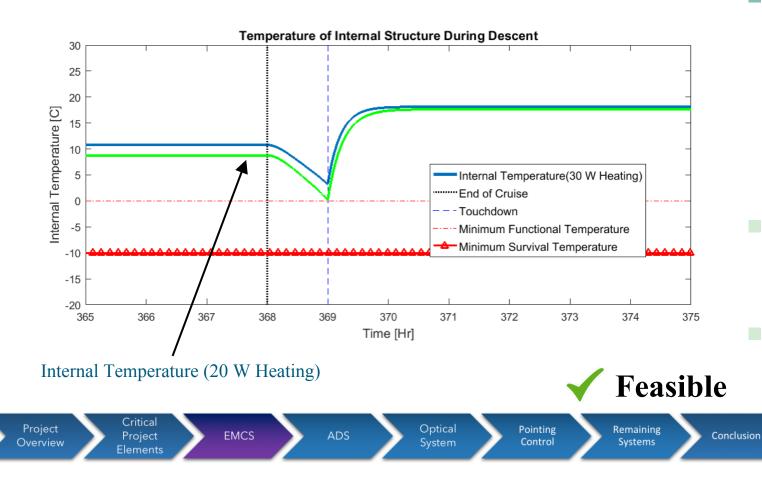
16


Convection

Radiation


Radiated Heat $Q = \sigma A T^4 \epsilon$ $\sigma = 5.67 \times 10^{-8} \frac{W}{m^2 \cdot K^4}$ **Absorbed Heat** $\dot{Q}_{in} = \dot{Q}_{Source} A \alpha$ $\dot{Q}_{Vacuum} \approx 1367 [W/m^2]$




Thermal Profiles: Ascent

19

Thermal Profiles: Descent

20

Attitude Determination Requirements

FR3: The system shall determine its attitude relative to the sun center

Requirement	Description
3.1	The off-light source angle attitude shall be determined to within 3' (0.05°) of light source center
3.2	Attitude data shall be recorded synchronously with instrument data
3.3	Attitude data shall be interfaced with instrumentation pointing control

ADS

Optical

System

Pointing

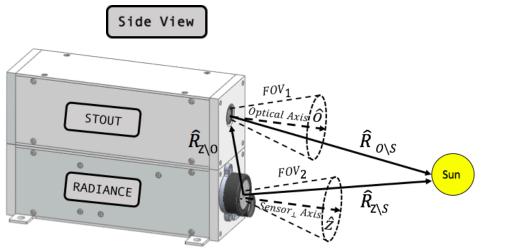
Control

Remaining

Systems

Conclusion

Critical

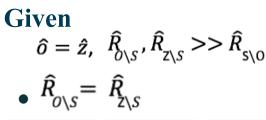

Project

Elements

EMCS

Statement

Purpose: Solve Off-Sun Angles

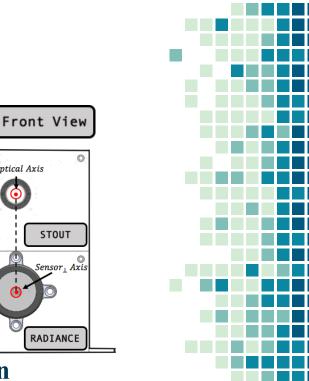


EMCS

Assumptions Sun within $\pm 5^{\circ}$ of optical axis (given by customer)

Project

Overview


Conclusion

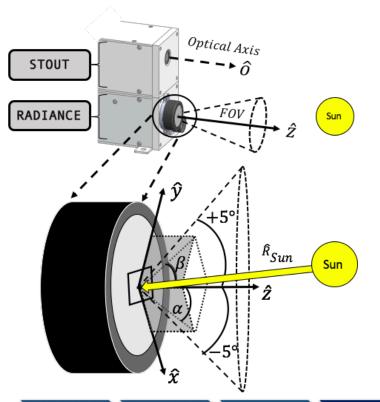
Sun off-angles relative to sun sensor axis is equal to that of the optical axis

Optical Axis

STOUT

RADIANCE

Critical


ADS

Optical System

Pointing Control

Remaining Systems

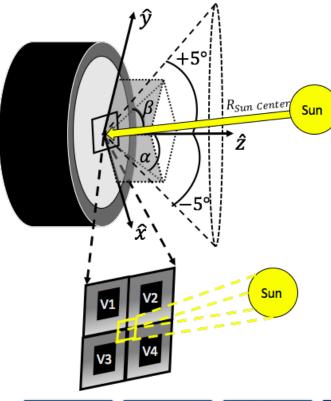
Attitude Determination Baseline Design

Sun Sensor

- Used to solve off-sun angles
- Used for optics pointing control
- Mounted on RADIANCE sun facing panel
- Replace existing RADIANCE ADS (deemed infeasible)
- Normal vector in same direction as optical axis
- Uses quadrant photodetector to measure incident angle from generated photocurrents
- Field of View: dual axes $\pm 5^{\circ}$
- Accuracy: $\pm 0.02^{\circ}$
- Compatible with Raspberry Pi

Project

Overview


Critical Project Elements

EMCS

ADS

Optical System Pointing Control

Attitude Determination Baseline Design

Relevant Equations $x_1 = V_3 + V_4$ $y_1 = V_1 + V_4$

$$x_{2} = V_{1} + V_{2} \qquad y_{2} = V_{2} + V_{3}$$

$$F_{x} = \frac{x_{2} - x_{1}}{x_{2} + x_{1}} \qquad F_{y} = \frac{y_{2} - y_{1}}{y_{2} + y_{1}}$$

 $\alpha = \arctan(C * F_x) \quad \beta = \arctan(C * F_y)$ Parametric Value (C) * Dependent on Sensor *

Sun Off-Angles ($\alpha \& \beta$)

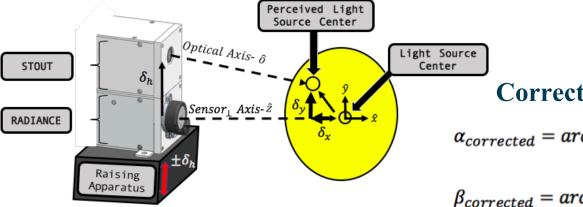
- Communicates the sun's position relative to field of view to the system
- Data saved and used in optics controls

24

>

EMCS

Critical


Project

Elements

ADS

Optical System Pointing Control Remaining Systems

Attitude Determination Feasibility

Corrected Equations

$$\alpha_{corrected} = \arctan(C * F_x) + \tan^{-1} \frac{\delta_x}{\delta_y}$$

$$\beta_{corrected} = \arctan(C * F_y) + \tan^{-1} \frac{\delta_y}{\delta_x}$$

Pointing

Control

Optical

System

Feasible

Conclusion

Remaining

Systems

Calibration

- Sensor normal axis corresponds to max photocurrent generation
- Move system until max photocurrents generated
- Measure deviations of optical axis and sensor normal axis

EMCS

ADS

- Laser pointing down optical axis
- Sun simulated light source
- Corrects manufacturing errors

Critical

Project

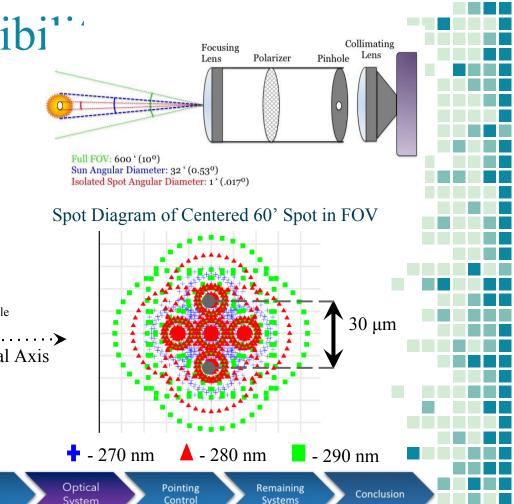
Elements

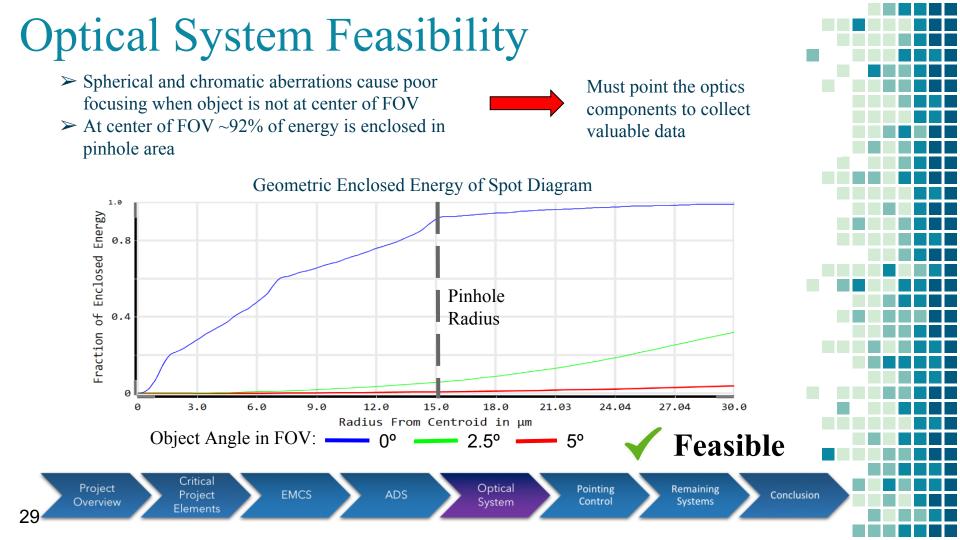
Overview

Project

Optical System Requirements

FR2: Collect variable polarization UV spectra at various points on the sun's surface


Requirement	Description
2.1	Isolation of <= 1' (0.0167°) spot
2.2	Spectrum measurements in the 270 - 290 nm range



Optical System Feasibi

- Isolation of a 60" spot in the FOV can be accomplished with a <u>30 µm diameter</u> <u>pinhole</u> in image plane
- Zemax modeling of <u>Thorlabs ACA254 -</u> <u>UV lens</u> shows that sufficient focusing occurs at the focal length when the target is aligned with the optics

Instrument Feasibility

Flux Budget

Stage	Total Power Over 270 - 290 nm range
Before lens	3.7 mW
After lens	3.4 mW
After polarizer	2 .0 mW
After pinhole	2 μW
After Collimator	1.8 μW

