SPECS<u>Specialized Propulsion Engine Control System</u>

Team:

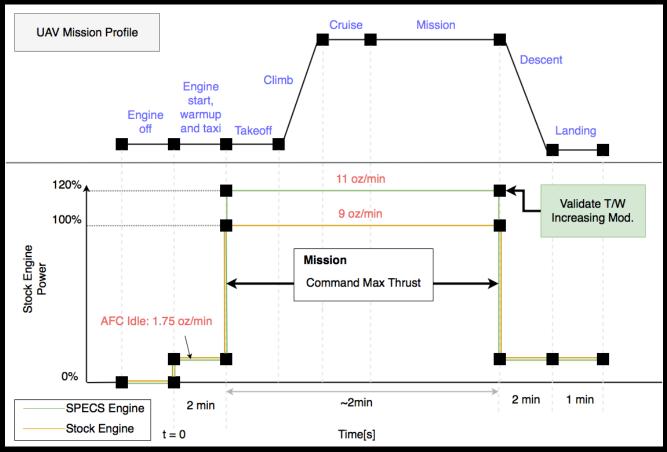
- Greg Frank
- Sam Piper
- Yuzhang Chen
- Preston FitzRandolph
- Cedric Camacho
- Matt Knickerbocker
- Madison Junker
- Daniel Castillo Oropeza
- John Cutler
- Markus Fuernkranz
- Dan Harthan

Preliminary Design Review

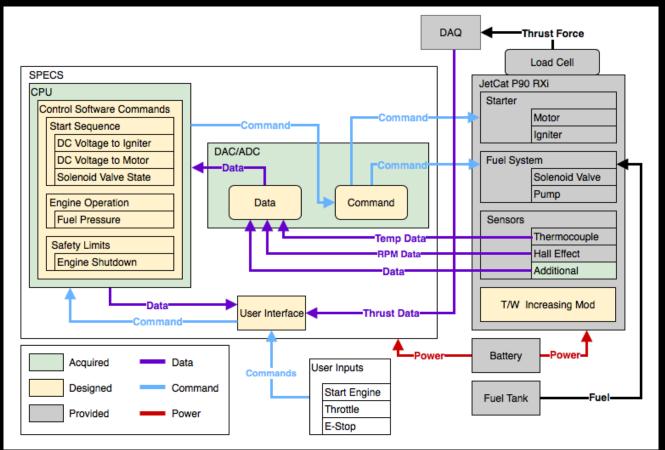
Advisor: Professor John Mah Customer: Air Force Research Laboratory POC: 1LT Carol Bryant

PROBLEM STATEMENT

- Increase Thrust-to-Weight (T/W) Ratio of the JetCat P90-RXi Engine
- The engine must run for an extended period of time


<u>Motivation</u>

- The United States Air Force (USAF) would like to implement a T/W increasing modification into their fleet of Unmanned Aerial Vehicles (UAV)
- Ideal solution would be low cost and easy to implement with minimal modification to existing engine


CONCEPT OF OPERATIONS

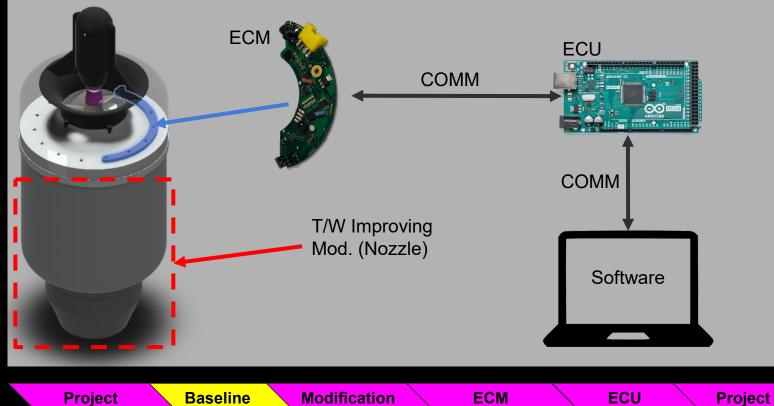
FUNCTIONAL BLOCK DIAGRAM

FUNCTIONAL REQUIREMENTS

- 1. The JetCat P90-RXi engine shall have an increased T/W ratio of 20% from stock parameters.
- 2. SPECS shall control the engine over the entire operational envelope.
- 3. SPECS shall run the engine in a safe manner.
- 4. SPECS shall have a user interface for engine control.

CRITICAL PROJECT ELEMENTS

- Thrust Improvement Modification (π_{c} + Nozzle)
 - Compressor Pressure Ratio ($\pi_{\rm C}$)
 - Material Properties
- Engine Control Module (ECM)
 - Engine Control Loop
 - Engine Sensors
- Electronic Control Unit (ECU)
 - Communication from User to Engine

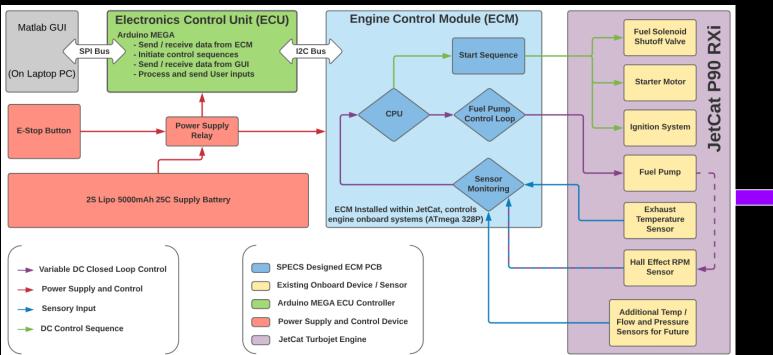


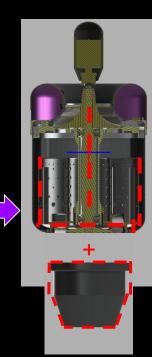
Description

Design

BASELINE DESIGN - OVERVIEW I

Feasibility

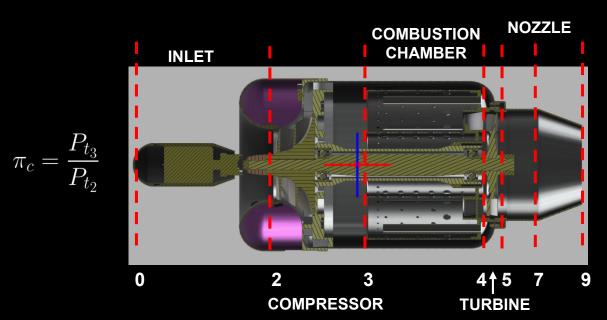

Feasibility


Summary

Feasibility

BASELINE DESIGN - OVERVIEW II

Thrust Improving Modification 8

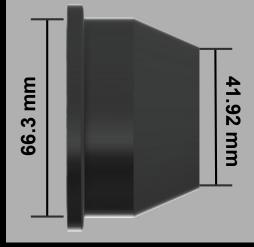

BASELINE DESIGN - THRUST IMPROVING MOD ($\pi_{\rm C}$)

- To increase thrust by 20%, a higher total temperature is required in the combustion chamber (T_{t4}) which directly increases pressure ratio across the compressor (π_c)
- To increase T_{t4}, must increase fuel flow which increases thrust from stock 100 N @ 130,000 RPM

<u>Needs</u>: Increased compression ratio in combustion chamber from stock $\pi_{\rm C}$ = 2.35

<u>Capabilities:</u> Increase pressure ratio in combustion chamber by increasing engine compressor RPM

BASELINE DESIGN -THRUST IMPROVING MOD (NOZZLE)



• With a new $\pi_{\rm C}$, the exhaust flow must be perfectly expanded at the nozzle exit for max thrust

<u>Needs:</u> New exit area of nozzle to perfectly expand the exhaust flow due to new $\pi_{\rm C}$

$$(1-M^2)\frac{dV}{V} = -\frac{dA}{A}$$

<u>Capabilities:</u> Expand flow to sea level atmospheric conditions at the nozzle exit

BASELINE DESIGN - ECU

<u>Purpose:</u> Offboard communication device between ECM and user interface. Performs computation of system parameters to output to GUI

Needs:

- Send engine state requirements to ECM
- Send engine throttle commands from user to ECM
- Receive sensor data from ECM for processing

Capabilities: (Arduino Mega)

- I2C communication
- 54 Digital I/O pins
- 256 kB Flash Memory (store program and data)
- 4 x 16 bit timers (control complex timing sequence)
- 4 UART (connect many devices)

Arduino Mega

BASELINE DESIGN - ECM

Purpose:

- Control engine sequence operation: Start, Run, Shutdown.
- Control engine to commanded throttle setting from ECU

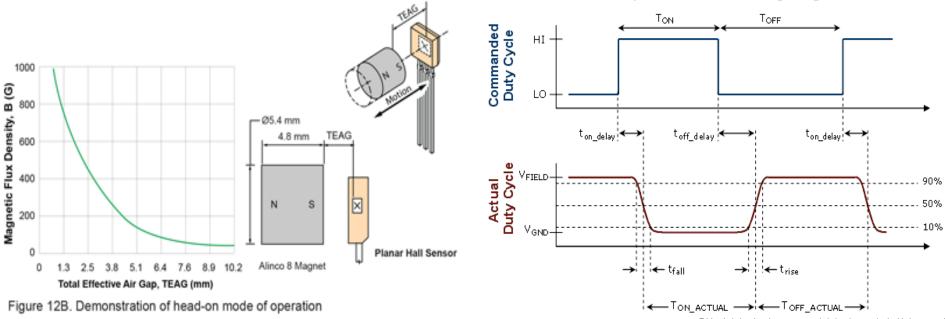
<u>Needs:</u>

- Read RPM and temperature data from Hall effect and thermocouple respectively
- Perform DAC/ADC
- PWM motor control
- I2C & SPI communication

Capabilities: (ATmega 328P)

- 6 PWM channels
- 20 MHz oscillator
- 32 kBytes flash memory
- 8-channel 10-bit ADC
- I2C and SPI capable
- 500 kHz internal sampling rate for digital inputs

ATmega 328P

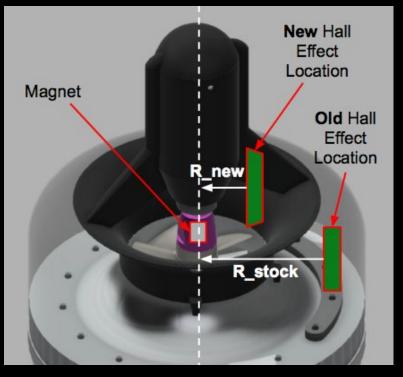


BASELINE DESIGN - ECM (HALL EFFECT SENSOR)

Output Waveform Timing Diagram

Mosaio Industries, Inc., www.mosaio-industries.com/embedded-systems/

BASELINE DESIGN - ECM (HALL EFFECT SENSOR)



