STOUT

<u>S</u>pectropolarimeter <u>T</u>elescope <u>O</u>bservatory for <u>U</u>ltraviolet <u>T</u>ransmissions

Presenters:

- 1. Andrew Arnold
- 2. Darin Brock
- 3. Matt Funk
- 4. Andrew Lux
- 5. Dawson Stokley

<u>Advisor:</u> Francisco López Jimenez Team Members:

- 1. Zach Allen
- 2. Caleb Beavers
- 3. Josh Bruski-Hyland
- 4. Ian Geraghty
- 5. Ryan Lynch
- 6. Matt Normile

Customer:

NCAR High Altitude Observatory

- 1. Phil Oakley
- 2. Scott Sewell

Project Overview

Motivation & Project Statement

Motivation:

- Solar phenomena present catastrophic risks to ground and space based systems
- Measurements of UV spectra at varying polarization angles can be used to model solar magnetic field structure
- > These models can be used to determine the preconditions to solar activity

Project Statement:

- STOUT will design and manufacture a 3U CubeSat payload capable of collecting UV spectra measurements and operating in high-altitude balloon flight.
- The team will utilize a variety of ground tests that simulate the expected high altitude environment in order to calibrate the module's data collection systems and verify the payload's flight readiness.

NASA Gondola

Mission

- ➤ Ground: 8 Hours
 - Powered on and systems check
- \succ Ascent: 2 hours
 - Launched from NM or Antarctica
- ➤ Flight: 2 weeks at 40 km
 - Gondola platform puts the system FOV within +/- 5° of the Sun
 - Solar irradiance data collected
 - Polarized UV spectra collected
- ➤ Descent: 1 hr
 - Customer retrieves data

System Overview

Summary	
Parameter	Values
Dimensions	10x20x30 cm ³
Mass	4.4 kg
Power Consumption	74.5 W
Flight Environment	-70°C - 20°C
Materials	Aluminum 6061 (Structure) Polyisocyanurate (Insulation)

Pointing Explanation

Overview

Functional Block Diagram

Hardware Architecture Diagram

CDR Critical Project Elements

MSR Critical Project Elements

Executive Summary

Changes from CDR

- Switched to 3D printing of several components
- Slight change in internal layout to bring horizontal motor lead screw within dimensional specifications of STOUT
- Redesign of optical pusher plate

Schedule

- > On schedule, rearranged timing of several tasks to account for delays in part acquisition
 - Pushed back ADS and motor component testing
 - Moved up manufacturing and software dates

Budget

- No risk to budget, have spent \$4055.29 expected expenses of \$6181.39, out of \$7377 budget (expanded by EEF)
- ➤ With 15% margin, expected expenses of \$7108.59, down from \$7364.47 at FFR

Schedule

Electrical Schedule

Manufacturing Schedule

Manufacturing Schedule

Software Schedule

Integration Schedule

Schedule

Structural Components

Summary

- Considerable time left but not a concern
- Simpler components for CAM/CNC manufacturing
- Approach of completing more complex components first

Pointing Control: Animation

Controls Components

Hours Remaining: 12 (20% Margin)

Optics Components

Summary

- ➢ Optics must still be assembled
- Need to validate 3D printed components to prevent breaking
- Remaining hours account for threading 3D printed parts and precise pinhole alignment, actual assembly will take ~3 hours

Gimbal Assembly

- McMaster-Carr Needle Roller Bearings
- > Pusher Arm
- Spherical rolling joints

Needle Roller Bearing

Possible Issue(s):

Bearing slack leads to inaccuracies in pointing angle

Solution(s):

- Undersized gimbal holes
- Press fit into each gimbal
- Oversized pin press fit into bearing
- Minimizes bearing slack
- Manufacturing inaccuracies calibrated out

1/4"

1⁄4"

Pusher Arm

Possible Issue(s):

- "Give" in pusher arm could lead to pointing inaccuracies
- Possible cracking due to prolonged stress from pointing
- "Slipping" due to losended set screws

Spherical Rolling Joint

- Skeptical to Component Conformance: "Each joint comes with a certificate of conformance indicating the actual tested accuracy" - Myostat Motion Control
- Concern: Relating error propagation in Rolling Joints, Pusher Arm, and Roller Bearings to optical pointing errors
- Currently developing Monte Carlo Simulation (Ian), ran into problems with triangulating pointing angle after random displacements are added

Manufacturing: Electrical

Electrical Overview

Component Overview:

- ➤ PCB designed using Altium
- Manufactured components: converter prototypes
- Procured components: Sub-system sensors and equipment, power PCB, and circuit prototype components.
- Design and validation assistance from Dr. Erickson (EE)