Critical

Project

Elements

EMCS

- \succ Need to set exposure time/averaging of Avantes Mini 2048L Spectrometer to reach goal SNR of 200:1
- > Avantes engineers expect ~ 3 second integration time for predicted input power of 1.8 μW

Pointing

Control

Remaining

Systems

Optical

System

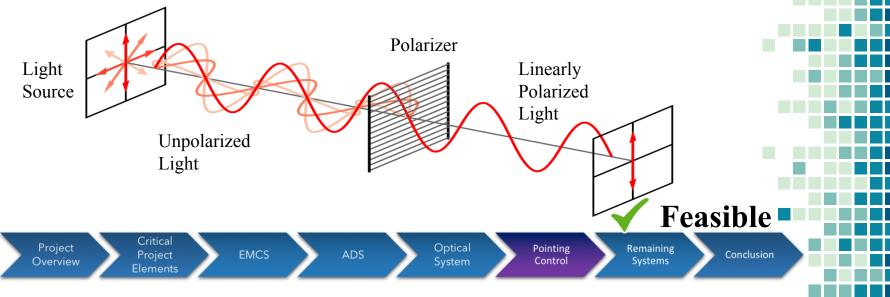
30

Project

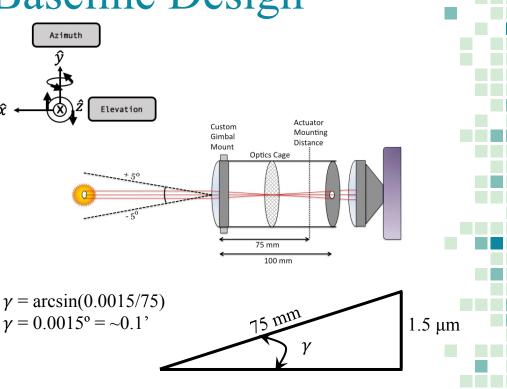
Overview

Pointing Control Requirements

FR2: Collect variable polarization UV spectra at various points on the sun's surface


Requirement	Description
2.3	Rotate polarizer with <=1° accuracy
2.4	Altitude pointing of +/- 1° in azimuth and +/- 5° in elevation

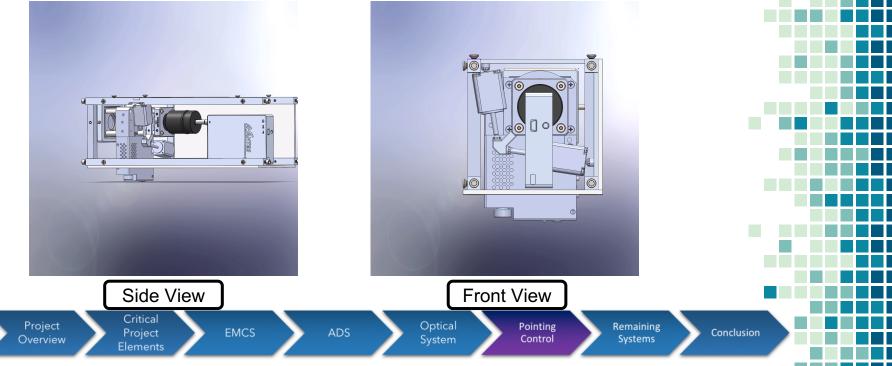
Feasibility

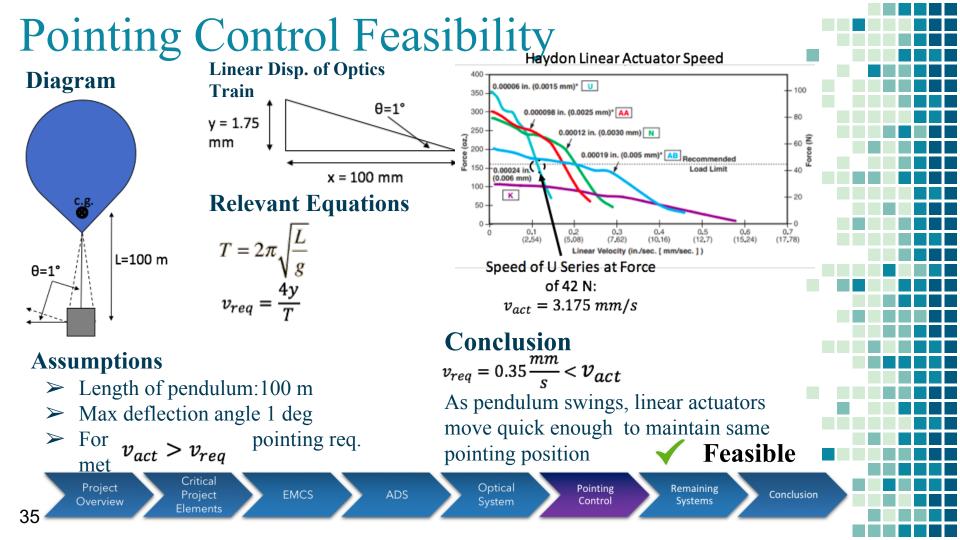

32

- By rotating the polarizer we can control the polarization of the collected light
- Thorlabs Ultra Broadband Wire Grid Polarizer is provided by our customer
- Thorlabs Stepper Motor Rotation Mount provides 0.03° of incremental rotation of the polarizer

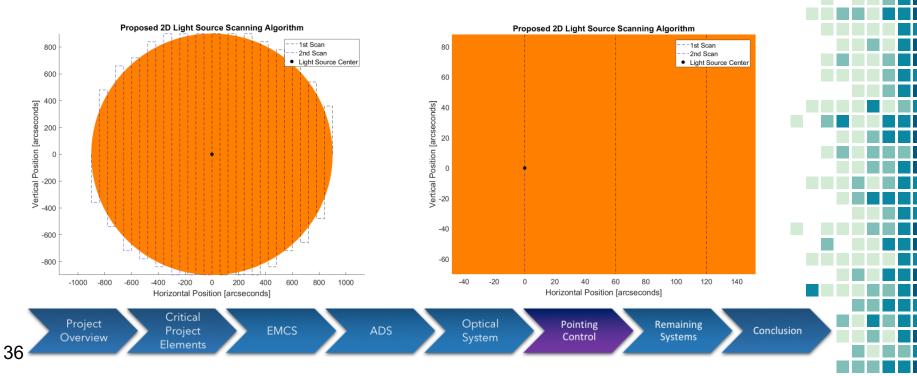
Pointing Control Baseline Design

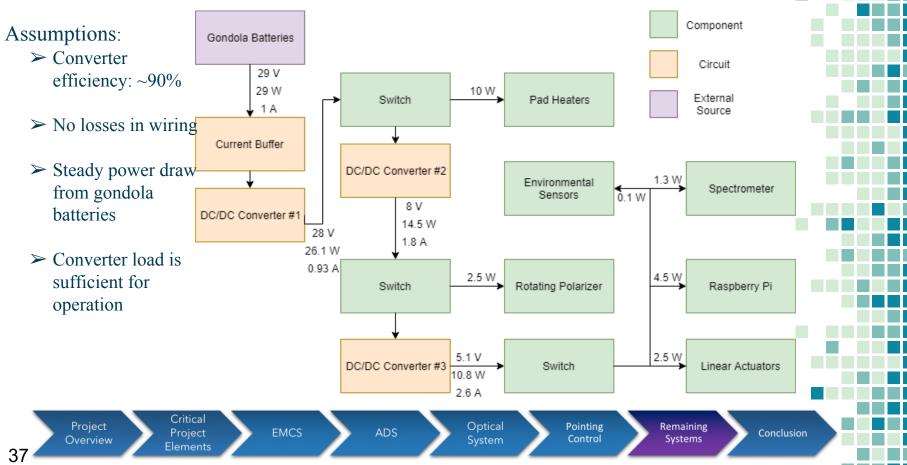
- Optics cage mounted so azimuth/elevation pointing can be achieved using linear stepper motors
 - \circ Gimbal on front
 - Stepper motors mounted to the optics cage with ball joints
- Avantes 25mm Diameter Collimating Lens: allows optics cage to pivot by +/- 5° while spectrometer/collimating lens remain stationary
- Haydon Kerk Hybrid Stepper <u>Motors</u> provide incremental movement of 1.5 μm which corresponds to a change in point angle of γ




corresponds to a change in pointing* movement along an arc approximated by linear displacement angle of γ

Pointing Control Feasibility


Pointing position determined by taking into account the extension of each motor head and the constraints (no rotation about optical axis) of the gimbal mount



Light Source Scanning Algorithm

- 1' between scan points
- Currently 788 scan points: 19.7 days to scan entire surface at all polarization angles
- To decrease scan time
 - Larger lens/ more input power/ decrease spectrometer exposure time to 1s

Power Baseline Design

Power Budget

Component	Wattage (W)	Voltage(V)
Raspberry Pi(DAQ)	4.25	5.25
Spectrometer	1.25	5.0-15.0
Rotating Polarizer	2.50	8.0
Linear Actuators	2.45	5.0
Pad Heaters	20.0	28.0
Sun Sensor	0.045	5.0
Total	30.5	-
Supply	29.00	29.0
Difference	-1.50	-

EMCS

Remaining Conclusion Systems

Pointing

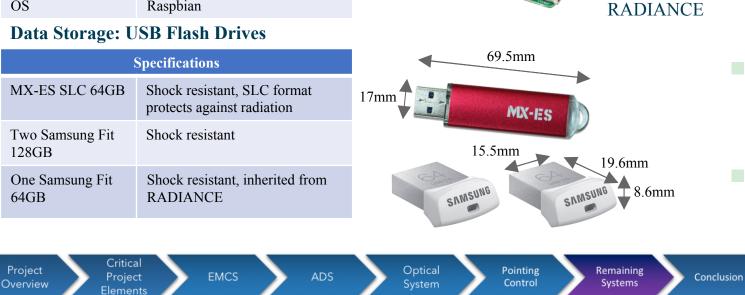
Control

DAQ and Microprocessor Requirements

Requirement	Description	Frequency
1.1	System shall interface with RADIANCE's Raspberry Pi	N/A
6.1	System shall record temperature data	1 Hz
6.2	System shall record pressure data	1 Hz
6.3	System shall record attitude data	1 Hz
6.4	System shall record Raspberry Pi camera images	0.1 Hz
6.5	System shall record attitude data at same rate as spectrometer readings during measurement	Determined by Spectrometer
6.6	System shall time-stamp all measured data	1 Hz