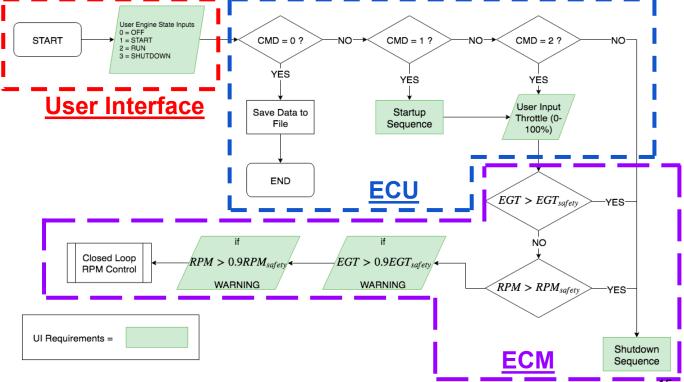
Purpose: Sense RPM, output square wave for engine control

<u>Needs:</u> Sense RPM >130 kRPM, output to microprocessor, read pulse width to calculate RPM

<u>**Capabilities:**</u> Hall effect Honeywell SS40A -Measured pulse width duty cycle at 42.5% for 5 kRPM. Pulse width at 130 kRPM is 197.5 μ s; 13 μ s minimum pulse width for rise / fall and response time of Hall effect sensor

<u>Application Note:</u> Starter assembly - redesign and 3D print to capture Hall effect sensor and route wire to ECM without inlet obstruction

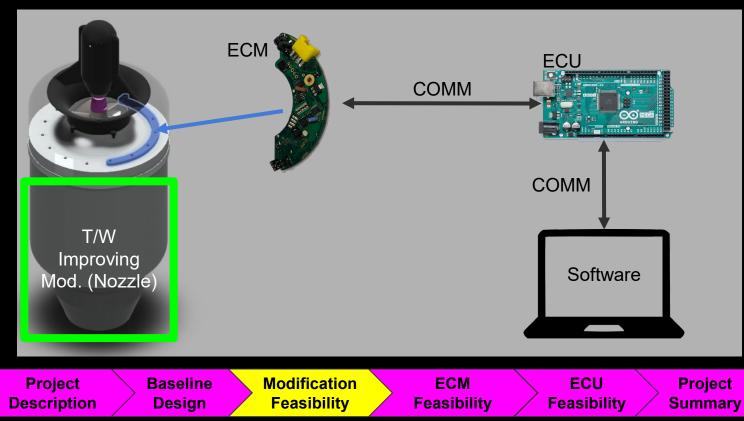
BASELINE DESIGN - SOFTWARE



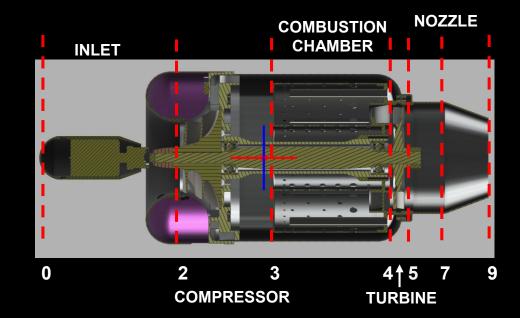
- <u>Purpose:</u> Implements user input commands, closed loop control
- <u>Needs:</u> Allow user to control the state of the engine

• <u>Capabilities:</u>

- RPM from Hall effect sensor, fed back through a closed loop controller, modifies signal to the fuel pump to match commanded RPM

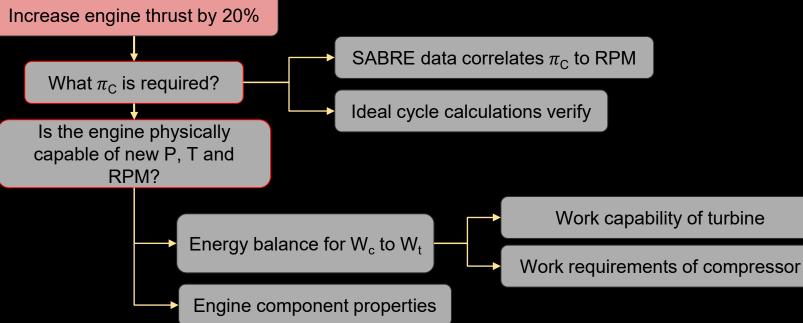

- Checks RPM and EGT for safe operating conditions

SUBSYSTEM FEASIBILITY - THRUST IMPROVEMENT


16

THRUST IMPROVEMENT FEASIBILITY OVERVIEW

- 1. Fuel flow is increased
- 2. T_{t4} increases
- 3. Turbine is driven to higher RPM
- 4. Compressor pulls in more air with new RPM
- 5. $\pi_{\rm C}$ increases
- 6. Flow is underexpanded with stock nozzle
- Nozzle is redesigned with smaller exit area (increased flow velocity, decreased pressure ⇒ perfectly expanded at the exit)



<u>FR.1:</u> The JetCat P90-RXi engine shall have an increased T/W ratio of 20% from stock parameters.

<u>DR 1.1:</u> Implement a T/W improving modification that does not affect the overall operation of the engine and its ability to run for an extended period of time (2 minutes).

DR 1.2: Any modifications to the engine will not reduce the factor of safety of any engine component below 1.3 per USAR.

3.5

Pressure ratio ($\pi_{\rm C}$) calculation for 20% increase in thrust assuming:

- Ideal Brayton cycle
- Axial compressor

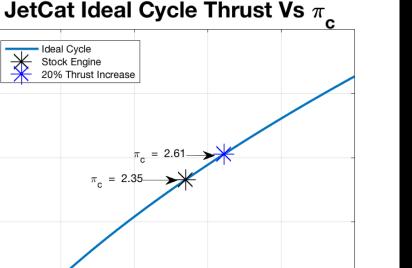
 $F_{uninstalled} = \dot{m}_0(V_9 - V_0)$

Model results: Ideal Brayton cycle requires $\pi_{\rm C}$ = 2.61 to feasibly obtain 20% thrust increase

IDEAL COMPRESSOR PRESSURE RATIO

250

200


Thrust [N] ¹²⁰

50

0

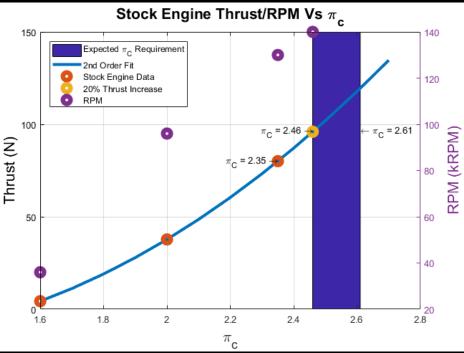
Ideal Cycle Stock Engine

1.5

3

2.5

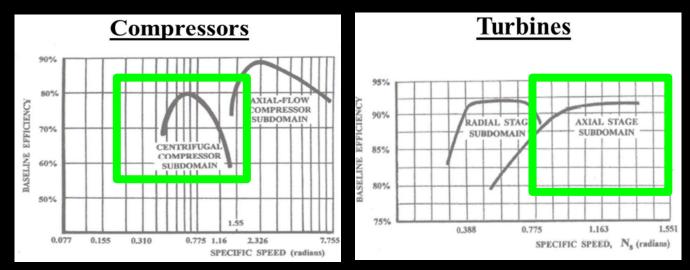
 $\pi_{\rm c}$ (Pressure Ratio)


STOCK ENGINE COMPRESSOR PRESSURE RATIO

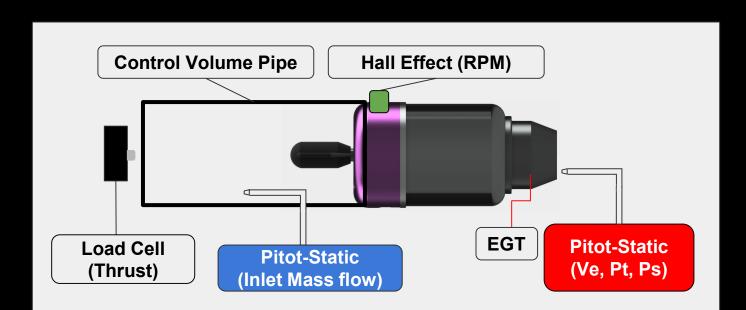
Pressure ratio observation for 20% increase in thrust:

- Observed in SABRE data
 - Provides a lower bound for expected value of $\pi_{\rm C}$
- Required $\pi_{\rm C}$ therefore expected to fall between:
 - 2.46 (real) 2.61 (ideal)

<u>Model results:</u> Increased thrust with $\pi_{\rm C}$ = 2.46 is feasible to obtain with ~10,000 RPM increase

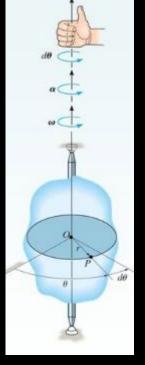


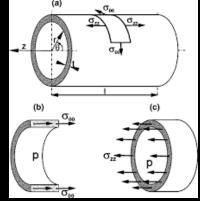
PRESSURE RATIO FEASIBILITY


Ideal	Compressor Work (required)	Turbine Work (available)	
Stock	19.99 kW	48.01 kW	
20% Increase	22.3 kW	46.1 kW	

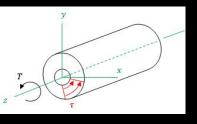
Result: Thrust increase is feasible since there is excess work available from the turbine

- Excess Work Available ⇒ Increase Pressure Ratio ⇒ Increase Thrust
- Improving the engine cycle model requires engine test runs to gather: Inlet Mass Flow, Thrust, EGT, RPM, Exit Velocity, Total & Static Exit Pressure





ENGINE COMPONENT ANALYSIS MODEL



- Compressor/Turbine
 - Angular Motion
 - Low angular acceleration, high angular velocity
 - Stress at blade tip compared to material yield stress to verify integrity
- Nozzle/Engine Case
 - Thin Wall Pressure Vessel
 - Stresses calculated with total pressure at corresponding stations, compared to yield strength for estimated materials
- Shaft
 - Power-Torque Relation
 - Shear stresses from compressor and turbine calculated and compared to ultimate shear for assumed material

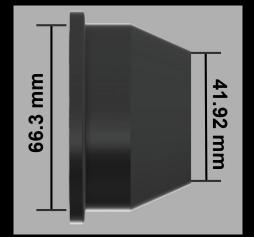
Thin Wall Pressure Vessel

Angular Motion

Torque About Shaft

CRITICAL ENGINE COMPONENTS

Component (Stock)	MATERIAL	YIELD STRENGTH OF MATERIAL	ACTUALLY EXPERIENCED	S.F.
COMPRESSOR	AI 7075	440.57 MPa	23.99 MPa	18.36
ENGINE CASE	AISI 301	1089.31 MPa	31.43 MPa	34.66
SHAFT	AISI 301	2123.60 MPa	2.9 MPa	735.87
TURBINE	Inconel 718	289.45 MPa	700.72 MPa	0.41
NOZZLE	Inconel 718	661.6 MPa	6.68 MPa	99.04

