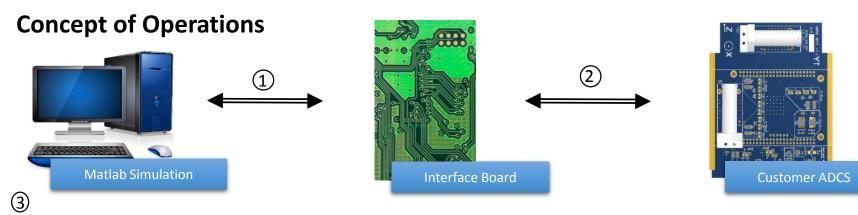
QB50 CubeSat MSR

Matt Hong, Nick Andrews, Dylan Cooper, Colin Peterson, Nathan Eckert, Sasanka Bathula, Cole Glommen


Problem Statement

Develop a <u>test suite</u> that will allow for the <u>validation</u> <u>and calibration</u> of the QB50 Attitude Determination and Control System based (**ADCS**) on simulated mission environment.

Project Objectives

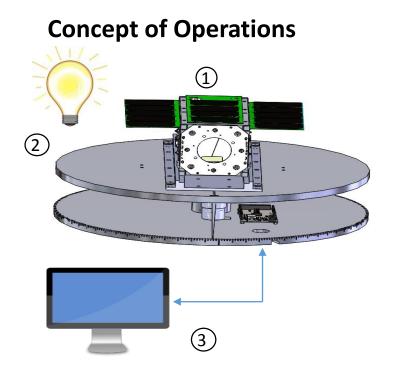
- Develop an *interface board* that will allow for a hardware-in-the-loop simulation by running a simulation on the ADCS board.
- Develop a *turn-table* apparatus for Sun sensor calibration.
- Develop *test apparatus* for conducting Helmholtz cage test.

Interface Board

- 1. Send simulation data to interface board
- 2. Emulate sensor readings to ADCS board
- 3. Run simulation and log necessary data

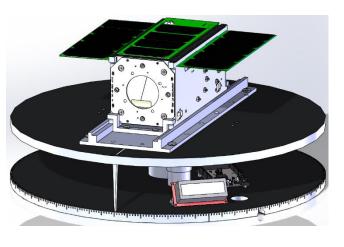
Baseline Design

- 4 layer printed circuit board
- PIC microcontroller to program
- Minor changes from CDR


Levels of Success

 Level 3 – Implement GUI to disable sensors

Critical Project Elements


- Communicate at correct frequency
 - ADCS runs at 10Hz, Simulation runs much faster
 - Store simulation data, stream at desired rate
 3

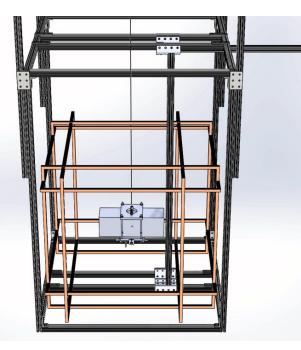
Sun Sensor Turntable

- 1. Integrate CubeSat
- 2. Rotate turntable
- 3. Compare table angle to angle reported by CubeSat

Baseline Design

- Aluminum plates, DC motor, magnetic encoder
- Arduino to program
- Allow for 2 orientations
- No major changes from CDR

Levels of Success


• Level 1 – Rotate with ±0.5 degrees accuracy

Critical Project Elements

- Top plate reflectance < 5%
 - 2-3 weeks to get coated

HelmHoltz Cage

Concept of Operations

- 1. Integrate CubeSat
- 2. Rotate CubeSat without magnetorquer
- 3. Rotate CubeSat with magnetorquer
- 4. Compare results

Baseline Design

- Extruded Aluminum
- Braided nylon, 30lbs load
- No major changes from CDR

Levels of Success

• Level 2 – Verify functionality of magnetorquer

Critical Project Elements

• Minimize torque on line

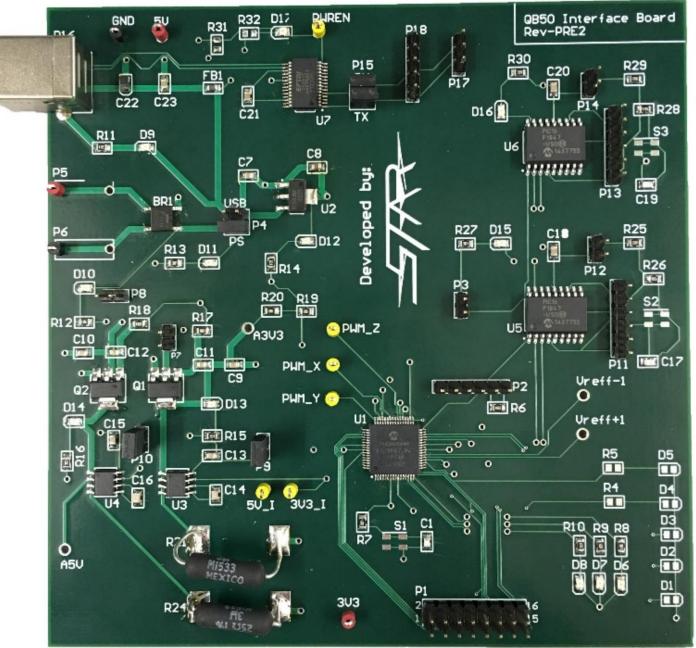
Schedule

	Task Mara	Otart Data	E-10-1-	%		Jan		Feb			Mar				A	pr			
	Task Name	Start Date	End Date	Com		Jan 10 Jan 17 Jar	n 24 Jan 31 I	Feb 7 Feb 14	Feb 21	Feb 28 Ma	r 6 Mar 13	3 Mar 20) Mar 27	Apr 3	Apr 10	Apr 17	Apr 24	May 1	May
1	Sun Sensor Turn Table	01/11/16	04/15/16	24%	Q @ 7											Sun Sensor	Turn Table		
2	Order Materials	01/11/16	02/05/16	80%			Ord	ler Materials											
	Mashina Tahla	01/10/16	02/10/16	100/		Jan		F	eb		Machine Ta	Mar				Ap	NC.		
	Task Name	Start Date	e End Date	% Com	D ₇ Ja	3 Jan 10 Jan 17	Jan 24 Jan :			eb 21 Feb 2	8 Mar 6		Mar 20	Mar 27	Apr 3			Apr 24	Mar
					Q, Q,	£													
1	Helmholtz Cage Test Structure	01/11/16	03/18/16	42%		7							Helmholtz C	age Test St	ructure				
2	Order All Materials	01/11/16	02/05/16	80%				Order All Mate	rials										
3	Update SolidWorks	01/11/16	01/15/16	80%		Update So	lidWorks												
4	Make Assembly Drawings	01/16/16	01/18/16	50%		Make	Assembly Drawings												
5	Machine Attachment Cylinder	01/19/16	01/21/16	50%		, N	Machine Attachment	Cylinder											
6	Make Attachment Cylinder Testing Piece	01/22/16	01/25/16	30%		_	Make Attachm	ent Cylinder Testin	g Piece										
7	Make Toolpaths for Machining	01/19/16	02/01/16	90%			Ma	ake Toolpaths for N	fachining										
8	Machine All Aluminum Plates	02/02/16	02/12/16	10%				Ma	chine All Alum	ninum Plates									
9	Assemble Structure	02/13/16	02/20/16	0%				↓ ■	Ass	emble Structure	•								
10	Assemble Full System	02/21/16	02/25/16	0%						Assemble F	Full System								
11	Test and Verify System	02/26/16	03/18/16	0%						+			Test and ∀e	erify System					
30	Test/Verify Functionality	13/05/16 03/	/18/16	0%							Test/Verify	y Functionali	ty						<u> </u>

Interface Board

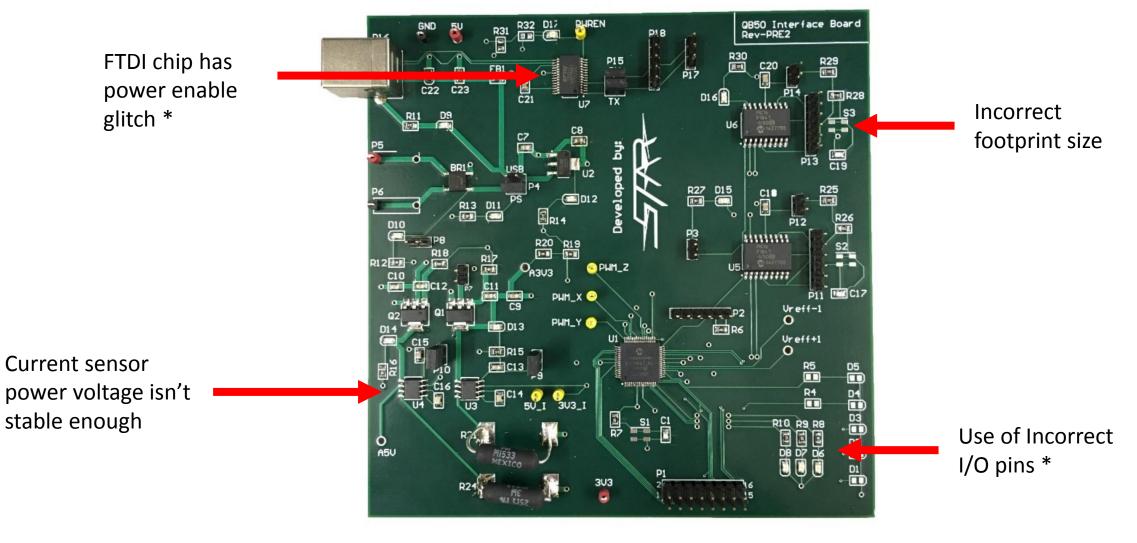
Current Status

PRE2 Development Board


Major Tasks Completed

- ✓ Board Fully populated
- ✓ Power (5V & 3.3V) is functional
- ✓ FTDI connects to computer and transmits data
- ✓ Master microcontroller is programmable
- ✓ ADCS power switches (MOSFETs) work
- ✓ Current sensors work and measure accurately*