Integration Plan

- ➤ Iterative process of breadboarding and FlatSat testing,
- Once PCB design is validated it will be procured from Advanced Circuits to include designed converters

Electrical Hardware Manufacturing Overview

Plan

Manufacturing: Electrical

FlatSat Test

- > Purpose: Determine that all of the components integrate and operate functionally
- > Procedure
 - Integrate electronics outside of the CubeSat structure
 - Verify expected voltages and currents with a multimeter
 - Calculate and verify expected power draws

Manufacturing: Electrical

PCB Circuit Design

Manufacturing: Electrical

Manufacturing: Software

Software Status

Software Flow: Single-Board Computer

UDOO Humidity ISR

Manufacturing: Software
Computer

Software Flow: Microcontroller

Manufacturing: Software

Software Path Forward

- Continue code development
 - UDOO (Linux) interrupts
 - Sensor interfaces
 - Watchdog timer
- Begin testing
 - Sensor unit tests
 - Controls tests
 - Timing evaluation

• System tests

Most challenging to complete

Budget

		Subsystem	Part	Order Placed	Received	Cost(\$)	Expected Cost(\$)
		ADS	Solar Mems Sun Sensor	Yes	No		900
\mathbf{D} 1 (AD3	UDOO RS-485 Sheild	No	No		9.95
Budget	-		Main Lens	Yes	Yes	889.54	
Duaget			Polarizer Mount	Yes	Yes	1183.3	
-			40um Pinhole	Yes	Yes	60.75	
			Lens/Pinhole Mounts	Yes	Yes	38.52	
			Cage Rods 2in	Yes	Yes	20.86	
		Optics	Cage Rods 6in	Yes	Yes	58.39	
			Lens Tubes	Yes	Yes	25.65	
			Thorlabs Shipping	NA	NA	9.02	
			Avantes COL-UV/VIS Collimating Lens	Yes	Yes	123.5	
			Lens Gloves/Cleaner	No	No		10
			UV Photodiode	Yes	Yes	70.39	
			Temperature Sensors	Yes	Yes	15.8	
			Pressure Sensor	Yes	No		59.95
			Resistive Pad Heaters	Yes	No	72.6	
Total	With 15% Margin		Humidity Sensor	Yes	Yes	16.95	
Expected Cost	3		Transceiver Breakout	Yes	Yes	9.95	
Expected Cost		TCS	Thermocouples	Yes	Yes	59.36	
¢(101.00	7400 50		Heatsinks	Yes	Yes	3.9	
\$6181.39	/108.59		Insulation(to be returned/refunded)	Yes	Yes	50.55	
			Insulation	Yes	Yes	11.97	
			Lens Heater	No	No		50
Total Budget	Exported		Thermal Tape	Yes	Yes	3.95	
	Expected		Aluminum	Yes	Yes	300.43	
with EEF Grant	Remaining Funds	Structure	Spherical Roller Bearing	Yes	No	391.5	
	(15% Margin)		Spherical Roller Bearing	No	No		391.5
			Converters	Yes	Yes	36.81	
	¢740 10	EPS	Wires	Yes	Yes	16.95	
\$7377.00	\$200.40		PCB	No	No		160
		Various	Gantt Chart Software	NA	NA	84.99	
		Various	Printing	NA	NA	43.36	
			Stepper Motor	Yes	No		494.7
		Controls	GPS	Yes	Yes	49.51	
			Motor Controller	Yes	Yes	29.9	
			Camera	Yes	Yes	45	
			USB Hub	Yes	Yes	16.99	
		DAQ	USB Drives	No	No		50
			Logic Level Converters	Yes	Yes	28	
			UDOO x86 Ultra	Yes	Yes	286.9	
		Totals				4055.29	2126.1

Table of Contents

Sections	Backups
Overview	EMCS
<u>Schedule</u>	ADS
<u>Manufacturing:</u> Mechanical	Optical Components
<u>Manufacturing:</u> Electrical	Instrument Control Components EPS
	DAQ
<u>Manufacturing:</u> <u>Software</u>	Photodiode for Testing
<u>Budget</u>	Pointing Angle Algorithm
	Parts to Manufacture

System Overview

Summary				
Parameter	Values			
Dimensions	10x20x30 cm			
Mass	4.4 kg			
Power Consumption	74.5 W			
Flight Environment	-70°C - 20°C			
Materials	Aluminum 6061 (Structure) Polyisocyanurate (Insulation)			