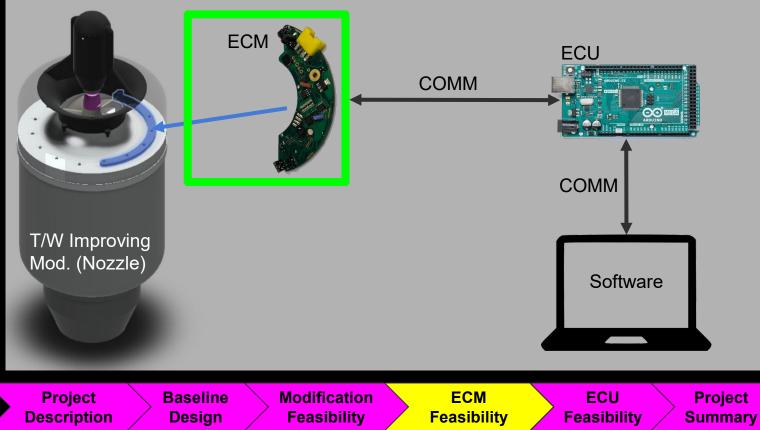

- Component materials were determined from Alibaba, a vendor of JetCat replacement parts
- All material properties were found in
 - Military Handbook-5H --- Metallic Materials and Elements for Aerospace Vehicle Structures

NOZZLE FEASIBILITY

- With new pressure ratio, the required exit area for perfectly expanded flow at sea level is 0.00138 m²
- This is a 26% decrease in stock nozzle exit area
- New dimensions can be manufactured

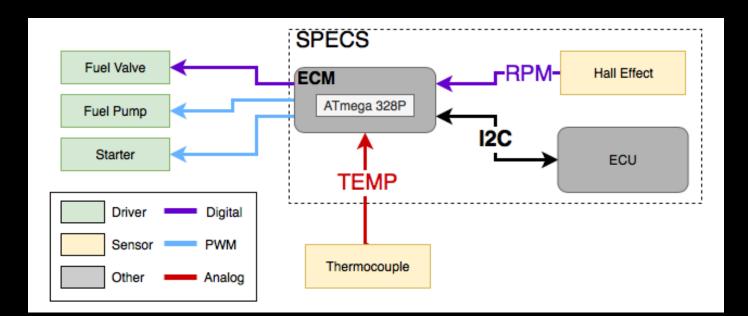
	MATERIAL	TENSILE YIELD FAILURE	ACTUALLY EXPERIENCED	S.F.
NOZZLE DESIGN	CoCrMo	350 MPa	5.8 MPa	60.34

 Material property was found from The Japan Institute of Metals --- Mechanical Properties of Biomedical Co-33Cr-5-Mo-0.3N Alloy at Elevated Temperatures



- Component material investigation
 - Critical engine component materials to be identified through Colorado Metallurgical Services
 - Thermal properties characterized through heat and destructive testing to simulate engine environment
 - Explore heat treatments and ablative (thermal) coatings
- Engine testing
 - Measure pressure, temperature, mass flow, thrust, thermocouple (front and back of chamber), nozzle exit velocity

SUBSYSTEM FEASIBILITY - ECM



ECM DESIGN OVERVIEW

- Engine Control Module (ECM) controls engine state
- Fuel Pump Voltage \Rightarrow RPM
- Monitors on-board safety limits to initiate automatic engine shutdown

ECM REQUIREMENTS

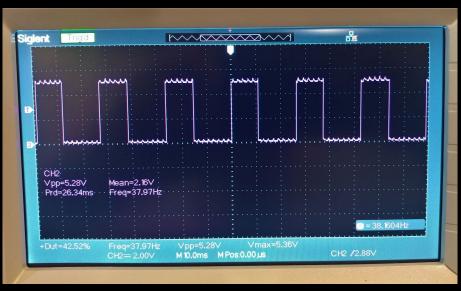
FR 2: SPECS shall control the engine over the entire operational envelope.

<u>DR 2.2:</u> SPECS shall maintain idle at or near $33,000 \pm 100$ RPM.

<u>DR 2.2.1</u>: SPECS shall measure input from the thermocouple concurrently with RPM and fuel pump Pulse Width Modulation (PWM).

DR 2.2.2: SPECS shall measure input from the Hall effect sensor up to 5 kHz rate.

DR 2.2.3: SPECS shall send PWM fuel pump command rate as a percentage of full power.

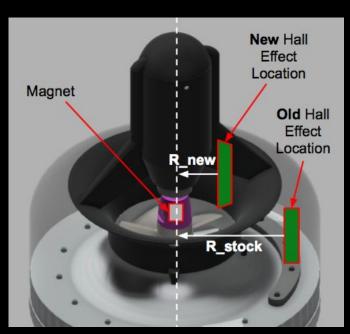


Hall Effect Honeywell SS40A

System Settings: TEAG = 5 mm

<u>Method</u>: Commanded starter to run. Measured Hall effect waveform properties using oscilloscope. Duty cycle 42.52%, Freq = 37.97Hz. ECU LCD readout = 2275 RPM (37.91Hz), RPM calculation confirmed

<u>Test Results:</u> Verified Hall effect sensor functional, communicates and maps correct RPM



HALL EFFECT SENSOR FEASIBILITY

JetCat implementation of Hall effect sensor has been problematic. Sensor set beyond datasheet max distance for estimated magnetic field (35mm). Sensor measured <20% duty cycle (high RPM near sensor limit DC varied).

Specs Solution:

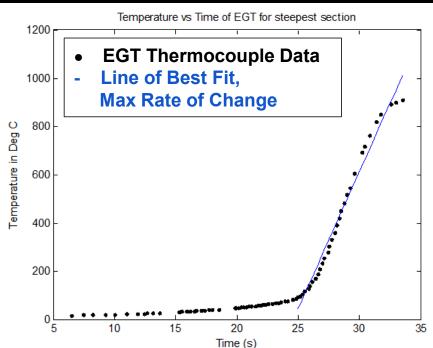
- Upgrade Hall effect sensor, relocate closer to magnet for precision
- New location provides 42% or better duty cycle with higher accuracy
- Verified new sensor will read RPM up to 300 kRPM (5 mm away)

ECM DATA SAMPLING RATE: RPM

Microprocessor Pulse Injection

System Settings: Square wave duty cycle = 35% benchtop waveform generator

<u>Method</u>: Using waveform generator, supplied frequencies from 50 Hz to 5 kHz (3 - 300 kRPM). Waveform measured on ECM, then transmitted to ECU, then converted to RPM and sent to LCD. Total communication time <20ms.



<u>**Test Results:**</u> Verified ECM can measure RPM in excess of 300 kRPM

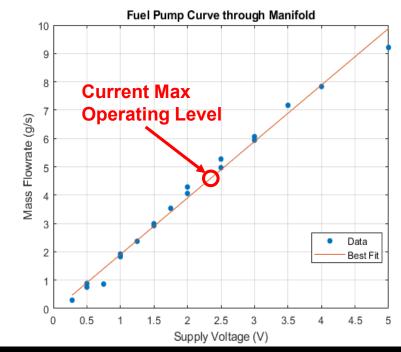
<u>Method:</u> MEDUSA engine run EGT data showing max temp rate of change from throttle command

<u>Needs:</u> Design controller to limit temperature change to less than 113.7°C/s

Future Test Requirements: Use proportional linear ramp controller to characterize fuel delivery and correlate to temperature rate of rise across RPM spectrum. Adjust fuel pump ramp rate to maintain less than 113.7°C/s temperature increase.

ECM DESIGN THERMAL TRANSIENTS: EGT

FUEL PUMP CHARACTERIZATION TESTING



DR 2.2.3: SPECS shall send PWM fuel pump command rate as a percentage of full power

<u>Methods:</u>

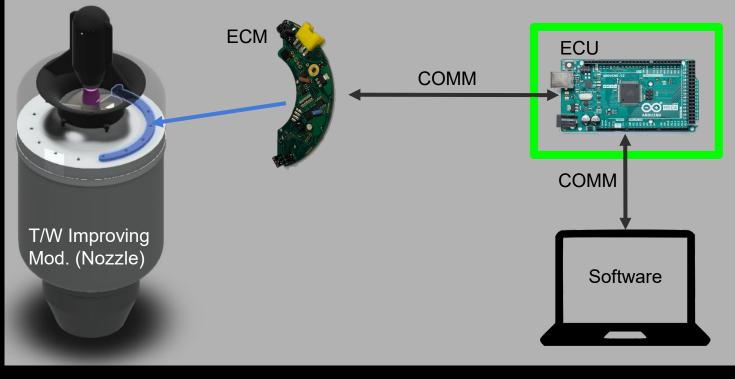
- Applied 0.28-5V to fuel pump, 0.5V increments for 10 seconds
- Video recorded weight of fuel tank and stop clock simultaneously
- Analyzed change in weight to find mass flow & voltage relationship

<u>Test Results:</u> Stock fuel flow at max thrust: 4.7 g/s. Pump can support higher fuel flows needed to increase T_{t4} & RPM

ECM DESIGN SUMMARY

ECM Completed Testing:

- Communication between all scoped systems verified
- Data transfer rates within design standards at 100 kHz standard mode rate


Future Work:

- -Test bed implementation
- -Design inlet to relocate Hall effect
- -Testing, Thermocouple, Hall effect, Fuel Pump

SUBSYSTEM FEASIBILITY - ECU

ProjectBaselineModificationECMECUProjectDescriptionDesignFeasibilityFeasibilityFeasibilitySummary

ECU DESIGN OVERVIEW

- The Electronics Control Unit (ECU):
 - Accepts user inputs from GUI and sends to ECM
 - Collects sensor data from ECM to process into RPM, temperature
 - Off engine connection point for DAQ, GUI
 - Allows for offboard processing

Arduino Mega

ECU REQUIREMENTS

FR 4: SPECS shall have a user interface for engine control.

DR 4.2: The SPECS user interface shall take user throttle inputs.

<u>DR 4.3:</u> The SPECS user interface shall have the ability to initiate the engine start up and shutdown sequences.

ECU DATA LINK FEASIBILITY

Communications testing:

- Verify communications protocol GUI⇒ECU⇒ECM to send command and execute.
- 2. Calculate minimum data transfer values, test ECM to evaluate processing time.
- 3. Test at maximum data transfer quantity, test ECM to evaluate processing time.