*With caveat discussed later


Major Tasks to Complete

- □ Functionally test slave microcontrollers
- Test full data communication between USB and microcontrollers
- Begin next board revision

*Found in Errata

Changes to Board

FTDI Power Enable Glitch

What was discovered:

- ~13ms periods of enable that shouldn't occur
- Known glitch outlined in device errata

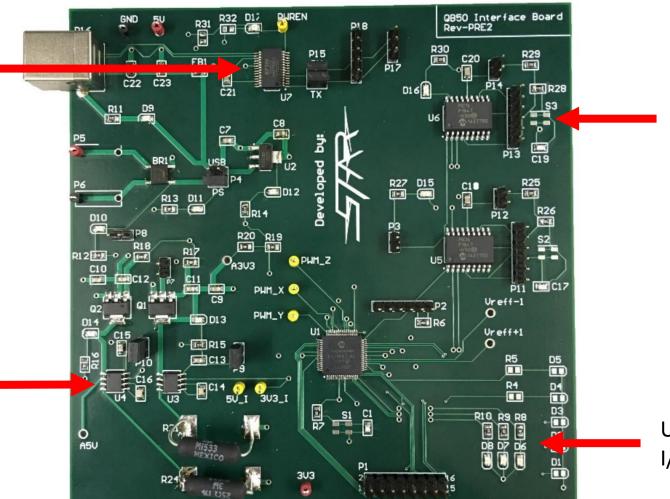
Why it's an issue:

• Will cause the interface board to draw to much current when not suppose to

Solution:

- Use a different FTDI chip (FT230X)
 - Does not contain glitch
 - Functionally the same chip
 - Smaller pin count/package

Agilent Technologies


Tue Feb 02 03:09:25 2016

Changes to Board

FTDI chip has power enable glitch *

Current sensors supply voltage isn't consistent enough

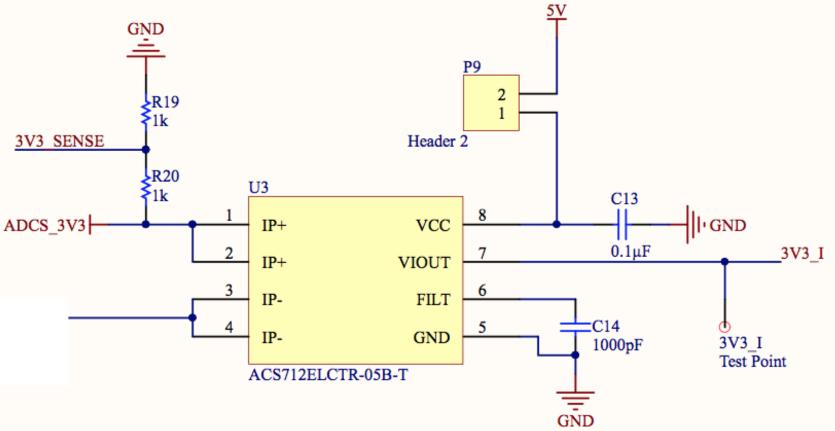
*Found in Errata

Change base sizes/locations

Use of Incorrect I/O pins *

Current Sensors

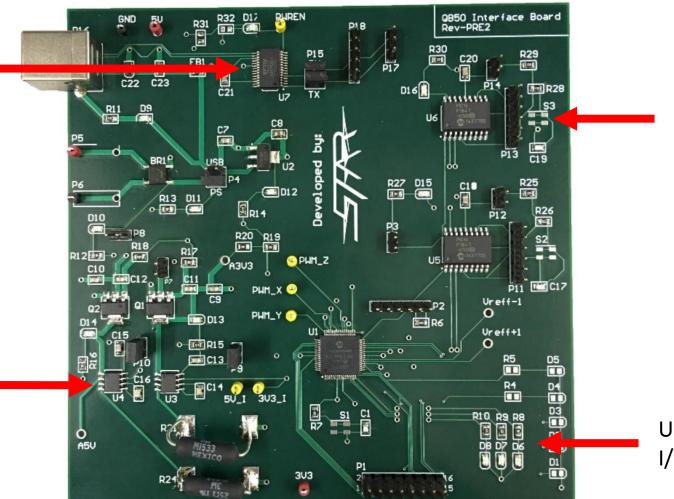
What was known:


- Sensors are powered by 5V
 - Specified operating range from 4.5V to 5.5V
- Interface board 5V plane varies <u>3V3 SENSE</u> as much as 300mV depending on load

What was discovered:

 Sensor measurement output changes with sensor supply voltage by a ratio of ~1/2

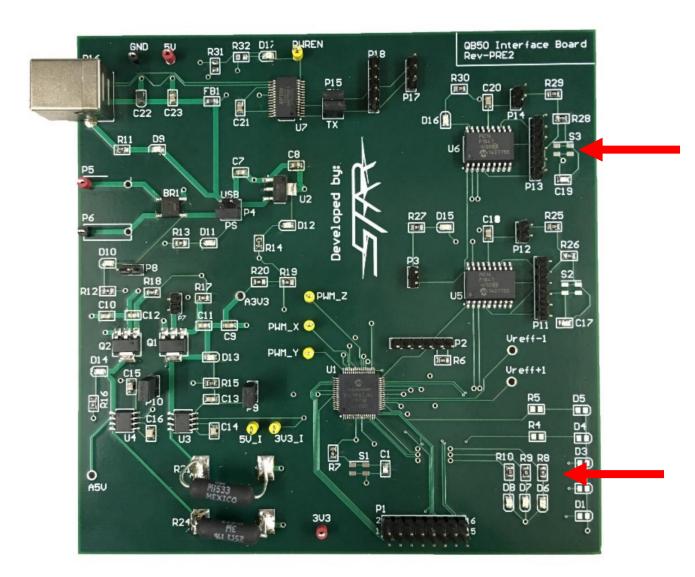
Solution:


 Power sensors with a more stable 5V (exact method of doing so unknown at this point)

Changes to Board

FTDI chip has power enable glitch *

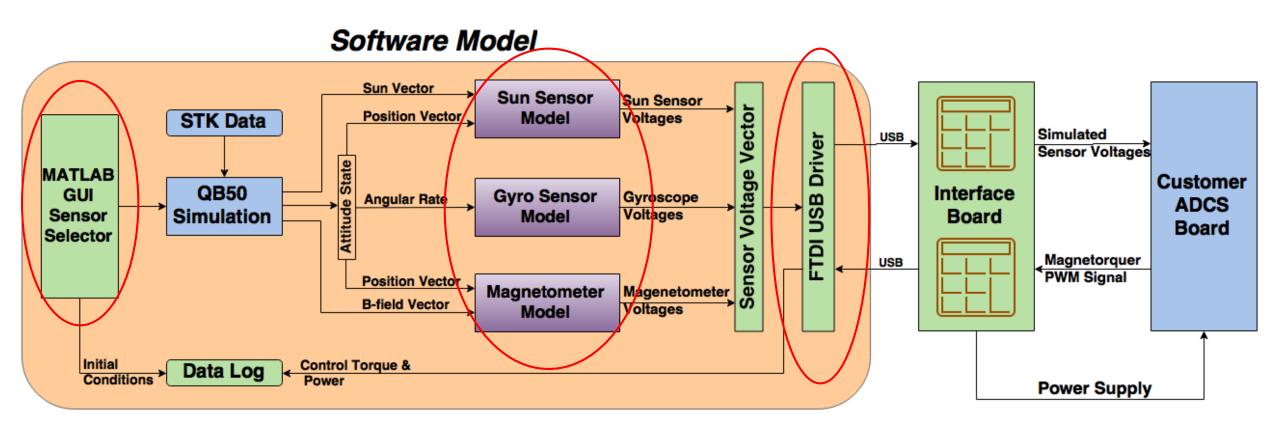
Current sensors supply voltage isn't consistent enough



