

1

QB50 CubeSat PDR Team: STAR

Satellite Testbed for Attitude Response

Matt Hong, Nick Andrews, Dylan Cooper, Colin Peterson, Nathan Eckert, Sasanka Bathula, Cole Glommen

Presentation Outline

Mission Introduction

QB50 Satellite – Attitude Determination and Control System (ADCS)

ADCS ConOps ŝ **De-tumble** Ram point Orbital injection Science and Normal Mode Recover from initial tip Point INMS in ram direction off rate of 10°/sec + 10° B-dot Roll spacecraft to optimize Sun point comm. link Safe Mode **Receding Horizon** Maximize surface area of solar panels in the sun PD Control **Requirements:** - Pointing accuracy within +/- 10° of ram direction (Ctrl.) Pointing knowledge of within +/- 2° (Est.) - Recover from tip-off body rates of up to 90°/s within 2 days - To be verified with simulation

- One of 50 CubeSats
- 400 km orbit
- ~ 8 month mission
- Provide in situ thermosphere measurements

Project Description

ADCS Verification ConOps

- 1. USB from simulation to interface board
- 2. Connect interface to ADCS
- 3. Run Simulation

2. Sun Sensor Calibration Table

- 1. Integrate CubeSat
- 2. Rotate Table to desired angle
- 3. Compare angle of table to angle reported by satellite

- 1. Integrate CubeSat
- 2. Fire Magnetorquer
- 3. Satellite rotates to verify functionality

Interface Board – Basseki Dealgessign

ADCS Verification ConOps

- 1. USB from simulation to interface board
- 2. Connect interface to ADCS
- 3. Run Simulation

2. Sun Sensor Calibration Table

- 1. Integrate CubeSat
- 2. Rotate Table to desired angle
- 3. Compare angle of table to angle reported by satellite

- 1. Integrate CubeSat
- 2. Fire Magnetorquer
- 3. Satellite rotates to verify functionality

Sun Sensor Calibration Table – Baseline Design

Functional Requirements Baseline Design

- The turn table shall be turned to
 Baselined and a decision is to
 manually rotate turn table
- and the seran made a still be have a r to esophietion of the model of the second of the second sec

ADCS Verification ConOps

- 1. USB from simulation to interface board
- 2. Connect interface to ADCS
- 3. Run Simulation

2. Sun Sensor Calibration Table

- 1. Integrate CubeSat
- 2. Rotate Table to desired angle
- 3. Compare angle of table to angle reported by satellite

- 1. Integrate CubeSat
- 2. Fire Magnetorquer
- 3. Satellite rotates to verify functionality

Helmholtz Cage – Baseline Design

Functional Requirements Baseline Design

- The CubeSat shall be suspended in the HelmHoltz Cage Baseline design decision is to
- hangchsesaleshatiwotatelwith 1
 degree of freedom(DoF)

Baseline Feasibility

Interface Board

Interface Board - Feasibility

Simulation to Interface Board -Feasibility

- *UART = Universal Synchronous Receiver/Transmitter
- *USB = Universal Serial Bus

 Converts USB into a common communication protocol used by microcontrollers

Interface Board to ADCS - Feasibility

I²C Bus Allows multiple devices to communicate with each other **Interface Board** Slave Microcontroller Designated master device with slave devices Slave devices are assigned one Plotonquer PWM address Master Microcontrol GP* PIC" MUU Analog Input MICROCHIP PIC® MCU Slave Microcontroller ٠ USB UART PIC® MCU FTD NC1L-14 Ζ (•)X 0626 I²C Custowner ADCS *CCP = Capture/Compare/PWM

Baseline Feasibility

Sun Sensor Calibration Table

Sun Sensor Calibration Table - Feasibility

Diameter = 50 cm Height = 4 cm

Supports 1U, 2U, and 3U CubeSats in all orientations

Sun Sensor Calibration Table - Usage

Rotation types:

- 1) Manual rotate to desired angle
- 2) Motor to be implemented by customer

Sun Sensor Calibration Table - Feasibility

- 1. Rotate with resolution of 1° with ±0.5° accuracy
 - 10 bit rotary encoder
 - Resolution = 360°/2¹⁰ = 0.352° per bit < 1°
 - Angle etchings

 - Board diameter = 50 cm = 19.685"
- etic encoder 0.500 LT.L 0.500Angle etchings 1,500

Physical – electronics redundancy
 Arc length spacing = circumference/360° = 0.172"/degree