<u>Results:</u>

- 1. I2C communications verified through start/shutdown sequence and LCD display.
- Minimum data transfer found to be 5 bytes, transfer time <20ms.
- 32 byte (I2C maximum) tested time
 <50 ms per request (<200ms
 maximum)

POWER SYSTEM FEASIBILITY

At 8.4VDC (2S LiPo full charge) or 5V (Vcc), used large benchtop power supply to measure component current consumption during design operation

- 11.2A cumulative total
- Select 2S 5200mAh battery with 50C rating
 - 260A peak current
 - ~20 min runtime at full 100% power
 - Less heating for motor control compared to 3S
 - Starter exceeded 5k RPM at 5V

Test Result: Supplied amperage from battery exceeds max current demand by SPECS

Component	Voltage (VDC)	Current (A)	Power (W)
Starter	8.4	6.2	52.08
Fuel Pump	8.4	4.8	40.32
Fuel Valve	5	0.07	0.35
ECU	5	0.02	0.1
Other	5	0.11	0.55
	Total:	11.2	93.4

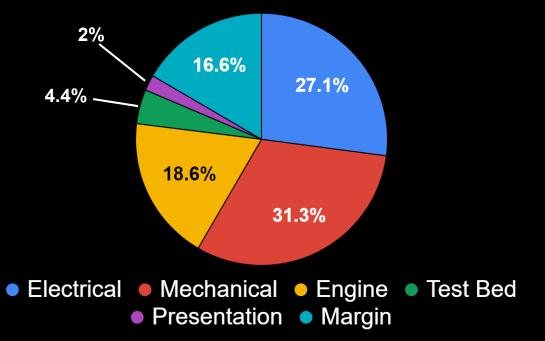
ECU DESIGN SUMMARY

ECU Testing Results:

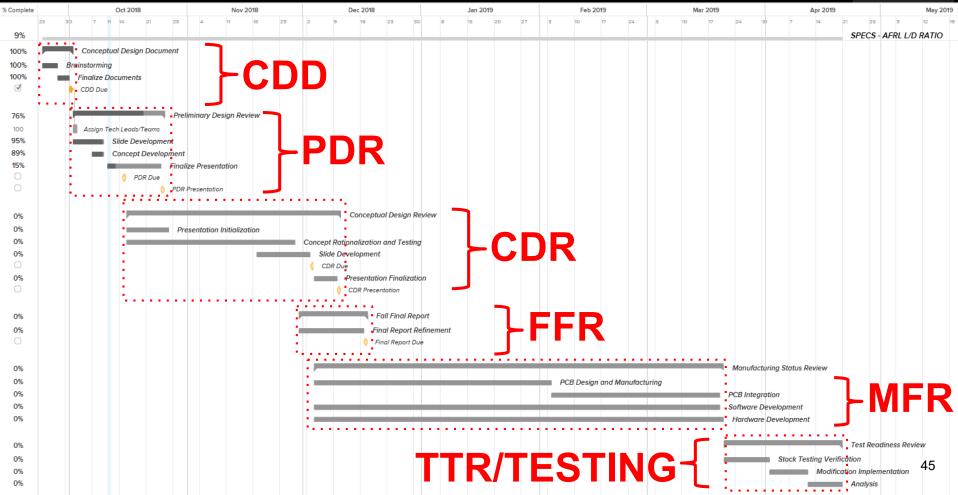
- I2C communications verified through start/shutdown sequence and LCD display
- Minimum data transfer found to be 5 bytes, transfer time <20ms
- 32 byte (I2C maximum) tested time <50 ms per request (<200ms maximum)

Future Work:

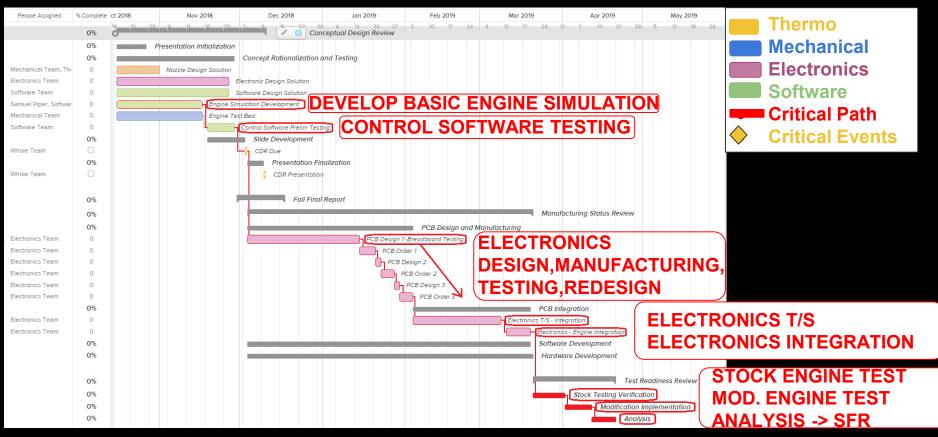
- Implement closed loop control with Hall effect sensor feedback
- Design Start, Run and Stop sequences based on operational guidelines
- Implement GUI control of ECU and display system parameters on GUI


- Testing verified on:
 - Verified maximum power requirement attainable with readily available LiPo battery
 - \circ $\,$ Communication protocols work within specified time limits at the same time $\,$
 - ECU and ECM meet minimum simulated processing requirements to run system components
 - Communication from PC to ECU does not interfere with communication from ECU to ECM
 - Hall Effect sensor works at more than twice the maximum anticipated input frequency at new position
- Further Testing needed on:
 - Using MatLab as GUI development platform
 - ECM modular programming for component control with interrupts

FINANCIAL FEASIBILITY

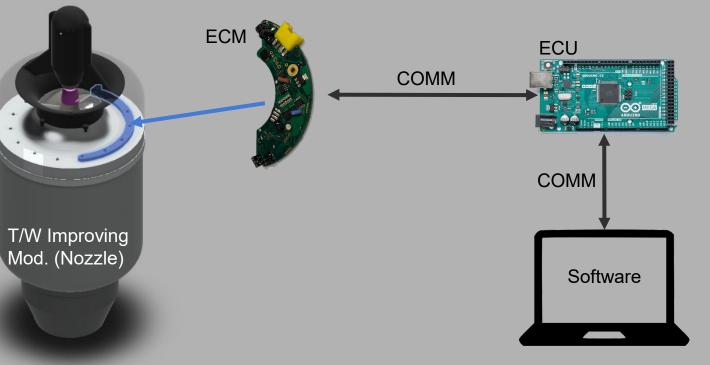

	Costs
Electrical	\$ 1354.70
Mechanical	\$ 1565.00
Engine	\$ 930.00
Test Bed	\$ 220.00
Presentation	\$ 100.00
Total	\$ 4169.70
Budget	\$ 5000.00
Margin	\$ 830.30

SPECS BUDGET



• Margin is positive, therefore the project is financially feasible

TIME BUDGET - OVERVIEW



TIME BUDGET: FUTURE WORK & CRITICAL PATH

BASELINE DESIGN - RECAP

CE RESEARCH LABOR

- Thrust Improving Modification (Increasing $\pi_{\rm C}$)
- Thrust Improving Modification (Materials)
 - Turbine Materials Analysis
 - New Nozzle Design
- Electronic Control Unit
- Electronic Control Module
- Hall Effect Sensor
- Financially
- Time

Requires more investigation

QUESTIONS?

REFERENCES I

[1] Mattingly, Jack "Elements of Propulsion: Gas Turbines and Rockets", AIAA, August 1, 2006

[2] Matteo Ugolotti, Mayank Sharma, Zachary Williams, Matthew Owen, Siddharth Balachandar, Justin Ouwerkerk, Mark Turner, "Cooling System for 0.1 kN Thrust Micro-Engines: Concept Design Using Additive Manufacturing", 2016. 26 Sept. 2018.

[3] Alex Bertman, Jake Harrell, Tristan Isaacs, Alex Johnson, Matthew McKernan, T.R. Mitchell, Nicholas Moore, James Nguyen, Matthew Robak, Lucas Sorensen, Nicholas Taylor, "Air-breathing Cold Engine Start Preliminary Design Review", 2017, Retrieved September 25, 2018.

[4] Andrew Sanchez, Tucker Emmett, Corrina Briggs, Jared Cuteri, Grant Vincent, Alexander Muller, "SABRE Critical Design Review", 2016. 27 Sept. 2018.

[5] Capata, Roberto. "Experimental Tests of the Operating Conditions of a Micro Gas Turbine Device." Journal of Energy and Power Engineering, vol. 9, no. 4, 2015, doi:10.17265/1934-8975/2015.04.002.

[6] Department of Defense. "Military Handbook: Metallic Materials and Elements for Aerospace Vehicle Structures." 1998, Oct. 7, 2018

REFERENCES II

[7] "Turbine Data Sheet." JetCat. JetCat, July 14 2015. Web. September 4, 2018, from <u>https://www.chiefaircraft.com/pdf/jetcat-data.pdf</u>

[8] "JetCat RX Turbines with V10 ECU." JetCat. JetCat, n.d. Web. September 4, 2018, from <u>https://studylib.net/doc/18303934/jetcat-rx-turbines-with-v10-ecu</u>

[9] "Instruction manual V6.0 ECU." JetCat. JetCat, June 7, 2007. Web. September 4, 2018, from <u>https://manualzz.com/doc/9007502/version-6.0j2-ecu-manual</u>

[10] Gene F. Franklin, J. David Powell, Abbas Enami-Naeini "Feedback Control of Dynamic Systems." Pearson 2014, Retrieved September 1, 2018 ISBN-13:978-0133496598

[11] "ATmega 328/P Datasheet." Atmel. Atmel, November 2016. Web. September 4, 2018, from http://ww1.microchip.com/downloads/en/devicedoc/atmel-42735-8-bit-avr-microcontroller-atmega328-328p datasheet.pdf

[12] "ATmega 640/1280/1281/2560/2561 Datasheet." Atmel. Atmel, February 2014. Web September 4, 2018, from http://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf

Backup Slides

Requirements (FR 1)

<u>FR 1:</u> The JetCat P90-RXi engine shall have an increased
T/W ratio by 20\% from stock parameters.
<u>DR 1.1:</u> Implement a T/W improving modification that does not affect the overall operation of the engine and its ability to run for an extended period of time (2 minutes).

FR 2: SPECS shall control the engine over the entire operational envelope.

<u>DR 2.1:</u> SPECS will be capable of implementing the engine start up sequence but will modify start up parameters if needed to adapt to engine modifications.

DR 2.2: SPECS shall maintain idle at or near 33,000 ± 100 RPM.

<u>DR 2.2.1:</u> SPECS shall measure input from the thermocouple concurrently with RPM and fuel pump Pulse Width Modulation (PWM).

DR 2.2.2: SPECS shall measure input from the Hall effect sensor up to 5 kHz rate.

DR 2.2.3: SPECS shall send PWM fuel pump command rate as a percentage of full power.

FR 3: SPECS shall run the engine in a safe manner.

<u>DR 3.1:</u> SPECS will maintain operation below 130,000 RPM unless a new upper safety limit is determined from the engine characterization.

<u>DR 3.2</u>: SPECS will maintain EGT below 700 Celsius unless a new upper safety limit is determined.

<u>DR 3.3:</u> Should upper limits of operation be reached for RPM or EGT, SPECS shall command a software automatic engine shutdown.

Requirements (FR 4)

FR 4: SPECS shall have a user interface for engine control.

DR 4.1: The SPECS user interface shall display to the user the EGT

DR 4.2: The SPECS user interface shall take user throttle inputs.

<u>DR 4.3</u>: The SPECS user interface shall have the ability to initiate the engine start up and shutdown sequences.

<u>DR 4.4:</u> The SPECS user interface shall display warnings for operation within 10\% of safety limits to the operator.

<u>DR 4.5</u>: The SPECS user interface shall have an Emergency Stop (E-Stop) function.

