Specialized Propulsion Engine Control System

Team:

- Greg Frank
- Sam Piper
- Yuzhang Chen
- Preston FitzRandolph
- Cedric Camacho
- Matt Knickerbocker
- Madison Junker
- Daniel Castillo Oropeza
- John Cutler
- Markus Fuernkranz
- Dan Harthan

Critical Design Review

Advisors: Professor John Mah Customer: Air Force Research Laboratory POC: 1st Lt. Carol Bryant

Presentation Structure

- **Overview**
- **Thrust Modification**
- **Electronics**
- Communication
- **Project Risks**
- Verification and Validation
- Iterated for each Design Requirement above

Design Requirements and their Satisfaction

Project Planning

Overview

Problem Statement

- Increase Thrust-to-Weight (T/W) Ratio of the JetCat P90-RXi Engine
- The engine must run for an 'extended period of time' as defined by CONOPS

Motivation

- The United States Air Force (USAF) would like to implement a T/W increasing modification into their fleet of Unmanned Aerial Vehicles (UAV)
- Ideal solution would be low cost and easy to implement with minimal modification to existing engine

Basic Jet Engine Operation Refresher

Brayton Cycle for Jet Engine

Concept of Operations (Mission Profile)

Functional Requirements

- **FR1** The JetCat P90-RXi engine shall have an increased T/W ratio of 20% from stock parameters.
- **FR2** SPECS shall control the engine over the entire operational envelope.
- **FR3** SPECS shall run the engine in a manner which does not incur damage to property or personnel.
- **FR4** SPECS shall have a user interface for engine control.

Functional Block Diagram

Modification

8

Functional Block Diagram

Modification

9

Thrust Improvement Modification ($\pi_{\rm C}$)

Major Design Elements: - Recharacterizing the JetCat Engine for 20% Thrust Improvement - Increase RPM \rightarrow

Increase $\pi_{\rm C} \rightarrow$ Increase Thrust

- New Nozzle to properly expand for new, higher $\pi_{\rm C}$

	Thrust	π_{C}	KRPM
Stock	105 N	2.35	130
Improved	126 N	2.61	140

Thrust Improving Modification (Nozzle)

expand new nozzle pressure

	Material		Thermal Expansion	
Stock	Inconel 718	82.43 g	2.55 %	
Improved	Ti 6AL-4V	47.78 g	1.62%	

Major Design Elements: - Based on Stock Nozzle Design

- Exit area decreased to properly

11

Functional Block Diagram

Modification 12

Functional Block Diagram

Modification 14

Hall Effect Sensor and Inlet Design

SPECS

Printed with Formlabs class printer using high strength FLGPBK04 Resin

New Hall Effect Sensor Location

Critical Project Elements

Designation	СРЕ	Critical Characteristics
CPE-1	Material Properties (Thrust Improvement Modification)	Thermodynamic and structural analysis require numerous assumptions on materials and operating conditions. Further analysis will characterize and define risks .
CPE-2.1	Engine Control Loop (ECM)	Control algorithms are inherently complex and require additional validation prior to implementation. Certification through the use of an engine analog is necessary .
CPE-2.2	Engine Sensors (ECM)	Coordination of engine sensor data acquisition with its utilization by the processor is critical. Without accurate sensor data, the engine cannot safely operate.
CPE-3	Communication from User to Engine (ECU)	During initial testing and product development user oversight will verify safe operation and monitor for anomalies.

Thrust Modification

Design Requirements & Satisfaction

CPE-1: Material Properties (Thrust Improvement Modification)

<u>FR.1</u>: The JetCat P90-RXi engine shall have an **increased T/W ratio of 20%** from stock parameters.

 <u>DR 1.2</u>: Any modifications to the engine will not reduce the factor of safety of any engine component below 1.3 per USAR.

Unit: Pa Time: 1

Shaft Assembly FEA

FEA consistent with conclusions drawn from prior calculations

Thermomechanical Turbine Analysis

Goal: Determine the increase in stress on the turbine due to the higher RPM and temperature through thermomechanical simulation (FEA).

Boundary Conditions:

- Convective heat flux into turbine due to high 1. velocity gas seen by the blades ($h = 1653 \text{ W/m}^2\text{-K}$)
- 2. Surface heat flux out of turbine due to flow of cooling oil (q= $-155,000 \text{ W/m}^2$)
- 3. Centrifugal force applied everywhere due to angular velocity about the +Z-axis

JetCat Turbine Model Top View

Thermomechanical Turbine Analysis

<u>Results:</u>

	Т ₀ [К]	ω [RPM]	Max stress [MPa]	Max temp [K]	S.F
Stock	963	130,000	807	869	1.5
Improved	1000	140,000	892	906	1.36

The thrust improvement can feasibly be made without damage to the engine since S.F is > 1.3 as required. (DR 1.2)

Principal stress magnitude (Pa)

Inlet Re-design FEA

Thronce neserici Luonun

FLGPBK04 Resin	
Tensile Modulus	2.8 GPa
Shear Modulus	1.03 GPa
Bulk Modulus	3.11 GPa
Ultimate Tensile Strength	65 MPa
Poisson's Ratio	0.35
S.F.	39

Electrical Circuits and Assemblies

EGT Circuit

K-Type Measurement Control

SPECS can accurately measure and transmit EGT temperature up to 730° C or above as needed. (DR 3.2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
MAX31855K Thermocouple		$T_{\text{THERMOCOUPLE}} = -200^{\circ}\text{C to } +700^{\circ}\text{C},$ $T_{\text{A}} = -20^{\circ}\text{C to } +85^{\circ}\text{C}$ (Note 3)	-2		+2	
Temperature Gain and Offset Error (41.276µV/°C nominal sensitivity) (Note 4)		$T_{THERMOCOUPLE} = +700^{\circ}C \text{ to } +1350^{\circ}C,$ $T_{A} = -20^{\circ}C \text{ to } +85^{\circ}C \text{ (Note 3)}$	-4		+4	°C
		T _{THERMOCOUPLE} = -270°C to +1372°C, T _A = -40°C to +125°C (Note 3)	-6		+6	24

ECM Control Board

22mm x 50mm

- MicroProcessor
- EGT Sense Circuit
- ICSP Header
- Hall Effect Circuit
- Battery Circuit

ECM Motor Control Board

- Large trace pours for high current
- Standoffs for thermal isolation
- Stacked below Control Board

ECM Controller Design Satisfaction Testing

HI TORE HERE HULL LAWRING

Main Objectives: Determine the transfer function for the engine system response to satisfy control requirements.

Test Details:

- Testing at several operating points from 55% to 90% max RPM.

Main Objectives: Determine the transfer function for the engine system response to satisfy control requirements.

Test Details:

- Testing at several operating points from 55% to 90% max RPM.

Main Objectives: Determine the transfer function for the engine system response to satisfy control requirements.

Test Details:

Testing at several operating points from 55% to 90% max RPM.

Communication

CDE 2	Communication from User	During initial testing and product development user oversight will
CFE-5	to Engine (ECU)	verify safe operation and monitor for anomalies.

- **DR 4.1:** The SPECS user interface **shall display** to the user the **EGT** (10°C increments), **RPM** (1000 RPM increments), **battery voltage** (0.1V increments), and **calculated fuel flow rate** (oz/min).
- DR 4.2: The SPECS user interface shall take user throttle inputs.
- DR 4.3: The SPECS user interface shall have the ability to initiate the engine start up and shutdown sequences.
- **DR 4.4:** The SPECS user interface shall **display warnings for operation** within 10% of safety limits to the operator.

DR 4.5: The SPECS user interface shall have an Emergency Stop (E-Stop) function.

- User interface displays EGT, RPM, battery voltage, and fuel rate (DR 4.1).
- User interface displays safety warnings (DR 4.4).
- User interface allows changing engine state (start, stop, throttle, and emergency stops) (DR 4.2,4.3,4.5).

Software Timing of ECM/ECU

Design Requirements & Satisfaction

CPE-2.1 Engine Control Loop (ECM)	CPE-2.2 Engine Sensors (ECM)
	0 ()

DR 3.1: SPECS will maintain operation below 130,000 RPM unless a new upper safety limit is determined from the engine characterization.

*SPECS analysis found the new RPM limit to be 140,000. This will be measured by the Hall effect sensor and verified to be accurate by simulation and engine test run.

DR 3.2: SPECS will maintain EGT below 700° Celsius unless a new upper safety limit is determined.

*SPECS analysis found new EGT upper safety limit is 730° C. This was determined through thermal analysis of engine materials.