Optics

- Thorlabs UV Doublet Lens: Focus light in UV spectrum
- Thorlabs Mounted Wire Grid Polarizer: Control input light polarization angle
- Thorlabs Precision Pinhole: Isolate spot on Sun
- Avantes Collimating Lens: Feed light into spectrometer
- Avantes Spectrometer: Measure light intensity as function of wavelength
- Thorlabs Optics Cage: Mount and align optical components

Attitude Determination System

Sun Sensor

- Solar Mems Sun Sensor: Determines Sun's position in the system's FOV
- Quadrant photodetector used to measure off-sun angles from generated photocurrents

Environmental Monitoring & Control System

47

- 7 Internal Temperature Sensors: Measure internal temperature
- 2 External Temperature Sensors: Measure External Temperature
- 1 Pressure Sensor: Measure external pressure
- 3 Resistive Pads: Keep module at an operable temperature

Pointing Controls

Components

- Custom Cage System Gimbal Mount
- 2 Haydon Kerk Pittman Hybrid Stepper Motor Non Captive Linear Actuator
- Custom Motor Casings
- Custom Motor Gimbal Mounts
- Custom Cage System Pusher Arm
- Hephaist Spherical Rolling Joints

48

CPU and **Data** Acquisition

Components

UDOO x86 Ultra

- 2.56 GHz Quad Core processor for control computation
- Intel Curie Microcontroller for motor control
- USB 3.0 for fast write rates

USB Thumbdrives for data storage

- One MX-ES Ultra 64 GB
- One Samsung Fit 64 GB
- Sabrent 4 Port USB 3.0
 Externally Powered Hub
 RADIANCE Spectrometer
- 2 MP Visible Camera

Structure

Gondola Integration tabs

- Aluminum 6061: Exterior plates and interior struts
- Tabs attach to balloon gondola

Electrical Power System

Printed Circuit Board

Components

• Custom PCB to distribute power to subsystems

GANTT Chart

52

Title	Start	End	Jan 2018	Feb 2018	Mar 2018	Apr 2018	May 2018
▼ STOUT			• J				
 Electrical 			•				
 Lead Times (Electrical Components))		1/29/18	9d Lead Times (E	lectrical Components)		
 Lead Times (EMCS Components) 			1/30/18	8d Lead Times (E	MCS Components)		
 Lead Times (ADS) 			1/20/18	26d Lead Tin	nes (ADS)		
 Preliminary Breadboarding 			2/7	7/18 8d Prelimina	ary Breadboarding		
 Prelimanary Soldering 			2	2/11/18 🎽 Preliman	ary Soldering		
 Sun Sensor Verification 				2/15/18 🧵 Sun Se	ensor Verification	1	
 Final Breadboard 				2/15/18 📋 Final I	Breadboard	ADS	3
 FlatSat Testing (Breadboard) 				2/18/18 🙆 Flat	Sat Testing (Breadboard	i) Con	Itrols
 Lead Times (PCB) 				2/21/18	Lead Times (PCB)	DAC	2
 Final Soldering 				3/5/1	8 👛 Final Soldering	EM	CS
 FlatSat Testing (PCB) 				3/8	/18 🔋 FlatSat Testing	(PCB)	
 Mechanical 			•			EPS	3
 Controls 			•			Opt	ics
 Manufacturing Documents 			1/19/18 8d	Manufacturing Docum	ents	PM	
 Polarizer Mount Testing 			1/30/18	Polarizer Mount Te	esting	Stru	uctures
 Controls Monte Carlo Simulation 			1/21/18 2	Controls M	onte Carlo Simulation	0	tomo
 Lead Times (Motors) 			2/6/	/18 7d Lead Time	es (Motors)	Sys	tems
 Gimbal Tolerance Testing 			2	2/11/18 🍎 Gimbal T	olerance Testing	Tear	m
 Motor Vibration/Speed Tests 				2/13/18 🗿 Motor V	ibration/Speed Tests		
 Lead Times (Spherical Joints) 			1/18/18	31d Lead	Times (Spherical Joints)		
 Gimbal Bearing Reorder (Potential) 				2/15/18 5d Giml	oal Bearing Reorder (Po	tential)	
 Control Structure Manufacturing 			1/27/18	25d Cor	trol Structure Manufact	uring	
 Optics 			•				
 Manufacturing Documents 			1/19/18 8d	Manufacturing Docum	ents		
 Lead Times (Optics) 			1/20/18 7d	Lead Times (Optics)			
 Spectrometer Integration (Customer) 			1/19/18	3d Spectrome	ter Integration (Custome	ər)	
 Optics Structure Manufacturing 			1/27/18 🎽	0ptics Stru	cture Manufacturing		
 Optics Assembly 			2	2/11/18 📋 Optics A	ssembly		
 Optical Alignment Calibration 				2/14/18 5d Optic	al Alignment Calibration	ı	