THRUST MOD TRADE STUDY

								1	2	3	4	5
							Increase T/W	Limited	Limited	Extensive	Extensive	Extensive theo-
							Ratio	theoretical and	theoretical and	theoretical and	theoretical and	retical and ex-
							(Weighted 38%)	no experimental	experimental	limited	limited	perimental data
								data showing	data showing	experimental	experimental	directly applica-
								possible	possible	data showing	data directly	ble to P90-Rxi
								improvement	improvement	possible	applicable to	engine showing
										improvement	P90-Rxi engine	improvement
											showing improvement	
	Custom	Water	A.G	SABRE Nozzle	Turbine	Compressor	Cost	Estimated Cost	Estimated Cost	Estimated Cost	Estimated Cost	Estimated Cost
	Nozzle	Injection	Afterburner	and Water Injection	Modification	Modification	(Weighted 9%)	> 75% of	> 50% of	> 25% of	> 15% of	< 15% of bud-
Increase							(Weighted 970)	budget, very	budget, high	budget,	budget, mild	get, no risk
T/W	4	2.8	2.4	3.9	1.4	2.4		high risk of	risk of	moderate risk of	risk of	of additional
Ratio								additional	additional	additional	additional	expenses being
Cost	2.6	2.7	2.1	2.5	2.4	2.3		expenses being	expenses being	expenses being	expenses being	incurred
Development	3.3	2.3	1.6	2.3	2	1.8		incurred	incurred	incurred	incurred	
Time	5.5	2.3	1.0	2.3	2	1.0	Development	Extremely time-	Highly time-	Moderate time-	Little time-	Not time-
Current	3.7	1.6	3	2.5	1.8	1.6	Time	consuming, will	consuming,	consuming, can	consuming,	consuming, will
Documentation	5.7	1.0	3	2.3	1.0	1.0	(Weighted 21%)	not finish on	unlikely to	finish on time	likely to finish	finish ahead of
Modularity/Ease	4.3	2.8	2.5	2.8	2.6	1.5		time	finish on time		ahead of time	time
of Implementation	4.5	2.0	2.3	2.0	2.0	1.5	Current	A single source	Little	Moderate	Substantial	Extensive docu-
Safety	3.4	2.9	1.4	3.3	2.4	2.5	Documentation		documentation	documentation	documentation	mentation from
Total	3.7	2.5	2.2	3.1	1.9	1.9	(Weighted 15%)					both CU teams
								D (1		M 1 (1	L'	and academia
							Modularity/ Ease of	Extremely difficult	Highly difficult	Moderately difficult	Little difficult	Not difficult 'Bolt-On'
								anneun		anneun		Solution
							(Weighted 9%)					Solution
							Safety	Safety	Safety	Safety	Safetly	Safety limita-
							(Weighted 8%)	limitations	limitations may	limitations	limitations	tions predefined
							(Weighted 870)	unlikely to be	be poorly	documented but	simply defined	by stock engine
								unintery to be	be poorly	documented but	simply defined	of stock englie

defined

determined

difficult to

determine

parameters

CONFIGURATION TRADE STUDY

	1	2	3	4	5
Response Time	Unsustainable	Much slower	Slower than	Same speed as	Faster than
(Weighted 37%)	response time	than stock ECU	stock ECU	stock ECU	stock ECU
Ease of Control	No functions	Most functions	All functions	Most functions	All functions
(Weighted 43%)	available	available on	available on	available at	available at
, 19 - 20 		engine	engine	distance	distance
Weight	Much heavier	Heavier than	Same weight as	Lighter than	Much lighter
(Weighted 20%)	than stock ECU	stock ECU	stock ECU	stock ECU	than stock ECU

	Onboard	Offboard	Split
Response Time	4.3	2.2	4.1
Ease of Control	2.5	3.4	3.7
Weight	2.1	3.4	2.3
Total	3.0	2.9	3.6

ECU TRADE STUDY

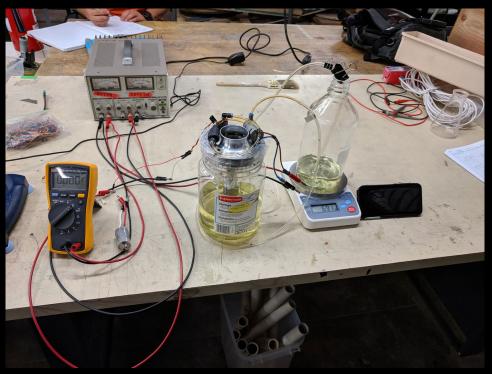
				-					
	1	2		3		4		5	
Team	No experience	Some		Moderate		Great		Extensive	
Experience		experienc	e	experience		experien	ce	experience	
(Weighted 32%)	-								
Compatibility	Cannot	Accommo		Accommod		Accomn		Accommodates	
(Weighted 7%)	accommodate desired sensors	sensors w extensive	ith	sensors with moderate	1	sensors	with	more than base	
	desired sensors	configura	tion	configuratio		current configur	ation	sensors	
Development	Impossible	> 80% of		60 - 80% o		40-609		20 - 40% of	
Time	before April	available		available tir		available		available time	
(Weighted 24%)	2019	avanable	time	avanable in	ne	avanaon	, unic	available time	
Data	Bare minimum	Able to ru	ın	Easily able	to	Just able	to run	Excess compu-	
Acquisition	speed to run	engine an	d	run engine a		engine,	process	tational abilities	
Rate	engine	process so	ome	process		sensors,	and	to run engine,	
(Weighted 8%)		additional	1	additional		produce	GUI	process sensors,	
		sensors		sensors				and produce	
		-						GUI	
Current	No	Sparse	Some ation documentation			Moderat	-	Extensive	
Documentation	documentation	document	documentat		10N	documer	ntation	documentation	
(Weighted 12%) Software	Extremely	Complica	tad	Mediocre		Intuitive		Extremely	
Quality	complicated	Complica	lied	Mediocre		Intuitive		intuitive	
(Weighted 17%)	complicated							intuitive	
(Weighted 1776)									
			Ar	duino	N	lojo	LC	PXpresso	
Teens Dev			4	2					
Team Exp	perience		4.2		1	.5	2.5)	
Compatibility				7	2	2.6		3	
· ·				4.0		2.1	2.8)	
Development Time					2	2.1	2.0	5	
Data Acquisition Rate			2.5		4	1.0	3.7	7	
Current Documentation				5	2	2.5	3.1	1	
Software	Quality		4.1		2	2.7	3.5	5	

4.0

Total

2.2

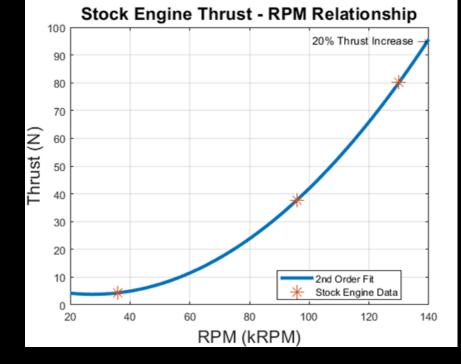
2.9



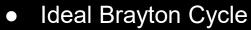
-Linear Relationship at 2 (g/s)/V

-Mass Flow rate = -0.11V^2 + 2.57V - 0.57

-This provides < 5% error throughout the 5V range

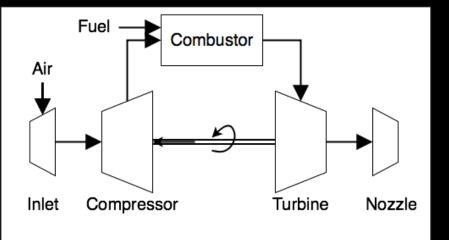

RPM -> THRUST CORRELATION

Second Order fit is:


Thrust = 0.0073(RPM)² - 0.4(RPM) + 9.29

This provides ~20% thrust increase with ~10 kRPM increase

IDEAL CYCLE ASSUMPTIONS



- Standard Air
 - Calorically Perfect Gas
 - Constant Specific Heat
- Isentropic Inlet, Compression, Turbine, and Nozzle
- Constant Pressure Heat Addition & Rejection
 - Fuel mass flow << Air mass flow
- Perfectly Expanded Flow Exiting Nozzle
- $\circ \quad \text{Closed System, no losses}$
- Steady 1D flow
- Axial Compressor
- Sea Level Atmospheric Conditions
- Compressor Pressure Ratio Scales Linearly with Mass Flow Rate

IDEAL BRAYTON CYCLE ANALYSIS

IDEAL BRAYTON CYCLE ANALYSIS

Calculation of temperature and pressure relationships

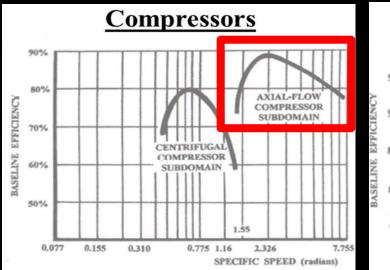
Calculation of uninstalled thrust

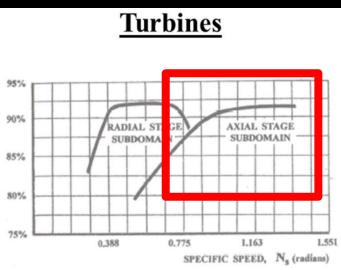
$$\pi_c = \frac{P_{t_3}}{P_{t_2}} \qquad \tau_c = \pi_c \frac{\gamma - 1}{\gamma} \qquad \tau_r = 1 + \frac{\gamma - 1}{2} M_0^2$$
$$\tau_b = \frac{fh_{pr}}{cpT_0\tau_r\tau_c} + 1 \qquad T_{t_3} = \tau_r\tau_cT_0 \qquad T_{t_4} = \tau_bT_{t_3}$$
$$\tau_\lambda = \frac{T_{t_4}}{T_0} \qquad \tau_t = 1 - \frac{\tau_r}{\tau_\lambda}(\tau_c - 1)$$

 $a_0 = \sqrt{\gamma R T_0}$

$$\left(\frac{V_9}{a_0}\right) = \sqrt{\frac{2}{\gamma - 1} \frac{\tau_\lambda}{\tau_r \tau_c} (\tau_r \tau_c \tau_t - 1)}$$

$$F_{uninstalled} = \dot{m}_0 \left(V_9 - a_0 M_0 \right)$$




PRESSURE RATIO FEASIBILITY

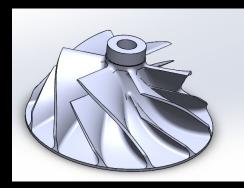
Ideal	Compressor Work	Turbine Work	η	Thrust loss
Stock	19.99 kW	48.01 kW	1	0%
20% Increase	22.3 kW	46.1 kW	0.98	4.5%

Baseline Compressor efficiency decrease of ~2% (with 10,000 RPM increase)

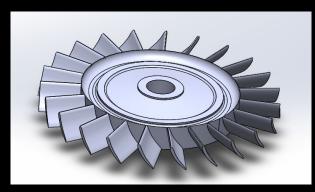
NOZZLE AREA CALCULATION

Assumes:

- Perfectly expanded flow
- Fuel mass flow = 0
- Isentropic nozzle expansion


$$V_e = \sqrt{\frac{2(P_t - P_0)}{\rho}}$$

$$\dot{m}_0 = \dot{m}_e = \rho_e A_e V_e$$



CRITICAL ENGINE COMPONENTS

Component Analysis: Nozzle/ Engine Case

- Hoop (σ_h) and longitudinal (σ_l) stresses calculated at location where values are theoretically maximum, inlet:
- Total Pressure at nozzle inlet (P_{t5}), radius of nozzle inlet (R_i), thickness of nozzle inlet (t_i):

$$\sigma_l = \frac{P_T R_i}{2t_i} \qquad \sigma_h = \frac{P_T R_i}{t_i}$$

• Results compared to material properties, verify structural capability.