Sun Sensor Calibration Table - Feasibility

- 2. Display angular position to user
 - LCD display output
- 3. Manually operated with potential to be automated
 - 10 Hz Sun sensor, RPM of< 5/3
 - Torque required = 0.0746 N*m

Baseline Feasibility

Helmholtz Cage Test

Helmholtz Cage Structure Feasibility

TEST:

 The QB50 will sense attitude and make necessary adjustments using its magnetorquers

Requirements

- Allow for rotation ± 360° about one axis
 - Torquing authority of 0.1 Am² equivalent to 5_€ ⁻⁶ Nm
 - Less than 5ε⁻⁶ Nm resistance to rotation
- Do not interfere with the Satellite's magnetometer readings

Helmholtz Cage Structure Feasibility

Helmholtz Cage Testing Structure Feasibility

Helmholtz Cage Testing Structure – Feasibility Line Resistive Torque

 τ_{Line} = Resistive Torque from the line I = mass moment of inertia of the rod α = angular acceleration of the rod r = cross-sectional radius of the line θ = angular deflection = 360° t = time for the rod to rotate θ °

found experimentally

 $I = m * (2 * r^2 + h^2) / 12$

 $\alpha = 2 * A * t^{-2}$

 $\tau_{Line} = 3.5835E^{-6} Nm$

measure time (t) until rod returns to inital

Status Summary

Budget Feasibility

- Funding:
 - \$5,000.00 CU ASEN
- Total Project Cost:
 - •~\$2,000
 - 5 revisions for electronics
- Project Margin:
 - ~\$3,000
- *certain project elements costs are estimates/TBD

Project Schedule

	GANTT project	7		2015		Preliminary Design Review	CriticFin.
	Name	Begin date	End date	September	October	November	December
0	Project Scope and Definition	8/24/15	9/14/15				
0	Conceptual Development and Design	9/14/15	10/14/15			٩	
	 Critical Design Document Due 	9/14/15	9/28/15]		
	 Design Feasibility Studies 	9/29/15	10/9/15				
	Create Preliminary Design Review Presentation	9/29/15	10/12/15				
	 Preliminary Design Review 	10/15/15	10/15/15			•	
0	Testing and Design Development Phase	10/15/15	11/25/15				
	 Create Testing Plan 	10/15/15	10/25/15				
	Acquire Necessary Testing Materials	10/26/15	11/6/15				
	 Assemble Testing Materials 	11/2/15	11/11/15				
	 Testing 	11/9/15	11/25/15				
0	Critical Design Development	10/19/15	12/11/15				
	 Create Critical Design Review Presentation 	10/19/15	12/9/15				
	 Critical Design Review 	12/9/15	12/9/15				•
	 Create Final Report 	11/20/15	12/13/15				
	 Final Report Due 	12/14/15	12/14/15				•

Future Studies

- Interface Board
 - Design layout of interface board
 - Selection of precise PIC microcontrollers
- Sun Sensor Calibration Table
 - Design encoder-LCD circuit
 - Selection of gears and gear ratio
- Helmholtz Cage Test
 - Further testing of hanging lines for margin
- Software
 - Increase of simulation accuracy

Questions?

Backup Slides

- Interface Board
- <u>Simulation</u>
- Sun Sensor Calibration Table
- Helmholtz Cage Test
- Logistics

Interface Board

Interface Board: Requirements

- Interface board shall output digital sun sensor, rate gyro, magnetometer, and GPS data at 10Hz or greater.
- Interface board shall sample the 3 magnetorquer PWM outputs
- Interface board shall measure power draw of ADCS board
 - Shall measure voltage and current for 3.3V and 5V lines
 - Shall have a minimum accuracy of 5% with a desired accuracy of 1%
 - Shall sample at a rate of 20Hz or greater

Functional Requirement 1

- An interface board shall provide the means for the Matlab/Simulink simulation to communicate with the QB50 ADCS board
 - DR.1 The interface board shall transmit simulated sun sensor data, via I2C, to the ADCS board at a rate of 10Hz or greater
 - DR.2 The interface board shall transmit simulated rate gyro data, via I2C, to the ADCS board at a rate of 10Hz or greater
 - DR.3 The interface board shall transmit simulated magnetometer data, via I2C, to the ADCS board at a rate of 10Hz or greater
 - DR.4 The interface board shall transmit simulated GPS data, via USART to the ADCS board at a rate of 10Hz or greater
 - DR.5 The interface board shall sample the 3 magnetorquer PWM outputs

Cont.