*Found in Errata

Change base sizes/locations

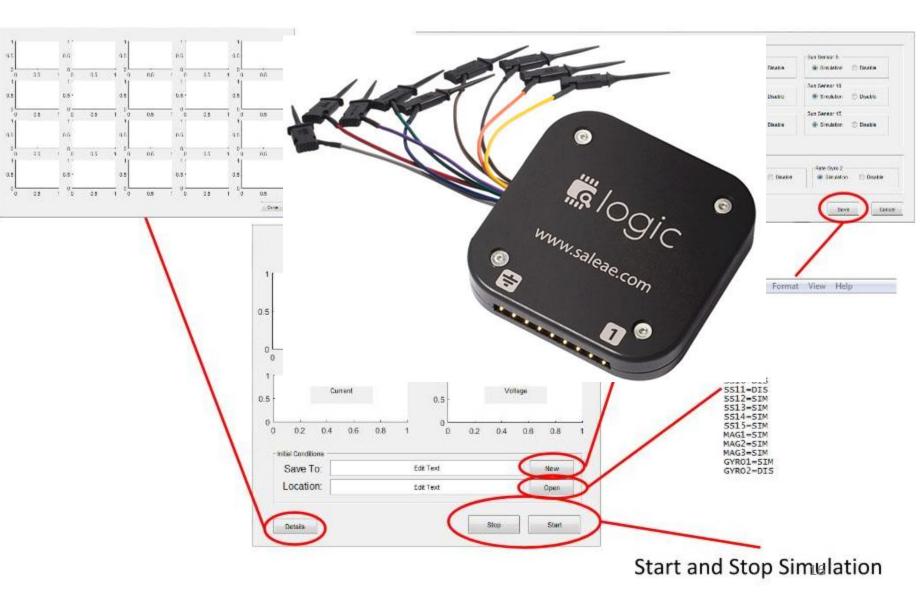
Use of Incorrect I/O pins *


General Board Layout Changes

• Microcontroller reset button footprints to small

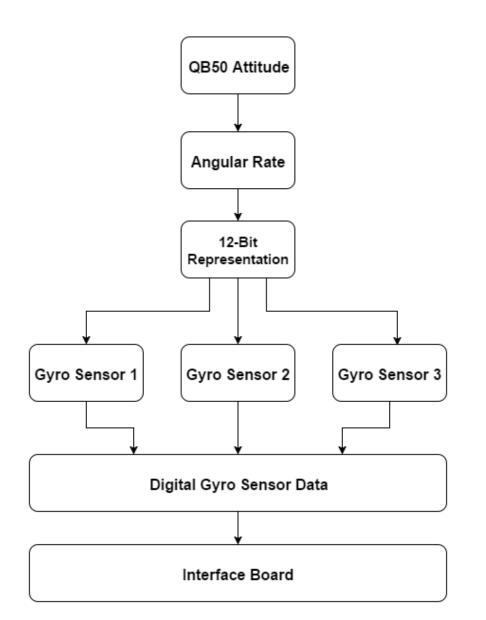
- 2 of 3 LEDs connected to master microcontroller don't work
 - Connected to I/O pins incorrectly labeled as such in datasheet

Software Flow Diagram


Software Current Status

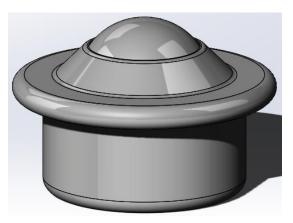
✓ GUI Interface Bu

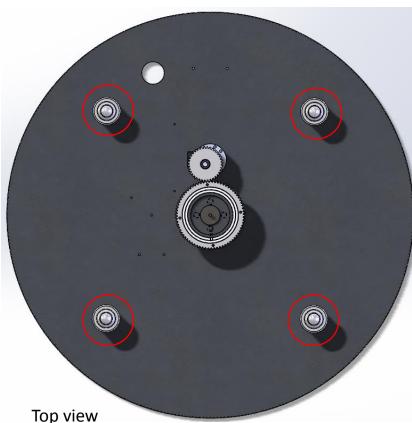
✓ FTDI Drivers veri

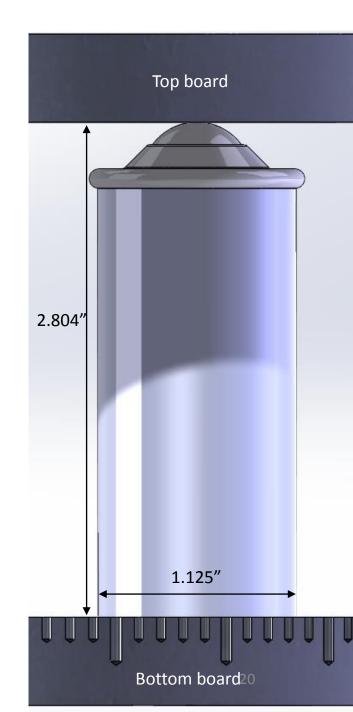

✓ Acquired QB50 €

Software Future Work

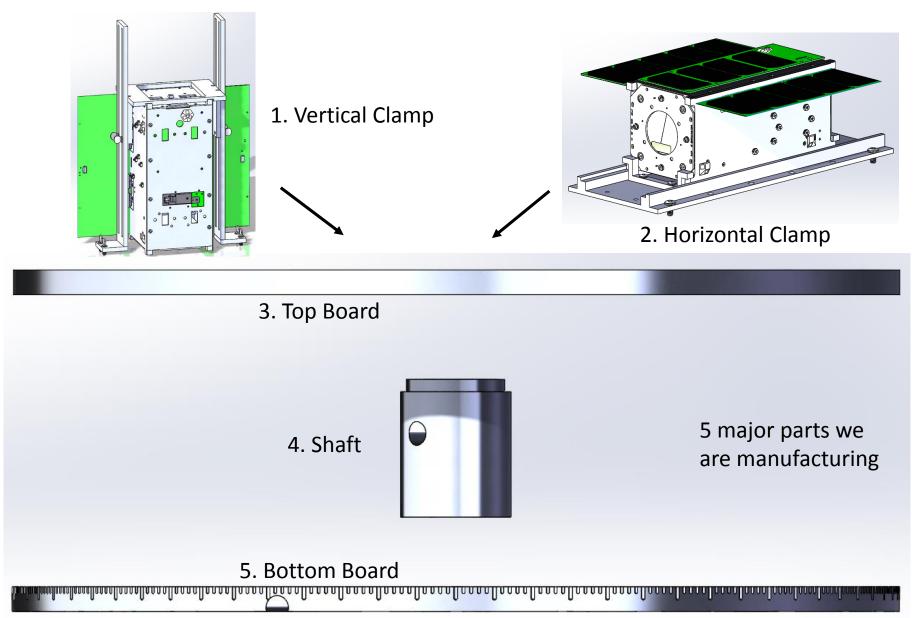
- **Execute basic test program on Interface board**
- Development of calibrated magnetometer and gyro models
- Compile sun-sensor data.
- Transmit simulated sensor data to Interface Board
- **GUI** Implementation
- **Compute Control Torque from PWM signal**
- □ Log Control Torque and Power consumption data.
- □ Full Software system test


Sensor Model Calibration


Sun Sensor Turntable


Turntable – Design Update

- Prevent precession of board
- Addition of 4 posts with ball transfers
 - Ball transfer friction fit into aluminum post



Bearing \$10.50 each

Turntable – Major Components Overview

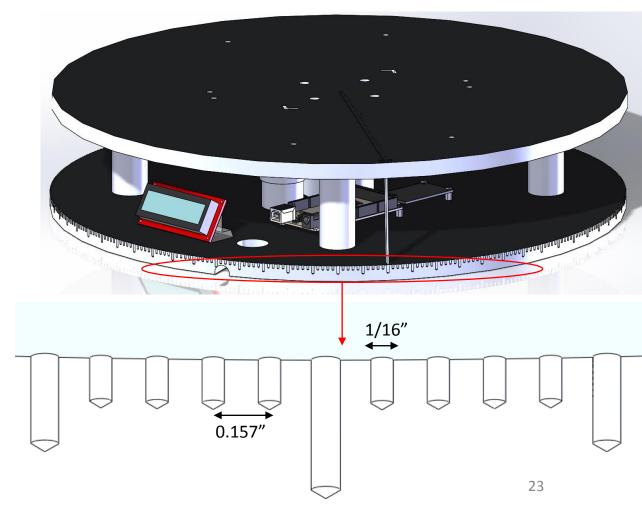
Turntable – Major Components Overview

Part	Materials Ordered	Manufacturing in Progress	Complete
 Vertical Clamp 2x slider plate 2x base plate 2x inner plate 1x feet clamp 	Х		
2. Horizontal Clamp	Х	Х	Х
3. Top Board	Х	X 4 hours remaining	
4. Shaft	Х		
5. Bottom Board	Х		

- All final machining processes will be computer controlled
- Standard 0.005" CNC tolerances are fine for all parts
 - Several friction fit components
- Bottom board will be most difficult to machine
 - Same or simpler process for remaining parts