Component Analysis: Turbine/Compressor

- Centripetal force calculated at 140 kRPM at blade tips for both compressor and turbine. Force value then applied to stress equation over tip area.
- Variables: blade mass (m_b), blade length (I_b), rotation rate (ω), blade tip (A_t), centripetal force (F)
- Governing expressions:

$$F = m_b l_b \omega^2 \qquad \qquad \mathbf{\sigma} = \frac{F}{A_t}$$

• Results compared to material properties, verify structural capability.

Component Analysis: Shaft

- Power (P) and rotation rate (ω) known for compressor and turbine.
- Calculate torque for each using:

$$T = \frac{P}{\omega}$$

• Force from both then found using radius of turbine and compressor:

$$F = \frac{T}{R}$$

 Shear stress (τ) then calculated and compared to ultimate shear of assumed material, area of shaft in contact with turbine and fan used (A):

$$\tau = \frac{F}{A}$$

Material Yield Analysis(AI 7075)

Specification							18	, B	AMS	4045	and Al	MS-Q	Q-A-2	50/12	3							
Form	Sheet								Plate													
Temper							T651															
Thickness, in.								26-	0.250-0.499		0.500-		1.001- 2.000		2.001-2.500			2.501-3.000		3.001- 3.500		01-
Basis	s	A	В	Α	в	Α	В	A	В	Α	В	Α	в	Α	В	Α	В	A	B	A	В	
Mechanical Properties: F., ksi: L LT	74	76	78	78 78	80 80	78 78	80 80	77	79	77	79	76	78	75 76	77	71 72	73 74	70 71	72	66 67	68	
ST														70 ^b	71 ^b	66 ^b	68 ^b	65 ^b	676	615	63 ^b	
F., ksi: L LT ST	63	69 67	72 70	70 68	72 70	71 69	73 71	69 67	71 69	70 68	72 70	69 67	71 69	66 64 59 ^b	68 66 61 ^b	63 61 56 ^b	65 63 58 ^b	60 58 54 ^b	62 60 55 ^b	56 54 50 ^b	58 56 52 ^h	
F _{ere} ksi: L LT		68 71	71 74	69 72	71 74	70 73	72 75	67 71	69 73	68 72	70 74	66 71	68 73	62 68 67	64 70 70	58 65 64	60 67 66	55 61 61	57 64 63	51 57 57	52 59	
ST <i>F_{ao}</i> ksi <i>F_{ba}</i> , ksi:		46	4 7	47	48	47	48	43	44	44	45	44	45	44	45	42	43	42	43	39	41	
(e/D = 1.5) (e/D = 2.0) F_{bn} , ksi:		118 152	121 156	121 156	124 160	121 156	124 160	117 145	120 148	117 145	120 148	116 143	119 147	114 141	117 145	108 134	111 137	107 132	110 135	101 124	104 128	
(e/D = 1.5) (e/D = 2.0)		100 117	105 122	102 119	105 122	103 121	106 124	97 114	100 118	100 117	103 120	100 117	103 120	98 113	101 117	94 109	97 112	89 104	93 108	84 98	87 103	
e, percent (S-basis): LT	5	7		8	- 22	8		9		7	1442	6		5		5	0.22	5		3		
$E, 10^3$ ksi $E_{ci} 10^3$ ksi $G, 10^3$ ksi μ			1	0.3 10.5 3.9 0.33								2 2			10.3 10.6 3.9 0.33					(a		
Physical Properties: ω , lb/in. ³ <i>C</i> , <i>K</i> , and <i>a</i>										See	0.1 Figu		4.0									

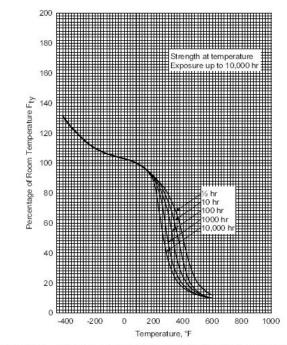


Figure 3.7.4.1.1(d). Effect of temperature on the tensile yield strength (F₁) of 7075-T6, T651, T6510, and T6511 aluminum alloy (all products).

Material Yield Analysis(AISI 301)

Table 2.7.1.0(b). Design Mechanical and Physical Properties of AISI 301 and Other^a Annealed Stainless Steel

Specification	MIL-S-5059		5517 & S-5059		5518 & S-5059	MIL-S	-5059	AMS : MIL-S	5519 & 5-5059				
Form		111		Sheet a	nd strip		2						
Condition	Annealed*	¼ F	Hard	½ F	Hard	%H	lard	Full Hard					
Thickness, in.	≤0. <mark>1</mark> 87	28	2000		5	e.		(77)					
Basis	S	A	В	A	В	A	В	A	В				
Mechanical Properties:			8										
F _w , ksi:	1021201			12111									
Ĺ	73	124	129	141	151	157	168	174	185				
LT	75	122	127	142	152	163	173	175	186				
F., ksi:			10.000	2010-00	0000000000	1.123.515	0.007.00		1002.30				
L	26	69	83	93	110	118	135	137	153				
LT	30	67	82	92	105	113	133	125	142				
F_{ac} ksi:	50	57	32	12	105	115	100	125	142				
L	23	44	54	61	69	75	88	83	94				
LT	29	71	88	100	116	127	152	142	164				
<i>F</i> _m , ksi	50	66	69	77	82	88	93	95	104				
	50	00	09	11	82	88	95	95	100				
Fhrm, ksi:													
(e/D = 1.5)									100				
(e/D = 2.0)	162	262	273	292	310	327	342	346	361				
F _{bry} , ksi:													
(e/D = 1.5)	0.222.0					0.00000							
(e/D = 2.0)	55	123	149	167	189	202	234	222	249				
e, percent (S basis):				ь		ь		ь					
LT	40	25		0		b							
E. 10 ³ ksi:													
L, 10 KM.	29.0		27.0		26.0	2	6.0	2	6.0				
LT	29.0		28.0		28.0		8.0		8.0				
E_{c} , 10 ³ ksi:	29.0		20.0	1	20.0	1	0.0		0.0				
L	28.0		26.0	3	26.0	6	6.0	2	6.0				
LT	28.0	26.0			27.0		7.0		7.0				
		27.0											
G, 10 ³ ksi	11.2		10.6	8	10.5		0.5		0.5				
μ	0.27		0.27		0.27		0.27	19 - 18	0.27				
Physical Properties:													
ω, lb/in. ³				0.2	286								
C. K. and a			5	ee Figu	See Figure 2.7.1.0								

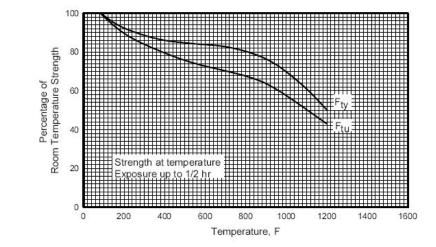


Figure 2.7.1.3.1. Effect of temperature on the tensile ultimate strength (F_{tu}) and the tensile yield strength ($F_{\gamma\gamma}$) of AISI 301 1/2-hard stainless steel sheet.

Material Yield Analysis(Inconel 718)

Specification			AMS 5596		AMS 5597	AMS 5589	AMS 5590			
Form	Sh	eet	Pl	ate	Sheet and plate	Tubing				
Condition			Solution trea	at <mark>ed and a</mark> ged	per indicated sp	ecification	cification			
Thickness, in	0.010-0.187		0.188-0.249	0.250-1.000	0.010-1.000	O.D. > 0.125 Wall > 0.015				
Basis	A	В	S	S	S	S	S			
Mechanical Properties*:										
F _n , ksi:	22244		1000				1000			
L	180	192	180			185	170			
LT	180°	191	180	180	180		177.5			
F _o , ksi: L	145	156	148			150	145			
LT	145	158	148	150	150	150	145			
F _{en} ksi:	14/	108	150	150	150					
L	155	167	158							
LT	158	170	158			10				
	124	132	124		***					
F_{ss} , ksi F_{bm}^{b} , ksi:	124	152	124			***	een 1			
(e/D = 1.5)	291	309	291	1000		25	22270			
(e/D = 2.0)	380	403	380							
F _{hre} ^b , ksi:	200	105	2000							
(e/D = 1.5)	208	223	212							
(e/D = 2.0)	241	259	246							
e, percent (S-basis):										
Ĺ						12	15			
LT	12		12	12	12					
E. 10 ³ ksi			0.000	21	9.4					
E. 10 ³ ksi					0.9					
G. 10 ³ ksi					1.4					
					29					
μ	-			0						
Physical Properties:				6323						
ω, lb/in. ³					297					
$C, K, and \alpha \ldots \ldots$				See Figu	ure 6.3.5.0					

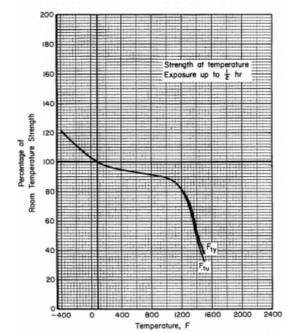


Figure 6.3.5.1.1. Effect of temperature on the tensile ultimate strength (F_{ν}) and tensile yield strength (F_{ν}) of solution-treated and aged Inconel 718.

Inconel Creep and Fatigue

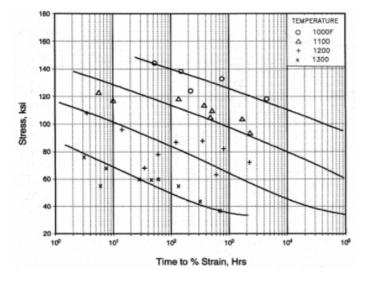


Figure 6.3.5.1.7(a). Average isothermal 0.10% creep curves for Inconel 718 forging.

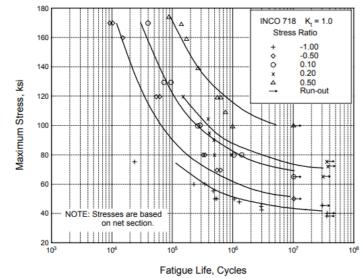


Figure 6.3.5.1.8(a). Best-fit S/N curves for unnotched inconel 718 sheet at room temperature, long transverse direction.