Project Overview Critical Project Elements EMCS ADS Optical System

Pointing Control Remaining Systems

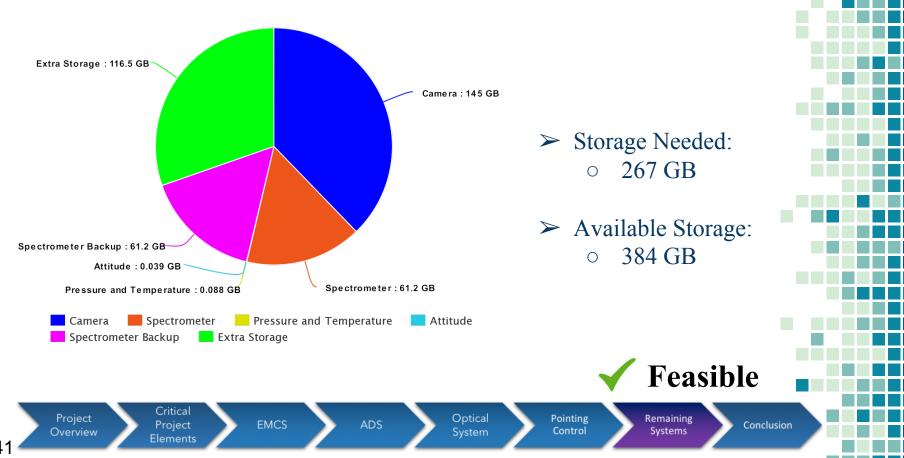

Conclusion

DAQ Baseline Design

Single Processor: Raspberry Pi 3 Model B

Specifications		
CPU 1.2 GHz quad-core		
Interfaces	4 USB, 40 GPIO	
OS Storage	1 microSD Slot	
OS	Raspbian	

Data Storage: USB Flash Drives



58.5mm

86.9mm

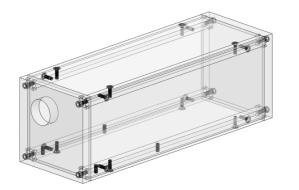
*From

Data Storage Feasibility

41

Structural Requirements

FR7: STOUT shall Integrate with RADIANCE module and NASA balloon gondola


Requirement	Description
7.2	The mass of STOUT shall not exceed 6kg
7.5	The structure linkages shall comply with all requirements and provisions of "Structural Requirements and Recommendations for Balloon Gondola Design"
7.6	STOUT structure shall preserve structural integrity up to a 5g shock force

* For Level 1 Requirement, only concerned with structure and data storage survivability*

Structure Baseline Design & Feasibility

- Front and back plates
- Interior support struts
- Exterior surface panels
- Mounts on top of RADIANCE module
- Constructed from Aluminum 6061

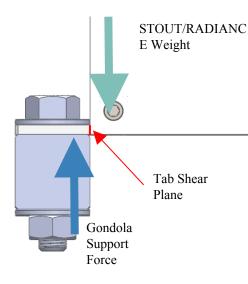
Critical

Elements

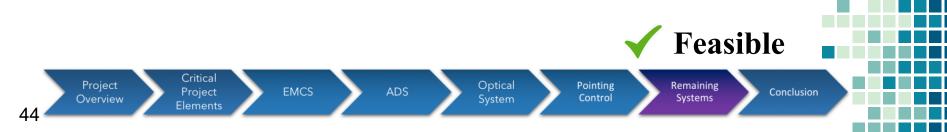
EMCS

Mass Budget

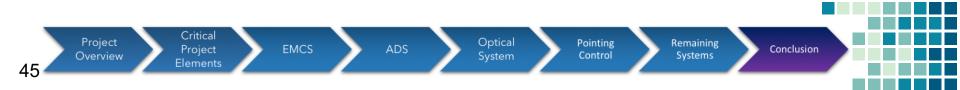
Component	Mass (kg)
Structure	2.00
Thermal	0.05
Instrumentation	0.70
Actuation	0.70
C&DH	0.05
Total System	3.50


Control

Conclusion


Project

Overview


Structural Feasibility

- Each bolt subjected to tensile stress
 o For 5g shock = 34.1psi
- SAE J429 Grade 1 bolt tensile strength = 60,000psi
 FOS = 1760
- Each tab (4 total) subjected to shear stress
 o For 5g shock = 120.5psi
- Al 6061 Shear strength = 30,000psi, FOS = 249

Status Summary

Feasibility Recap and Next Steps

All Level 1 Requirements Feasible

EMCS

Fully Feasible

- 1. Instrument Data Collection
- 2. Structures
- **3**. Environmental Monitoring & Control
- 4. Attitude Determination
- 5. Electric Power
- 6. Data Acquisition
- 7. Software

Project

Overview

8. RADIANCE Integration

Critical

Project

Elements

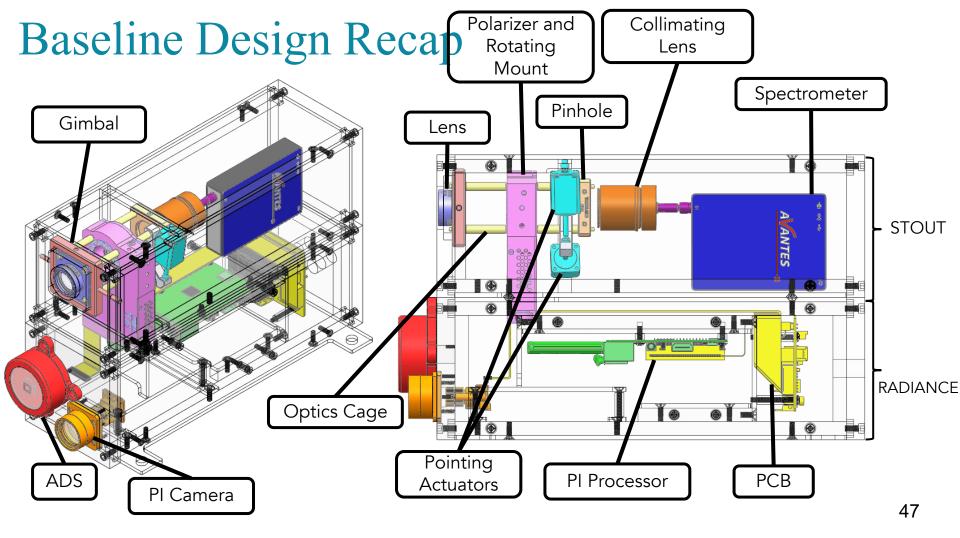
Needs Further Analysis:

- 1. Control Software Response Speed
- 2. Instrument Pointing Capabilities

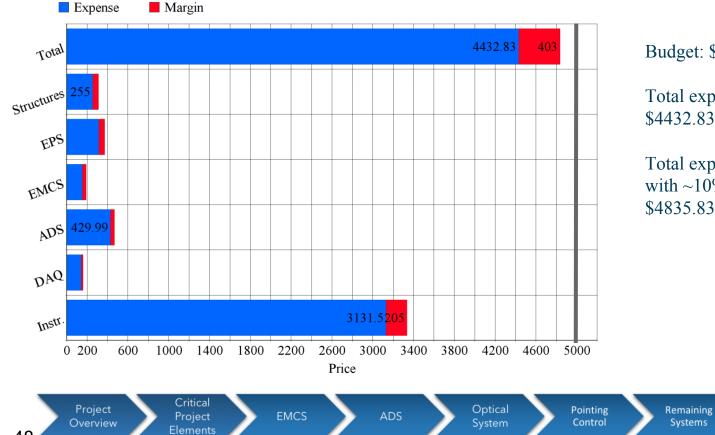
Pointing

Control

Remaining


Systems

Conclusion


Optical

System

46

STOUT Expenses

Budget: \$5000

Total expenses: \$4432.83

Total expenses with ~10% margin: \$4835.83

Conclusion

48

▶ 🗏 Title	Planned Start	Planned End		Oct 1	Oct 2 -Oct 8	Oct 9 -Oct 15	Oct 16 -Oct 22	Oct 23 -Oct 29
▼ PDR	10/2/17	10/17/17		,				
 Get expected part data sheets 	10/2/17	10/3/17		10/2/1	7 < Get expected p	oart data sheets		
 Powerpoint template 	10/3/17	10/3/17		10/3/	17 < Powerpoint ten	nplate		
 Determine memory/measurement 	10/4/17	10/4/17		10	/4/17 📋 Determine r	memory/measurement		
Find cheap GPS	10/4/17	10/4/17	ADS	10	/4/17 1 Find cheap	GPS		
Find cheap IMU	10/4/17	10/4/17	Controls	1	0/4/17 📋 Find cheap	IMU		
 Determine storage needs 	10/5/17	10/6/17	DAQ		10/5/17 <	rmine storage needs		
 Determine feasibility of PI separation 	10/5/17	10/5/17	EMCS		10/5/17 1 Determi	ne feasibility of PI separa	tion	
Controls FBD	10/6/17	10/6/17	EPS		10/6/17 < Cont	trols FBD		
 Determine processing needs 	10/6/17	10/7/17	Optics		10/6/17 <	Determine processing nee	eds	
 Draft scanning algorithm 	10/7/17	10/8/17	PM		10/7/17 <	Draft scanning algorith	im	
 Preliminary pinhole design 	10/7/17	10/8/17	Structures		10/7/17 <	Preliminary pinhole de	sign	
 Dimensional feasability 	10/7/17	10/9/17	Systems		10/7/17 📺 3	d Dimensional feasat	oility	
 Photodiode feasability 	10/3/17	10/9/17	Team	10/3/1	7 < 8.25d	Photodiode feasab	ility	
 Preliminary rotater design 	10/8/17	10/9/17			10/8/17	Preliminary rotater	design	
 Preliminary mounting calculations 	10/9/17	10/10/17			10/9/17	Preliminary model	unting calculations	
 Alternatives study 	10/10/17	10/10/17			10/10/	17 1 Alternatives stu	dy	
 Determine component power usage 	10/10/17	10/10/17			10/10/	17 🔳 Determine com	ponent power usage	
 GANTT Chart PDR 	10/9/17	10/11/17			10/9/17	3.5d GANTT Cha	rt PDR	
 Nominal energy budget 	10/11/17	10/11/17			10/1	1/17 C Nominal ene	ergy budget	
 Alignment procedure 	10/11/17	10/11/17			10/	11/17 🔳 Alignment p	rocedure	
Controls FBD	10/10/17	10/11/17			10/10/	17 Controls FB	D	
 STOUT-RADIANCE connection (Structural) 	10/10/17	10/11/17			10/10		DIANCE connection (Struc	tural)
Draft PCB	10/12/17	10/12/17				10/12/17 < Draft PC	в	
 Create FBD/software map 	10/11/17	10/12/17			10/	11/17 <Create F	BD/software map	
 Nominal energy budget 	10/11/17	10/12/17			10/	11/17 <	energy budget	
 ADS simulation 	10/12/17	10/12/17				10/12/17 1 ADS sim	ulation	
 Flux budget 	10/12/17	10/13/17					budget	
 Integration with RADIANCE 	10/13/17	10/13/17				10/13/17 < Integ	ration with RADIANCE	
 Zemax models / feasibility 	10/4/17	10/14/17			10/4/17		emax models / feasibility	
GANTT Chart Semester	10/14/17	10/14/17				10/14/17 👅 G	ANTT Chart Semester	

.