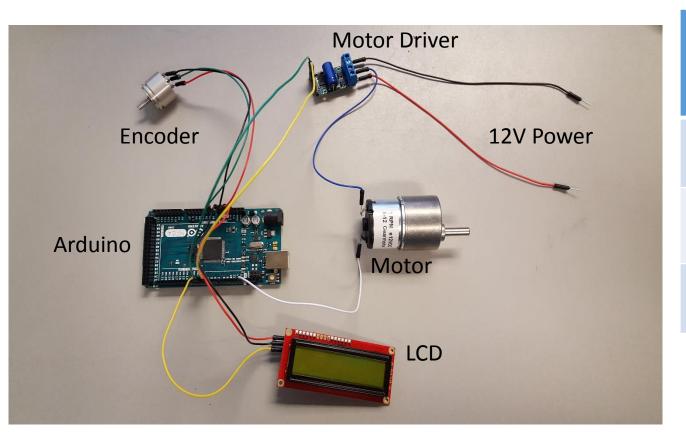
Turntable - 5. Bottom Board

Purpose


- Support and prevent tilting of top board
- Angle etchings
- House electronics

Manufacturing

- Mill aluminum disc circumference to dimension
- Drill and tap holes


Angle etchings

- Will be used to satisfy ±0.5° accuracy requirement
- Drill with 1/16" bit around circumference
- Tolerance = 0.0785"

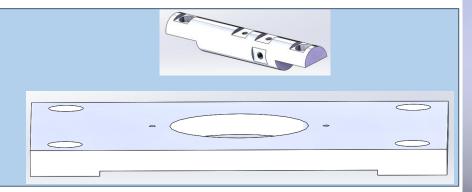
Turntable – Electronics

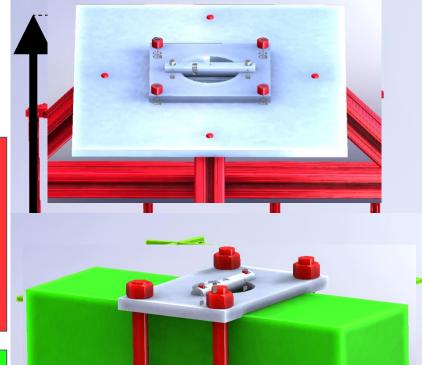
	Ordered	Functionally Tested	Performance Tested
LCD	Х	Х	N/A
Encoder	Х	Х	
Motor	Х	Х	

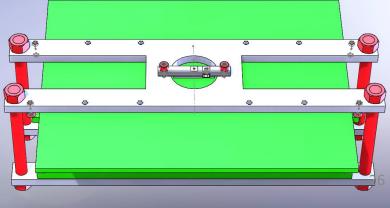
Changes

Arduino Mega to Arduino Due10 bit ADC to 12 bit ADC

HelmHoltz Cage


HelCaTS Parts


Parts Purchased (Red) Extruded Aluminum Screws / Nuts Threaded Rod



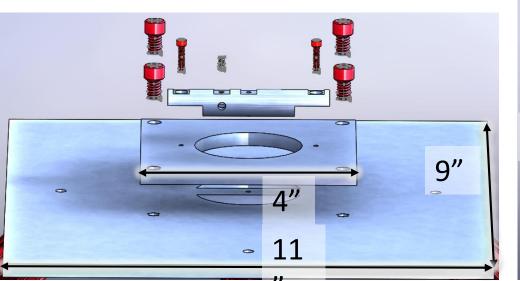
Parts Provided by Customer (Green) Satellite Helmholtz Cage

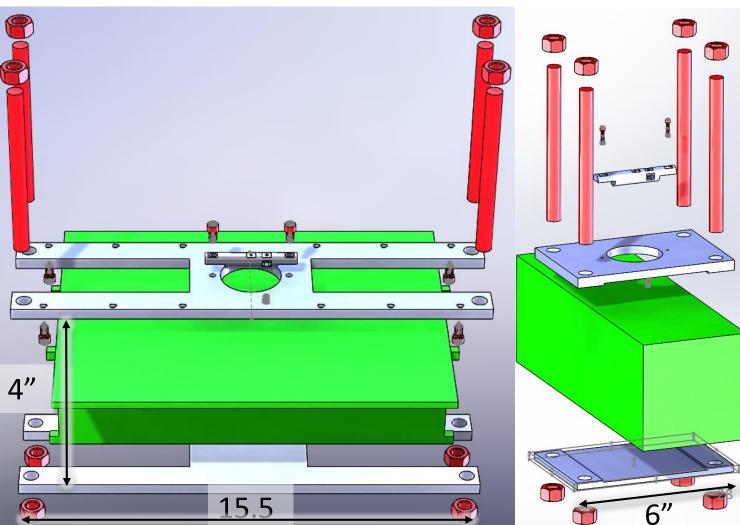
Parts Machined by STAR Attachment Cylinders Attachment Plates

HelCaTS Purchased Parts

• Various Screws, Nuts, and Clevis Pins (all aluminum)

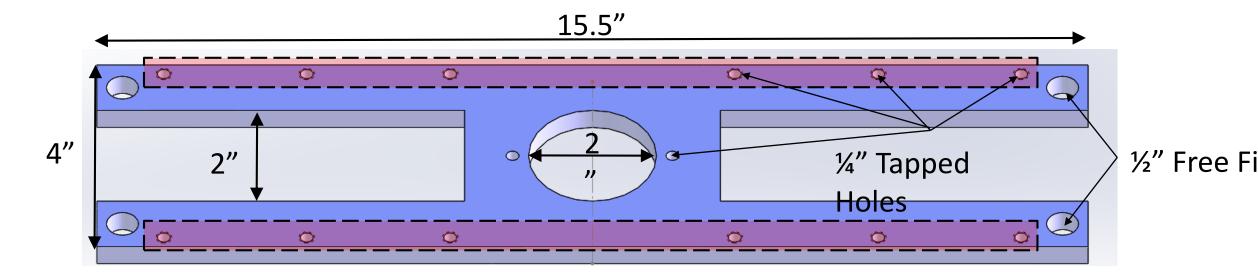
- Stainless Steel T-Nuts for attachment to extruded Aluminum
- Extruded Aluminum Bars (machined by 8020)
 - Cut to size 48", 45.7", 33", 31", 24" (+/-0.015")
 - Some Ends Tapped
 - Through holes drilled to pin the sliding mechanism (location accurate to +/- 0.03 in long direction +/- 0.01 in short direction)

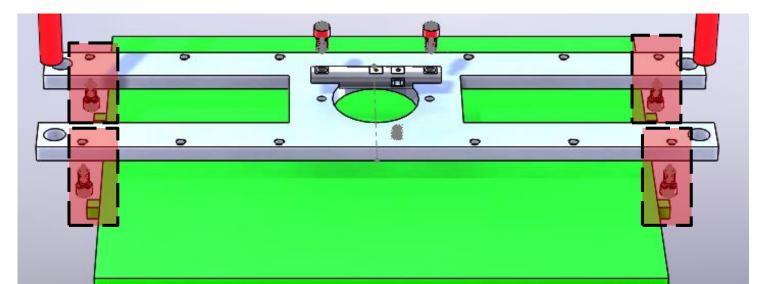




HelCaTS Manufactured Parts - Overview

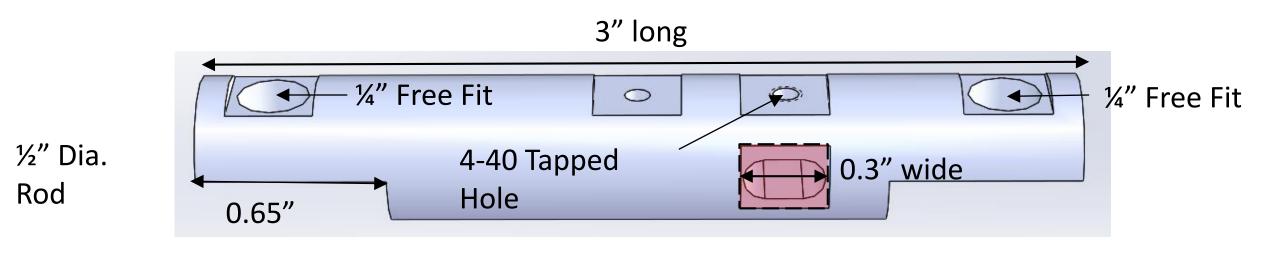
8 Pieces in totalAll plates are 0.25" thick and will be machined with the CNCCylinders are made manually with the mill

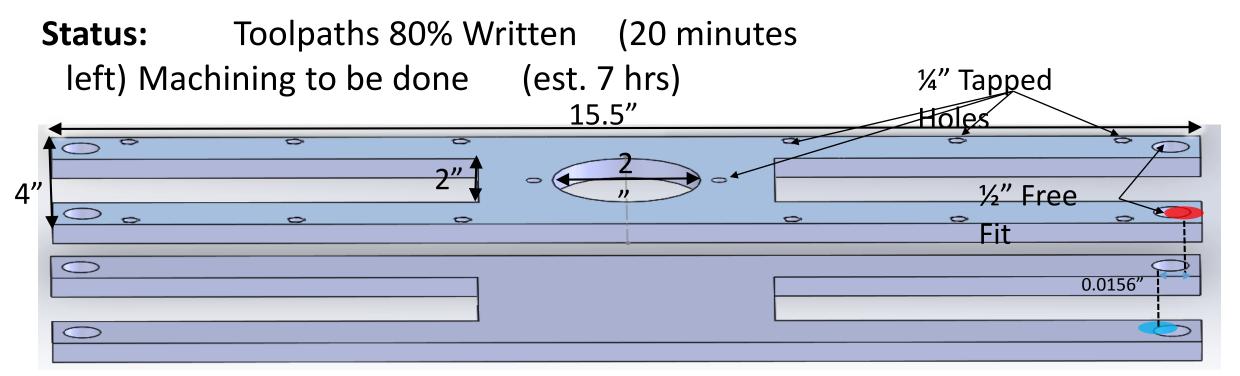



HelCaTS Manufactured Parts - Overview

Part	Materials Ordered	Manufacturing in Progress	Complete
 Small Clamp Top Plate Bottom Plate 	X	X	1 of 2
2. Large ClampTop PlateBottom Plate	Х	X	
3. Structure Attachment PlatesBig PlateSmall Plate	Х		
4. Attachment Cylinders	Х		1 of 2