CE RESEARCH LABORA

Family:	Species:	Dimensions (in):	Cost:
Steel	N60	3" x 10"	\$242.45
Aluminum	7075	3" x 10"	\$87.20
Titanium	6AL-4V (Grade 5)	3" x 10"	\$870.30
Nickel	Inconel 718	3" x 10"	\$873.69

- Cost of production solely based on cost of material.
- All materials are round bar, diameter x length

Fabrication Cost Feasibility: Direct Metal Laser Sintering

Family:	Species:	Dimensions (in):	Cost:
Aluminum	ALSi10Mg	3.25" x 3.25" x 2.17"	\$1017.00
Nickel	Inconel 625	3.25" x 3.25" x 2.17"	\$822.00
Titanium	Ti64	3.25" x 3.25" x 2.17"	\$956.00
Cobalt Chrome	CoCrMo	3.25" x 3.25" x 2.17"	\$983.00

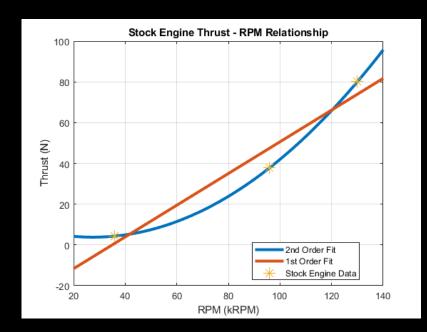
- Cost of production includes the cost of materials, manufacturing and finishing
- The dimension of the nozzle is based on SABRE's nozzle
- It will take approximately three weeks to receive the nozzle from manufacturing facility

PORCE RESEARCH LABORATO

		PROPERTIES
JFACTURING	MATERIAL	PROPERTIES

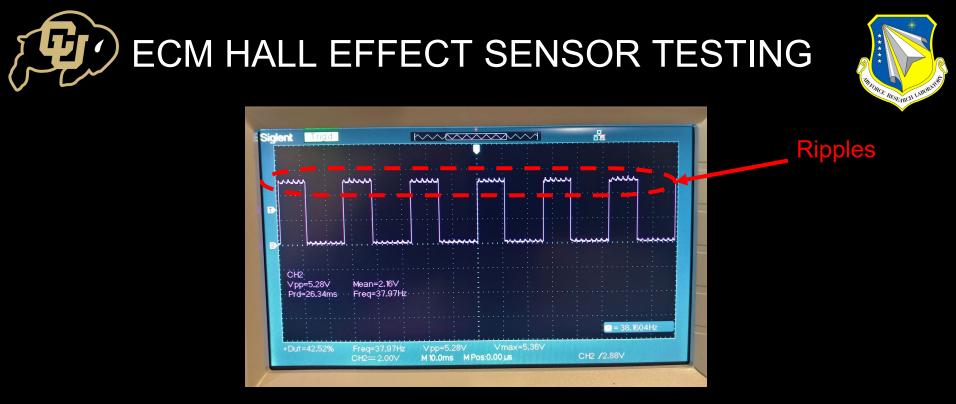
	N60	AI7075	Ti6AL-4V	Inconel 718	ALSi10Mg	Inconel 625	CoCrMo
Temperature Rating (k)	1422	686	1933	922	933	1563	1670
Density (g/cm ³)	8.5	2.81	4.52	8.22	2.7	8.44	8.28
Volume (cm³)				10.16	6		
Mass (gram)	86.36	28.55	45.92	83.52	27.43	85.75	84.12

MANUFACTURING CAPABILITIES



Manufacturing Method	Tool Room Lathe	Computer Numerical Control (CNC) Machine	Direct Metal Laser Sintering (DMLS)
Tolerances	Depends on Measurement Tool	+/- 0.005"	+/- 0.005" + 0.002 in/in

STOCK ENGINE THRUST-RPM LINEARITY

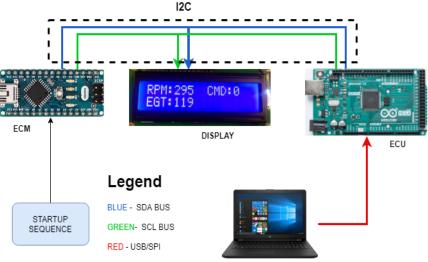


SPECS ECU DESIGN

- Selected based on:
- Easy to use IDE with documentation
- User forum and support for application
- Team familiarity and experience
- Meets all design basis standards
- Available everywhere for quick cheap replacement

Notes: Ripples on waveform are from the power supply maxing out on supply current (5A). The selected battery would be able to supply much higher currents, and allow higher RPM with smaller voltage ripple. This is only present when starter is running (needed for this test but not normal operation) and does not affect functionality or reliability.

TESTING COMMUNICATION: SPECS



<u>Method:</u> Connected all components and verified I2C and SPI control separately. Designed startup sequence to simulate a "Start" and "Shutdown" command.

<u>Need:</u> Verify application of more than one communication protocol on system. Ensure that specified components can accept multiple commands from different sources and maintain normal operation without conflict or failure.

<u>Results:</u> Test completed successfully. Serial (SPI) command start/shutdown from PC resulted in start/shutdown sequence on ECM.

LCD displayed real time data for RPM, EGT, and command state. Further verifying I2C communication feasibility between ECU and ECM.

ECU/ECM DATA LINK FEASIBILITY

Needs:

- Allotted 3 bytes for RPM value (µs wave period measurement), 1 byte for EGT value (~3°C resolution 255 values), 1 byte for command status (responds with RPM command input value at state). (At max transmission)

 I2C has a 32 byte maximum transmission per cycle limit, though if needed split transmissions are possible.

- SPI communications are only limited to the extent that they do not block ECU from sending or receiving data from ECM on time.

<u>Method:</u>

- Set up basic communications through I2C to all components.
- Established serial communications with Arduino MEGA.
- Initiated timer on command send.
- Transmitted request event, received data packets from ECM, processed data, wrote to LCD, read timer value at end of write transmission.

Results:

- Minimum Data transfer found to be 5 bytes, total transfer time <20ms.
- 32 byte (I2C maximum) tested time
 <50 ms per request.

 Verified communications can occur concurrently on time schedule while both microprocessors are tasked with other operations and will respond on schedule within required time constraint of <200ms.

HALL EFFECT SENSOR DATASHEET

Magnetic Position Sensors Low-Cost, Bipolar, Hall-effect Sensors SS40A/SS50AT Series

FEATURES

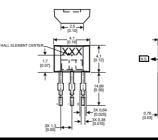
- Small size
- · Low cost
- Reverse polarity protection
- Sensitive bipolar magnetics respond to alternating north and south poles
- Thermally balanced, integrated circuit over a full temperature range
- Stable operation

TYPICAL APPLICATIONS

- Cooling fan control in computers and appliances
- RPM (revolutions per minute) sensing, speed control
- Brushless dc motor commutation
- Position sensing and motor control
- Simple magnetic encoder
- Flow-rate sensor

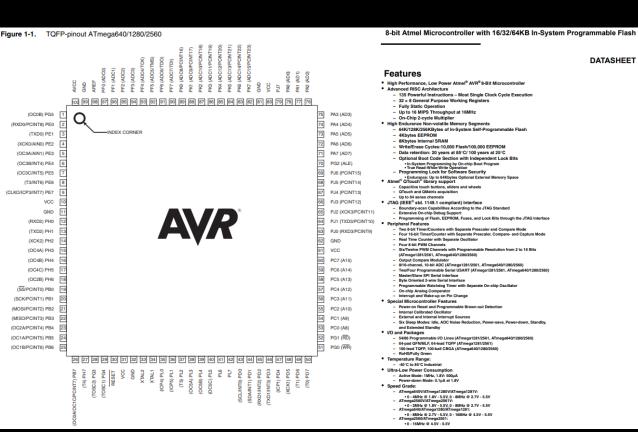
The SS40A/SS50AT Series sensors are low-cost, bipolar, Hall-effect sensors. These sensitive magnetic sensors offer reverse polarity protection and deliver stable output over a -40 °C to 125 °C [-40 °F to 257 °F] temperature range. Operation from any dc supply voltage from 4.5 Vdc to 24.0 Vdc is acceptable.

The SS40A/SS50AT Series sensors build upon Honeywell's popular magnetic position sensors and offer several competitive advantages. These sensors have been designed with the latest technologies to provide reliable, cost-effective solutions to commercial, computer, medical, and/or consumer applications requiring motor control and RPM sensing.


These products are available in a variety of package styles to suit a number of applications. Ammopack versions, along with tape-and-reel, are standard. The surface mount version is mounted directly on the electrical traces on a PC (printed circuit) board. It is attached by an automatic solder reflow operation which requires no hole, so it reduces the cost of the PC board.

ELECTRICAL CHARACTERISTICS

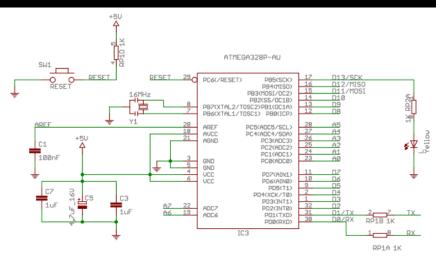
At Vs = 4.5 V to 24 V with 20 mA load with Ta = -40 °C to 125 °C [-40 °F to 257 °F] unless otherwise noted.


Parameter	Cond.	Min.	Тур.	Max.	Unit
Supply voltage	-	4.5	-	24.0	V
Supply current	25 °C [77 °F]	-	6.8	10.0	mA
Supply current	-	-	-	11.3	mA
Output current	-	-	-	20.0	mA
Vsat @ 15 mA	Gauss >170	-	-	0.4	V
Output leakage	Gauss <-170	-	-	10.0	μA
Rise time	25 °C [77 °F]	-	0.5	1.5	μs
Fall time	25 °C [77 °F]	-	0.2	1.5	μs
Response time	25 °C [77 °F]	-	4.0	5.0	μs
Operate	25 °C [77 °F]	-	45	110	Gauss
Operate	0 °C to 85 °C [32 °F to 185 °F]	-	50	130	Gauss
Operate	-	-	55	170	Gauss
Release	25 °C [77 °F]	-110	-45	-	Gauss
Release	-40 °C to 85 °C [-40 °F to 185 °F]	-130	-50	-	Gauss
Release	-	-170	-55	-	Gauss
Differential	-	50	-	-	Gauss
Operating temperature	-40 °C to 125 °C [-40 °F to 257 °F]				
Storage temperature	-55 °C to 165 °C [-67 °F to 329 °F]				

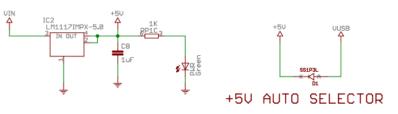
SS40A SERIES MOUNTING DIMENSIONS (for reference only) mm/[in]