GANTT Chart

Structure

- · Lead Times (Structures)
- · Manufacturing Documents
- Structure Manufacturing
- SBO Mount Measurements
- Testing Mount Manufacture (SBO)
- · Final Assembly
- Software
 - Lead Times (DAQ)
 - EMCS Sensor Function
 - Thermal Control Function Prelim
 - Spectrometer Control Function
 - ADS Input Function
 - Pointing Control Function
 - Polarizer Control Function
 - Watchdog Timer
 - Timing Integration Test
 - Software Stability Test
 - SBO Telescope Programming
 - SBO Test Code
 - Thermal Control Function Modifications
 - · Pointing Control Modifications
- Integration
 - EMCS and Structure (HAO TVAC)
 - EMCS and Non-critical Component (HAO TVAC)
 - Full System (HAO TVAC)
 - ADS/Optical Alignment Calibration (SBO)
 - ADS/Optical Alignment Verification (SBO)
 - Spring Break
 - ADS/Control Calibration (SBO)
 - ADS/Control Verification (SBO)
 - User Manuals

Critical Parts

Spherical Rolling Joint

- Component Conformance: "Each joint comes with a certificate of conformance indicating the actual tested accuracy" - Myostat Motion Control
 - 2.5 um backlash
 - 15 deg max swing angle
 - $\circ \quad 128 \text{ N Max Dynamic Load}$
 - 100 N Max Static Load
- Relating error propagation in Rolling Joints, Pusher Arm, and Roller Bearings to optical pointing errors
- Currently developing Monte Carlo Simulation (Ian)

DIMENSION	S													
MODEL (units: mm)	A	в	с	D	E	F	G	н	1	J	к	м	N	WIDTH ACROSS FLATS
SRJ004C	19	15	3.8	2.5	10	6	M3x0.5	3.6	2	1.5	2	6	1.5	4

Electrical Schedule

- Tue 2/6 converter components arrive
- 2/6 2/8 component unit testing
- 2/8 2/15 converter breadboarding and testing
- 2/6 2/15 PCB evaluation with Dr. Erickson (EE)
- 2/15 2/22 Flatsat testing on breadboard (adjust if this is supposed to happen later - can stretch the 2 above items)
- 2/22 PCB board ordered from Advanced Circuits (1 - 1.5 week delivery)
- Flatsat test with PCB after.

Mechanical Processes

Computer numerical control (CNC) is the automation of machine tools by means of computers executing pre-programmed sequences of machine control commands

Computer-aided manufacturing (CAM) is the use of software to control machine tools and related ones in the manufacturing of workpieces

Stereolithography is a form of 3-D printing technology used for creating models, prototypes, patterns, and production parts in a layer by layer fashion using photopolymerization, a process by which light causes chains of molecules to link, forming polymers

Thermal Simulations

Study name:transient_ascent_all_heaters_off(-Default-) Plot type: Thermal Thermal1

•Concerned about spectrometer survival during ascent

•Two simulations were ran simulating the environmental conditions of ascent; one with heaters on and one with heaters off

•With active heater control, we will be able to keep spectrometers at survivable temperature

472.239. 131.318

EMCS Requirements

 EMCS proven valid during cruise and descent, however ascent operational temperature margins were too close to validate through 1D model

temperature

Design Requirements: EMCS

Solidworks 3D Thermal Modeling

- Partial transient model simulated at harshest ascent condition of approximately -65°C at 16 km altitude
- o Assumptions
 - Perfect thermal conduction through bonded contacts
 - Convection, conduction and radiation accounted for
 - Power board, and heat pads are only notable heat sources (all other systems not operating during ascent)

Initial Conditions

Item	Value
STOUT Internal Temp.	15°C (STD sea level)
Ambient Temperature	-65°C (Lower temperature limit of ascent)
Air Convective Heat Transfer Coefficient (External and Internal)	$\sim 5 \text{ W/m}^2\text{K}$

Expected Spectrometer Temperatures at -65°C Environment

60

Attitude Determination System

Solar Mems Sun Sensor

- Quadrant photodetector used to measure off-sun angles from generated photocurrents for optics pointing control
- Field of View: dual axes $\pm 15^{\circ}$
- \circ Accuracy: $\pm 0.02^{\circ}$
- Serial RS 485 Communication
- Output in Hex
- Requires calibration in conjunction with optical axis