HelCaTS Design Updates


• Large Clamp Top Plate - Added holes to clamp on satellite feet

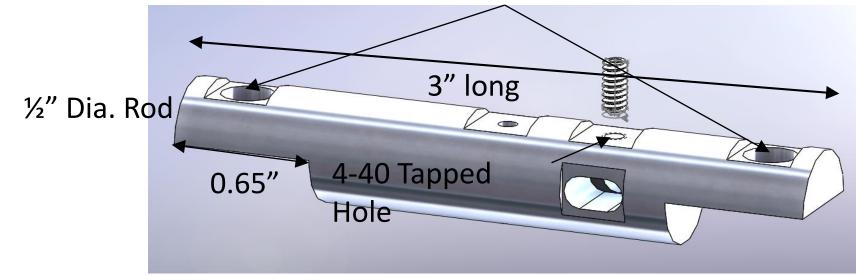


HelCaTS Design Updates

Attachment Cylinder – Slotted hole to allow for more tolerance (from 0.001" to 0.0675")

HelCaTS Large Clamp Machining - In Progress

Machining Tolerance: 0.005" **Critical Dimensions:**


- spacing of ½"

spacing of tapped ¼"

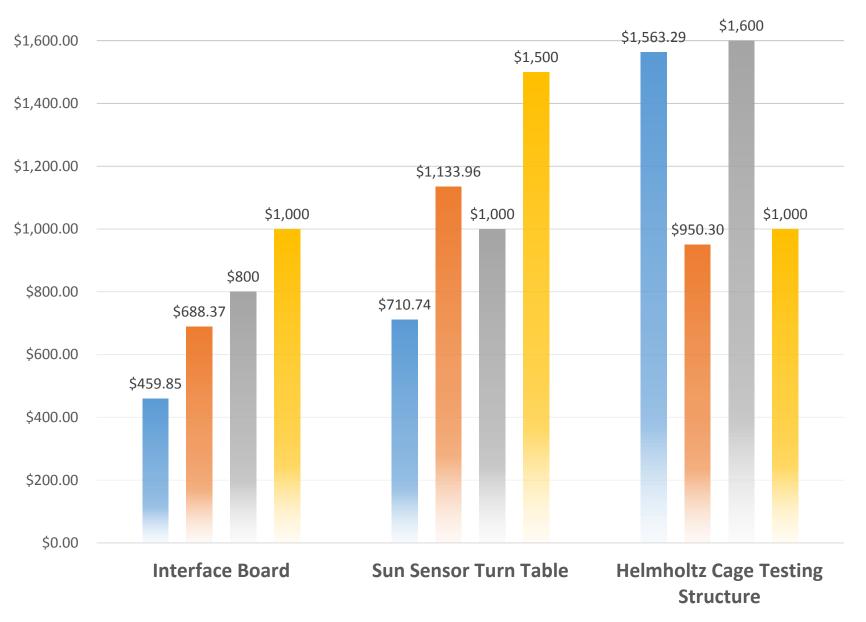
holes must be accurate to +/- 0.0156" in each direction center holes must be accurate to +/- 0.008" in each direction

- spacing of attachment holes must be accurate to +/- 0.15" in each direction

HelCaTS Manufactured Parts - Attachment Cylinder Status: 1 of 2 Machined ¹/₄" Through Hole at each end

Critical Dimensions:

- End holes must be accurate to 0.008"
- Set screw hole and slotted hole must be accurate to within 0.0675


Budget

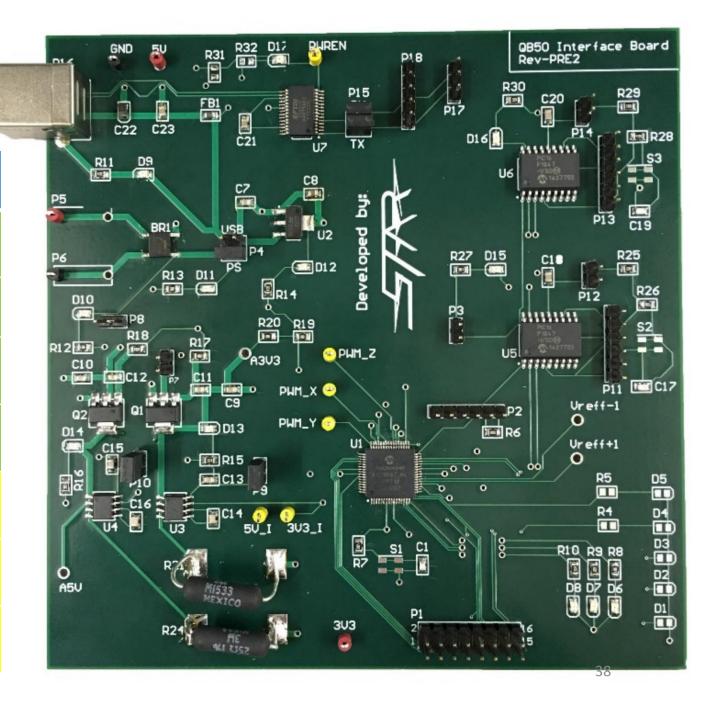
Budget

- Total Budget: **\$5,000**
- Total Spent: **\$2,805.77**

\$1,800.00

- FFR Completion Cost
 Projection: \$3,072.63
- MSR Completion Cost Projection: \$3,700
 - Need: IB revisions
- ∆ ≈ +**\$700** from FFR
- Current *Estimated* Completion Margin: 26%
 - FFR Margin Est.: 39%

Backup Slides


Interface Board Timeline

Completed Margin Continuous Goal

	Project STAR Gantt Chart – nterface Board						Janua	iry			Febru	iary			Marc	h			April				May								
											Start Date	Achieved Complete Date	Expected Finish Date	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2
Inter	face E	Board		-	_			-	_																						
	Hard	ware									9/16/2016		4/25/2016																		
		Acquir	re Nece	ssary Co	mpor	ients					12/16/2015	1/8/2016																			
		Assem	nble Te	st Board							1/22/2016	1/21/2016																			
		Integra	ate with	Software	9						1/12/2016		2/19/2016																		
	Complete Altium Board Revisions			2/1/2016		2/5/2016																									
	Final Board Order				N/A		2/12/2016																								
		Popula	ate Rev	ised Boa	rd						N/A		2/26/2016																		
		Test/V	/erify Fi	Inctionali	ty						N/A		3/25/2016																		
	Softv	ware									9/15/2015		4/25/2015																		
		Develo	op GUI	Architect	ure						1/11/2016		2/26/2016																		
	Simulation Development			1/3/2016		3/11/2016																									
	Verify Simulation Functionality and Results			2/5/2016		3/18/2016																									
	Validate Sensor Models/Update Models			2/5/2016		3/18/2016																									
	Test Program for Simulation-IB Datalink			1/20/2016		2/12/2016																									
		Full Si	imulatio	n Model I	Imple	mentati	on				2/5/2016		3/25/2016																		

Interface Board Status: Hardware

Item	Status	Next Step
Component Acquisition	Complete	Order REV0
Soldering	Complete	Acquire REV0
Header installation	Complete	Acquire REV0
PIC MμC Programmable	Complete	Develop code
PIC SμC Programmable	Incomplete	Investigate Code Configurator GUI
REV0 Design/Order	Incomplete	Continue development
REV0 Population	Incomplete	Acquire REV0

Interface Board Status: Software for $M\mu C$

Item	Status	Next Step
Switch between compilers (C18 \rightarrow XC8)	Success	Continue to use XC8 libraries
#pragma config	Success	Add more if needed
Initial / Configuration	Success	Update as needed
Main Loop	Success	Add in interrupt logic
USART Configuration (Tx/Rx)	In Progress	Verify code against hardware
PWM Configuration	In Progress	Further Develop Code
ADC Configuration	In Progress	Investigate current sensors (future slide)