ECM Compute Cycle Structure

Modular Programming

- Measure EGT
- Measure only the High pulse of RPM (Duty Cycle compensation)
- Compute system modification parameters
- Update "Engine Run" function
- Repeat

ECM Compute Cycle Timing

- Set simulation to "Engine Run"
- **Disabled RPM Sense Function**
- Measured Timing
- Total compute time 68.4µs

Compute Window @ 130k = 267µs SPECS can measure RPM in excess of 130K, and maintain control of all engine systems simultaneously. (DR 3.1)

Thu Nov 29 10:12:05 2018

			and the second second	and an owner where			Sale	ae Logic 1.2.18	- [Connected	l] - [12 MHz Di	gital, 6 MHz Ar	nalog, 10 s]			
	0 1 1		0 s : 859 ms									0 s : 860 m	s		
	Start	•	+0.1 m:	40.2 ms	+0.3 ms	+0.4 ms	+0.5 ms	+0.6 ms	+0.7 ms	+0.8 ms	+0.9 ms		+0.1 ms	+0.2 ms	🙀 +0.3 ms
00	Channel O I2C - SDA	\$ +f		Write (8)	1 + ACK	33 + ACK	Read [8]	0 + ACK	0 + ACK	0 + ACK	40 + ACK	33 + ACK	1 + ACK	0 + NAK	
01	Channel 1 I2C - SCL	¢ +													

CE RESEARCH LABO

ACE RESEARCH LABOR

HCE RESEARCH LABOR

ACE RESEARCH LABOR

		-	-		-	Salea	e Logic 1.2.18	- [Connected]	- [12 MHz D	igital, 6 MHz Ar	nalog, 10 s]	-	-	-
0		0 s : 859 ms						0 s : 860 m	0 s : 860 ms					
Start	▼	+0.1 m:	+0.2 ms	+0.3 ms	+0.4 ms	+0.5 ms	+0.6 ms	+0.7 ms	+0.8 ms	+0.9 ms		+0.1 ms	+0.2 ms	💓 +0.3 ms
00 Channel 0 I2C - SDA	♀ +f		Write [8]	1 + ACK	33 + ACK		0 + ACK	0 + ACK	0 + ACK	40 + ACK	33 + ACK	1 + ACK	0 + NAK	
01 Channel 1 I2C-SCL	¢+;													

		and the second se				Salea	e Logic 1.2.18	- [Connected]	- [12 MHz Di	gital, 6 MHz A	nalog, 10 s]	-		
0		0 s : 859 ms							0 s : 860 m	5				
Start	▼	+0.1 m 👦	+0.2 ms	+0.3 ms	+0.4 ms	+0.5 ms	+0.6 ms	+0.7 ms	+0.8 ms	+0.9 ms		+0.1 ms	+0.2 ms	👽 +0.3 ms
00 Channel 0 I2C - SDA	\$ +F		Write [8]	1 + ACK	33 + ACK		0 + ACK	0 + ACK	0 + ACK	40 + ACK	33 + ACK	1 + ACK	0 + NAK	
01 Channel 1 12C - SCL	\$ + 1													

▼ Timing Marker Pair
 ▼
 ↓ A1 - A2 | = 1.128916667 ms
 A1 @ 0.8591525833 s
 A2 @ 0.8602815 s

Start Verify

		-	-	-	-	Salea	e Logic 1.2.18 ·	- [Connected]	- [12 MHz Di	gital, 6 MHz A	nalog, 10 s]	-		-
011		0 s : 859 ms	0 s : 859 ms 0 s : 860 ms						s					
Start	▼ [+0.1 m	+0.2 ms	+0.3 ms	+0.4 ms	+0.5 ms	+0.6 ms	+0.7 ms	+0.8 ms	+0.9 ms		+0.1 ms	+0.2 ms	💓 +0.3 ms
00 Channel 0 I2C - SDA	\$ +F	•	Write [8]	1 + ACK	33 + ACK	Read [8]	0 + ACK	0 + ACK	0 + ACK	40 + ACK	33 + ACK	1 + ACK	0 ± NAK	
01 Channel 1 I2C-SCL	\$ + <u>F</u>													

ERROR Flag

Communication Overview: I2C and SPI clock zoomed out

- Top: I2C clock signal
- Bottom: SPI clock signal
- 50 ms between each I2C communication
- Parameters are still measured while ECM is gathering and preparing data for transmission

Communication Overview: I2C and SPI clock zoomed in

- Top: I2C clock signal
- Bottom: SPI clock signal
- No interference with clock signals when running I2C and SPI together

<u>E-Stop Button:</u> Disconnects all power. Last resort, no active cooling after use.

Safety Precautions

<u>GUI Manual:</u> User Emergency Stop, sends engine into shutdown.

<u>ECM Automatic:</u> Overspeed, Overtemp, Fuel Pump PWM to RPM Mismatch, Loss of ECU Communications.

SPECS user interface provides an Emergency Stop (E-Stop) function (DR 4.5)

CPE and DR Summary

CPE 2.1 - Engine Control Loop (ECM)

-) **DR 3.1:** SPECS will maintain operation below 140,000 RPM from the engine characterization.
- 2)
- DR 3.2: SPECS will maintain EGT below 730° Celsius

CPE 2.2 - Obtain accurate sensor data

- 1) DR 4.1: The SPECS user interface shall display to the user the EGT (10°C increments), RPM (1000 RPM increments), battery voltage (0.1V increments), and calculated fuel flow rate (oz/min).
- 2) DR 4.2: The SPECS user interface shall take user throttle inputs.
- **3**)
- **DR 4.3:** The SPECS user interface shall have the ability to **initiate the engine start up and shutdown sequences**.
- **4**)
- **DR 4.4:** The SPECS user interface shall **display warnings for operation** within 10% of safety limits to the operator.
- **S**)
- DR 4.5: The SPECS user interface shall have an Emergency Stop (E-Stop) function.

Project Risks

Thrust Modification Risks and Mitigation

- 1) Engine Does Not Run
- 2) Turbine Failure
- 3) Other Engine Component Failure (Compressor, Shaft, etc.)
- 4) Foreign Object Damage

	ACCEPTABLE	MINOR ISSUE	MAJOR ISSUE	CATASTROPHIC
PROBABLE				
HIGH POSSIBILITY		1		2
LOW POSSIBILITY			4	3
NOT LIKELY				

Thrust Modification Risks and Mitigation

1) Engine Does Not Run

- a) Engine Simulator
- b) Spare Engine Purchase
- 2) Turbine Failure
- Other Engine Component Failure (Compressor, Shaft, etc.)
- 4) Foreign Object Damage

	ACCEPTABLE	MINOR ISSUE	MAJOR ISSUE	CATASTROPHIC
PROBABLE				
HIGH POSSIBILITY				2
LOW POSSIBILITY	1		4	3
NOT LIKELY				

D Thrus

Thrust Modification Risks and Mitigation

61

- Engine Does Not Run

 a) Engine Simulator
 b) Spare Engine Purchase

 Turbine Failure

 a) Engine Model Validation
 b) Controller Safety Limits

 Other Engine Component Failure (Compressor, Shaft, etc.)
- 4) Foreign Object Damage

	ACCEPTABLE	MINOR ISSUE	MAJOR ISSUE	CATASTROPHIC
PROBABLE				
HIGH POSSIBILITY				Ţ
LOW POSSIBILITY	1		4	2,3

Thrust Modification Risks and Mitigation

1) Engine Does Not Run		
a) Engine Simulator		ACCEPTABLI
b) Spare Engine Purchase		
2) Turbine Failure		
a) Engine Model Validation	PROBABLE	
b) Controller Safety Limits		
3) Other Engine Component	HIGH	
Failure (Compressor,	POSSIBILITY	
Shaft, etc.)		
a) <mark>Component FEA</mark>		1
4) Foreign Object Damage	PUSSIBILIT	•

	ACCEPTABLE	MINOR ISSUE	MAJOR ISSUE	CATASTROPHIC
ROBABLE				
HIGH DSSIBILITY				
LOW DSSIBILITY	1		4	2
OT LIKELY				3

Thrust Modification Risks and Mitigation

1) Engine Does Not Run			
a) <mark>Engine Simulator</mark>		ACCEPTABLE	MING
b) <mark>Spare Engine Purchase</mark>			
2) Turbine Failure			
a) Engine Model Validation	PROBABLE		
b) Controller Safety Limits			
3) Other Engine Component	HIGH		
Failure (Compressor,	POSSIBILITY		
Shaft, etc.)			
a) Component FEA		1	
4) Foreign Object Damage	PUSSIBILIT	•	
a) Stock Inlet Filter			
	NOT LIKELY		

	ACCEPTABLE	MINOR ISSUE	MAJOR ISSUE	CATASTROPHIC
OBABLE				
HIGH SSIBILITY				
LOW SSIBILITY	1		I	2
T LIKELY			4	3

- 1) Hall effect failure
- 2) Loss of engine control
- 3) Electrical component failure
- 4) Starter motor failure
- 5) Communication corruption

	ACCEPTABLE	MINOR ISSUE	MAJOR ISSUE	CATASTROPHIC
PROBABLE				
HIGH OSSIBILITY		3		
LOW OSSIBILITY		4	5	
IOT LIKELY			1	2

- 1) Hall effect failure
 - a) Fuel to RPM check
- 2) Loss of engine control
- 3) Electrical component failure
- 4) Starter motor failure
- 5) Communication corruption

	ACCEPTABLE	MINOR ISSUE	MAJOR ISSUE	CATASTROPHIC
PROBABLE				
HIGH POSSIBILITY		3		
LOW POSSIBILITY		4	5	
		1 ←		2

- 1) Hall effect failure
 - a) Fuel to RPM check
- 2) Loss of engine control
 - a) Physical emergency stop
- 3) Electrical component failure
- 4) Starter motor failure
- 5) Communication corruption

	ACCEPTABLE	MINOR ISSUE	MAJOR ISSUE	CATASTROPHIC
PROBABLE				
HIGH POSSIBILITY		3		
LOW POSSIBILITY		4	5	
NOT LIKELY		1,2 ←		

- 1) Hall effect failure
 - a) Fuel to RPM check
- 2) Loss of engine control
 - a) Physical emergency stop
- 3) Electrical component

failure

- a) Simulation
- b) Testing/Redesign
- 4) Starter motor failure
- 5) Communication corruption

	ACCEPTABLE	MINOR ISSUE	MAJOR ISSUE	CATASTROPHIC
PROBABLE				
HIGH POSSIBILITY				
LOW POSSIBILITY		4	5	
NOT LIKELY		1,2,3		

- 1) Hall effect failure
 - a) Fuel to RPM check
- 2) Loss of engine control
 - a) Physical emergency stop
- 3) Electrical component

failure

- a) Simulation
- b) Testing/Redesign
- 4) Starter motor failure
 - a) Spare motors
- 5) Communication corruption

	ACCEPTABLE	MINOR ISSUE	MAJOR ISSUE	CATASTROPHIC
PROBABLE				
HIGH Possibility				
LOW POSSIBILITY	4 ←		5	
NOT LIKELY		1,2,3		

- 1) Hall effect failure
 - a) Fuel to RPM check
- 2) Loss of engine control
 - a) Physical emergency stop
- 3) Electrical component

failure

- a) Simulation
- b) Testing/Redesign
- 4) Starter motor failure
 - a) Spare motors
- 5) Communication corruption
 - a) Message filtering

	ACCEPTABLE	MINOR ISSUE	MAJOR ISSUE	CATASTROPHIC
PROBABLE				
HIGH POSSIBILITY				
LOW POSSIBILITY	4			
NOT LIKELY		1,2,3	5	

Verification & Validation

Electronics/Software Validation

Engine Test Rig Components

ECM Verification and Validation

Testing Objective: Verify operation and control of all ECM circuits on breadboard and PCB.