STOUT

Thank you for listening! We appreciate your feedback.

Are there any questions?

References

- SolidWorks Thermal Analysis http://help.solidworks.com/2014/english/solidworks/cosmosxpresshelp/c_Thermal_Analysis.htm
- Measuring Humidity on a High Altitude Balloon http://www.societyofrobots.com/space_balloon_humidity_test.shtml
- Pad Heaters <u>https://www.omega.com/pptst/KHR_KHLV_KH.html</u>
- Peltier Device <u>https://www.digikey.com/product-detail/en/cui-inc/CP60240/102-1676-</u> ND/1747368
- Spectrometer Datasheet <u>https://www.avantes.com/products/spectrometers/compactline/item/723-avaspec-mini</u>
- Robert Salter. Typical Lithium Sulphur Dioxide batteries supplied to Scientific Groups. PDF. Columbia Scientific Balloon Facility, Jan. 2013. <u>https://www.nsbf.nasa.gov/documents/conventional/EC-500-20-D.C.pdf</u>
- Reflectance and Albedo of Surfaces -<u>http://curry.eas.gatech.edu/Courses/6140/ency/Chapter9/Ency_Atmos/Reflectance_Albedo_Surface</u> .pdf
- The Sun's Energy https://ag.tennessee.edu/solar/Pages/What%20Is%20Solar%20Energy/Sun's%20Energy.aspx
- ADS Sun Sensor <u>http://www.solar-mems.com/</u>
- Polarizer Mount <u>https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=8750</u>
- MATLAB and Aerospace Toolbox Release 2016b, The MathWorks, Inc., Natick, Massachusetts, United States.

References Continued

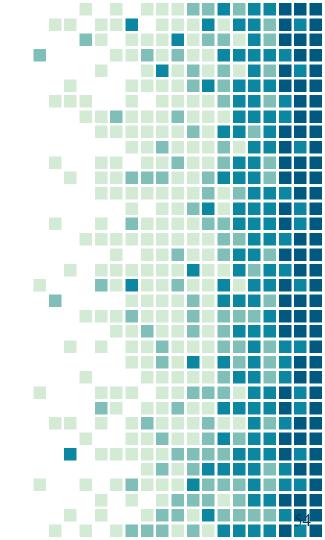

- MATLAB and Aerospace Toolbox Release 2016b, The MathWorks, Inc., Natick, Massachusetts, United States.
- Antoniak, Brandon (2016). One Dimensional Thermal Sims, MATLAB code. Retrieved Sept 25, 2017.
- Çengel, Yunus A., et al. *Fundamentals of Thermal-Fluid Sciences*. McGraw-Hill Higher Education, 2012.
- Structural Requirements and Recommendations for Balloon Gondola Design Columbia Scientific Balloon Facility/NASA
- Zemax User Manual <u>https://neurophysics.ucsd.edu/Manuals/Zemax/ZemaxManual.pdf</u>
- Battery Configuration Characteristics ftp://apollo.ssl.berkeley.edu/pub/jolson/COSI_final_report/Final_report/CSBFGondolaDesignReco mmendations%20newer%20version.pdf
- Ext Temp Sensor <u>https://www.sparkfun.com/products/13314</u>
- Int Temp Sensor <u>https://www.sparkfun.com/products/245</u>
- Pressure Sensor <u>https://sensing.honeywell.com/honeywell-sensing-trustability-ssc-series-standard-accuracy-board-mount-pressure-sensors-50099533-a-en.pdf</u>
- Actuator Supplier <u>http://www.haydonkerkpittman.com</u>

Table of Contents

Sections	Backups
Project Overview	Thermal Model
<u>CONOPS</u>	<u>Pressure Feasibility</u> <u>Thermal Components</u> ADS Feasibility
Critical Project	ADS Thermal Expansion
Elements	RADIANCE ADS Infeasibility
	Optical Parts
EMCS	Optics Mount
1.5.0	Polarizer Mount
<u>ADS</u>	Actuators
Ortical Contains	Power
<u>Optical System</u>	<u>Software</u> <u>Microcontroller</u>
Pointing Control	Data Storage
	Structures/Materials
<u>Remaining</u> <u>Systems</u>	
Conclusion	

Backups

Customer

Flight Feasibility Testing Methodology

- ➤ Temperature feasibility
 - Tested through transient, one dimensional thermal model inherited from RADIANCE mission
 - Proven to be a valid baseline test through rigorous investigation and comparison to basic thermal concepts
 - Thermal model modified to include combined STOUT/RADIANCE module, accounting for increase in volume, area, and added heat output of all onboard instrumentation
 - Baseline thermal design implemented in combined module (i.e. resistive heat pads, peltier devices, polyiso)
- ➤ Pressure feasibility
 - Dictated by most sensitive instrument
 - In this case the ADS sensor is rated down to 5 Pa
 - $\circ~$ If most sensitive instrument can survive pressure range of flight, system is feasible
 - Also keeps from increasing complexity of system (i.e. pressurized model)

Parameters

- ➤ Assumptions:
 - Average internal temperature taken between all instruments
 - System in thermal equilibrium before flight
 - Latitude or longitude of balloon/gondola does not change during flight
 - Two week flight time
 - Forced convection not accounted for (wind speed data challenge)

➤ Parameters:

- One dimensional, Transient model
- Radiation, convection, conduction accounted for
- \circ STIFF equation solved through ODE15S
- Fort Sumner, NM Sept. flight location chosen (proven to be very rigorous)
- \circ No night flight accounted for in terms of temp variations

Thermal Model Inputs

- Mass of Structure: 5.25 kg (c=900 J/(kg•K))
- External Structure Thickness: 3.175 mm
- Insulation Thickness: 1 cm
- Emissivity/Absorptivity: 0.7/0.3

EMCS

- Ascent Time: 2.33 hrs
- Descent Time: 1 hr

Critical

Project

Elements

Flight Conditions for New Mexico launch

Optical

System

Pointing

Control

Remaining

Systems

Conclusion

58

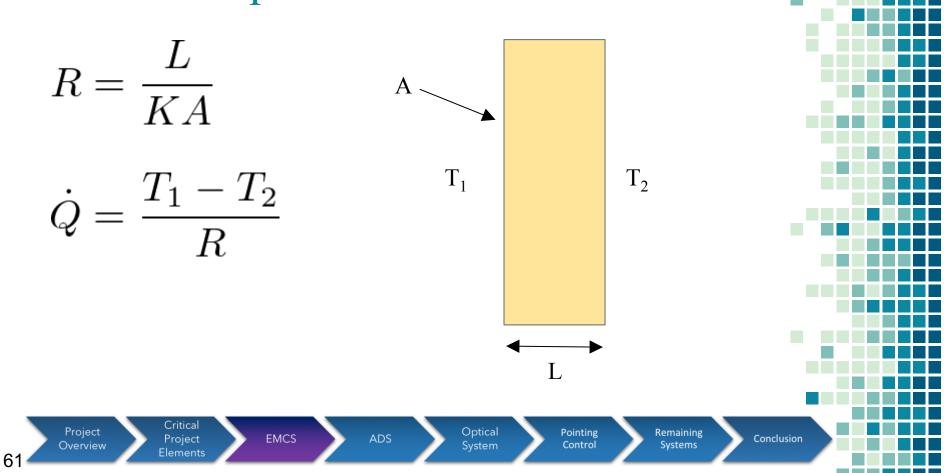
Thermal Budget

Components Thermal Budget			
Component	Operating Range	Dissipation	
Pi	-25 to 85 C	~0.6 W	
Optics	N/A	0.63 W	
Spectrometer	0 to 55 C, -10 survival	~1.27 W	
Actuators	-10 to 85 C	~1.7 W	
Power Board	-50 to 100 C	6 W	
Sensors	-50 to 100 C	~0.1 W	
Flash Drives (USB 2.0)	0 to 60 C, -10 survival	0.25 W	
Total	Min op temp = 0 C, Min survival temp = -10 C	10.55 W	
Active Control Devices			
Heater	-200 to 120 C	10 W max each	
	-100 to 80 C	-13 W max each	

59

Thermal Radiation Equations

Radiated Heat


$$\sigma = 5.67 \times 10^{-8} \frac{W}{m^2 \cdot K^4}$$
$$\dot{Q} = \sigma A T^4 \epsilon$$