Attitude Determination System

'-5° R_{Sun} Center Sun ź Sun **V2**

$$x_{1} = V_{3}+V_{4}$$

$$y_{1} = V_{1}+V_{4}$$

$$x_{2} = V_{1}+V_{2}$$

$$y_{2} = V_{2}+V_{3}$$

$$F_{x} = \frac{x_{2}-x_{1}}{x_{2}+x_{1}}$$

$$F_{y} = \frac{y_{2}-y_{1}}{y_{2}+y_{1}}$$

$$\alpha = \arctan(C * F_{x})$$

$$\beta = \arctan(C * F_{y})$$

$$Parametric Value (C)$$

$$* Dependent on Sensor *$$
Sun Off-Angles ($\alpha \& \beta$)
$$\circ$$
 Communicates the sun's position relative to field of view to the system

• Data saved and used in optics controls

Optical System Requirements

FR2: Take variable polarization angle UV spectrum of multiple points on the Sun

Requirement	Description	Level Met
2.1	Isolation of $\leq 1'$ (0.0167°) spot in the FOV	1
2.2	Take spectrum measurements over the 270 - 400 nm range	3
2.3	Rotate polarizer with <= 0.5° accuracy	2
2.4	Pointing capabilities of +/- 1° in azimuth and +/- 5° in elevation	1

Optical System/Pointing Control

FR 2.4: Pointing capabilities of +/- 5° in azimuth and +/- 1° in elevation

• Relevant Components

- Thorlabs 30mm Cage System
- Custom Cage System Gimbal Mount
- Haydon Kerk Pittman Hybrid Stepper Linear Actuator with encoder
- Hephaist Spherical Ball Joints
- o Custom Gimbal Motor Mounts

• Sources of Error

- Manufacturing error of the alignment of Thorlabs Cage System (+/- 180 μm)
- \circ Slack in ball joints (+/- 2 μ m)
- Slack in gimbal mounts

Risk Summary

Risk	Risk Description	Pertaining Functional Requirement
R1	Software Data Write Failure	FR 2, FR 3, FR 4, FR5
R2	Software Bit Flip	FR 2, FR 3, FR 4, FR5
R3	Under-heating of CubeSat Internal Components	FR 1, FR 2, FR 4, FR5
R4	Over-heating of CubeSat Internal Components	FR 1, FR 2, FR 4, FR5

		Severity					
		1	2	3	4	5	
	5				R8		
g	4				R7		
kelihoc	3			R3	R4		
Li	2			R2	R1/R6		
	1				R5		

Risk Summary

Risk	Risk Description	Pertaining Functional Requirement
R5	Operation Failure "Freeze" of UDOO X86	FR 1, FR 2, FR 4, FR5
R6	Loss of Attitude Determination Calibration	FR 3, FR 4
R 7	Manufacturing/Calibration/Test Delays	FR 1-5
R8	Manufacturing creates optical precision errors	FR2, FR4

		Severity					
		1	2	3	4	5	
	5				R8		
g	4				R7		
keliho	3			R3	R4		
Lil	2			R2	R1/R6		
	1				R5		

High Risk Mitigation

Risk	Risk Description	Risk Mitigation
R8	Manufacturing creates pointing precision errors	 High precision machined gimbal mounts Calibrate errors out in software & machine shop Contact with AES machining faculty
R7	Manufacturing/Calibration/Test Delays	 Utilize machining, testing and staff resources Finalize test plans early in Spring Semester Follow hard timeline
R 4	Over-heating of CubeSat Internal Components	Conduct thorough thermodynamic analysisExplore use of peltier devices

Types of Risks			Severity					
X Budget			1	2	3	4	5	
X Technical	pood	5				R8		
		4				R7		
		2						
X Schedule	ikeli	3				K4		
		2						
		1						

Medium Risk Mitigation

Risk	Risk Description	Risk Mitigation
R1	Software Data Write Failure	Watch Dog methodology
R3	Under-heating of CubeSat Internal Components	Conduct thorough thermodynamic analysis
R6	Loss of Attitude Determination Calibration	Allow larger calibration time in scheduleTransport safety plan

			Severity				
Types of Risks			1	2	3	4	5
X Budget		5					
X Technical	-	4					
Safety Schedule	kelihoo	3			R3		
		2				R1/R6	
		1					

Focal Length Determination Test

- **Purpose:** Experimentally determine the focal point of the main lens
- **Procedure:** Point optics train at Sun and use photodiode to verify pinhole placement within the optics train
 - Maximum voltage potential occurs across the photodiode when pinhole is located in the focal plane and Sun image is focused
 - Move pinhole incrementally until max photodiode voltage occurs