	_		
179	무 (/**************************************	*******
180		* Initial()	
181		*	
182		* This subroutine performs all initializations of variables and registe	
183	L	***************************************	*******/
184	Ę.	void Initial() {	
185		//ANCON = 0x0F;	
186		CM1CON = 0x00;	
187		CM2CON = 0x00;	
188		CM3CON = 0x00;	
189		ANCON1 = $0x00;$	
190		ANCON2 = 0x00;	
191		ANCON3 = 0;	
192		UCONbits.USBEN = 0;	
193	户	// Goal: Configure USART connections, PWM, FTDI, ADC connections	
194			
195		// PWM Configuration:	
196		// X = CCP4/RP7/RB3	
197		// Y = CCP5/RP8/RB0	
198	F	//Z = CCP6/RP10/RA7	
199			
200		TRISA = 0b11111111; //	
201	P	// AO = 5V_I	
202		// A1 = 5V_Sense	
203		// A2 = VReff-1 Test Point	
204		// A3 = Vreff+1 Test Point	
205		// A4 = 3V3_I	
206		// A5 = 3V3_Sense	
207		// A6 = (not used)	
208		$// A7 = PWM_Z$	
209		TRISB = 0b00001101;	
210	P	$//B0 = PWM_Y$	
211		//B1 = N/A	
212		// B2 = FTDI_RX	
213		// B3 = PWM_X	
214		//B4 = N/A	
215		//B5 = N/A	
216		// B6 = ISCP_CLK_M	
217		// B7 = ISCP_DAT_M	
218		TRISC = 0b0000000;	
219	P	// CO = ADCS_GPS_3V3_EN	
220		// C1 = ADCS_GPS_EN	
221		// C2 = ADCS_5V_EN	
222		// C3 = FTDI_TX	
223		// C4 = ADCS_3V3_EN	
224		$// C5 = ADCS_BOOT$	
225		// C6 = N/A	
226	Γ	// C7 = Master TX	39

Interface Board Status: Software for SµC

Item	Status	Next Step
Switch to XC8 Compiler	Complete	Continue to use XC8 libraries
Pin Mapping	Complete	Move on to REV0 mappings
Code Configurator	In Progress	Enhance Understanding of GUI tool
Ability to program	In Progress	Create functioning code

Projects Files M @	MPLAB® Code Configurator #	(41) V	MCC Pin Manager		8
System Interrupt Hanager GRIG::GPIO X ADC:aDC X IUSART:EUSART Asynchron. X THR0::Timer X FVR::FVR X THR2::Timer X CCCP1:Enhanced PWH X	Generate Code (9) Cover State Cover		RX 1 44 43 R04 2 P16 3 P16 4 P10 5 V35 6 V05 6 V05 6 LE00 7 LE00 1 LE00 10 LE003 11	42 41 40 39 38 37 39 35 34 42 41 40 39 38 37 30 35 34 32 8 60 31 8 60 32 8 60 31 8 60 30 8 67 30 8 67 3	
Search for modules	Enable Receive Interrupt 🕑	Transmit Buffer Size: 8 • Bytes Receive Buffer Size: 8 • Bytes		erse Pin Order © Vertical @ Horizontal 19 20 21 22 23 24 31 30 8 9 10 PORTA ▼	11 PORT
Erpuit Capture Output Compare ECCP3 Memory TMR: TMR: TMR: TMR: TMR: TMR: TMR: TMR:			Module Function GP10 I/O ADC Ohennel EUSART TN/OX EUSART RX/DT TMR0 TOCKI ECCP1 P1A ECCP1 P1B ECCP1 P1C ECCP1 P1D	0 1 2 3 4 5 6 7 0 1 2 b b b b b b b b b b b b b b b b b b b	_

Code Configurator: Plug-In to MPLAB X IDE -Allows GUI configuration of PIC -Automatic module creator

Example of Progress – Flashing LEDS

4	4	- 🥝
	-	

Test Component	Hardware/Softw are	Demonstrating
Board Population	Hardware	Soldering success
Basic Pin Configuration	Software	Pins are mapped correctly
Header Installation	Hardware	Wires/lines can be probed
PIC can be programmed	Hardware	PIC is properly functioning
USB Power	Hardware	Board has proper power supply
FTDI Chip	Hardware	Successful communication between the computer and the PIC

PICkit"

POWER ACTIVE STATUS

Power Measurements – PS @ 6.76V

25Ω Load (~400mA total current draw)

• 5V

- Power Plane = 5.02V
- A5V = 4.995V
- @ load = 4.993V
- 3.3V
 - Power Plane = 3.311V
 - A3V3 = 3.292V
 - @ load = 3.291V

No Load

• 5V

- Power Plane = 5.2V
- 3.3V
 - Power Plane = 3.312V

Power Measurements – USB Power

25Ω Load (~400mA total current draw)

- 5V
 - Power Plane = 4.89V
 - A5V = 4.865V
 - @ load = 4.860V
- 3.3V
 - Power Plane = 3.311V
 - A3V3 = 3.293V
 - @ load = 3.291V

No Load

• 5V

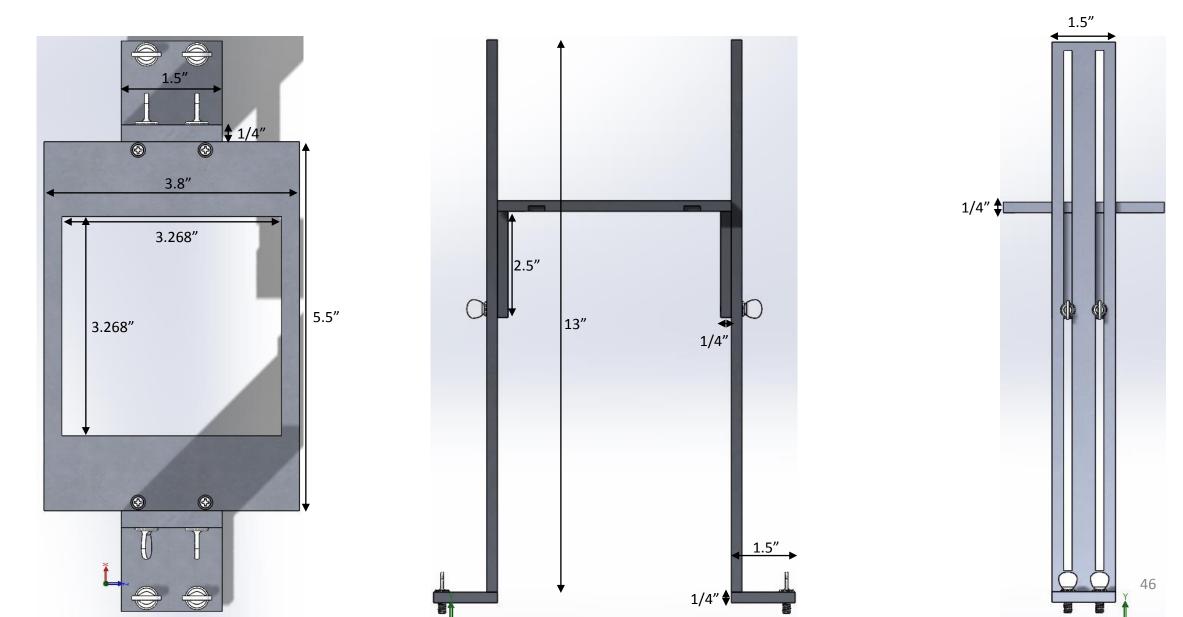
• Power Plane = 5.059V

• 3.3V

• Power Plane = 3.312V

Current Sensor Measurements

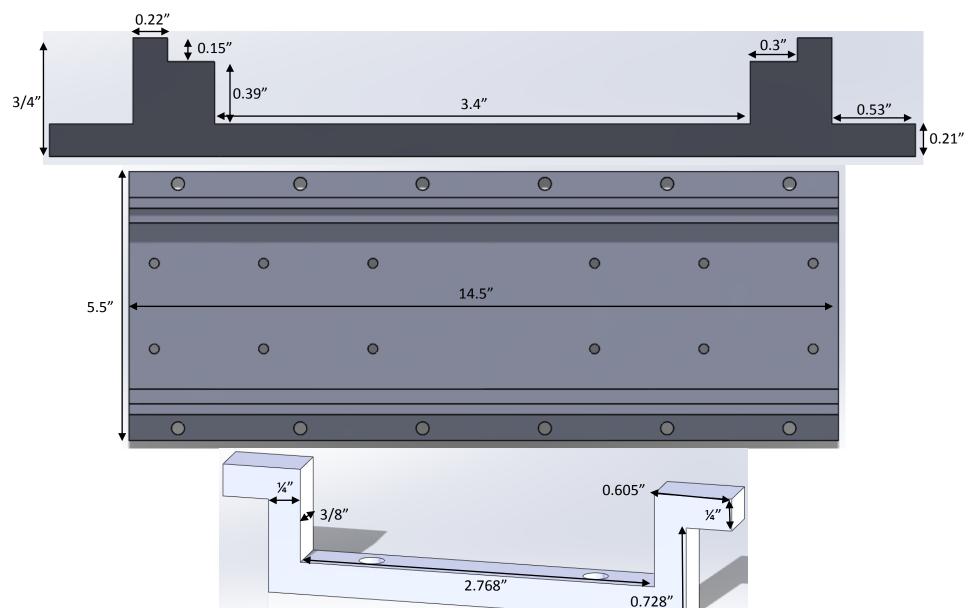
- Board powered by power supply, supply voltage was adjusted so that the current sensors always received 5V power
- Measurements taken with Fluke multimeters
- Sensor sensitivity is 185mV/A


•
$$I = \frac{V_{Out} - V_{Zero}}{Sensitivity}$$

- Currents measured by Fluke
 - 5V = 204mA
 - 3V3 = 139mA
- 0A voltage output
 - 5V = 2.515V
 - 3V3 = 2.51V
- Sensor output under load
 - 5V = 2.553V \rightarrow 216mA
 - 3V3 = 2.538V → 146mA