- DR.5.1 The PWM outputs will be sampled such that the spacecraft torque generated by the magnetorquers can be calculated to an accuracy of 10% or greater
- DR.5.2 A compare, capture, and PWM (CCP) module capable of 1kHz operation shall be used to capture the PWM signals
- DR.6 The interface board shall measure the power draw of the ADCS board
 - DR.6.1 The interface board shall measure the voltage and current of the individual 5V and 3.3V lines at a rate of 1kHz or greater
 - DR.6.2 The interface board shall measure the voltage and current of the individual 5V and 3.3V lines with a desired accuracy of 1% and minimum accuracy of 5%
 - DR.6.3 The voltage and current measurements shall be sent to the computer to be logged
- DR.7 The interface and ADCS board shall operate via USB power

Functional Requirement 2

- The existing Matlab/Simulink simulation shall be modified to communicate with ADCS interface board
 - DR.1 The simulation shall communicate with the interface board via USB
 - DR.2 The supporting simulation shall convert the magnetorquer signal to a torque value and maintain an accuracy of 10% or greater
 - DR.2.1 The magnetorquer torque value shall be recorded to a file at a rate of 1kHz for the entire duration of the simulation
 - DR.3 The measured voltage and current to the ADCS board shall be recorded to a file
 - DR.4 A GUI shall be added to the simulation
 - DR.4.1 The GUI shall allow the user to override sensor output to simulate sensor failure
 - DR.5 The supporting software shall feed the magnetorquer output back into the simulation to allow for closed loop testing
 - DR.6 The supporting software shall log the simulated satellite motion computed by the customer simulation

Input to ADCS

- 15 Analog Sun Sensors
 - Analog to Digital conversion takes place at the sensors
 - Communicate to the ADCS over I2C
- 3 Rate Gyros
 - Communicate over I2C
- 3 Magnetometers
 - Communicate over I2C
- 1 GPS
 - Communicates over UART

Output from ADCS

- 3 magnetorquer PWM signals
 - Operates at 1kHz
- Voltage and current measurement of 5V line to ADCS
 - Max expected current of 600mA
- Voltage and current measurement of 3.3V line to ADCS
 - Less than 20mA

Interface Board

Interface Board - Components

Component	Manufacturer	Part Number	Price
Master Microcontroller	Microchip	PIC18F65J94	\$3.94
Slave Microcontroller	Microchip	PIC16F18325	\$1.18
USB to UART	FTDI	<u>FT232RL</u>	\$4.50
Current Sensor	Allegro	<u>ACS712</u>	\$4.82
Linear Voltage Regulator	STMicroelectronics	LD1117S33CTR	\$0.51
Printed Circuit Board	Advanced Circuits	N/A	\$33.00

Interface Board – Microcontrollers

PIC18F65J94

- 4 UART
- 2 I2C
- 16 10/12-Bit A/D Channels
 - 500ksps @ 10-Bits
 - 200ksps @ 12-Bits
- 7 CCP modules
 - Run at a scaled rate to oscillator

PIC16F18325

- 1 UART
 - Allows communication to master microcontroller
- 2 I2C
 - Allows each microprocessor to emulate 2 sensors

UART – 1 transmitter, multiple receivers

"It can be safe to connect multiple receiving devices to a single transmitting device. Not really up to spec and probably frowned upon by a hardened engineer, but it'll work. For example, if you're connecting a serial LCD up to an Arduino, the easiest approach may be to connect the LCD module's RX line to the Arduino's TX line. The Arduino's TX is already connected to the USB programmer's RX line, but that still leaves just one device in control of the transmission line."

"Distributing a TX line like this can still be dangerous from a firmware perspective, because you can't pick and choose which device hears what transmission. The LCD will end up receiving data not meant for it, which could command it to go into an unknown state."

https://learn.sparkfun.com/tutorials/serialcommunication

Interface Board - Current Sensor

- 1.5% Typical total output error
- PIC 12-Bit ADC between 0 and 5 Volts
 - 5/(2^12) = 1.2mV resolution
- Current sensor sensitivity
 - 185mV/A base
 - 610mV/A with op-amp
- Current resolution
 - 6.5mA
 - 2.0mA

+5 V/ Mean Total Output Error versus Ambient Temperature 6 Eror (%) -6 75 100 125 150 TA (°C) (tested using the AUS/ IZELU-USA).