ADS Verification/Calibration Plan

Specifications

- Sommers-Bausch telescope has accuracy > 20 " $\sim 0.0055^{\circ}$
- Accuracy of Sun sensor:
- $\circ ~~18^{\prime\prime} \sim 0.02^{o}$
- Total accuracy: 75.6" ~ 0.021°

RADIANCE/ Telescope Mount

70

ADS Verification Plan

Verification Procedure

- Point telescope at Sun center
 - Save sensor off-sun angles
- Deviate telescope normal axis and measure deviations between sensor normal axis and sun center using sensor FOV
- Repeat process for multiple nodes to ensure accuracy
- Compare sensor off-sun angles to experimentally determined off-sun angles

ADS Calibration Plan

Calibration Procedure

- Point Telescope at Sun center
- Record off sun angles
- Program deviation values in telescope software for optics calibration
- ADS now calibrated to Telescope mount
- Proceed with Optics Calibration

Optics Calibration Plan

Calibration Procedure

- Mount photodiode behind pinhole & verify optics train is pointed at the Sun
- Actuate telescope horizontally to move across edge of Sun
- Read photodiode voltage & ADS off-Sun angles as a function of time during movement
- Repeat for vertical actuation
- Post process data to determine offset between optics and ADS axes ($d\psi \& d\theta$)

$$\delta \psi = \psi_{edge} - r_{Sun} = \psi_{edge} - 0.5333^{\circ}$$

Pointing Control Verification Plan

Verification Procedure

- After ADS & Optics calibration are accounted for in software, functionality of pointing control can be verified
- Center Sun in ADS FOV using telescope
- Actuate optics system to the edge of the Sun
- Program telescope to move in pendulum motion to simulate gondola
- Control system will maintain constant photodiode voltage if the pointing system accurately accounts for movement

Solidworks Result

Partial Transient Time Profile

- > 30 minute stimulation
- > 60 second time interval

Spectrometer Temperature VS Time

Environmental Monitoring & Control System

Instrumentation

- <u>7 DS18B20 Temperature Sensors</u> to measure the module's internal temperature
- <u>2 K-Type Thermocouples w/ Amplifier</u> <u>Boards to measure external environmental</u> temperature
- <u>MS5803-14BA Pressure Sensor</u> to measure external environmental pressure
- <u>HIH-4030 Humidity Sensor</u> to measure environmental humidity
- 2-3 Kapton Resistive Pad Heaters to keep the interior of the module at an operable temperature

Solidworks Result

Partial Transient Time Profile

- > 30 minute stimulation
- > 60 second time interval

Spectrometer Temperature VS Time

Environmental Monitoring & Control System

Instrumentation

- <u>7 DS18B20 Temperature Sensors</u> to measure the module's internal temperature
- <u>2 K-Type Thermocouples w/ Amplifier</u> <u>Boards to measure external environmental</u> temperature
- <u>MS5803-14BA Pressure Sensor</u> to measure external environmental pressure
- <u>HIH-4030 Humidity Sensor</u> to measure environmental humidity
- 2-3 Kapton Resistive Pad Heaters to keep the interior of the module at an operable temperature

Purpose: Solve Off-Sun Angles

Assumptions

Sun within $\pm 15^{\circ}$ of optical axis (given by customer)

Conclusion

Sun off-angles relative to Sun Sensor axis is equal to that of the optical axis

Thermal Expansion

- Expanding material assumed uniform
- Sun Face is assumed as flat plate
- Every linear dimension increases by the same percentage with a change in temperature, including holes.

Conclusion

• Expansions assumed negligible so long as linear expansion and no bending (Explained on next slide)

At an extreme variation in temperature where the front sun facing side is 20° K warmer than back side, the difference in optics and ADS line of sight will only be $\Delta \psi$ =0.00886°

Needle Roller Bearing Specs

Parameter	Values
Shaft Diameter	1⁄8″
Width	1⁄4″
Width Tolerance	-0.01-0"
Shaft Tolerance	-0.0003-0″

Software Run Time Calculations

Mainline Time Requirements							
Process	Data Size [B]	Quantity	Read Time [ms]	Write Rate [MB/s]	Interupt Time [ms]	Subtotal [ms]	
Internal Temp.	2	7	2.5	120	0	17.50011667	
External Temp.	4	2	2.5	120	0	5.000066667	
Pressure	3	1	8.22	120	0.5	8.720025	
Camera	600000	1	15	120	0	20	
Polarizer	0	1	1	120	0	1	
Spectrometer - Visible	10000	1	0.17	120	0	0 2533333333	
	10000		0.17	120	0	0.200000000	
					Total:	52.47354167	
ISR1 (ADS)							
Operation	Data Size [B]	Comm. Rate [B/s]	Subtotal [ms]				
Request ADS Data	16	14400	1.111111111				
Wait for Data	0	0	5				
Write ADS Data to USB	16	14400	1.111111111				
Calc. Required Actuation			1				
Send Actuation (Serial)	8	14400	0.5555555555				
Arduino Interrupt			0				
		Total:	8.77777778				