Turntable - 1. Vertical Clamp

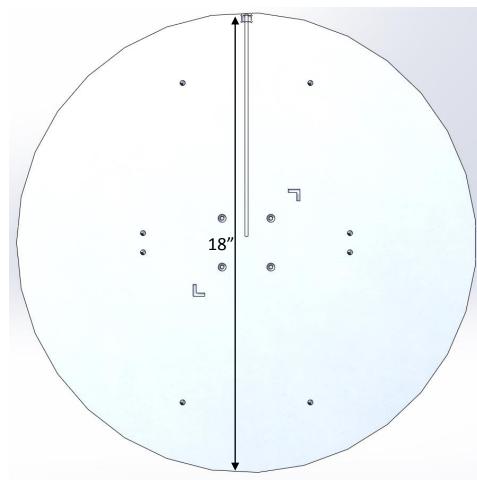
- Purpose
 - Secure and align CubeSat in vertical orientation
- Status
 - Material in transit
- Manufacturing
 - All 5 sub parts made from ¼" thick aluminum plate
 - Mill aluminum plate and bars to dimension
 - Drill and tap holes
 - Bead blast at BioServe lab (decrease reflectance to 15-20%)
- Most difficult component
 - 1-2 weeks machining


Turntable - 1. Vertical Clamp

Turntable - 2. Horizontal Clamp

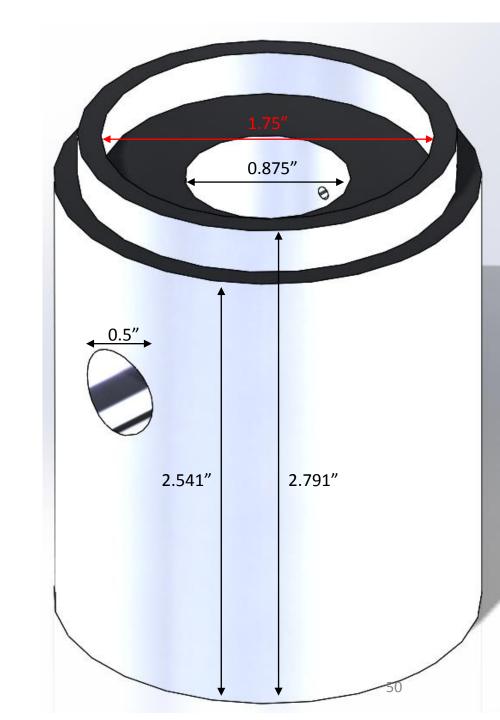
- Purpose
 - Secure and align CubeSat in horizontal orientation
- Status
 - Complete
- Manufacturing
 - Mill aluminum plate to dimension
 - Drill and tap holes
 - Bead blast at BioServe lab (decrease reflectance to 15-20%)
- Most difficult component
 - Manufacturing time

Turntable - 2. Horizontal Clamp

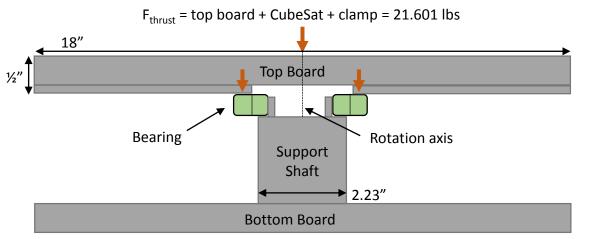


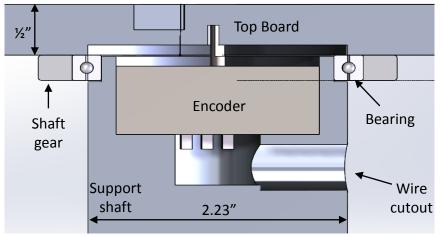
48

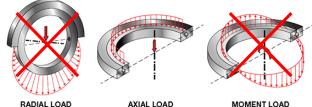
Turntable - 3. Top Board


• Purpose

- Rotate CubeSat for Sun sensor calibration
- Point towards physical angle etchings
- Status
 - Machining in progress
- Manufacturing
 - 1/2" thick aluminum disc
 - Mill aluminum disc circumference to dimension
 - Drill and tap holes
- Critical component
 - Low reflectance coating (2-3 weeks turn around)

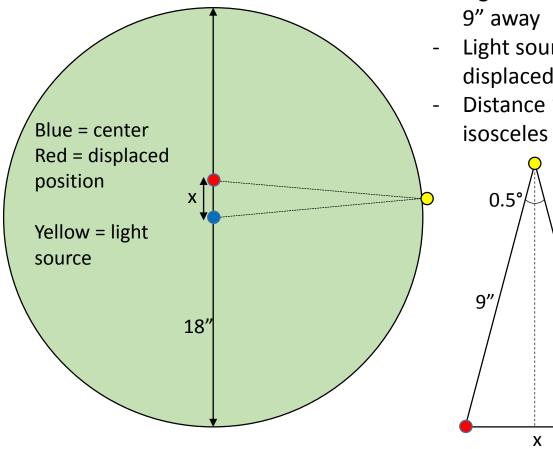

Turntable - 4. Shaft


- Purpose
 - Support load and allow gears to rotate top board
 - House encoder for angle measurement
- Status
 - Material in transit
- Manufacturing
 - Mill aluminum rod
 - Encoder housing
 - Friction fit bearing ring
 - Drill and tap holes
- Most difficult component
 - Manufacturing time (1-2 weeks)



Turntable - Force and Moment Analysis

- CG of CubeSat is in 0.4" sphere of geometric center
- Geometric center aligned with rotation axis of board and within diameter of support shaft = no moments produced
- Combination ball-thrust bearing supports axial load
 - Thrust load capacity = 790 lbs
 - Moment load capacity = 430 in*lbs
 - Board can roughly support 45 lbs point load on perimeter



Turntable - Tolerance Stack Angle Analysis

Max displacement satellite can be from center of board to maintain 0.5° accuracy

Worst case scenario, assume:

- Light source is at perimeter of board,
- Light source is between center and displaced positions
- Distance 'x' can be approximated by isosceles triangle

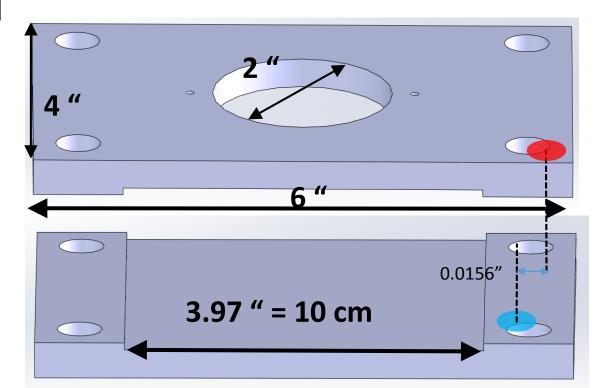
9″

 $sin(0.25^{\circ}) = (x/2)/9''$

x = 0.0785''Can easily be achieved with 0.005" CNC tolerance

Turntable - Sub Parts

These parts require very little or no manufacturing


Part	Materials Ordered	Manufacturing in Progress	Complete
Bearing	Х	~	Х
Shaft gear		~	
Motor gear			
Precession shafts (4x)	Х		
Precession bearings (4x)		~	
Encoder shaft coupling		~	
Angle etching needle	Х		
Screws		~	
Acrylic spacers		~	
Acrylic screws		~	

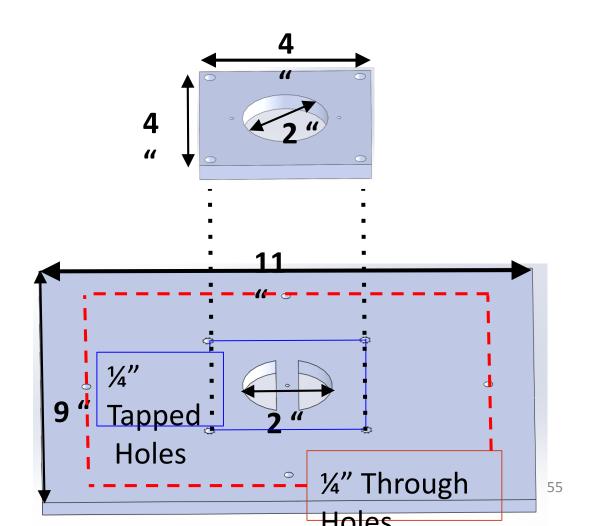
HelCaTS Small Clamp Machining – Backup

Status: Top Plate Finished Machining Order:

- cut out center hole
- drill holes
- clean outer dimensions
- flip over and take down center

Critical Dimension:

- spacing of ½" holes must be accurate to 0.0156" in each direction
- spacing of tapped ¼" holes must be accurate to 0.008" in each direction