Location: On assembled Test Rig

Method and Parameters:

- 1) Complete a startup, run and shutdown sequence on test rig.
- 2) Verify RPM measurements using oscilloscope.
- 3) Verify EGT measurement using infrared pyrometer.
- 4) Implement and test all emergency stop programming functions
 - GUI Command Emergency Stop
 - Engine Overspeed
 - Engine EGT Overtemp
 - Fuel command to measured RPM mismatch (Hall effect failure, max engine RPM)

JetCat Engine LabView Simulator

Simulator Objectives:

 Verify entire SPECS electronics work as designed before integration with real JetCat engine.

Items to Verified:

- Control
- Communication
- Electronics (Post PCB) operation
- Safety Limits
- Emergency Stop
- Anomaly Handling

Simulated Outputs:

- RPM
- EGT

Software Results Validated

RPM and EGT collection successful

Engine Run SPECS Validation

JetCat Engine Run Validation Testing

Test Type	Engine RPM	Results Desired								
Stock Engine Run	Idle - 130,000 RPM	Glow Plug, Fuel Pump PWM (Controls)								
Stock Engine Run - Max Thrust	130,000 RPM	Max Thrust Statistical Data								
Integrate SPECS with JetCat										
SPECS Engine Run (Stock Nozzle)	130,000 RPM	Verify Safety and Control of modified Eng.								
SPECS Engine Run (Stock Nozzle)	140,000 RPM	New Max Thrust								
SPECS Engine Run (SPECS Nozzle)	140,000 RPM	Modified Max Thrust, New Nozzle effectiveness								

Engine Run Test Stand Setup

- Main Objective of Testing is to verify all of the requirements, verify models.
- 2) Engine runs will be conducted at the CU East Power Plant
- The test platform will measure EGT, Tt4, flow velocities and thrust

Redesign of Nozzle

for New Operating

Conditions

(FR 1)

Maintain RPM Below

Upper Safety Limit

(DR 3.1)

Turbine Factor of

Safety of 1.36

(DR 1.2)

Maintain Exhaust

Temperature Below

Upper Safety Limit

(DR 3.2)

20% Increase of

Engine T/W

(FR 1)

Mass Flow Inlet Design

Pitot Tube

Test Objectives:

- Measure mass flow to verify simulation models
- Control volume created to measure inlet flow

Measurements:

- SPD1108R Differential Pressure sensor:

Range = $0 - 500 \text{ Pa} \pm 1\%$ Resolution = 0.0075 mV/Pa

SPD1108R Differential Pressure sensor

Thrust Improvement Verification

Load Cell FC22

Test Objectives:

- Measure thrust and verify proper expansion of flow by nozzle.
- Engine Run 140,000 RPM Stock Nozzle
- Engine Run 140,000 RPM SPECS Nozzle

Requirements Verified:

- FR 1: 20% increase of T/W.

Measurements:

Load Cell FC22:

Range = 44.5 - 444.8 N ± 1% *Resolution* = 0.00125 mV/N

Exit Temperature Characterization

Re-designed Nozzle

Test Objectives:

- Measure the exit gas temperature

Requirements Verified:

- DR 3.2: SPECS will maintain EGT below 700° Celsius unless a new upper safety limit is determined.
- New safety limit was determined to be 730° Celsius

Measurements:

JetCat Stock Thermocouple:
Range = -100 to 1300°C ±1.1°C

Exit Flow Characterization

Nozzle Pitot Probe

Test Objectives:

- Measure exit pressure differential to verify flow is properly expanded by modified nozzle

Requirements Verified:

- Model validation & thrust improvement

Measurements:

 Differential Pressure Transducer PX137-015DV:
Range = 0-206.84 kPa ± 1.5%

Resolution = 0.43 mV/kPa

DAQ Selection

National Instruments USB 6009 DAQ

- Selected USB 6009 for data acquisition
- 8 analog inputs for data collection
- Input Resolution: 13 bits
- Maximum Sampling Rate: 48 kS/s
- 500 Hz Square Wave on software timed digital I/O, sufficient for 150000 RPM simulation

Project Plans

Project Planning

	% Complete	e Dec 2018 Jan 2019			Feb	2019		Mar 2019					Ap	Apr 2							
SDECS AEDLI/D Patio	25	2	9	16	23	30	6	13	20	27	3	10	17	24	3	10	17	24	31	7	14
	1000														1						
Conceptual Design Document	100%																				
Preliminary Design Review	76%		- n T	Լ																	
Conceptual Design Review	0%																				
Fall Final Report	0%	1			Ŀ.	FF	<u>R</u> _														
Manufacturing Status Review	0%	1	-																		
PCB Design and Manufacturing	0%	- lie	-	-									11								
PCB Integration	0%	1											11.3	ļ	-						
Software Development	0%	11															•				
Hardware Development	0%	1				_				_	_		_}								
Test Readiness Review	0%											Γ		_							
Stock Testing Verification	0%								•	TTF	२										
Modification Implementation	0%					<u> </u>	<u>от.</u>					1				8					
Analysis	0%						511	NG	/Ar	aly	/SIS	5							-	-	
Spring Final Review	0%															-					T

Project Planning

Electrical

Engine

Total

Budget

Margin

Test Bed

Presentation

Mechanical

• Margin is positive, therefore the project is financially feasible

Cost Plan Major Items + EEF

High Cost Items	Cost
Titanium Round Bar 3.75" x 10"	\$1307.55
Custom PCB (ECU/ECM) 3 Iterations	\$792.00
JetCat V.10 ECU	\$500.00
JetCat Refurbishment	\$400.00

Requested EEF Fund

- New JetCat P90-Rxi Engine: \$2195.00
 - JetCat V.10 ECU: \$500.00
- Test Stand Refurbishment: \$200.00
- Differential Pressure Transducer: <u>\$100.00</u>

Total: \$2995.00

Upcoming Testing Schedule

Test to be Conducted	Date Scheduled	Test Plan	Materials	Facility	Test Completed		•
Test Rig "Engine Run" 1	28 DEC		PCB 1.0	ITLL/EC	\bigcirc		
Test Rig "Engine Run" 2	07 JAN		PCB 2.0	ITLL/EC	\bigcirc	Completed	\checkmark
Test Rig "Engine Run" 3	16 JAN		PCB 3.0	ITLL/EC	\bigcirc	In-Progress	\bigcirc
Test Rig Anomaly Simulation Interface	11 FEB		РСВ 3.0	ITLL/EC	\bigcirc		
Stock Engine Run Start	18 FEB		\bigcirc	* CU Boulder E. Power Plant	\bigcirc		
SPECS Engine Run Start	11 MAR		0	* CU Boulder E. Power Plant	\bigcirc		

* 1 week notice + test plan required for engine run at CU Boulder E. Power Plant

Questions?

References

[1] Mattingly, Jack "Elements of Propulsion: Gas Turbines and Rockets", AIAA, August 1, 2006

[2] Matteo Ugolotti, Mayank Sharma, Zachary Williams, Matthew Owen, Siddharth Balachandar, Justin Ouwerkerk, Mark Turner, "Cooling System for 0.1 kN Thrust Micro-Engines: Concept Design Using Additive Manufacturing", 2016. 26 Sept. 2018.

[3] Alex Bertman, Jake Harrell, Tristan Isaacs, Alex Johnson, Matthew McKernan, T.R. Mitchell, Nicholas Moore, James Nguyen, Matthew Robak, Lucas Sorensen, Nicholas Taylor, "Air-breathing Cold Engine Start Preliminary Design Review", 2017, Retrieved September 25, 2018.

[4] Andrew Sanchez, Tucker Emmett, Corrina Briggs, Jared Cuteri, Grant Vincent, Alexander Muller, "SABRE Critical Design Review", 2016. 27 Sept. 2018.

[5] Capata, Roberto. "Experimental Tests of the Operating Conditions of a Micro Gas Turbine Device." Journal of Energy and Power Engineering, vol. 9, no. 4, 2015, doi:10.17265/1934-8975/2015.04.002.

[6] Department of Defense. "Military Handbook: Metallic Materials and Elements for Aerospace Vehicle Structures." 1998, Oct. 7, 2018

References

[7] "Turbine Data Sheet." JetCat. JetCat, July 14 2015. Web. September 4, 2018, from <u>https://www.chiefaircraft.com/pdf/jetcat-data.pdf</u>

[8] "JetCat RX Turbines with V10 ECU." JetCat. JetCat, n.d. Web. September 4, 2018, from <u>https://studylib.net/doc/18303934/jetcat-rx-turbines-with-v10-ecu</u>

[9] "ATmega 328/P Datasheet." Atmel. Atmel, November 2016. Web. September 4, 2018, from http://ww1.microchip.com/downloads/en/devicedoc/atmel-42735-8-bit-avr-microcontroller-atmega328-328p_datasheet.pdf

[10] "ATmega 640/1280/1281/2560/2561 Datasheet." Atmel. Atmel, February 2014. Web September 4, 2018, from http://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf

[11] Evans, Ceri & Rees, David & Hill, Dave. (1998). Frequency-domain identification of gas turbine dynamics. Control Systems Technology, IEEE Transactions on. 6. 651 - 662. 10.1109/87.709500.