Interface Board – Power Budget

Interface Board

- Microchip eXtreme Low Power
 - As low as 35uA/Mhz for 8-Bit MCU
 - 0.35mA at 10Mhz
 - <10mA for 23 MCUs</p>
- FTDI < 25mA
- Current Sensor < 13mA

Total: ~48mA

Customer ADCS

- Beaglebone < 500mA
 - Observed ~250mA in normal operation
- Magnetorquers
 - 90 Ohms @ 5V is 56mA max
 - <167mA for 3 magnetorquers
- Sensors < 20mA

Total: ~ 437mA

Current Sensor – ACS712

Selection Guide

Part Number	Packing*	T _A (°C)	Optimized Range, Ip (A)	Sensitivity, Sens (Typ) (mV/A)
ACS712ELCTR-05B-T	Tape and reel, 3000 pieces/reel	-40 to 85	±5	185
ACS712ELCTR-20A-T	Tape and reel, 3000 pieces/reel	-40 to 85	±20	100
ACS712ELCTR-30A-T	Tape and reel, 3000 pieces/reel	-40 to 85	±30	66

*Contact Allegro for additional packing options.

Absolute Maximum Ratings

Characteristic	Symbol	Notes	Rating	Units
Supply Voltage	Vcc		8	V
Reverse Supply Voltage	VRCC		-0.1	v
Output Voltage	VIDUT		8	v
Reverse Output Voltage	VRIOUT		-0.1	v
		Pins 1-4 and 5-8; 60 Hz, 1 minute, T _A =25°C	2100	V
Reinforced Isolation Voltage	Viso	Voltage applied to leadframe (lp+ pins), based on IEC 60950	184	Vpeak
		Pins 1-4 and 5-8; 60 Hz, 1 minute, TA=25°C	1500	V
Basic Isolation Voltage	V _{ISO(bsc)}	Voltage applied to leadframe (lp+ pins), based on IEC 60950	354	V _{peak}
Output Current Source	IOUT(Source)		3	mA
Output Current Sink	IOUT(Sink)		10	mA
Overcurrent Transient Tolerance	lp	1 pulse, 100 ms	100	A
Nominal Operating Ambient Temperature	TA	Range E	-40 to 85	°C
Maximum Junction Temperature	T _J (max)		165	°C
Storage Temperature	T _{stg}		-65 to 170	°C

Features and Benefits

- Low-noise analog signal path
- Device bandwidth is set via the new FILTER pin
- 5 µs output rise time in response to step input current
- 80 kHz bandwidth
- Total output error 1.5% at $T_A = 25^{\circ}C$
- Small footprint, low-profile SOIC8 package
- $1.2 \text{ m}\Omega$ internal conductor resistance
- 2.1 kV_{RMS} minimum isolation voltage from pins 1-4 to pins 5-8
- 5.0 V, single supply operation
- 66 to 185 mV/A output sensitivity
- Output voltage proportional to AC or DC currents
- Factory-trimmed for accuracy
- Extremely stable output offset voltage
- Nearly zero magnetic hysteresis
- Ratiometric output from supply voltage

Current and Voltage Measurement

Voltage Regulator – LD1117

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Vo	Output voltage	V _{in} = 5.3 V, I _O = 10 mA, T _J = 25 °C	3.267	3.3	3.333	٧
Vo	Output voltage	$I_0 = 0$ to 800 mA, $V_{in} = 4.75$ to 10 V	3.235		3.365	V
ΔV_{O}	Line regulation	V _{in} = 4.75 to 15 V, I _O = 0 mA		1	6	mV
ΔVo	Load regulation	V _{in} = 4.75 V, I _O = 0 to 800 mA		1	10	mV
ΔV_{O}	Temperature stability			0.5	Î	%
ΔV_{O}	Long term stability	1000 hrs, T _J = 125 °C		0.3		%
Vin	Operating input voltage	I _O = 100 mA	s		15	V
ld	Quiescent current	V _{in} ≤ 15 V		5	10	mA
lo	Output current	V _{in} = 8.3 V, T _J = 25 °C	800	950	1300	mA
eN	Output noise voltage	B = 10 Hz to 10 kHz, T _J = 25 °C		100		μV
SVR	Supply voltage rejection	I _O = 40 mA, f = 120 Hz, T _J = 25 °C V _{in} = 6.3 V, V _{ripple} = 1 V _{PP}	60	75		dB
	2	I _O = 100 mA		1	1.1	2
Vd	Dropout voltage	I _O = 500 mA		1.05	1.15	v
	525 - 543205 3	I _O = 800 mA		1.10	1.2	
	Thermal regulation	T _a = 25 °C, 30 ms Pulse	(0.01	0.1	%/W

Interface Board – Bit Bang Method

48

Simulation

49

CUBESAT SIMULATION MODEL

(Backup)