Software Run Time Calculations

ISR2 (Spectrometer)						
Operation	Data Size [B]	Comm. Rate [B/s]	Subtotal [ms]			
Config. Spectrometer			0			
Signal Measurement			0			
Spectrometer Exposure			300	Not included in total		
Spectrometer Sampling			3			
Data Transmission			4.6			
Save Data (2x)	20000	12000000	0.1666666667			
		Total:	0.1666666666			
ISR3 (Humidity)						
Operation	Data Size [B]	Comm. Rate [B/s]	Subtotal [ms]	Main Total:	61.69579722	ms
Grab Humidity Data	4	14400	0.2777777778	Max Allowable Total:	100	ms
Save Data	4	12000000	0.00003333333 333			
		Total:	0.2778111111			

Controls Software Flow

Pointing Algorithm

Pointing Equations

This document lays at the equations that are used for pointing the STOUT's optical instrument. Also attached in the document are images showing the vectors discussed overlaid on a diagram of the optics system. All units in the document are in mm and degrees.

```
Given: azimuth (\theta) and elevation(\phi) angle in [°]
Finds: horizontal and vertical actuation length [mm]
Date created: 12/04/17
Date modified: 12/12/17
Prepared by: Dawson Stokley - STOUT project manager
```

Housekeeping

This section allows the use of subscripts in variable names. Must be evaluated upon opening the document, before other cells are evaluated.

```
Symbolize [ r_ ]
Symbolize [ d_ ]
Symbolize [ L_ ]
```

Pointing Algorithm (Cont.)

Problem Setup

This section initializes the positions of the various components.

Position Declarations

This subsection initalizes the vector positions of the cage gimbal center (\mathbf{r}_{cg}) , vertical motor gimbal center (\mathbf{r}_{vg}) , horizontal motor gimbal center (\mathbf{r}_{hg}) , vertical ball joint center (\mathbf{r}_{vb}) , horizontal ball joint center (\mathbf{r}_{hb}) , and the distance from \mathbf{r}_{cg} to the apex (\mathbf{d}_{ap}) . The apex is defined as a position on the optical axis, centered inside the actuation pushing plate. **O1offset** is used to translate the origin to \mathbf{r}_{cg} , as the SolidWorks origin is not alligned with this position. All values are taken from a SolidWorks assembly of STOUT.

 $\begin{array}{l} \texttt{Oloffset} = \{16.15, -9.28, 45.78\};\\ \texttt{r}_{cg} = \{0, 0, 0\};\\ \texttt{r}_{vg} = \{41.45, -107.68, -45.09\} - \texttt{Oloffset};\\ \texttt{r}_{hg} = \{-2.14, -52.68, -46.16\} - \texttt{Oloffset};\\ \texttt{r}_{vb} = \{49.30, -65.72, -45.09\} - \texttt{Oloffset};\\ \texttt{r}_{hb} = \{36.79, -53.21, -45.09\} - \texttt{Oloffset};\\ \texttt{d}_{ap} = \texttt{90.865}; \end{array}$

Pointing Algorithm (Cont.) Apex Frame Position Vectors

This subsection calculates the vectors from the apex to the ball joint centers at a 0° pointing deflection. This is used later for finding the actuated ball joint centers. $\mathbf{r}_{apex,zero}$ is defined as the 0° apex position, $\mathbf{r}_{apex,vb,zero}$ is defined as the 0° vector from the apex to the vertical ball joint, and $\mathbf{r}_{apex,hb,zero}$ is defined as the 0° vector from the apex to the horizontal ball joint.

```
r_{apex,zero}=r_{cg}-\{0,0,d_{ap}\};

r_{apex,vb,zero}=r_{vb}-r_{apex,zero};

r_{apex,hb,zero}=r_{hb}-r_{apex,zero};
```

Problem Solution

This section outlines the calculations used for pointing.

Azimuth/Elevation Input

This subsection allows the user to input desired azimuth (θ) and elevation (ϕ) pointing angles in degrees.