[12] Daniel Alonzo, Alex Crocker, Eric James, John Kingston III, "Design and Manufacturing of a Miniature Turbojet Engine", Worchester Polytechnic Institute, March 23, 2018, retrieved 20 October 2018

References

[13] Robert Canfield, Craig Woolsey, "Development and Implementation of a Flight Test Program for a Geometrically Scaled Joined Wing SensorCraft Remotely Piloted Vehicle", Virginia Polytechnic Institute, October 5, 2011, retrieved 20 October 2018

[14] Jason A. Widegreen and Thomas J. Bruno, "Thermal Decomposition Kinetics of the Aviation Turbine Fuel Jet A", NIST, 2008, retrieved 28 October 2018

Backup Slides

Electronics

• Problem: ECM has master emergency control of engine. With SPI only one master device, Master initiates communications.

I2C vs. SPI & Why

- If ECM is SPI master, cannot guarantee that E-Stop from GUI would be read in an emergency, internal interrupts would overwrite incoming commands.
- If ECU is SPI master, EGT is a native SPI device, EGT monitoring could not occur on ECM. Adds complexity, EGT required for sequence and monitoring resulting in multiple transmissions between devices.
- Solution: Use both
 - ECM as SPI master and ECU as I2C master.

ECU Shield PCB

PWM frequency must be greater than 5τ for stable operation, higher PWM results in smooth operation with less noise.

Calculated optimal PWM = 1.138kHz Setpoint = 976.56 Hz (Closest Prescale > 5τ)

$$V_L(t)=Ve^{-trac{R}{L}}$$

$$V_R(t) = V(1-e^{-trac{R}{L}})$$

 $\tau = \frac{L}{D}$

Concept of Operations (SPECS)

Material	Thermal Coefficient	Area After Expansion	Percentage Change
Ti 6AL-4V	7x10 ⁻⁶ in/in/F	498.8226 mm ²	1.6193 %
Inconel 718	11x10 ⁻⁶ in/in/F	503.3934 mm ²	2.5505 %
Cobalt Chrome	8.4x10 ⁻⁶ in/in/F	500.4152 mm ²	1.9439 %
N60 Stainless Steel	10.3x10 ⁻⁶ in/in/F	502.5904 mm ²	2.3869 %

Thermomechanical Calculations

Modeling the heat transfer into the turbine blades due to the combustion gases with a Convective heat flux on a flat plate:

$$h = \frac{k}{L} \left(0.037 R e^{0.8} P r^{1/3} \right)$$

$$Pr = \frac{\mu c_p}{k} \quad Re = \frac{\rho VL}{\mu}$$

Thermomechanical Calculations

Modeling the heat transfer out of the turbine blades due to the cooling oil with a surface heat flux on a flat plate:

$$\Delta h = mc_p \Delta T$$
$$q = \dot{m} \Delta h c_p$$

Shaft Assembly FEA Results

Component (Stock)	MATERIAL	YIELD STRENGTH OF MATERIAL	Maximum Stress	S.F.
COMPRESSOR	AI 7075	440.57 MPa	223.5 MPa	1.97
SHAFT	AISI 301	2123.60 MPa	279 MPa	7.61

- Component materials were determined from Alibaba, a vendor of JetCat replacement parts
- All material properties were found in
 - <u>Military Handbook-5H</u> --- <u>Metallic Materials and Elements for Aerospace</u> <u>Vehicle Structures</u>

Modal Blade FEA

0.0045

0.009 (m)

- Strouhal Number:
- $St = \frac{fL}{V}$
- Blade Passing Frequency:

$$BPF = \frac{nt}{60}$$

Fig. 1. (a) Centrifugal pump with a 4-blade impeller $(N_b=4),\,{\rm and}\,$ (b) vibration spectrum for pump/fan/compressor with four blades/cylinders.

• Marin Factors:

Figure 6.3.5.1.8(a). Best-fit S/N curves for unnotched Inconel 718 sheet at room temperature, long transverse direction.

 \bullet

Arrhenius Equation:

$$\dot{\epsilon_s} = C e^{-Q/RT}$$

• Activation Energy Approximation:

 $\Delta H = -0.23\sigma + 209.64$

Creep

• Power Relation:

$$\dot{\epsilon_s} = (\frac{\sigma}{E})^n$$

Reaction path

RESEARCH

Figure 6.3.5.1.7(a). Average isothermal 0.10% creep curves for Inconel 718 forging.

EDS Spectroscopy Results

Net Counts C-K Al-K Si-K Cr-K Mn-K Ni-L Mo-L Ta-M 5549 2535 156 755 100 7770 Jet Engine(5) 11861 jet engine(1) 5644 2662 174 1064 0 957 6023 2498 73 803 8880 jet engine(2) jet engine(3) 5516 2294 126 888 7989 5879 2088 795 8711 jet engine(4) 0 751 160

Summary of EDS signals tested at 5 different locations. C, Ai, Si, Cr, Ni are found in all of 5 locations. Mn, Mo, and Ta are found in several points.

EDS spectral of jet engine material sample at point #1.

WARNING: DO NO PUBLISH THIS SLIDE

FAILURE MODE AND EFFECTS ANALYSIS

ltem:	JetCat P90-F	Rxi		Responsibility:		S. Piper			_	FMEA number:	1				
Model:	Current			Prepared by:		S. Piper			_	Page :	1 of 1				
Core Team:	S. P. (Syster	ns), G. F. (PM), I	И. F	. (Mech), M. K. (Th	nerm	n), D. H. (Electr)			-	FMEA Date (Orig)	11/2/2018	R	ev:	3	
				с	0		D					_			
Process	Potential	Potential	s	I Potential	с	Current	e	R	Recommended	Responsibility	Action Results				
Function/Part	Failure	Effect(s) of	е	a Mechanism(s)	с	Process	t	P	Action(s)	and Target		S	0	D	R
	Wode	Failure	v	s of Failure	u r	Controls	e c	N		Completion Date	Actions Taken	e v	c c	e t	N
Turbine Blades	High-Cycle Fracture	Damage Engine/ Personnel Harm	4	Torsional Resonance/ Design Factors	3	Design Criteria	4	48	None						0
	Low-Cycle Fracture	Damage Engine/ Personnel Harm	4	Improper Heat Treatment	2	Design Criteria	4	32	None						0
	Intragranular Fracture	Damage Engine/ Personnel Harm	4	Blade Over Heating	3	Thermo Analysis	3	36	Refine Thermo Analysis	M.F. (Nov 2018)		4	2	3	24
	Creep	Damage Engine/ Personnel Harm	4	Local Recrystalizatio n from Heat	2	Thermo Analysis	3	24	Refine Thermo Analysis	M.F. (Nov 2018)		4	1	3	12
	Fatigue	Damage Engine/ Personnel Harm	4	Thermal/ Centrifugal Stress	3	Thermo Analysis	3	36	Refine Thermo Analysis	M.F. (Nov 2018)		4	2	3	24
	Cracking	Damage Engine/ Personnel Harm	4	Thermal Stress/ Fatigue and Corrosion	2	Thermo Analysis	3	24	Refine Thermo Analysis	M.F. (Nov 2018)		4	1	3	12
	Corrosion	Damage Engine/ Personnel Harm	2	Fuel Impurities	1	Fuel Filter	1	2	None						0

	Deformation	Damage Engine/ Personnel Harm	4	Overspeed and Low Yield Strength	4	Manual Fuel Limiting	1	16	Implement automatic controls	D.H. (Jan 2019)			0
Compressor Blades	FOD Damage	Replace Compressor	3	FOD Inhalation	2	Operating Procedures	2	12	Implement safety protocols during testing	S.P. (Jan 2019)			0
	Cracking	Replace Compressor	3	FOD Inhalation, Corrosion	2	Operating Procedures	2	12	Implement safety protocols during testing	S.P. (Jan 2019)			0
	Corrosion	Replace Compressor	2	Operating Environment, Surface Imperfections	1	Operating Procedures	3	6	None				0
	Deformation	Replace Compressor	2	Overspeed and Low Yield Strength	2	Manual Fuel Limiting	1	4	Implement automatic controls	D.H. (Jan 2019)			0
	Fracture	Damage Engine/ Personnel Harm	3	Improper Materials, Corrosion	1	Design Criteria	3	9					0
	Blade Tip Wear	Replace Compressor	2	Engine Wear	2	Regular Maintenance	3	12	Contact Manufacturer to Schedule maintenance as needed	M.F. (Jan 2019)			0
Bearings	Housing Fracture	Replace Core	2	Fatigue, Excessive Loading	2	Regular Maintenance	3	12	Contact Manufacturer to Schedule maintenance as needed	M.F. (Jan 2019)			0
	Excessive Outer Race Wear	Replace Core or Bearing	1	Contamination	2	Fuel Filter	1	2	None				0

		Rearing	Daplace Core		Contamination,					Assess Bearing				
		Siezure	or Bearing	1	Excessive Loading	1	Fuel Filter	1	1	Radial Loading Capability	M.F. (Nov 2019)		0	
		Outer Race Interface Wear	Replace Core or Bearing	1	Excessive Thrust Loading	2	Loading Limits	3	6	Assess Bearing Axial Loading Capability	M.F. (Nov 2019)		0	A THOMAS AND
-		Bearing Outer Race Fracture	Replace Core or Bearing	2	Fatigue, Excessive Loading	1	Loading Limits	3	6	Assess Bearing Radial Loading Capability	M.F. (Nov 2019)		0	Research LINK
		Bearing Fracture	Replace Core or Bearing	2	Fatigue, Excessive Loading	1	Loading Limits	3	6	Assess Bearing Radial Loading Capability	M.F. (Nov 2019)		0	
		Flow Channel Blockage	Clean Channels or Replace Core	1	Contamination	1	Fuel Filter	1	1	None			0	
		Corrosion	Replace Bearing	2	Contamination	1	Fuel Filter	1	2	None			0	
	Shaft	Torsion Fracture	Replace Shaft	2	Excessive Loading	1	Operating Limits	2	4	Assess Shaft Loading Capability	M.F. (Nov 2019)		0	
-		Thread Wear	Replace Shaft	1	Vibration	1	Design Criteria	3	3	None			0	
		Shaft Twisting Deformation	Replace Shaft	1	Stress	1	Operating Limits	3	3	Assess Shaft Loading Capability	M.F. (Nov 2019)		0	
		Excessive Inner Race Wear	Replace Shaft	2	Contamination	2	Fuel Filter	1	4	None			0	
		Inner Race Interface Wear	Replace Shaft	1	Excessive Thrust Loading	1	Loading Limits	3	3	Assess Bearing Axial Loading Capability	M.F. (Nov 2019)		0	
		Bearing Siezure	Replace Shaft or Bearing	2	Contamination, Excessive Loading	1	Fuel Filter	1	2	Assess Bearing Radial Loading Capability	M.F. (Nov 2019)		0	
		Bearing Inner Race Fracture	Replace Shaft	2	Fatigue, Excessive Loading	1	Loading Limits	3	6	Assess Bearing Radial Loading Capability	M.F. (Nov 2019)		0	
	Pressure Vessel	Nozzle/Inlet Interface Leakage	Condition Interface	1	Surface Scoring/Exces sive Pressure	2	Operating Limits	3	6	None			0	
		Vessel Rupture	Replace Pressure Vessel	3	Excessive Pressure/Heat	2	Operating Limits	3	18	Assess Hoop Stress Limits	M.F. (Oct 2019)		0	118