CUBESAT SIMULATION MODEL

Concatenate

(Backup)

CUBESAT SIMULATION MODEL

Sensor Override

Coarse Sun Sensor									
 Simulation Data 	○ Kill Sensor	◯ Increase	Noise 10%	•		Offse	et/Drift -13mV		
GPS Sensor									
⊖ Kill X	⊖ Kill Y			() Kil	ΙZ		() Kill Time		
Magnetometers						<u> </u>			
	Offset/	Drift X Gauss	Offs	et/Drift Y	Gauss	Offset/Drift 2	Gauss		
		se Noise X %		ease Noise Y	%	O Increase No	ise Z %		

USB Power Supply

- Use External USB Battery
- Royal PB10000
- 2 USB Lines
 - 5V, 2.1 A
 - 5A, 1 A
- 10,000 mAh

Image from http://newgizmoblog.com/wpcontent/uploads/2014/10/Royal-Power-1.jpg

Trade Studies

Processor Weight Table

Criteria	Sub-Criteria	Percen	itages	Wei	ghts
Performance		30%		0.30	
25 7 1	Speed/Freq.	6 .	20%	-	0.20
2 17 1	Power	6 .	10%	-	0.10
Reliability	- 72	10%	1000	0.10	100
	Long Term	. :	5%	-	0.05
>=:	Consistency	35	5%	-	0.15
Language		40%	2771	0.40	1.7
	Learning Curve	-	20%	-	0.20
	Ease of Use	-	20%	-	0.20
Cost	0.7	10%		0.10	-
Support	Support -		-	0.10	-
		100%		1.00	

Software/GUI Weight Table

Criteria	Sub-Criteria	Percer	itages	Weights		
License	12	5%	12	0.05	125	
Learning Curve		35%	12	0.35		
Ease of Use		25%	12	0.25		
Compatibility	-	35%	-	0.35	-	
	Software	-	15%		0.15	
	Hardware	-	20%	2	0.20	
	1	100%		1.00		

Trade Study Results

S	Summary Matrix		PIC		Ardı	uino		FPGA		Ras Pi	
Critoria	Sub Critorio	Waight	Raw	Weighted	Raw	Weighted	Ra	w Weigh	nted Raw	Weighted	
Cincila	Sub-Cilicita	weight	Score	Score	Score	Score	Sco	ore Scor	re Score	Score	
Performance	-	30%	-	-	2	-	-		-	-	
	Speed/Frequency	20%	3	0.60	3	0.60	5	1.00	0 4	0.80	
	Power Use	10%	3	0.30	4	0.40	5	0.50	0 2	0.20	
Reliability	1	10%	-		-	10		• 🗖	07	(=)	
	Long Term Use	5%	5	0.25	5	0.25	5	0.2	5 5	0.25	
	Consistency	5%	4	0.20	4	0.20	5	0.2	5 4	0.20	
Language	153	40%		-	≅ 	1 	-	5 .		8 7 5	
	Learning Curve	20%	4	0.80	4	0.80	1	0.20	0 3	0.60	
	Ease of Use	20%	4	0.80	5	1.00	1	0.20	0 3	0.60	
Cost		10%	5	0.50	4	0.40	5	0.50	0 4	0.40	
Support	17,1	10%	5	0.50	4	0.40	2	0.20	0 3	0.30	
TOTAL			-	3.95	-	4.05	-	3.10	- 0	3.35	
	Summary Ma	atrix		M	atlab		LabV	View		С	
Critorio	Sub Cr	itaria	Weight	Weighted	l Raw	Weig	ghted	Raw	Weighted	Weighted	
Cinena	i Sub-Ci	nena	weight	Score	Score	e Sco	ore	Score	Score	Score	
License	e -		5%	5	0.25	2	2	0.10	4	0.20	
Learning C	'urve -		35%	5	1.75	4	la la	1.40	3	1.05	
Compatibi	ility -		35%		-	23	,	-	-		
-	Softw	are	15%	5	0.75	4	8	0.60	3	0.45	
-	Hardv	vare	20%	4	0.80	5	5	1.00	3	0.60	
Ease of U	Jse -		25%	4	1.00	4		1.00	2	0.50	
TOTAL	-			-	4.55	8 .		4.10		2.80	