Absorbed Heat

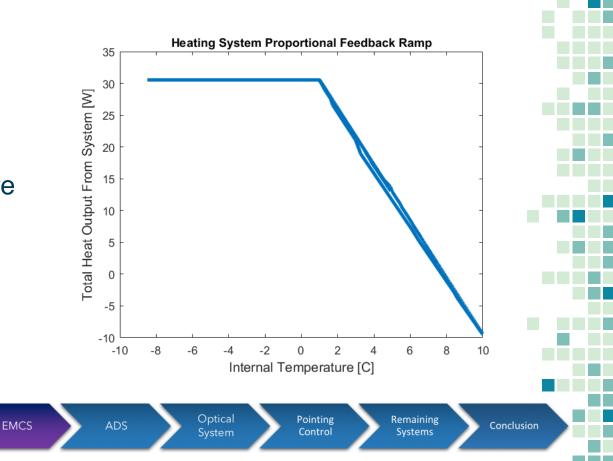
$$\dot{Q}_{in} = \dot{Q}_{Source} A \alpha$$
$$\dot{Q}_{Ground} \approx 1050 [W/m^2]$$
$$\dot{Q}_{Ground+Albedo} \approx 1120 [W/m^2]$$
$$\dot{Q}_{Vacuum} \approx 1367 [W/m^2]$$

Project Critical Project Critical Project EMCS ADS Optical System Control Remaining Conclusion Conclusion

Insulation Equations

EMCS Feasibility: Pressure

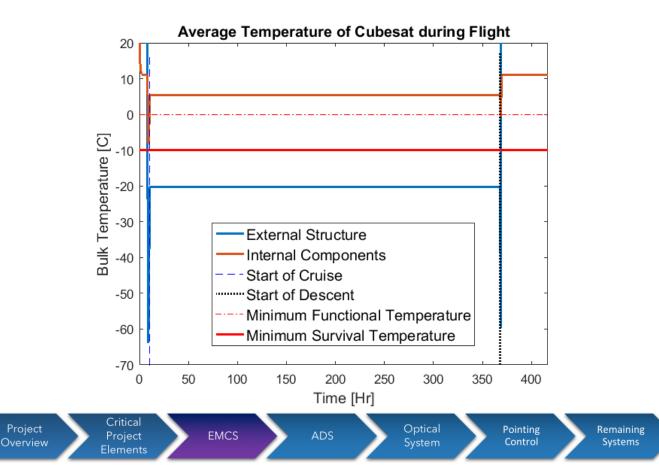
Component	Minimum Pressure Rating (Pa)
Actuators	0.1
Polarizer Mount	0.133
ADS Sensor	5
Pressure Sensor	0


Active Control Heating Ramp

- Estimate 10.55 W heat output from electrical components
- Cruise temperature is ~5°C

Critical

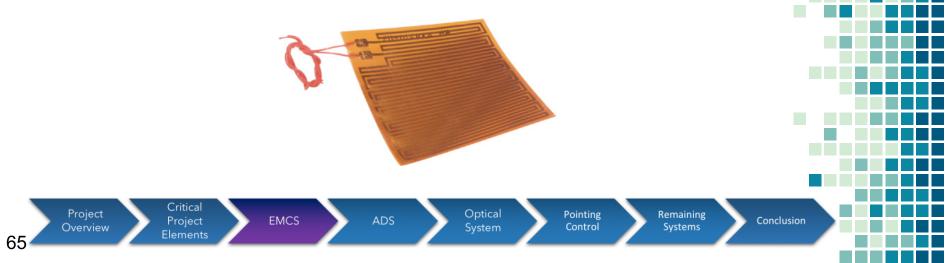
Project


Elements

Project

Overview

Full Thermal Simulation



64

EMCS Feasibility: Pad Heaters

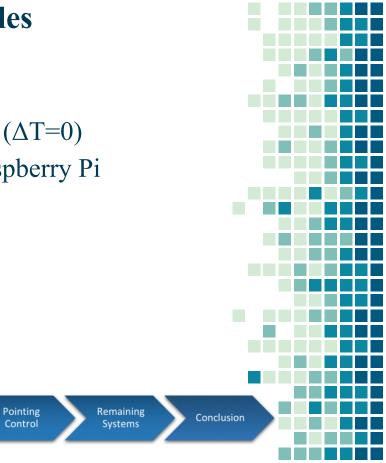
- Omega Polyimide Film Insulated Flexible Heaters
 - 28 V supply voltage, 0.357 A max supply current
 - 10 x 2.5 x 0.025 cm dimensions
 - 0-10 W evenly distributed heat output each

Critical

Project

Elements

Coolers


- CUI Inc. CP60240 Peltier Modules
 - 3.9 V max supply voltage
 - 20x20x4 cm dimensions

EMCS

- Pumps 10 W at 3.6 A supply current ($\Delta T=0$)
- Place near critical thermal areas (Raspberry Pi processor, actuators, power board)

Optical

System

Project

Overview

EMCS Feasibility: Temperature Sensors

- External Temperature:
 2x TMP102 Digital
 Temperature Sensor
 (Same as RADIANCE)
- ➤ Internal Temperature:

Optical

System

7x DS18B20 One Wire Digital Temperature Sensors (Same as RADIANCE)

Pointing

Control

Remaining

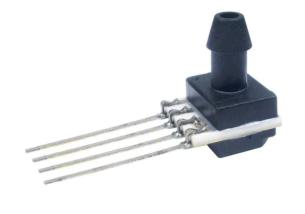
Systems

Conclusion

Critical

Project

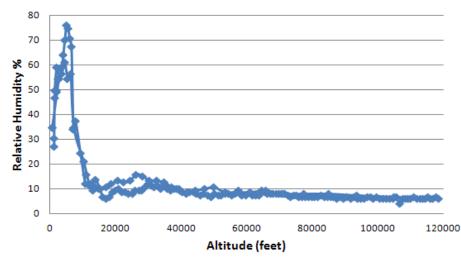
Elements

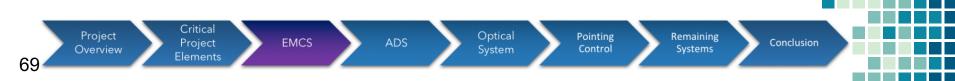

EMCS

Project

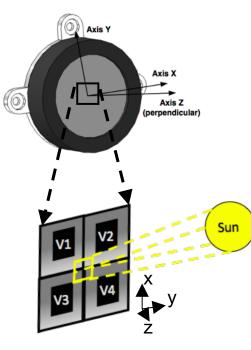
Overview

EMCS Feasibility: Pressure Sensor


- Honeywell SSC Series 1.6BA
 - 0 to 160 kPa operating pressure
 - 5 V input voltage, 2 mA supply current
 - -20 to 85°C operating temperature



Atmospheric Humidity

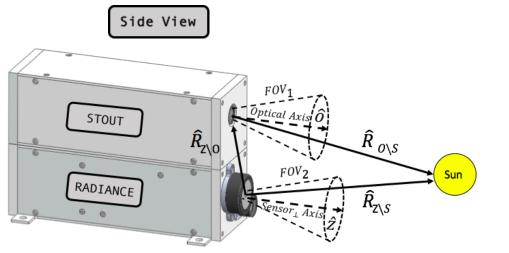

- Expected relative humidity varies from 5% to 75%
- Could result in condensation during ascent and descent

Humidity wrt Altitude

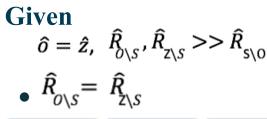
Attitude Determination Feasibility

Solar Mems Sun Sensor Fully Feasible 😽

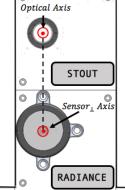
- Measures Incident Angle
- Uses Quadrant photodetector
- Photocurrents generated
- Field of View: Dual Axes $\pm 15^{\circ}$
- Accuracy: $\pm 0.02^{\circ}$


Calibration

- Telescope w/ High-Precision sidereal tracking
- Control telescope to get max power generation
- Determine off sun angle, program as zero degree position



Purpose: Solve Off-Sun Angles

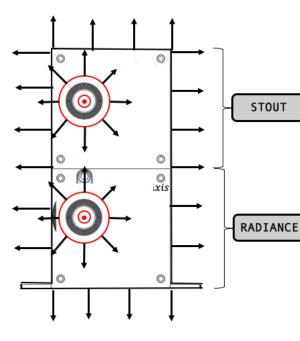


EMCS

Assumptions Sun within \pm 5° of Optical Axis (Given by Customer)

Conclusion

Sun off-angles relative to Sun Sensor axis is equal to that of the optical axis


Project Overview Critical Project Elements

ADS

Optical System Pointing Control Remaining Systems

Conclusion

Expansion

Thermal Expansion

- Expanding material assumed uniform
- Sun Face is assumed as flat plate

Optical

System

• Every linear dimension increases by the same percentage with a change in temperature, including holes.

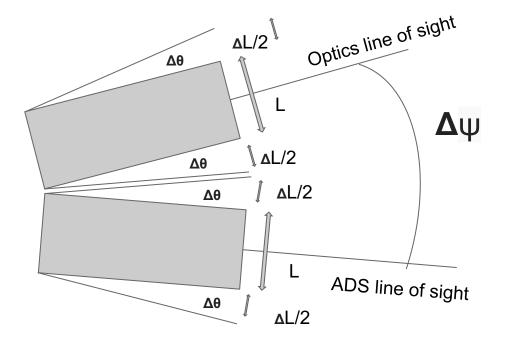
Conclusion

ADS

• Expansions assumed negligible so long as linear expansion and no bending (Explained on next slide)

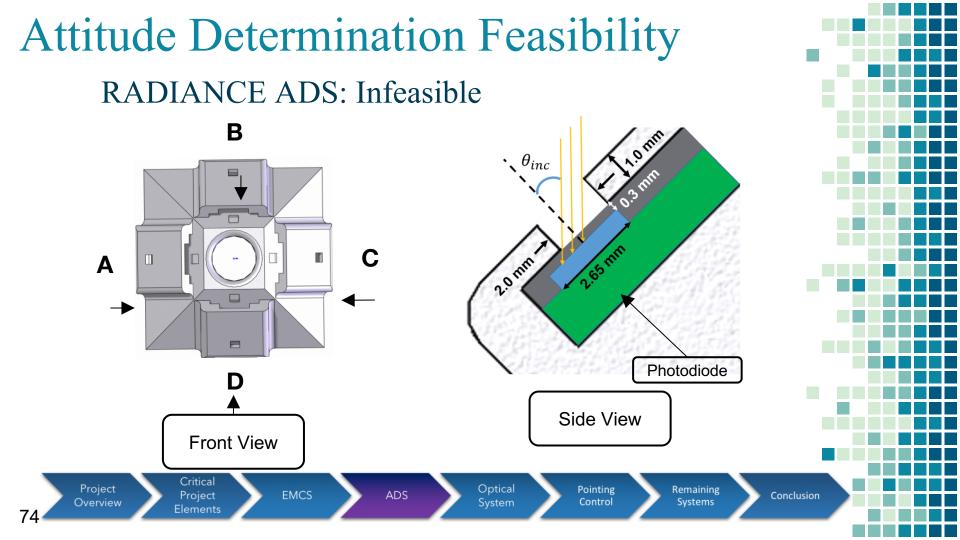
Pointing

Control


Remaining

Systems

Conclusion


Project Overview 72 Critical Project Elements EMCS

Attitude Determination Thermal Expansion

At an extreme variation in temperature where the front sun facing side is 20° K warmer than back side, the difference in optics and ADS line of sight will only be $\Delta \psi$ =0.00886°