Initial

<

>

Predictive Model

Advanced engine model required to test ECU/ECM prior to installation on hardware

Incorporation of component efficiencies provides more accurate results (<2% error on test/manufacturer data)

Verifies Model

...with manufacturer/ past test data

...with theoretical model and future T_t4 test data

Simulation

Y

T 44

Turbines Compressors *∎*η_{max} Thermodynamic analysis necessitates η_{std} RPM a more advanced model 80% XIAL-FLOW 90% UBDOMAIN AXIAL STAGE RADIAL STA η_{min} 70% SUBDOMAIN SUBDOMAIN CENTRIFUG 85% COMPRESSO Incorporation of component 60% SUBDOMAIN ′′max 80% 50% efficiencies provides more accurate $\text{=}\eta_{\text{std}}$ l _{†4} 75% 0,388 1.163 0.077 0.155 0.310 2.326 0.775 1.16 7 755 SPECIFIC SPEED, N_s (radians) results (<2% error from engine data) η_{min} SPECIFIC SPEED (radians) Variance with η_c Variance with $\eta_{\rm m}$ Variance with $\eta_{\rm h}$ Variance with η_{\star} 16 r 10⁴ 16 r 10⁴ 16 × 10⁴ 1.8 × 10⁵ 1400 1500 1400 1400 1400 1300 1300 1.6 14 14 14 1300 200 200 1200 1.4 12 12 12 1200 1100 1100 1100 1.2 ₩^{10 '} 1000 T (K) 000 T_{t4} (K) T_{t4} (K) M 10 M 2 8 MdN ° RPM 1000 1000 1000 900 900 900 0.8 800 800 800 800 0.6 700 700 700 700 0.4 600 600 600 600 0.2 500 500 2 500 2 3 4 5 6 7 2 3 6 1 2 3 1 2 3 4 5 6 1 × 10⁻³ ×10⁻³ $\times 10^{-3}$ 121 × 10⁻³ m, (kg/s) m_f (kg/s) m_f (kg/s) m, (kg/s)

Serial Connection	Commands
COM Port	Start Engine
L'COME	START ENGINE
[⊗] ICOM5	Stop Engine
Baud Rate	STOP ENGINE
115200	Stop All
	STOP ALL
erial Monitor	RPM
40000.100.1	Command RPM Send
	55 OK

ECM Flowchart

ACE RESEARCH LABOR

ECU Flowchart

Testing Backup Slides

Differential Pressure Sensor Selection Process I

_

-

- Assumed model mass flow:

 $\dot{m} = (4.26 * 10^{-6})(kRPM)^2 + (1.77 * 10^{-4})(kRPM) + 0.16523$

- Flow velocity:

$$V = \frac{m}{\rho A}$$

-

entire operational range of RPM

Mass flow had been modelled across

Used model to find flow velocity assuming constant density

- Differential pressure:

$$\Delta P = \frac{V^2 * \rho}{2}$$

- Found differential pressure using flow velocity

Modelled Mass Flow Rate

Functional Block Diagram

EGT probe data sheet

Fast Response EGT Temperature Probe

- Type K thermocouple probe
- Exposed sensing junction for fastest response
- Includes 316 SS adjustable compression fitting
- Stainless steel protected wires
- Designed for engine test & racing environments

Specifications

Thrust Modification Risk Analysis

- 1) Nozzle Inefficiencies
- 2) Bearing Wear
- 3) Compressor Fatigue
- 4) Fuel System Failure
- 5) Sensor Failure
- 6) FOD
- 7) Compressor Failure
- 8) Bearing Failure
- 9) Shaft Failure
- 10)Pressure Vessel Failure
- 11)Turbine Failure

	ACCEPTABLE	MINOR ISSUE	JETCAT REPAIR REQUIRED	JETCAT BEYOND REPAIR
PROBABLE				
HIGH POSSIBILITY				
LOW POSSIBILITY				
NOT LIKELY				

Controls Backup Slides

Frequency Domain Testing

Test details:

- 0.005 to 0.4 Hz multisine with 0.01 Hz increments covering turbine dynamics¹¹
- Testing at several operating points from 55% to 90% max RPM.
- 5 Hz sampling frequency
- amplitude +/- 10% fuel rate

System	ltem	Price (EA) \$	Quantity (EA)	Total	Sub-Total	Budget %
Electrical	PCB	88	9	792		
	Processor ATmega 328P	1.3	12	15.6		
	PCB Components	50	6	300		
	Arduino Mega	28	2	56		
	Arduinio Nano	19	2	38		
	Hall Effect Sensor	0.11	10	1.1		
	LCD Screen	3	1	3		
	Battery	33	3	99		
	Battery Charger	50	1	50	1354.7	27.094
Mechanical						
	Titanium Round Bar	1307.55	1	1307.55		
	Tooling	250	1	250		
					1557.55	31.151
Engine	Refurbishment	400	1	400		
	New ECU	500	1	500		
	Fuel	20	1	20		
	Fuel Line	10	1	10	930	18.6
Test Bed	Pitot-Static	20	1	20		
	Pressure Transducer	100	1	100		
	DAQ	100	1	100	220	4.4
Presentation	Presentation Poster	100	1	100	100	2
			Total:	4162.25		83.245
			Margin	837.75		16.755

Engine Simulation Flowchart (1)

Engine Simulation Flowchart (2)

Engine Simulation Flowchart (3)

PDR Backup Slides

Needs:

- Send engine state requirements to ECM
- Send engine throttle commands from user to ECM
- Receive sensor data from ECM for processing

Capabilities: (Arduino Mega)

- I2C communication
- 54 Digital I/O pins
- 256 kB Flash Memory (store program and data)
- 4 x 16 bit timers (control complex timing sequence)
- 4 UART (connect many devices)

Arduino Mega

BASELINE DESIGN - ECM

Purpose:

- Control engine sequence operation: Start, Run, Shutdown.
- Control engine to commanded throttle setting from ECU

Needs:

- Read RPM and temperature data from Hall effect and thermocouple respectively
- Perform DAC/ADC
- PWM motor control
- I2C & SPI communication

Capabilities: (ATmega 328P)

- 6 PWM channels
- 20 MHz oscillator
- 32 kBytes flash memory
- 8-channel 10-bit ADC
- I2C and SPI capable
- 500 kHz internal sampling rate for digital inputs

ATmega 328P

BASELINE DESIGN - ECM (HALL EFFECT SENSOR)

Output Waveform Timing Diagram TON TOFF Commanded Duty Cycle ΗI 1000 (C) B LΟ 800 Ø5.4 mm Magnetic Flux Density, t_{off_}delay ton_delay!* TEAG t_{on_delay} 4.8 mm 600 Actual uty Cycle VFIELD 400 90% N Duty 50% S × 200 ~ 10% VGND Ö Planar Hall Sensor Alinco 8 Magnet 1.3 Ō 2.510.2 i← t_{fall} !← t_{rise} → Total Effective Air Gap, TEAG (mm) Figure 12B. Demonstration of head-on mode of operation └──Ton actual ──┼──Toff actual ──┼

BASELINE DESIGN - ECM (HALL EFFECT SENSOR)

<u>Purpose</u>: Sense RPM, output square wave for engine control

<u>Needs:</u> Sense RPM >130 kRPM, output to microprocessor, read pulse width to calculate RPM

<u>Capabilities:</u> Hall effect Honeywell SS40A -Measured pulse width duty cycle at 42.5% for 5 kRPM. Pulse width at 130 kRPM is 197.5 μ s; 13 μ s minimum pulse width for rise / fall and response time of Hall effect sensor

<u>Application Note:</u> Starter assembly - redesign and 3D print to capture Hall effect sensor and route wire to ECM without inlet obstruction

Pressure ratio ($\pi_{\rm C}$) calculation for 20% increase in thrust assuming:

<u>Model results:</u> Ideal Brayton cycle requires $\pi_{\rm C}$ = 2.61 to feasibly obtain 20% thrust increase

Pressure ratio observation for 20% increase in thrust:

- Observed in SABRE data
 - Provides a lower bound for expected value of $\pi_{\rm C}$
- Required $\pi_{\rm C}$ therefore expected to fall between:
 - 2.46 (real) 2.61 (ideal)

<u>Model results:</u> Increased thrust with $\pi_{\rm C}$ = 2.46 is feasible to obtain with ~10,000 RPM increase

PRESSURE RATIO FEASIBILITY

Ideal	Compressor Work (required)	Turbine Work (available)
Stock	19.99 kW	48.01 kW
20% Increase	22.3 kW	46.1 kW

Turbines

Compressors

Result: Thrust increase is feasible since there is excess work available from the turbine