Backup Slides

Sun Sensor Calibration Table

Sun Sensor Calibration Table – Full Model

All measurements in centimeters

Sun Sensor Calibration Table – Torque Calculation

$$\tau_R = \max \text{ motor torque required (N*m)} \qquad g = \text{gravity} = 9.81 \text{ m/s}^2$$

$$\rho = \max \text{ density of Aluminum} = 2830 \text{ kg/m}^3$$

$$r = \text{radius of board} = 0.25 \text{ m} \qquad t = \max \text{ thickness of board} = 0.03 \text{ m}$$

$$m_c = \max \text{ mass of CubeSat (3U)} = 3.6 \text{ kg} \qquad m_t = \max \text{ total mass (kg)}$$

$$C_f = \max \text{ bearing coefficient of friction} = 0.0015$$

$$m_t = \rho * \pi * r^2 * t + m_c = 20.270 \ kg$$

$$\tau_R = C_f * m_t * g * r \approx 0.0746 \ N * m$$

*Assumes 1:1 gear ratio

Sun Sensor Calibration Table – RPM Calculation

f = sampling frequency of Sun sensors = 10 Hz

 n_m = number of teeth on motor gear

 n_b = number of teeth on board/shaft gear

Need at least one sample per degree:

Max board RPM = $1^{\circ} f = 10^{\circ}/\text{second} = 5/3$ RPM

Gear Ratio
$$= \frac{n_m}{n_b}$$

$$RPM_{board} = \frac{5}{3} \ge \frac{RPM_{motor}}{Gear Ratio}$$

Sun Sensor Calibration Table – Bit Calculation

Rotate with resolution of 1° with ±0.5° accuracy

- US Digital MAE3 Absolute Magnetic Kit Encoder
- 10-bit analog output

Resolution = $360^{\circ}/2^{10} = 0.352^{\circ}$ per bit

Sun Sensor Calibration Table – Reflectivity

Reflectivity less than or equal to 5% for visible wavelengths (400-700 nm)

- Avian Technologies LLC
- Avian Black-S coating has reflectance of 3.1% in visible wavelengths

Sun Sensor Calibration Table - Flow Chart

Sun Sensor Calibration Table – Part Model

Top Platform – all measurements in centimeters

Sun Sensor Calibration Table – Part Model

Bottom Platform – all measurements in centimeters

Sun Sensor Calibration Table - Components

- 2x Aluminum disk, made from 50x50x3cm block
- 2x Aluminum gear, made from same Aluminum block
- Mechanical ball bearing
- Rotary magnetic encoder
- DC motor
- Analog to digital converter
- Digital LCD display

Functional Requirement 3

- A turn table shall be delivered to the QB50 team that has resolution of 1 degree with accuracy of ±0.5°
 - DR.1 The turn table should have low reflectivity
 - DR.1.1 The table will not have an albedo exceeding 5% in the visible light spectrum
 - DR.2 The table shall sense angular position and display it to the user
 - DR.3 A stepper motor shall be used to rotate the table

OSRAM SFH 2430 Sun Sensor

- Peak Wavelength: 570 nm
- Rise Time: 200 µs
- Fall Time: 200 µs
- Forward Current: 100 mA
- Power Dissipation: 150 mW

Sensor EM Spectrum vs. Solar EM Spectrum

Directional Characteristics

Trade Studies

• Sun Sensor Table Weights

•	Angular	Position	Sensor	Weights
---	---------	----------	--------	---------

Criteria	Sub-Criteria	Percent	ages	Weigh	nts	Criteria	Sub-Criteria	Percent	ages	Weigl	nts
Time to Design	177 Å	25%	2.	0.25		Accuracy	-	40%	E	0.40	-
Time to Make	. 	25%	-	0.25		Integration	-	25%	-	0.25	-
Reliability	u ne di	20%	2.7	0.20		Life Cycle	-	5%	-	0.05	-
Ease of Use	-	20%	:=	0.20	-	Ease of Use		10%	0.73	0.10	
Cost	-	10%	-	0.10	-	Cost	-	20%	0	0.20	
		100%		1.00				100%		1.00	8

Trade Study Results

Summary Matrix		Manual		Semi-J	Manual	PC		
Critorio	Weight	Raw	Weighted	Raw	Weighted	Raw	Weighted	
Cinena	weight	Score	Score	Score	Score	Score	Score	
Time to Design	25%	5	1.25	3	0.75	2	0.50	
Time to Make	25%	4	1.00	3	0.75	1	0.25	
Reliability	20%	5	1.00	4	0.80	2	0.40	
Ease of Use	20%	2	0.40	4	0.80	5	1.00	
Cost	10%	5	0.50	3	0.30	2	0.20	
TOTAL		1.	4.15	-	3.40	-	2.35	