Attitude Determination Feasibility

RADIANCE ADS

- 4 Photodiode Array inclined 45°
- Based on LASP MinXSS-1 CubeSat
 - Discrepancies:
 - RADIANCE larger FOV
 - MinXSS included Star Tracker
- Accuracy Discrepancies

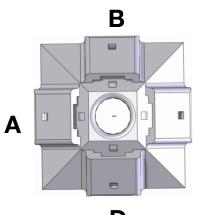
Project

Elements

- RADIANCE PFR Report's ±1° accuracy but never confirmed
- Photodiode Array with ±0.1° accuracy incorporates slit design not inclined array
- Summary: RADIANCE ADS Infeasible
 - Large FOV induces Earth's Albedo Error

ADS

Optical

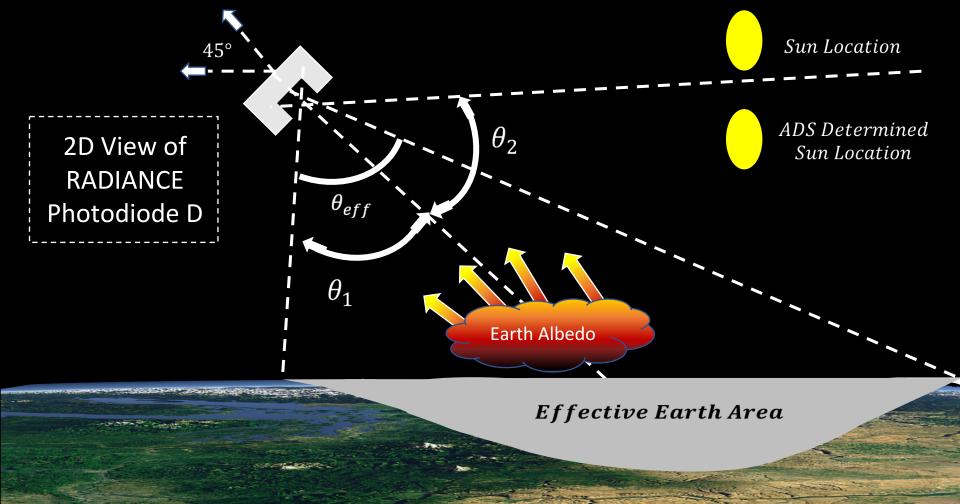

System

Pointing

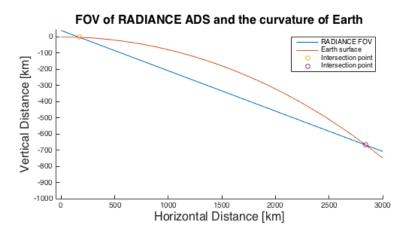
Control

• Accuracy doesn't meet Requirements

EMCS


Front View

Remaining


Systems

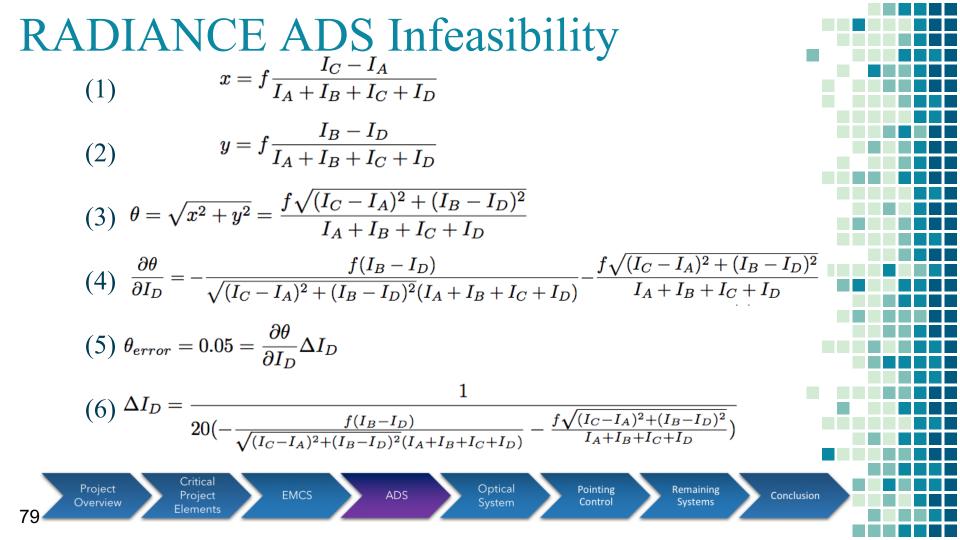
Conclusion

Project

RADIANCE ADS Infeasibility


+/- 14 degree field of view cuts through Earth with a max chunk height of 150.6 km

> Percentage of FOV that is the Sun -> 0.1434% Percentage of FOV that is the Earth -> 6.137% In terms of area FOV "sees", Earth takes up 42.8 times more than the Sun


RADIANCE ADS Infeasibility

Look at just the bottom photodiode...

Plug in dummy variables

- I_{Total} =1000, I_{A} =200, I_{B} =350, I_{C} =300, and I_{D} = 150
- $f = I_{Total}/28 = 35.71428$

Critical

Project

Elements

- Allowable current change in bottom photodiode is -0.0062
- Watts from Earth, $W_E = 1,000*32,485*\cos(45)*a$
- $a = [0.04 \text{ to } 0.9] \rightarrow W_E = [918,814 \text{ to } 20,673,327]$

Optical

System

Pointing

Control

Current varies proportionally -> P=IV

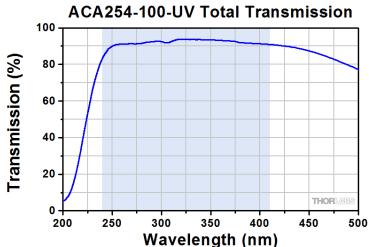
ADS

EMCS

Project

Overview

Remaining


Systems

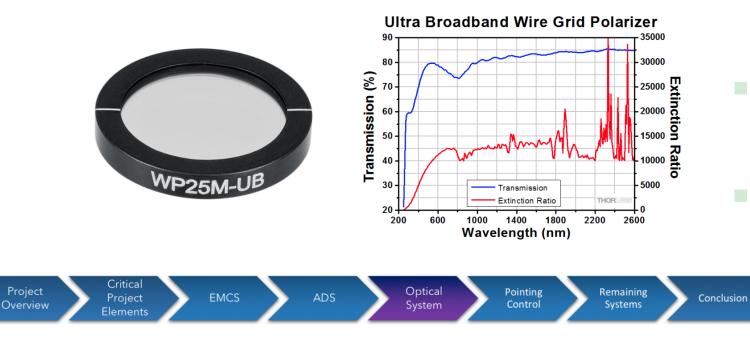
Lens Baseline Design **Thorlabs ACA254-UV-100** Air-Spaced Doublet to correct for chromatic aberrations

ACA254-100-UV

Price	\$969
Focal Length	100mm
Clear Aperture	18mm

Critical Project Optical Pointing **EMCS** Project Overview System Control Elements 81

Remaining Systems


Conclusion

Polarizer Baseline Design

Thorlabs 25 mm Diameter Mounted Wire Grid Polarizer

Provided by Customer

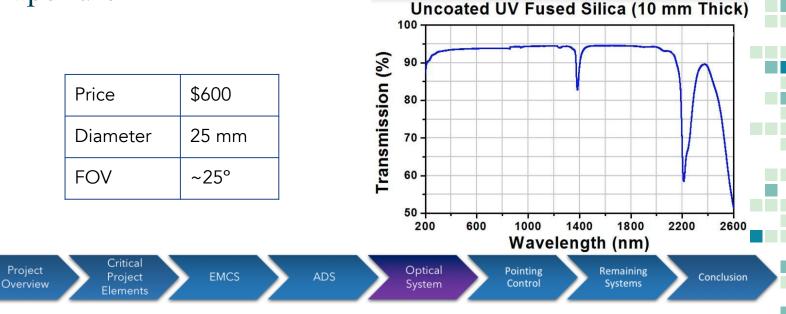
82

Spectrometer Baseline Design

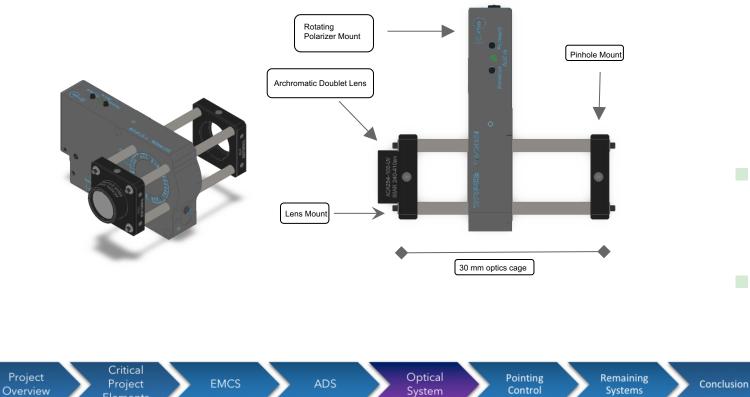
Avantes Mini 2048-L

Inherited From RADIANCE

Avantes AvaSpec-Mini 2048L-UVI25					
Optics 200-1100nm, 1.4 nm resolution					
Grating	300 lines/mm				
Slit Size	25µm				
Price	\$2946.25				