147

ENGINE COMPONENT ANALYSIS MODEL

- Compressor/Turbine
 - Angular Motion
 - Low angular acceleration, high angular velocity
 - Stress at blade tip compared to material yield stress to verify integrity
- Nozzle/Engine Case
 - Thin Wall Pressure Vessel
 - Stresses calculated with total pressure at corresponding stations, compared to yield strength for estimated materials
- Shaft
 - Power-Torque Relation
 - Shear stresses from compressor and turbine calculated and compared to ultimate shear for assumed material

NOZZLE FEASIBILITY

- With new pressure ratio, the required exit area for perfectly expanded flow at sea level is 0.00138 m²
- This is a 26% decrease in stock nozzle exit area
- New dimensions can be manufactured

	MATERIAL	TENSILE YIELD FAILURE	ACTUALLY EXPERIENCED	S.F.
NOZZLE DESIGN	CoCrMo	350 MPa	5.8 MPa	60.34

 Material property was found from The Japan Institute of Metals --- Mechanical Properties of Biomedical Co-33Cr-5-Mo-0.3N Alloy at Elevated Temperatures

Hall Effect Honeywell SS40A

System Settings: TEAG = 5 mm

<u>Method</u>: Commanded starter to run. Measured Hall effect waveform properties using oscilloscope. Duty cycle 42.52%, Freq = 37.97Hz. ECU LCD readout = 2275 RPM (37.91Hz), RPM calculation confirmed

<u>Test Results:</u> Verified Hall effect sensor functional, communicates and maps correct RPM

JetCat implementation of Hall effect sensor has been problematic. Sensor set beyond datasheet max distance for estimated magnetic field (35mm). Sensor measured <20% duty cycle (high RPM near sensor limit DC varied).

Specs Solution:

- Upgrade Hall effect sensor, relocate closer to magnet for precision
- New location provides 42% or better duty cycle with higher accuracy
- Verified new sensor will read RPM up to 300 kRPM (5 mm away)

ECM DATA SAMPLING RATE: RPM

Microprocessor Pulse Injection

System Settings: Square wave duty cycle = 35% benchtop waveform generator

<u>Method</u>: Using waveform generator, supplied frequencies from 50 Hz to 5 kHz (3 - 300 kRPM). Waveform measured on ECM, then transmitted to ECU, then converted to RPM and sent to LCD. Total communication time <20ms.

<u>**Test Results:**</u> Verified ECM can measure RPM in excess of 300 kRPM

<u>Method:</u> MEDUSA engine run EGT data showing max temp rate of change from throttle command

Needs: Design controller to limit temperature change to less than 113.7°C/s

Future Test Requirements: Use proportional linear ramp controller to characterize fuel delivery and correlate to temperature rate of rise across RPM spectrum. Adjust fuel pump ramp rate to maintain less than 113.7°C/s temperature increase.

FUEL PUMP CHARACTERIZATION TESTING

DR 2.2.3: SPECS shall send PWM fuel pump command rate as a percentage of full power

Methods:

- Applied 0.28-5V to fuel pump, 0.5V increments for 10 seconds
- Video recorded weight of fuel tank and stop clock simultaneously
- Analyzed change in weight to find mass flow & voltage relationship

<u>Test Results:</u> Stock fuel flow at max thrust: 4.7 g/s. Pump can support higher fuel flows needed to increase T_{t4} & RPM

ECU DATA LINK FEASIBILITY

Communications testing:

- Verify communications protocol GUI⇒ECU⇒ECM to send command and execute.
- 2. Calculate minimum data transfer values, test ECM to evaluate processing time.
- Test at maximum data transfer quantity, test ECM to evaluate processing time.

<u>Results:</u>

- I2C communications verified through start/shutdown sequence and LCD display.
- Minimum data transfer found to be 5 bytes, transfer time <20ms.
- 32 byte (I2C maximum) tested time
 <50 ms per request (<200ms
 maximum)

POWER SYSTEM FEASIBILITY

At 8.4VDC (2S LiPo full charge) or 5V (Vcc), used large benchtop power supply to measure component current consumption during design operation

- 11.2A cumulative total
- Select 2S 5200mAh battery with 50C rating
 - 260A peak current
 - ~20 min runtime at full 100% power
 - Less heating for motor control compared to 3S
 - Starter exceeded 5k RPM at 5V

<u>Test Result:</u> Supplied amperage from battery exceeds max current demand by SPECS

Component	Voltage (VDC)	Current (A)	Power (W)
Starter	8.4	6.2	52.08
Fuel Pump	8.4	4.8	40.32
Fuel Valve	5	0.07	0.35
ECU	5	0.02	0.1
Other	5	0.11	0.55
	Total:	11.2	93.4

-Linear Relationship at 2 (g/s)/V

-Mass Flow rate = $-0.11V^2 + 2.57V - 0.57$

-This provides < 5% error throughout the 5V range

RPM -> THRUST CORRELATION

Second Order fit is:

Thrust = 0.0073(RPM)² - 0.4(RPM) + 9.29

This provides ~20% thrust increase with ~10 kRPM increase

IDEAL CYCLE ASSUMPTIONS

- Ideal Brayton Cycle
 - Standard Air
 - Calorically Perfect Gas
 - Constant Specific Heat
 - Isentropic Inlet, Compression, Turbine, and Nozzle
 - Constant Pressure Heat Addition & Rejection
 - Fuel mass flow << Air mass flow
 - Perfectly Expanded Flow Exiting Nozzle
 - Closed System, no losses
- Steady 1D flow
- Axial Compressor
- Sea Level Atmospheric Conditions
- Compressor Pressure Ratio Scales Linearly with Mass Flow Rate

IDEAL BRAYTON CYCLE ANALYSIS

Calculation of temperature and pressure Calculation of uninstalled thrust relationships $\pi_c = \frac{P_{t_3}}{P_{t_0}} \qquad \tau_c = \pi_c \frac{\gamma - 1}{\gamma} \qquad \tau_r = 1 + \frac{\gamma - 1}{2} M_0^2$ $a_0 = \sqrt{\gamma R T_0}$ $\tau_b = \frac{fh_{pr}}{cpT_0\tau_r\tau_c} + 1 \qquad T_{t_3} = \tau_r\tau_cT_0 \qquad T_{t_4} = \tau_bT_{t_3}$ $\left(\frac{V_9}{a_0}\right) = \sqrt{\frac{2}{\gamma - 1}} \frac{\tau_\lambda}{\tau_r \tau_c} (\tau_r \tau_c \tau_t - 1)$ $\tau_{\lambda} = \frac{T_{t_4}}{T_0} \qquad \tau_t = 1 - \frac{\tau_r}{\tau_{\lambda}} (\tau_c - 1)$ $F_{uninstalled} = \dot{m}_0 \left(V_9 - a_0 M_0 \right)$

IDEAL BRAYTON CYCLE ANALYSIS

Ideal

Stock

20%

Increase

PRESSURE RATIO FEASIBILITY

0.98

Turbine	n	Thrust loss	
Work	-		Baseline Cor
48.01 kW	1	0%	efficiency deo (with 10,000

4.5%

Baseline Compressor Efficiency decrease of ~2% with 10,000 RPM increase)

Compressor Work

19.99 kW

22.3 kW

46.1 kW

Turbines

Component Analysis: Nozzle/ Engine Case

- Hoop ($\sigma_{\rm h}$) and longitudinal ($\sigma_{\rm l}$) stresses calculated at location where values are theoretically • maximum, inlet:
- Total Pressure at nozzle inlet (P_{t5}), radius of nozzle inlet (R_i), thickness of nozzle inlet (t_i): •

$$\sigma_l = \frac{P_T R_i}{2t_i} \qquad \sigma_h = \frac{P_T R_i}{t_i}$$

Results compared to material properties, verify structural capability. •

Component Analysis: Shaft

- Power (P) and rotation rate (ω) known for compressor and turbine.
- Calculate torque for each using:

$$T = \frac{P}{\omega}$$

• Force from both then found using radius of turbine and compressor:

$$F = \frac{T}{R}$$

 Shear stress (τ) then calculated and compared to ultimate shear of assumed material, area of shaft in contact with turbine and fan used (A):

$$\tau = \frac{F}{A}$$

Material Yield Analysis(Al 7075)

Specification							3	, ŝ	AMS	4045 :	and Al	MS-Q	Q-A-2	50/12							
Form			S	heet											Plate						
Temper			T6 a	nd T6	2*										T651						
Thickness, in.	0.008-0.011	0.0	12- 039	0.0	40- 25	0.1	26- 49	0.2	50- 199	0.5	00- 00	1.0	01- 00	2.0	01- 500	2.5	01-	3.0 3.5	01-	3.5 4.0	01-
Basis	S	A	В	A	в	Α	в	A	В	A	В	A	В	A	В	A	В	A	В	A	В
$\begin{array}{llllllllllllllllllllllllllllllllllll$	63	76 76 69 67 68 71 46 118 152 100	78 78 72 70 71 74 47 121 156 105	78 78 70 68 69 72 47 121 156 102	80 80 72 70 71 74 48 124 160 105	78 78 71 69 70 73 47 121 156 103	80 80 73 71 72 75 48 124 160 106	77 78 69 67 67 71 43 117 145 97	79 80 71 69 73 69 73 44 120 148 100	77 78 70 68 72 68 72 44 117 145 100	79 80 72 70 74 45 120 148 103	76 77 69 67 66 71 44 116 143 100	78 79 71 69 68 73 45 119 147 103	75 76 70 ^b 66 64 59 ^b 62 68 67 44 114 141 98	77 78 71 ^b 68 66 61 ^b 64 70 70 45 117 145 101	71 72 66 ^b 63 61 56 ^b 58 65 64 42 108 134 94	73 74 68 ^b 65 63 58 ^b 60 67 66 43 111 137 97	70 71 65 ^b 60 58 54 ^b 55 61 61 42 107 132 89	72 73 67 ^b 62 60 55 ^b 57 64 63 43 110 135 93	66 67 61 ^b 56 54 50 ^b 51 57 57 39 101 124 84	68 69 63 58 56 52 52 59 59 41 10- 124 87
(e/D = 2.0)	1000	117	122	119	122	121	124	114	118	117	120	117	120	113	117	109	112	104	108	98	10
LT	5	7		8	- 22	8		9	100	7	1440	6	-	5		5	9223	5		3	22
$E, 10^3 \text{ ksi}$ $E_{c1} 10^3 \text{ ksi}$ $G, 10^3 \text{ ksi}$ μ			1	10.3 10.5 3.9 0.33						8	5 5	2			10.3 10.6 3.9 0.33		5	940 A		64 - 64	
Physical Properties: $\omega, \mathrm{Ib/in.^3}$ $C, K, \mathrm{and}~ \alpha$										See	0.1 Figu	01 re 3.7.	4.0								

Figure 3.7.4.1.1(d). Effect of temperature on the tensile yield strength (F_n) of 7075-T6, T651, T6510, and T6511 aluminum alloy (all products).