Summary Matrix		Potent	tiometer	Optical Encoder		
Criteria	Weight	Raw Score	Weighted Score	Raw Score	Weighted Score	
Accuracy	40%	4	1.60	4	1.60	
Integration	25%	3	0.75	5	1.25	
Life Cycle	5%	3	0.15	5	0.25	
Ease of Use	10%	3	0.30	5	0.50	
Cost	20%	5	1.00	3	0.60	
TOTAL	25	-	3.80	-	4.20	

Backup Slides

Helmholtz Cage Test

Helmholtz Cage Testing Structure: Backup Calculations - Torque from Satellite

> Turning Authority (Ta) = 0.1 Am2 = 0.1 J/TMagnetic Field Strength (B) = $0.5 \text{ Gs} = 5e^{-5} \text{ T}$

> > Maximum Torqe = $B * Ta = 5e^{-6} Nm$

Helmholtz Cage Testing Structure: Backup Calculations - Modulus of Rigidity Test

- L_0 = initial length of line d = diameter of line
- G = modulus of rigidity
- E = modulus of elasticity
- v = Poisson's Ratio
- σ = Normal Stress
- ϵ = Strain
- F = load on line
- A_{CS} = cross-sectional area of line

$$E = \sigma / \epsilon_{y} \qquad \sigma = F / A_{CS} \qquad \epsilon_{y} = (L_{1} - L_{0}) / L_{0}$$

$$v = \epsilon_x / \epsilon_y \quad \epsilon_x = (D_1 - D_0) / D_0$$

G = $\frac{1}{2} * E * (1 - v)^{-1}$

Helmholtz Cage Testing Structure: Backup Calculations - Modulus of Rigidity Test

		Ete	est [m	ım]		E test [N]				V test [mm]			
Line Type	Line Capacity	L ₀	L ₁	L ₂	L ₃	F _o	F ₁	F ₂	F ₃	d ₀	d ₁	d ₂	d ₃
Braided	50 lbs	257	7.25 4	15.03	21.7 5	0	42	67	92	0.81	.608	.58	.569
Braided	27 lbs	225	47.5 2	15.28	21.2 8	0	30	42	57	.57	.46	.42	.41
Steelon	45 lbs	346	35.0	35.5	36.0	0	90	290	362	.682	.682	.673	.673
Steelon	20 lbs	253	5.00	9.76	12.0 2	0	15	76	126	.66	.51	.5	.5
Nanofil Backup	17 lbs	316	32.2	32.6	33.2	0	14	43	76	.282	.29	.268	.263

Helmholtz Cage Testing Structure: Backup Calculations - Line Resistive Torque

 τ_{Line} = Resistive Torque from the line τ_{Sat} = Torque from satellite = 5 ϵ^{-6} Nm L = length of line = 30 cm (half of the cage height)

J = polar moment of inertia

G = modulus of rigidity

 θ = angular deflection = 360°

(requirement from customer)

r = cross-sectional radius of the line

Alternative Calculation

$$G_{max} = 2*L*\tau_{sat}*r^{-4}*\theta^{-1}*\pi^{-1}$$

= 0.5 GPa

Compare to other materials

 $G_{Aluminum} = 27 \text{ GPa}$ $G_{Polycarbonate} = 2.3 \text{ GPa}$ $G_{Polyethelene} = 0.12 \text{ GPa}$

Assume line has smaller G than polyethelene

Helmholtz Cage Testing Structure: Backup Calculations - Satellite Acceleration

τ_{Sat} = Torque from satellite = 5E⁻⁶ NmI = mass moment of inertia about y axisα = angular acceleration of satelliteω = angular velocity of satellitet = time satellite is acceleratingL = length of satellite = 30 cmW = width of satellite = 10 cmH = Height of satellite = 10 cmm = mass of satellite = 3.6 kgV = velocity of satellite edge

$$\tau_{\text{Sat}} = I * \alpha \qquad \alpha = \tau_{\text{Sat}} / I$$

$$I = (m/12 * W_{\text{outer}}^{2} + m/3 * L_{\text{outer}}^{2})$$

$$- (m/12 * W_{\text{inner}}^{2} + m/3 * L_{\text{inner}}^{2})$$

$$V = \alpha * t * L * \frac{1}{2}$$

D = Drag Force

 $C_D = Drag$ Coefficient of flat plate = 1.05 to 2.05

- assumed to be 2.05 to be conservative ρ = density = 1.05 kg/m-3
 - assumed to be standard atmosphere at 1500 m (5000 ft)
- V = velocity of outermost satellite edge
- A = Area of satellite side