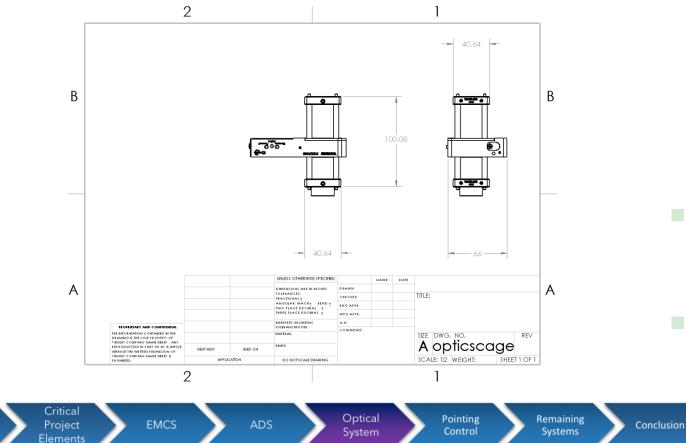


Spectrometer Coupling Design


Avantes COL-UV/VIS-25

84

 Collimating lens attached to spectrometer delivers light from image plane to the spectrometer aperture



Optics Mount

85

Optics Mount

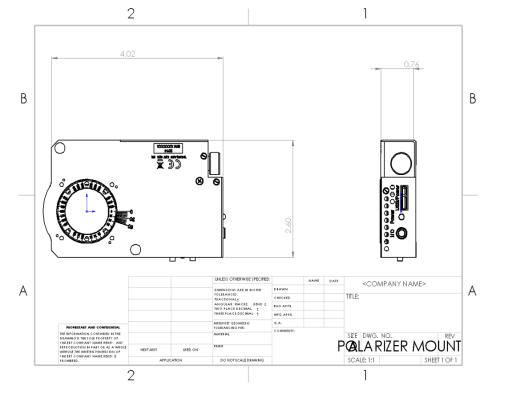
86

Polarizer Mount

Key Specifications					
Maximum Speed	10 deg/sec				
Minimum Speed	0.005 deg/sec				
Repeatable Incremental Movement	0.03 deg				
Absolute Accuracy	+/- 0.14 deg				

Remaining

Conclusion


Polarizer Mount

Critical

Project

Elements

EMCS

Optical

Pointing

Control

Remaining

Systems

88

Project

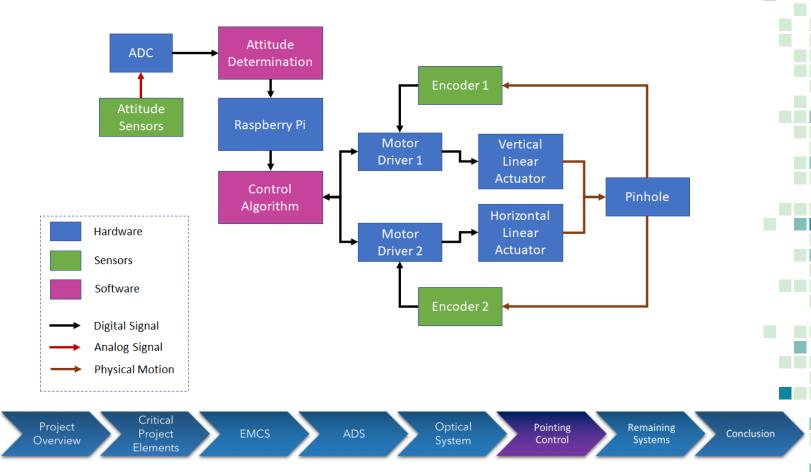
Instrument Actuators

Critical

Project

Elements

Haydon Kerk 21 mm Linear Actuators


- Non-captive for horizontal movement
- Captive for vertical movement

EMCS

Project

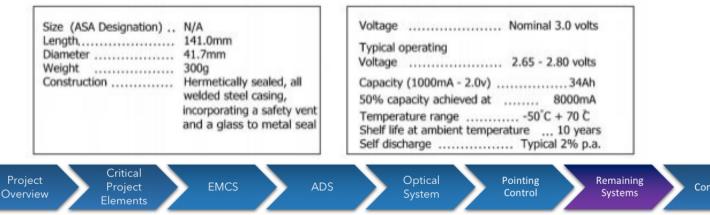
Functional Block Diagram - Controls

90

Battery Trade Study

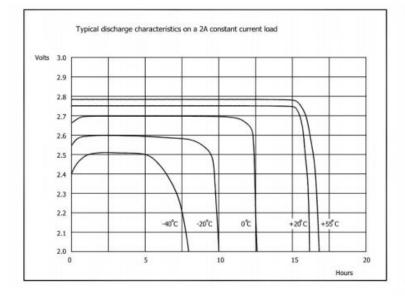
Criteria (ranked by weig	Primary	Secondary	G62 Gondola	
Cost	0.45	4 1.80	2 0.90	5 2.25
Weight	0.30	2 0.60	1 0.30	51.50
Voltage Consistency	0.15	10.15	4 0.60	50.75
Configuration Flexibility	0.10	4 0.40	4 0.40	2 0.20
Total	1.00	2.95	2.20	4.70

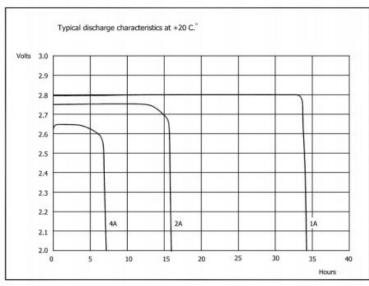
Table 68: Battery Trade Study

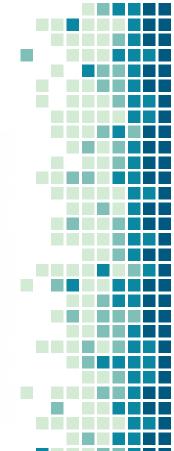


Battery Baseline Design

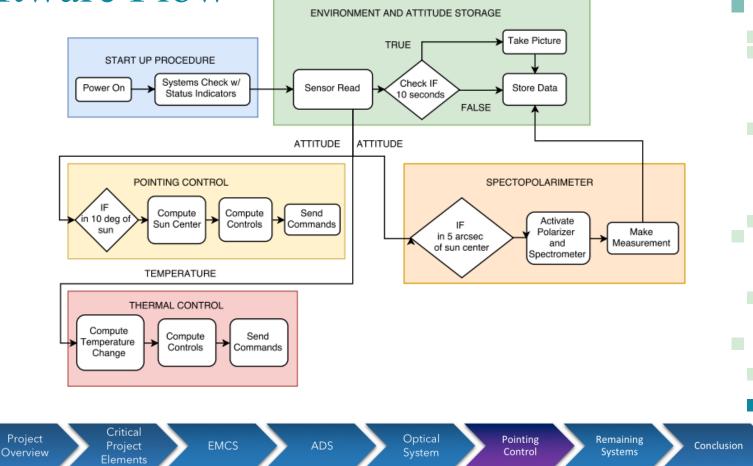
Table 3 Battery Types

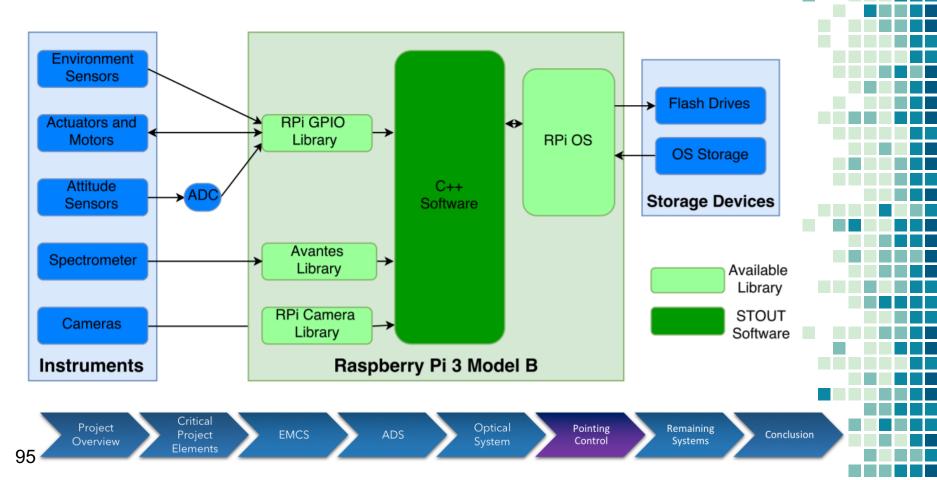

Battery	Cells per Pack	Loaded Voltage	Ampere Hour*
B7901-10	10	26	30
B7901-11	11	29	30
B7901-12	12	32	30
B9660	10	26	7
B9525	5	14	7
B9808	4	11.2	1
G20-12	1	2.6	7
G62-12	1	2.6	30

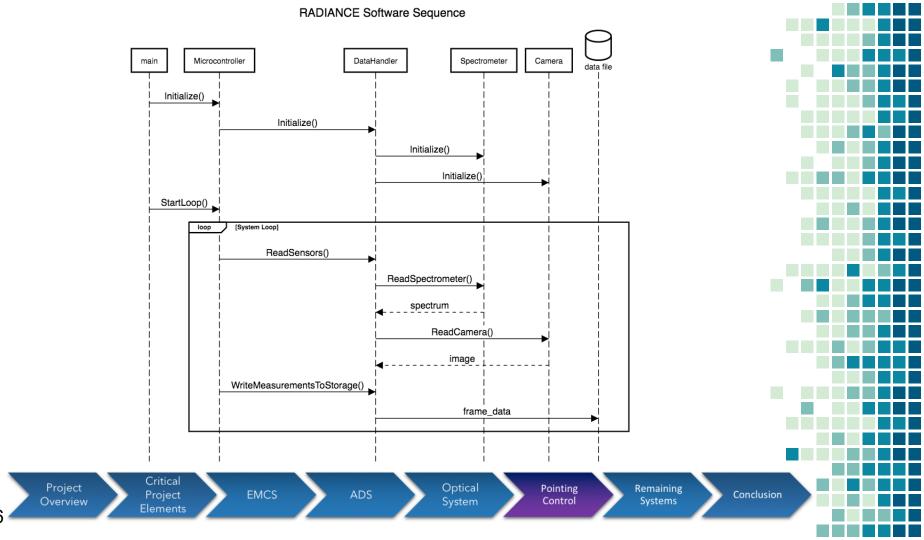

* De-rate ampere hour ratings for temperatures below -20°C.