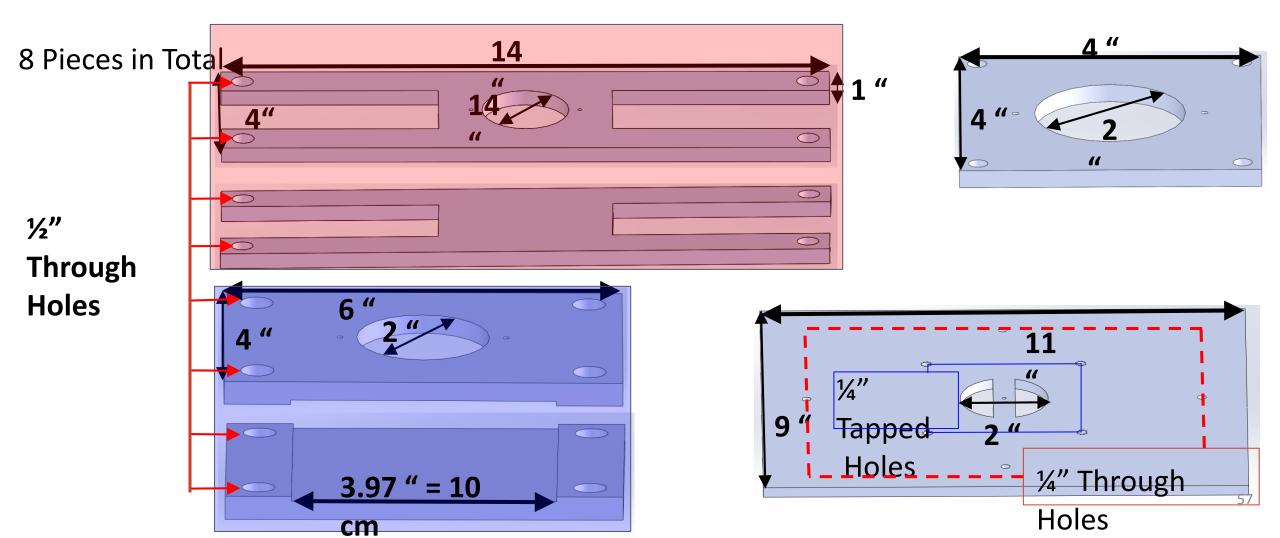

HelCaTS Attachment Plate Machining - To be

done Machining order:

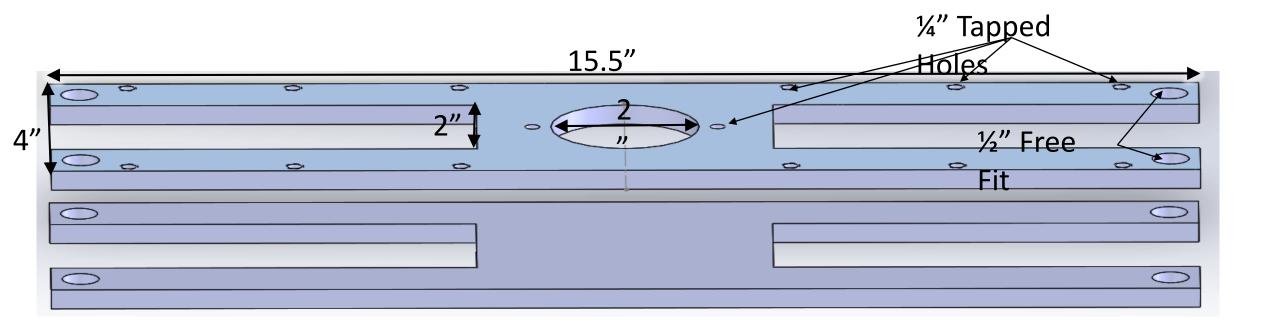
- Take out center holes
- Drill holes
- Clean outer dimensions

Critical Dimensions:

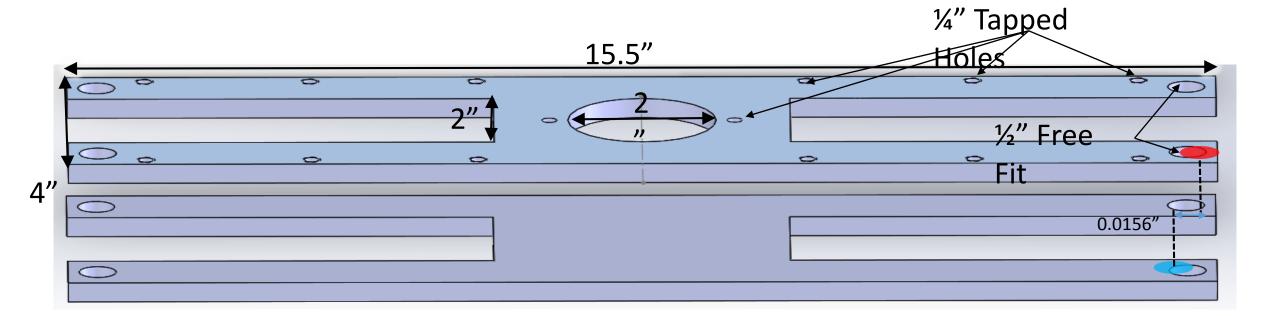
- Plate-to-plate holes must be accurate to 0.008"
- ¼" Tapped holes on top plate must be accurate to 0.1"



HelCaTS Manufactured Parts - Backup


HelCaTS Manufactured Parts - Backup

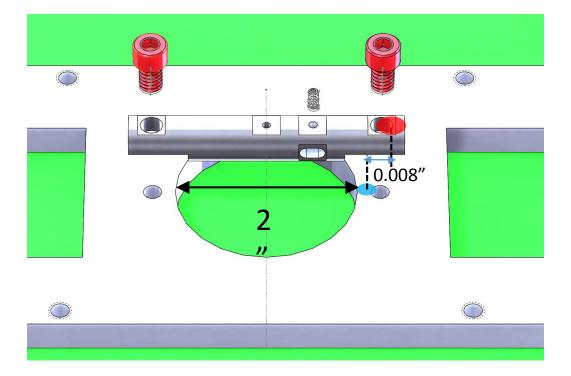
Similar colors = similar dimensions All plates are 0.25" thick and will be machined with the CNC



HelCaTS Large Clamp Machining - In Progress

Status: Toolpaths 80% Written (20 minutes left) Machining to be done (est. 7 hrs)

HelCaTS Large Clamp Machining

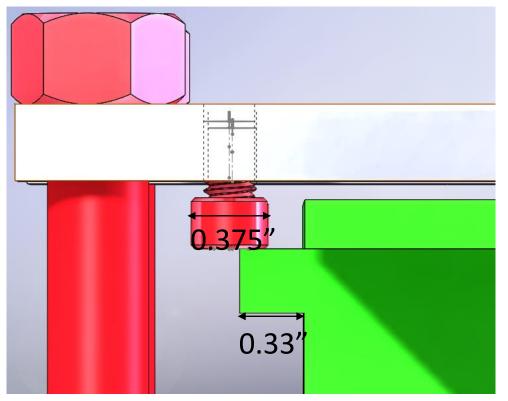

Machining Tolerance: 0.05"

Critical Dimensions:

- spacing of ½"

holes must be accurate to +/- 0.0156" in each direction

HelCaTS Large Clamp Machining

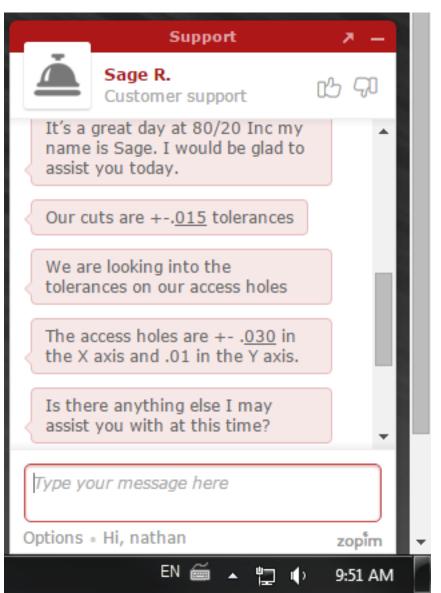

Machining Tolerance: 0.05"

Critical Dimensions:

tapped ¼" center holes must be accurate to +/- 0.008" in each direction

spacing of

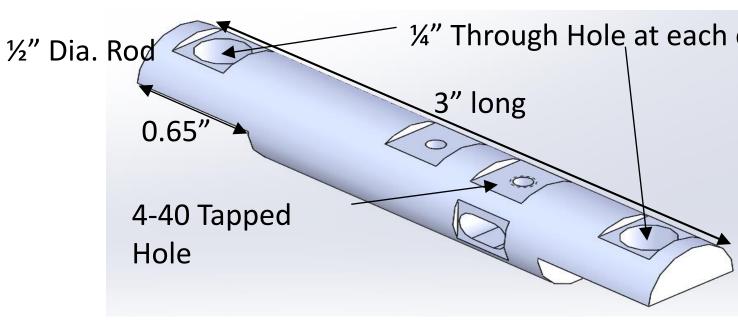
HelCaTS Large Clamp Machining - In Progress



Critical Dimensions:

- spacing of

attachment holes must be accurate to +/- 0.1" in each direction


Tolerance Confirmation - Backup

HelCaTS Manufactured Parts - Attachment

Cylinder Status: 1 of 2 Machined Machining Order:

- Mill Shoulders
- Make slots for hole drilling
- Drill holes
- Slot necessary hole

Slotted hole made by:

drilling with a #25 bit (0.1495")
using a 9/64" end mill (0.1406") to slot the hole