 M_D = Moment caused by Drag

 $D = \frac{1}{2} * \rho * V^{2} C_{D} * A$

- V and A vary from the center to the edge of the satellite

$$M_{\rm D} = \rho^* \alpha^{2*} t^{2*} h^* L^{4*} C_{\rm D} / (64)$$

 Drag was integrated over half of the satellite length

D = Drag Force

 $C_D = Drag$ Coefficient of flat plate = 1.05 to 2.05

- assumed to be 2.05 to be conservative ρ = density = 1.05 kg/m-3
 - assumed to be standard atmosphere at 1500 m (5000 ft)
- V = velocity of outermost satellite edge
- A = Area of satellite side

 M_D = Moment caused by Drag

 $D = \frac{1}{2} * \rho * V^{2} C_{D} * A$

- V and A vary from the center to the edge of the satellite

 $F_{equivalent} = D * L / 4$

- Drag approximated by distributed load

d = ⅔ * r

 $M_D = 2 * F_{equivalent} * d$

 $D = \frac{1}{2} * \rho * V^2 * C_D * A$

- V and A vary from the center to the edge of the satellite

 $F_{equivalent} = D * L / 4$

- Drag approximated by distributed load

d = ⅔ * r

 $M_D = 2 * F_{equivalent} * d$

Helmholtz Cage Testing Structure: Backup Calculations - Allowable Shear Modulus

83

Helmholtz Cage Testing Structure: Backup - Attachment

Helmholtz Cage Testing Structure: Backup - Attachment

Satellite Attachment Mechanism 1

Helmholtz Cage Testing Structure: Backup - Attachment

Satellite Attachment Mechanism 2

Slides

Trade Study Weights and Results

Criteria	Sub-Criteria	Percentages		Ratios	
Resistance	-	30%	÷	0.30	-
Time to Design	-	10%	÷	0.10	-
Time to Make	1.5	20%	$\overline{\sigma}$	0.20	
Additional Components	10	15%	5	0.15	-
Ease of Use	1.5	15%	5	0.15	-
Cost	-	10%	=	0.10	-
		100%		1.00	÷1 – 0

Summary Matrix	Magnetic Levitation		Mechanical Bearing		Hanging		Air Bearing		
Critoria	Weight	Raw	Weighted	Raw	Weighted	Raw	Weighted	Raw	Weighted
Cincila		Score	Score	Score	Score	Score	Score	Score	Score
Resistance	30%	5	1.50	3	0.90	4	1.20	3	0.90
Time to Design	10%	2	0.20	4	0.40	3	0.30	2	0.20
Time to Make	20%	3	0.60	4	0.80	4	0.80	2	0.40
Additional Components	15%	3	0.45	5	0.75	4	0.60	2	0.30
Ease of Use	15%	4	0.60	5	0.75	2	0.30	3	0.45
Cost	10%	3	0.30	3	0.30	5	0.50	2	0.20
TOTAL		-	3.65	-	3.90	-	3.70	1 4	2.45

Logistics

88

Detailed Preliminary Budget

System	ltem	Quantity	Item Cost	Total
Interface Board	Master Microcontroller	1x5	\$3.94	\$19.70
	Slave Microcontroller	22x5	\$1.18	\$129.80
	USB to UART	1x5	\$4.50	\$22.50
	Current Sensor	2x5	\$4.82	\$48.20
	Linear Voltage Regulator	2x5	\$0.51	\$5.10
	PCB (2-layer)	2x5	\$33.00	\$330.00
			TOTAL:	\$555.30
Helmholtz Cage Hang	Extruded Aluminum	22ft.	\$12.00/ft.	\$264.00
	¼" Aluminum Plate	4sq.ft.	\$37.80/sq.ft.	\$151.20
	Line	20in.	\$0.0023/ft.	\$20.00
ackun	Fasteners			\$100.00
<u>Slides</u>			TOTAL:	\$535.20

System	ltem	Quantity	ltem Cost	Total	
Sun Sensor Calibration	Aluminum	1	\$100.00	\$100.00	
	Ball Bearing	1	\$30.00	\$30.00	
	Rotary Magnetic Encoder	1	\$80.00	\$80.00	
	DC Motor	1	\$70.00	\$70.00	
	Analog to Digital Converter	1	\$30.00	\$30.00	
	LCD Display	1	\$30.00	\$30.00	
	Anodized Coating	1	\$300.00	\$300.00	
			TOTAL:	\$640.00	
Extra Elements	Project Poster	2	\$43.00	\$86.00	
	Miscellaneous		\$200.00	\$200.00	
			TOTAL:	\$286.00	