Material Yield Analysis(AISI 301)

Table 2.7.1.0(b). Design Mechanical and Physical Properties of AISI 301 and Other^a Annealed Stainless Steel

Specification	MIL-S-5059	059 AMS 5517 & MIL-S-5059		AMS : MIL-S	AMS 5518 & MIL-S-5059 MIL-S-5059			AMS 5519 & MIL-S-5059		
Form		111		Sheet a	nd strip					
Condition	Annealed*	¼ F	Hard	½ F	½ Hard		1/4 Hard		Hard	
Thickness, in.	≤0. <mark>1</mark> 87	200					(77)		(775)	
Basis	S	A	В	A	В	A	В	A	В	
Mechanical Properties: F _w , ksi: L	73	124	129	141	151	157	168	174	185	
LT F ₀ , ksi: L LT	26 30	69 67	83 82	93 92	152 110 105	103 118 113	173 135 133	175 137 125	186 153 142	
F ₀₀ ksi: L LT F _{see} ksi	23 29 50	44 71 66	54 88 69	61 100 77	69 116 82	75 127 88	88 152 93	83 142 95	94 164 100	
r_{huu} , KSI. (e/D = 1.5) (e/D = 2.0) F_{c} , KSI.	162	262	273	292	310	327	342	346	361	
(e/D = 1.5) (e/D = 2.0) e, percent (S basis):	55	123	149	167	189	202	234	222	249	
LT	40	25		D		b		b		
E, 10 ³ ksi: L LT E _a 10 ³ ksi:	29.0 29.0	27.0 28.0		26.0 28.0		26.0 28.0		26.0 28.0		
Ľ LT G, 10 ³ ksi	28.0 28.0 11.2 0.27	26.0 27.0 10.6			26.0 26 27.0 27 10.5 10		6.0 7.0 0.5	26.0 27.0 10.5		
Physical Properties: ω, lb/in. ³ <i>C</i> , <i>K</i> , and α	0.21	0.27 0.27 0.27 0.27 0.27 0.286 See Figure 2.7.1.0								

Figure 2.7.1.3.1. Effect of temperature on the tensile ultimate strength (F_{tu}) and the tensile yield strength ($F_{\gamma\gamma}$) of AISI 301 1/2-hard stainless steel sheet.

Material Yield Analysis(Inconel 718)

Specification			AMS 5596		AMS 5597	AMS 5589	AMS 5590		
Form	Sh	eet	Pl	ate	Sheet and plate	neet and plate Tubing			
Condition			Solution trea	ated and aged	per indicated spe	ecification			
Thickness, in	0.010-0.187		0.188-0.249	9 0.250-1.000	0.010-1.000	O.D. > Wall >	0.125		
Basis	A	В	S	S	S	S	S		
Mechanical Properties*: <i>F</i> _a , ksi: L LT	180 180°	192 191	180 180	180	180	185	170		
F ₀₂ ksi: L LT	145 147	156 158	148 150	150	150	150	145 		
F _{ep} ksi: L LT F _{av} ksi	155 158 124	167 170 132	158 161 124	2	2				
F_{bra}^{*} , ksi: (e/D = 1.5) (e/D = 2.0)	291 380	309 403	291 380	-	80.00 6-00	11. 11.	127 147		
F_{bry} , ksi: (e/D = 1.5) (e/D = 2.0)	208 241	223 259	212 246						
LLT	 12	(1997) 	12	12	12	12 	15		
$\begin{array}{c} E, \ 10^3 \ \text{ksi} \\ E_c, \ 10^3 \ \text{ksi} \\ G, \ 10^3 \ \text{ksi} \\ \mu \end{array}$		29.4 30.9 11.4 0.29							
Physical Properties: ω, lb/in. ³ <i>C</i> , <i>K</i> , and α				0. See Figu	297 ure 6.3.5.0				

Figure 6.3.5.1.1. Effect of temperature on the tensile ultimate strength (F_w) and tensile yield strength (F_v) of solution-treated and aged inconel 718.

Fabrication Cost Feasibility: CNC Machine & Tool Room Lathe

Family:	Species:	Dimensions (in):	Cost:
Steel	N60	3" x 10"	\$242.45
Aluminum	7075	3" x 10"	\$87.20
Titanium	6AL-4V (Grade 5)	3" x 10"	\$870.30
Nickel	Inconel 718	3" x 10"	\$873.69

- Cost of production solely based on cost of material.
- All materials are round bar, diameter x length

Fabrication Cost Feasibility: Direct Metal Laser Sintering

Family:	Species:	Dimensions (in):	Cost:
Aluminum	ALSi10Mg	3.25" x 3.25" x 2.17"	\$1017.00
Nickel	Inconel 625	3.25" x 3.25" x 2.17"	\$822.00
Titanium	Ti64	3.25" x 3.25" x 2.17"	\$956.00
Cobalt Chrome	CoCrMo	3.25" x 3.25" x 2.17"	\$983.00

- Cost of production includes the cost of materials, manufacturing and finishing
- The dimension of the nozzle is based on SABRE's nozzle
- It will take approximately three weeks to receive the nozzle from manufacturing facility

	N60	AI7075	Ti6AL-4V	Inconel 718	ALSi10Mg	Inconel 625	CoCrMo			
Temperature Rating (k)	1422	686	1933	922	933	1563	1670			
Density (g/cm³)	8.5	2.81	4.52	8.22	2.7	8.44	8.28			
Volume (cm³)		10.16								
Mass (gram)	86.36	28.55	45.92	83.52	27.43	85.75	84.12			

MANUFACTURING CAPABILITIES

Manufacturing Method	Tool Room Lathe	Computer Numerical Control (CNC) Machine	Direct Metal Laser Sintering (DMLS)
Tolerances	Depends on Measurement Tool	+/- 0.005"	+/- 0.005" + 0.002 in/in

Notes: Ripples on waveform are from the power supply maxing out on supply current (5A). The selected battery would be able to supply much higher currents, and allow higher RPM with smaller voltage ripple. This is only present when starter is running (needed for this test but not normal operation) and does not affect functionality or reliability.

TESTING COMMUNICATION: SPECS

<u>Method:</u> Connected all components and verified I2C and SPI control separately. Designed startup sequence to simulate a "Start" and "Shutdown" command.

<u>Need:</u> Verify application of more than one communication protocol on system. Ensure that specified components can accept multiple commands from different sources and maintain normal operation without conflict or failure.

<u>Results:</u> Test completed successfully. Serial (SPI) command start/shutdown from PC resulted in start/shutdown sequence on ECM.

LCD displayed real time data for RPM, EGT, and command state. Further verifying I2C communication feasibility between ECU and ECM.

ECU/ECM DATA LINK FEASIBILITY

Needs:

- Allotted 3 bytes for RPM value (µs wave period measurement), 1 byte for EGT value (~3°C resolution 255 values), 1 byte for command status (responds with RPM command input value at state). (At max transmission)

- I2C has a 32 byte maximum transmission per cycle limit, though if needed split transmissions are possible.

- SPI communications are only limited to the extent that they do not block ECU from sending or receiving data from ECM on time.

Method:

- Set up basic communications through I2C to all components.

- Established serial communications with Arduino MEGA.

- Initiated timer on command send.

- Transmitted request event, received data packets from ECM, processed data, wrote to LCD, read timer value at end of write transmission.

Results:

- Minimum Data transfer found to be 5 bytes, total transfer time <20ms.
- 32 byte (I2C maximum) tested time<50 ms per request.

- Verified communications can occur concurrently on time schedule while both microprocessors are tasked with other operations and will respond on schedule within required time constraint of <200ms.

HALL EFFECT SENSOR DATASHEET

Magnetic Position Sensors

Low-Cost, Bipolar, Hall-effect Sensors

FEATURES

- Small size
- Low cost
- Reverse polarity protection
- Sensitive bipolar magnetics respond to alternating north and south poles
- Thermally balanced, integrated circuit over a full temperature range
- Stable operation

TYPICAL APPLICATIONS

- Cooling fan control in computers and appliances
- RPM (revolutions per minute) sensing, speed control
- Brushless dc motor commutation
- Position sensing and motor control
- Simple magnetic encoder
- Flow-rate sensor

SS40A/SS50AT Series

The SS40A/SS50AT Series sensors are low-cost, bipolar, Hall-effect sensors. These sensitive magnetic sensors offer reverse polarity protection and deliver stable output over a -40 °C to 125 °C [-40 °F to 257 °F] temperature range. Operation from any dc supply voltage from 4.5 Vdc to 24.0 Vdc is acceptable.

The SS40A/SS50AT Series sensors build upon Honeywell's popular magnetic position sensors and offer several competitive advantages. These sensors have been designed with the latest technologies to provide reliable, cost-effective solutions to commercial, computer, medical, and/or consumer applications requiring motor control and RPM sensing.