ECU DATASHEET

ECM DATASHEET

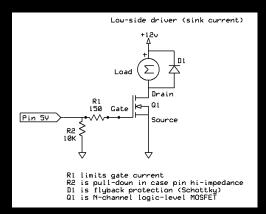


ATmega328/P DATASHEET COMPLETE	Peripheral Features Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode Real Time Counter with Separate Oscillator Six PWM Channels	Figure 5-3. 32-pin TQFP Top View Power Ground Programming/debug	118) 17) 16) 16) 116) PCINT13) PCINT12) 1711) 1710)	
Introduction The Atmel [®] picoPower [®] ATmega328/P is a low-power CMOS 8-bit microcontroller based on the AVR [®] enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega328/P achieves throughputs close to 1MIPS per MHz. This empowers system	- 8-channel 10-bit ADC in TQFP and QFN/MLF package - Temperature Measurement - 6-channel 10-bit ADC in PDIP Package - Temperature Measurement - Two Master/Slave SPI Serial Interface - One Programmable Serial USART - One Byte-oriented 2-wire Serial Interface (Philips I ² C compatible) - Programmable Watchdog Timer with Separate On-chip Oscillator	Digital Analog Crystal/CLK	32 PD2 (INT0/PCINT18) 31 PD1 (ITXD/PCINT17) 30 PD1 (RXD/PCINT14) 30 PD0 (RXD/PCINT14) 29 PO6 (REEFT/PCINT14) 28 PO5 (ADC5/SCU/PCINT13) 27 PO4 (ADC4/SDA/PCINT13) 28 PO5 (ADC3/PCINT13) 26 PO5 (ADC3/PCINT13) 26 PO5 (ADC3/PCINT13) 25 PO5 (ADC3/PCINT10)	
designer to optimize the device for power consumption versus processing speed.	One On-chip Analog Comparator Interrupt and Wake-up on Pin Change Special Microcontroller Features Power-on Reset and Programmable Brown-out Detection Internal Calibrated Oscillator	(PCINT19/OC2B/INT1) PD3 ((PCINT20/XCK/T0) PD4 (GND (VCC (1 • 2 3	 PC1 (ADC1/PCINT9) PC0 (ADC0/PCINT8) ADC7 GND
High Performance, Low Power Atmet®AVR® 8-Bit Microcontroller Family Advanced RISC Architecture - 131 Powerful Instructions - Most Single Clock Cycle Execution - 32 x 8 General Purpose Working Registers - Fully Static Operation	External and Internal Interrupt Sources Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby I/O and Packages 23 Programmable I/O Lines 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF Operating Voltage:	GND (VCC ((PCINT6/XTAL1/TOSC1) PB6 ((PCINT7/XTAL2/TOSC2) PB7 (6 7	20 AREF 19 ADC6 18 AVCC 17 PB5 (SCK/PCINT5)
 Fully observed operations Up to 20 MIPS Throughput at 20MHz On-chip 2-cycle Multiplier High Endurance Non-volatile Memory Segments 32KBytes of In-System Self-Programmable Flash program Memory 1KBytes EEPROM 2KBytes Internal SRAM Write/Erase Cycles: 10,000 Flash/100,000 EEPROM Data Retention: 20 years at 85°C/100 years at 25°C⁽¹⁾ Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program 	 1.8 - 5.5V Temperature Range: 40°C to 105°C Speed Grade: 		(PCINT21/OCOB/T1) PD5 (PCINT22/OCOA/IN0) PD6 (PCINT22/CA/IN1) PD7 (PCINT0/CLA) PD7 (PCINT0/CLA) PD1 (PCINT2/SSTOCTB) PD2 (PCINT2/SSTOCTB) PD2 (PCINT2/SSTOCTB) PD2 (PCINT2/SSTOCTB) PD2 (PCINT2/SSTOCTB) PD4	


- True Read-While-Write Operation
- Programming Lock for Software Security
- Atmel[®] QTouch[®] Library Support
 - Capacitive Touch Buttons, Sliders and Wheels
 - QTouch and QMatrix[®] Acquisition
 - Up to 64 sense channels

ATmega 328P Basic Application Circuit

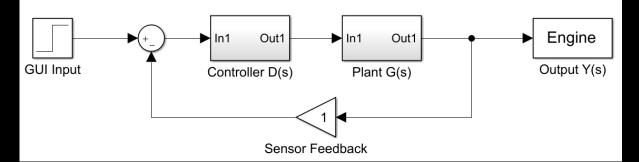
+5V REG



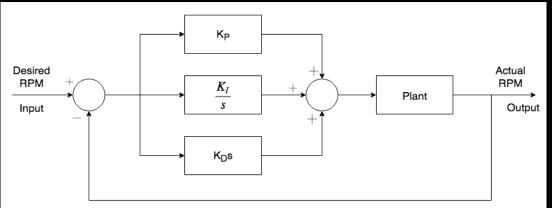
Motor Driver MOSFET n-Channel

The second running

Circuit low side driver application, will measure real drain current for application to verify thermal properties are sufficient for given Rds(on)(Max.) value for PCB mount application.



			Outline)											
V _{DSS}	4(V													
R _{DS(on)} (Max.)	14.3	βmΩ			(D)										
ID	±2	7A	HSMT8												
PD	15	5W													
			●Inner circuit												
•Features 1) Low on - resistance 2) High Power Package (HSI 3) Pb-free lead plating ; RoH 4) Halogen Free 5) 100% Rg and UIS tested		ant	(1) Source (8) (7) (6) (5) (2) Source (1) S												
			Package	ging spec	cifications										
				Packing		Embossed Tape									
				Reel size	e (mm)	330									
 Application 			Туре	Tape wid	ith (mm)	12									
Switching				Basic or	dering unit (pcs)	3000									
				Taping c	ode	TB									
				Marking		G100GN									
Absolute maximum ratin		5°C ,unless otherwis													
Param	eter			nbol	Value	Unit									
Drain - Source voltage		T 0500	-	065	40	V									
Continuous drain current		$T_c = 25^{\circ}C$ $T_a = 25^{\circ}C$	-	» ^{*1}	±27	A									
Pulsed drain current		1 _a -250		D p ^{*2}	±10 ±40	A									
Gate - Source voltage			-	P -	±40 +20	A V									
Avalanche current, single pul	S A		-	385 s*3	10	A									
Avalanche energy, single pul				s ** ³	15	mJ									
				10 11	15	W									
Power dissipation				D ^{*4}	2.0	w									
Junction temperature				r _j	150	°C									
Operating junction and storage	ge tempe	rature range	Т	stg	-55 to +150	°C									



BASELINE DESIGN - SOFTWARE

<u>Additional Note:</u> Transfer function to be determined with operational testing of engine. Full PID control will only be implemented if absolutely necessary, P or PI is anticipated.

BUDGET ALLOCATION

System	ltem	Price (EA) \$	Quantity (EA)	Total	Sub-Total	Budget %
Electrical	PCB	88	9	792		
	Processor ATmega 328P	1.3	12	15.6		
	PCB Components	50	6	300		
	Arduino Mega	28	2	56		
	Arduinio Nano	19	2	38		
	Hall Effect Sensor	0.11	10	1.1		
	LCD Screen	3	1	3		
	Battery	33	3	99		
	Battery Charger	50	1	50	1354.7	27.094
Mechanical	Material Testing	65	2	130		
	Nozzle Manufacturing	1000	1	1000		
	Tooling	250	1	250		
	Turbine Manufacturing	185	1	185	1565	31.3
Engine	Refurbishment	400	1	400		
	New ECU	500	1	500		
	Fuel	20	1	20		
	Fuel Line	10	1	10	930	18.6
Test Bed	Pitot-Static	20	1	20		
	Pressure Transducer	100	1	100		
	DAQ	100	1	100	220	4.4
Presentation	Presentation Poster	100	1	100	100	2
			Total:	4169.7		83.394
			Margin	830.3		16.606

TIME BUDGET - CURRENT EFFORTS

	People Assigned	% Complete														October 2018																			
			22 23	3 24	25 26	27	28 29	30 1	2	з	4 5	0	7 8	9	10	11 12	13	14	15	10	17 18	19	20	21	22 23	24	25	26 2	7 28	29	30	31	1 2	з	4
SPECS - AFRL L/D Ratio		9%																										_							
Conceptual Design Document		100%					-		0	oncept	ual De	sign Do	cument																						
Brainstorming		100%		.		_	Brains	torming																											
Project Description	Daniel Castillo	100						Descriptio	n																										
Design Requirements	Matthew Knickerbock	100						Requirem																											
Key Design Options Consi	Samuel Piper	100					Key Des	ign Optio	ns Con	sidered																									
Trade Study Process & Res	Dan Harthan, Markus	100					Trade Si	tudy Proc	ess & R	esults																									
Selection of Baseline Design	Madison Junker	100					Selectio	n of Base	line De	sign																									
Finalize Documents		100%					_		Finaliz	e Docu	ments																								
Edit & Refine	Whole Team	100				1		E C	dit & R	efine																									
Review	Whole Team	100						F F	Review																										
CDD Due		I							CE	DD Due																									
Preliminary Design Review		76%							-		_	-	-	-	-	-	-	-		-	-	-					_	Preli	minary	Desid	ın Rev	riew			
Assign Tech Leads/Teams	Whole Team	100								Accie	n Tech	Leads/1	Teams																						
 Slide Development 	Whole reall	95%								Assig	, n reen	Leddari	eams		Slide		alonm	ent																	
Story Board Presentation	Whole Team	100								Ston	Board	Presente	ation		Sila	C DC N	. ropin	cin																	
Team Decide Necessary St		100								Citory			Vecessar	rv Studi																					
Materials Feasibility	Markus Fuernkranz	100									/ cum	beende m		-		aility																			
Thermodynamic Fesibility	Matthew Knickerbock	100	Materials Feasibility Thermodynamic Fessibility																																
Electronics Feasibility	Dan Harthan, Madisor	100								н. н				lectron	-		,																		
Cost Budget	Daniel Castillo	100														Budge	t																		
Time Budget	Gregory Frank, Samue	50												_	Time	Budge	t																		
Project Descriptin	Gregory Frank	100										Proj	ect Desc	criptin		-																			
CONOPS Slide	Preston Fitzrandolph	100									c	ONOPS																							
FBD Slide	Dan Harthan, Preston	100									F	BD Slide																							
Functional Requirements S	John Cutter, Matthew	100										Fun	ctional R	equirer	nents Si	lide																			
CPE Slide	Cedric Camacho, Mac	100										CPE	Slide																						
Financial Slide	Daniel Castillo	100										Fina	ncial Slid	de																					
Time Budget Slide	Gregory Frank, Samue	100										Time	e Budget	t Slide																					
 Concept Development 		89%											-	-	Con	cept D	evelo	pment	t																
Nozzle Design	Mechanical Team, The	100											-		Nozz	le Desi	gn																		
SPECS	Electronics Team, Sof	100								4			-		SPEC	s																			
Summary	Whole Team	75								L					Sum	nary																			
Finalize Presentation		15%																									Fin	alize P	resent	ation					
Presentation Edit & Refine	Whole Team	50																	Pres	entatio	on Edit	& Refin	e												
Practice Presentation	Whole Team	0																				1					Pro	tice Pre	esentati	on				90	
PDR Due	Whole Team	0																	\diamond	PDR	Due														
PDR Presentation		0																									\diamond	PDR I	resento	tion					