Power Feasibility: Batteries







Software Flow

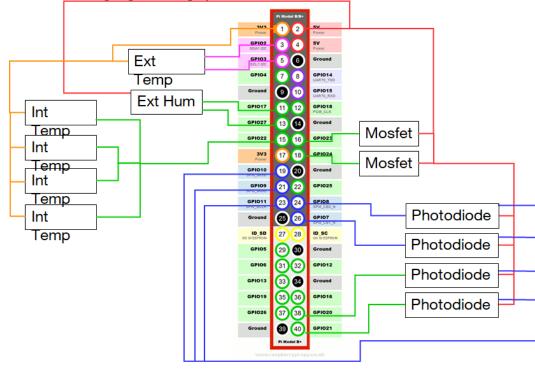
Software Interfaces

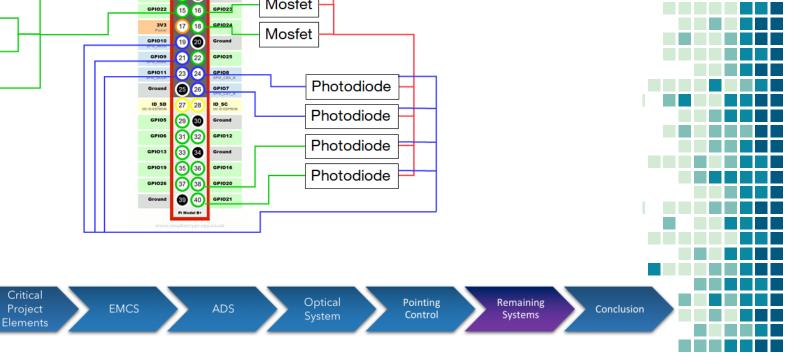
Controls Software Next Steps

EMCS

Raspberry Pi 3 Model B

- From analysis of RADIANCE's CDR:
 - Software sequence doesn't show significant use of threading
- Solution: Give pointing system read priority when controlling


Critical


Project

Elements

Project

Port Mapping

98

Rates

Raspberry Pi 3 Model B

- Time required for measurement and read:
 Approximated at .501 seconds
- > Time required for write of data: \circ 2.41 MB @ 60 MB/s = .04 sec
- Total Time Required
 .671 sec < 1 sec (Req 6.1-6.6)

Critical

Project

Elements

 \succ This satisfies the customer required rates

EMCS

Optical

System

Pointing

Control

Remaining

Systems

Conclusion

Project

Rates

Quantity	Component	Time Per Measurement	Data Transfer Time	Total
1	Camera	Typical Exposure Time: 0.25 s	2.4MB @ 30MB/s (USB2.0) = .08 s	0.33s
1	Spectrometer	Typical Integration Time: 0.17 s	10 kB @ 30MB/s (USB2.0) = 3.33e-4 s	0.17s
7	Environment and Pressure	I2C Bus Speed: 2.5e-6 s	8B @ 100kB/s (I2C) = 0.8e-4 s	5.78e-4s
4	Attitude Sensor	ADC Sampling Rate: 1.33e-5 s	8B @ 100kB/s (I2C) = 8e-5 s	3.73e-4s
			TOTAL:	.501s

This analysis was used by RADIANCE. We adjusted the amounts of data for our system.

Required

Customer requires Raspberry Pi 3 Model B (Req 1.1)
Has input capability for all required data:

Requirement	Data Type	Time Per Measurement	
6.1	Temperature	GPIO	
6.2	Pressure	GPIO	
6.3	Attitude	ADC to GPIO	
6.4	Camera	Camera Serial Interface	
6.5	Spectrometer	USB	

Software capable of recording timestamps from computer clock (Req 6.6)

Medium

Component	Number of Meas.	Size of Meas	Frequency	Total Data Over Flight
Temperature	7	8B	1Hz	67.8MB
Pressure	1	8B	1Hz	9.67MB
Accelerometer	1	8B	1Hz	9.67MB
Camera	1	2.4MB	.1Hz	145GB
Time Stamp	1	8B	1Hz	9.67MB
Sun Sensor Angle	4	8B	1Hz	38.68MB

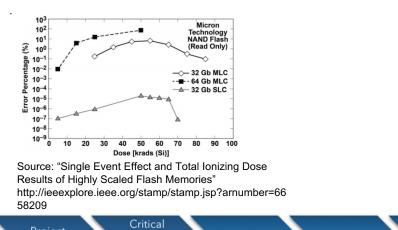
Assumptions:

- ➤ Time of flight is two weeks=1,209,600s
- > Pictures will only be taken during daytime
- > Each single number measurement will be stored as a C++ double; 8 bytes

Data Storage Feasibility

Spectrometer Data Approximation:

- 788 scan points on sun * 360 polarization angles per scan
 - 283680 measurements
- 10 kB per measurement
- 2.8 GB required for full sun scan
- MX-ES 64GB SLC Flash Drive
 - Has radiative protection


Data Storage Feasibility

- Write Speeds Required for data:
 - ADS, EMCS, and Timestamp:
 - 88 bytes @ 1Hz ---> minimum of 88B/s write speed required
 - Picture Data:
 - 2.4MB @ .1Hz → minimum of .24MB/s write speed required
- Write Speeds Available From Flash Drives:
 - Samsung Fit Flash Drives 150MB/s
 - MX-ES SLC Drive 180MB/s

Data Storage Radiation Effect Research

- Radiation events are common at altitude
 - Graph shows that number of detected radiation events grows with altitude
 - STOUT will fly at 40km
 - Hundreds of events detected at 35 km
- Radiation Events can affect flash memory
 - Single event upsets can cause bit flips in flash memory
 - Single layer cell flash memory has less chance of having a bit flip due to a Single event upset

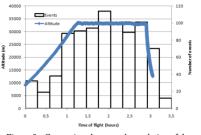


Figure 9 : Comparison between the evolution of the number of detected events as a function of time of flight and altitude profile.

Source: "Radiation Measurements in the Stratosphere" http://spaceflight.esa.int/pacsymposium_archives/files/papers/s7_10pantel.pd f

Project Critical Project EMCS ADS Optical System Control Remaining Conclusion

Materials Selection

- Aluminum 6061 Inexpensive, lightweight, easy to machine
- Aluminum 7075- Strength comparable to steel, expensive
- Titanium 6al4v Lightweight, very strong, very difficult to machine
- Stainless Steel 15-5ph Very strong, highly corrosion resistant
- Nickel 718 Ideal for high pressure/temp environments, very difficult to machine

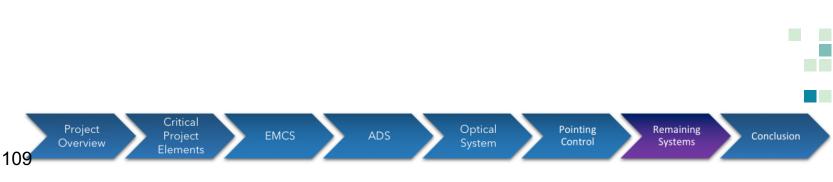
Materials Trade Study

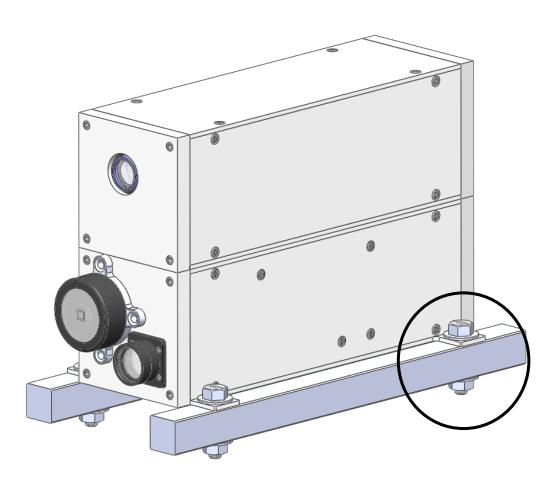
Criteria (ranked by	weight) Aluminum 606	1 Aluminum 70	075 Titanium 6al-	4v Stainless Steel 15-5	PH Nickel 718
Cost	0.35	5 1.75	4 1.40	1 0.35	2 0.70	1 0.35
Manufacturability	0.20	4 0.80	4 0.80	1 0.20	3 0.60	2 0.40
Tensile Strength	0.10	1 0.10	3 0.30	4 0.40	5 0.50	5 0.50
Shear Strength	0.10	1 0.10	2 0.20	3 0.30	4 0.40	4 0.40
Familiarity	0.10	5 0.50	4 0.40	1 0.10	3 0.30	2 0.20
Density	0.05	4 0.20	4 0.20	3 0.15	2 0.10	1 0.05
Thermal Conductivit	y 0.05	1 0.05	2 0.10	5 0.25	5 0.25	5 0.25
Corrosion Resistance	0.05	5 0.25	4 0.20	3 0.15	5 0.25	4 0.20
Total	1.00	3.75	3.60	1.90	3.10	2.35

Remaining Systems

Conclusion

Materials Trade Study


Value	Cost (\$/lb) Manufacturability	Tesnile Strength	(MPa) Shear Strength
1	< 6	Requires outsourcing to have component manufactured	< 300	< 200
2	6 to 10	Very difficult material to machine	300 to 500	200 to 400
3	10 to 30	Difficult material to machine	500 to 700	400 to 600
4	30 to 50	Moderately difficult material to machine	700 to 900	600 to 800
5	> 50	Easy material to machine	> 900	> 800


Value	Familiarity	Density (g/cm ³) Thermal Conductivity (W/m/K) Corrosion Resistance			
1	No experience with material	> 8	> 150	Not corrosion resistant	
2	Knowledge of material	8 to 6	150 to 100	Slightly corrosion resistant	
3	Used material before	6 to 4	100 to 75	Moderately corrosion resistant	
4	Very experienced with material	4 to 2	75 to 50	Highly corrosion resistant	
5	Expert with material	< 2	< 50	Extremely corrosion resistant	

Structural Material Feasibility

- Aluminum 6061-T6
 - Inexpensive 2'x2' sheet of 3/16" can be bought for less than \$50
 - Easily machinable
 - Lightweight
 - Corrosion Resistant
 - Readily available