These products are available in a variety of package styles to suit a number of applications. Ammopack versions, along with tape-and-reel, are standard. The surface mount version is mounted directly on the electrical traces on a PC (printed circuit) board. It is attached by an automatic solder reflow operation which requires no hole, so it reduces the cost of the PC board.

ELECTRICAL CHARACTERISTICS

At Vs = 4.5 V to 24 V with 20 mA load with Ta = -40 °C to 125 °C [-40 °F to 257 °F] unless otherwise noted.

Parameter	Cond.	Min.	Typ.	Max.	Unit		
Supply voltage	-	4.5	-	24.0	V		
Supply current	25 °C [77 °F]	-	6.8	10.0	mA		
Supply current	-	-	-	11.3	mA		
Output current	-	-	-	20.0	mA		
Vsat @ 15 mA	Gauss >170	-	-	0.4	V		
Output leakage	Gauss <-170	-	-	10.0	μA		
Rise time	25 °C [77 °F]	-	0.5	1.5	μs		
Fall time	25 °C [77 °F]	-	0.2	1.5	μs		
Response time	25 °C [77 °F]	-	4.0	5.0	μs		
Operate	25 °C [77 °F]	-	45	110	Gauss		
Operate	0 °C to 85 °C [32 °F to 185 °F]	-	50	130	Gauss		
Operate	-	-	55	170	Gauss		
Release	25 °C [77 °F]	-110	-45	-	Gauss		
Release	-40 °C to 85 °C [-40 °F to 185 °F]	-130	-50	-	Gauss		
Release	-	-170	-55	-	Gauss		
Differential	-	50	-	-	Gauss		
Operating temperature	-40 °C to 125 °C [-40 °F to 257 °F]						
Storage temperature	-55 °C to 165 °C [-67 °F to 329 °F]						

SS40A SERIES MOUNTING DIMENSIONS (for reference only) mm/[in]

ECU DATASHEET

Figure 1-1. TQFP-pinout ATmega640/1280/2560

8-bit Atmel Microcontroller with 16/32/64KB In-System Programmable Flash

DATASHEET

Features High Performance, Low Power Atmel[®] AVR[®] 8-Bit Microcontroller Advanced RISC Architecture - 135 Powerful Instructions - Most Single Clock Cycle Execution - 32 × 8 General Purpose Working Registers - Fully Static Operation - Up to 16 MIPS Throughput at 16MHz - On-Chip 2-cycle Multiplier PA4 (AD4) • High Endurance Non-volatile Memory Segments - 64K/128K/256KBytes of In-System Self-Programmable Flash PA5 (AD5) 4Kbytes EEPROM - 8Kbytes Internal SRAM PA6 (AD6) - Write/Erase Cycles:10,000 Flash/100,000 EEPROM PA7 (AD7) Data retention: 20 years at 85°C/ 100 years at 25°C - Optional Boot Code Section with Independent Lock Bits PG2 (ALE) In-System Programming by On-chip Boot Program True Read-While-Write Operation
 Programming Lock for Software Security PJ6 (PCINT15) Endurance: Up to 64Kbytes Optional External Memory Space
 Atmel[®] QTouch[®] library support PJ5 (PCINT14) - Capacitive touch buttons, sliders and wheels PJ4 (PCINT13) QTouch and QMatrix acquisition - Up to 64 sense channels PJ3 (PCINT12) JTAG (IEEE[®] std. 1149.1 compliant) Interface - Boundary-scan Capabilities According to the JTAG Standard PJ2 (XCK3/PCINT11) - Extensive On-chip Debug Support Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface PJ1 (TXD3/PCINT10) Peripheral Features - Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode PJ0 (RXD3/PCINT9) Four 16-bit Timer/Counter with Separate Prescaler, Compare- and Capture Mode - Real Time Counter with Separate Oscillator - Four 8-bit PWM Channels - Six/Twelve PWM Channels with Programmable Resolution from 2 to 16 Bits (ATmega1281/2561, ATmega640/1280/2560) PC7 (A15) Output Compare Modulator 8/16-channel, 10-bit ADC (ATmega1281/2561, ATmega640/1280/2560) PC6 (A14) Two/Four Programmable Serial USART (ATmega1281/2561, ATmega640/1280/2560) Master/Slave SPI Serial Interface PC5 (A13) Byte Oriented 2-wire Serial Interface Programmable Watchdog Timer with Separate On-chip Oscillator PC4 (A12) - On-chip Analog Comparator Interrupt and Wake-up on Pin Change PC3 (A11) Special Microcontroller Features Power-on Reset and Programmable Brown-out Detection PC2 (A10) - Internal Calibrated Oscillator - External and Internal Interrupt Sources Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby I/O and Packages - 54/86 Programmable I/O Lines (ATmega1281/2561, ATmega640/1280/2560) 64-pad QFN/MLF, 64-lead TQFP (ATmega1281/2561) - 100-lead TOFP, 100-ball CBGA (ATmega640/1280/2560) RoHS/Fully Green Temperature Range: -40°C to 85°C Industrial Ultra-Low Power Consumption - Active Mode: 1MHz, 1.8V: 500uA Power-down Mode: 0.1µA at 1.8V Speed Grade: ATmega640V/ATmega1280V/ATmega1281V; • 0 - 4MHz @ 1.8V - 5.5V, 0 - 8MHz @ 2.7V - 5.5V ATmega2560V/ATmega2561V: • 0 - 2MHz @ 1.8V - 5.5V, 0 - 8MHz @ 2.7V - 5.5V ATmega640/ATmega1280/ATmega128 • 0 - 8MHz @ 2.7V - 5.5V. 0 - 16MHz @ 4.5V - 5.5V ATmega2560/ATmega2561

• 0 - 16MHz @ 4.5V - 5.5V

ECM DATASHEET

ATmega328/P

DATASHEET COMPLETE

Introduction

The Atmel[®] picoPower[®] ATmega328/P is a low-power CMOS 8-bit microcontroller based on the AVR® enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega328/P achieves throughputs close to 1MIPS per MHz. This empowers system designer to optimize the device for power consumption versus processing speed.

Feature

High Performance, Low Power Atmel®AVR® 8-Bit Microcontroller Family

- Advanced RISC Architecture
 - 131 Powerful Instructions
 - Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
 - Up to 20 MIPS Throughput at 20MHz
 - On-chip 2-cycle Multiplier
- High Endurance Non-volatile Memory Segments
 - 32KBytes of In-System Self-Programmable Flash program Memory
 - 1KBytes EEPROM
 - 2KBytes Internal SRAM
 - Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
 - Data Retention: 20 years at 85°C/100 years at 25°C⁽¹⁾
 - Optional Boot Code Section with Independent Lock Bits
 - In-System Programming by On-chip Boot Program
 - True Read-While-Write Operation
 - Programming Lock for Software Security
- Atmel[®] QTouch[®] Library Support
 - Capacitive Touch Buttons, Sliders and Wheels
- QTouch and QMatrix[®] Acquisition
- Up to 64 sense channels

6-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture M	ode
Time Counter with Separate Oscillator	
WM Channels	

Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode

- 8-channel 10-bit ADC in TQFP and QFN/MLF package
- Temperature Measurement
- 6-channel 10-bit ADC in PDIP Package
- Temperature Measurement
- Two Master/Slave SPI Serial Interface
- One Programmable Serial USART
- One Byte-oriented 2-wire Serial Interface (Philips I²C compatible)
- Programmable Watchdog Timer with Separate On-chip Oscillator
- One On-chip Analog Comparator
- Interrupt and Wake-up on Pin Change
- Special Microcontroller Features

Peripheral Features

– One

Real

Six P

- Power-on Reset and Programmable Brown-out Detection
- Internal Calibrated Oscillator
- External and Internal Interrupt Sources
- Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby
- I/O and Packages
 - 23 Programmable I/O Lines
 - 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF
 - Operating Voltage:
 - 1.8 5.5V
- Temperature Range:
- -40°C to 105°C
- Speed Grade:
- 0 4MHz @ 1.8 5.5V
- 0 10MHz @ 2.7 5.5V
 0 20MHz @ 4.5 5.5V
- 0 20MHz @ 4.5 5.5V Power Consumption at 1MHz, 1.8V, 25°C
- Active Mode: 0.2mA
- Power-down Mode: 0.1µA
- Power-save Mode: 0.75µA (Including 32kHz RTC)

Motor Driver MOSFET n-Channel

Circuit low side driver application, will measure real drain current for application to verify thermal properties are sufficient for given Rds(on)(Max.) value for PCB mount application.

Features

Application
 Switching

1) Low on - resistance 2) High Power Package (HSMT8) 3) Pb-free lead plating ; RoHS compliant 4) Halogen Free 5) 100% Rg and UIS tested

Inner circuit

(1) Source (2) Source (3) Source (4) Gate	(8) (7) (6) (5)
(5) Drain (6) Drain (7) Drain (8) Drain	
*1 Body Diode	(1) (2) (3) (4)

Packaging specifications					
Туре	Packing	Embossed Tape			
	Reel size (mm)	330			
	Tape width (mm)	12			
	Basic ordering unit (pcs)	3000			
	Taping code	тв			
	Marking	G100GN			

Absolute maximum ratings (T_a = 25°C ,unless otherwise specified)

Parameter		Symbol	Value	Unit
Drain - Source voltage		V _{DSS}	40	V
Continuous drain current	T _c =25°C	I _D *1	±27	Α
	T _a = 25°C	I _D	±10	Α
Pulsed drain current		DP*2	±40	Α
Gate - Source voltage		V _{GSS}	±20	V
Avalanche current, single pulse		I _{AS} *3	10	Α
Avalanche energy, single pulse		E _{AS} *3	15	mJ
Power dissipation		P _D *1	15	w
		P _D *4	2.0	W
Junction temperature		Tj	150	°C
Operating junction and storage temperature range		T _{sta}	-55 to +150	°C

R1 limits gate current R2 is pull-down in case pin hi-impedance D1 is flyback protection (Schottky) O1 is N-channel logic-level MOSFET