Pointing Algorithm (Cont.) Find Position of Actuated Apex

This subsection converts the inputted spherical coordinates θ and ϕ into a cartesian normal vector. This vector is multiplied by d_{ap} to find the location of the apex in its actuated position (r_{apex}).

```
\mathbf{r}_{apex} = \begin{pmatrix} -Sin[\theta] * Cos[\phi] \\ Sin[\phi] \\ -Cos[\theta] * Cos[\phi] \end{pmatrix} * \mathbf{d}_{ap};
```

Convert $r_{apex,vb}$ and $r_{apex,hb}$ to Cage Gimbal Frame

This subsection sets up the rotation matrix (**RotMat**) used to convert $\mathbf{r}_{apex,vb,zero}$ and $\mathbf{r}_{apex,hb,zero}$ into the actuated apex frame. These new vectors are $\mathbf{r}_{apex,vb}$ and $\mathbf{r}_{apex,hb}$, respectively.

```
RotMat = \begin{pmatrix} Cos[\theta] & Sin[\theta] * Sin[\phi] & Sin[\theta] * Cos[\phi] \\ 0 & Cos[\phi] & -Sin[\phi] \\ -Sin[\theta] & Cos[\theta] * Sin[\phi] & Cos[\phi] * Cos[\theta] \end{pmatrix};
r_{apex,vb} = RotMat.r_{apex,vb,zero};
r_{apex,hb} = RotMat.r_{apex,hb,zero};
```

Find Ball Joint Locations

This subsection finds the actuated positions of the ball joints, rcg, vb and rcg, hb for vertical and horizon-

Pointing Algorithm (Cont.)

tal, respectively. This is done by adding \mathbf{r}_{apex} to the respective apex frame position vectors of the ball joints. **O1offset** is added to the values so they can be verified with SolidWorks coordinates.

```
r_{cg,vb} = r_{apex,vb} + r_{apex} + 010ffset
r_{cg,hb} = r_{apex,hb} + r_{apex} + 010ffset
```

 $\{\{49.3\}, \{-65.72\}, \{-45.09\}\}$

 $\{\{36.79\}, \{-53.21\}, \{-45.09\}\}$

Calculate Actuation Length

This subsection finds the actuation lengths of the vertical and horizontal stepped motors, \mathbf{L}_{v} and \mathbf{L}_{h} respectively. These values are found by taking the normal between the gimbal and ball joint centers. **O1offset** is subtracted out to account for its addition above. These values are not the actual actuation lengths, but the distance from the motor gimbal centers to the ball joint centers. Upon recieving the stepped motors and ball joints from their respective manufacturers, precision measurements will be taken to determine the ball joint radius and position of the motor inside the gimbal. These values will be subtracted from the calculated values in order to find the actual actuation lengths.

```
 \mathbf{L}_{v} = \mathbf{Norm} \left[ \mathbf{r}_{cg,vb} - \mathbf{r}_{vg} - \mathbf{01offset} \right] \text{ "mm"} \\ \mathbf{L}_{h} = \mathbf{Norm} \left[ \mathbf{r}_{cg,hb} - \mathbf{r}_{hg} - \mathbf{01offset} \right] \text{ "mm"}
```

42.688 mm

38.9483 mm

Light Source Scanning Algorithm

- 1' between scan points
- 788 scan points: 1.1 days to scan entire surface at every polarization angle

Solidworks Result

Partial Transient Time Profile

- > 30 minute stimulation
- > 60 second time interval

Spectrometer Temperature VS Time

Environmental Monitoring & Control System

Instrumentation

- <u>7 DS18B20 Temperature Sensors</u> to measure the module's internal temperature
- <u>2 K-Type Thermocouples w/ Amplifier</u> <u>Boards to measure external environmental</u> temperature
- <u>MS5803-14BA Pressure Sensor</u> to measure external environmental pressure
- HIH-4030 Humidity Sensor to measure environmental humidity
- 2-3 Kapton Resistive Pad Heaters to keep the interior of the module at an operable temperature

Purpose: Solve Off-Sun Angles

Assumptions

Sun within $\pm 15^{\circ}$ of optical axis (given by customer)

Conclusion

Sun off-angles relative to Sun Sensor axis is equal to that of the optical axis

Thermal Expansion

- Expanding material assumed uniform
- Sun Face is assumed as flat plate
- Every linear dimension increases by the same percentage with a change in temperature, including holes.

Conclusion

• Expansions assumed negligible so long as linear expansion and no bending (Explained on next slide)

At an extreme variation in temperature where the front sun facing side is 20° K warmer than back side, the difference in optics and ADS line of sight will only be $\Delta \psi$ =0.00886°

Motor Case Gimbal - Back Drawing

Actuation Arm Drawing

Spectrometer Brace Drawing

Front Plate Drawing

Back Plate Drawing

Side Panel Drawing

Vertical Motor Brace Drawing

Horizontal Motor Brace Drawing

