Solid Propellant Additive Manufacturing

Printing Solid Rocket Motors

Cameron Brown, Erick Chewakin, Max Feldman, Tony Lima

Nick Lindholm, Caleb Lipscomb, Ryan Niedzinski, & Jon Sobol

Agenda

Purpose & Background

Design

- CONOPs
- Laser
- Powder Bed
- Applying SLS
- Results
- Summary

Project Overview

Purpose & Background

Background Design Applying Testing and Results Summary

Project Statement

Design and integrate an additive manufacturing system such that it will print sucrose-potassium nitrate solid rocket propellant and compare the mechanical characteristics of the printed propellants to those manufactured by the traditional casting method.

Background Solid Rocket Motors

Applying

SLS

- Cylinders of solid rocket propellant (fuel + oxidizer) with different cross sectional grain shapes
- Grain shape determines thrust profile through available surface area to burn
- Normally made by casting
 - Propellant cures in a cylindrical tube
 - Desired grain shape is bored through the middle

Background

Example Grain Shapes and Thrust Profiles¹

Additive Manufacturing

- [•] 3D printing by stacking multiple thin layers into a desired shape or design
- Types of additive manufacturing include:
 - O Fused deposition modeling
 - O Stereolithography
 - O Selective Laser Sintering
- Benefits include: greater flexibility of designs, higher degree of automation, and greater accuracy

Casting vs. Additive Manufacturing

Traditional Casting Limitations:

- Limited number of grain shapes
- Air bubbles in cast
- Nonuniform setting
- 3D printing can improve the traditional casting method:
 - Produce complex grain shapes and new thrust profiles
 - Does not need to manufacture a different cast for each design

Example complex shapes produced from 3D printing

What is Selective Laser Sintering?

Selective Laser Sintering (SLS): a type of Additive Manufacturing which sinters/melts powder with a laser

Operation:

- **1.** A CAD file is uploaded to the printer
- 2. CO₂ laser heats a specified area of the powdered material
- 3. Heated material binds together forming a solid
- 4. Powder bed is then lowered by one layer thickness
- 5. New layer of powder is then swept on top of the previously fused layer

Concept of Operations

SAS

SY

Levels of Success

Level	Description	Status
1.1	Design 3D Printing System for Sucrose-KNO3	Achieved
1.2	Characterize a Thermal Model for Propellant	Achieved
1.3	Use Analogous Method to form Solid Propellant	Achieved
2.1	Compare Material Properties (Casted vs Printed)	Not Achieved
2.2	Print a Solid Rocket Motor Cylinder	Achieved
3.1	Manufacture 5 Different Grain Shapes	Not Achieved

Background Do

piying ci c

ts S

Critical Project Elements

Design

Components and their functions

Components

Powder Bed Design

- Acrylic Body
- Rake System
 - Stepper motor and plastic wedge flatten powder and move it to the sintering region
- Gutter System
 - Acrylic body designed to keep water and powder away from the electronics
- Pistons
 - Stepper motors provide vertical motion

Powder Bed Full Cycle

Aerosp

6ui199r

G

Laser Cutter

Laser Cutter and Powder Bed Integration

Laser Cutter and Powder Bed Integration

- Laser cutter resting on top of aluminum frame
- <u>Powder bed system</u> resting inside the laser cutter and on the aluminum frame
- <u>Aluminum frame</u> holding up the laser cutter and powder bed

Applying SLS

How to sinter rocket propellant

Applying SLS

ts

Sugar Sintering: Overview

Initial Sucrose Sintering Model:

- Sucrose only model because absorbs > 90% of the laser heat
- Predicts layer depth (mm) based on laser power (%) and slew rate (%)

Expected Results:

- Sintering depth increases with slower speed and higher power
- Temperatures spike well above auto ignition with higher energy output

Predicted Sintering Depths [mm] by Control Parameters

Sugar Sintering: Results

Results:

- Most samples thicker than predicted
 - Likely caused by size of sugar granules
- Minimum Sintering Depth
- Inaccurate (>1 Std) at Power < 5%
 - Caused by heat conduction

Future Analysis:

- Test goodness of fit (X²)
- Update model with minimum thickness
- Calibrate fit

Predicted Vs. Measured Sintering Depths [mm]

Sugar Sintering: Calibration

Before calibration

After calibration

Propellant Sintering Model

Propellant Thermal Model

Propellant Thermal Model:

- Matched calibrated model to within 5% error
- Model validated with sintering of sucrose-potassium nitrate

Sintering Results:

- Sintering depths did not change by more than 0.5 mm
- Provided proof of concept for sintering propellant

Predicted Propellant Sintering Depths [mm]

Teal grid shows estimated sintering depths and the red dot marks the tested depth of propellant

kground 🔶 🛛

Applying SLS

Summary

Testing and Results

How much have we accomplished?

Propellant Sintering Preliminary Results

Proof of concept

- O SLS manufacturing of solid propellant is possible
- We sintered four ~.035" layers of propellant in a cylindrical grain for a total motor length of .130"

First Ever 3D Printed Solid Rocket Motor

Solid Rocket Motor Printing

Powder Bed Sweeping New Layer of Propellant

Testing and Applying Results

SLS

Recap and future work

Q

Future Work

• Dynamic Grains

- O Pseudo-throttling
- Next iteration
 - More robust sensors
 - Non-destructive safety system
 - O Larger safety margin before ignition
- Motor performance testing
 - Printed motor will have to withstand substantial vibrational loading before 3D printing can be considered a viable alternative in industry

kground Design Applying SLS

lesting <u>Resu</u> Summary

Acknowledgements

Team SPAM would like to thank everyone who made this project possible:

Special Aerospace Services
Dr. Ryan Starkey
CU Boulder Aerospace PAB
Ifuzion 3D Printing
Andreas Bastian (OpenSLS)
Richard Nakka Rocketry
Frontier Astronautics

References

- ¹Braeunig, Robert A. "Space Pictures". *Rocket and Space Technology*. Accessed October 2015. Available:
- <u>http://www.braeunig.us/space/pics/fig1-14.gif</u>
- 2"Saltpetre". The Ingredient Store.com Accessed October 2015. Available: <u>http://store.theingredientstore.com/saltpetre-food-gradepotassiumnitrate.aspx</u>
- 3"Sucrose Advanced Inorganics". India Mart. Accessed October 2015. Available: <u>http://dir.indiamart.com/impcat/sucrose-powder.html</u>
- 4Miller, E., "Rapid Prototyping Technology Animations," PADT, Inc Available: http://www.padtinc.com/blog/the-rp-resource/rapid-prototyping-technology-animations
- 5"Selective Laser Sintering (SLS)," MakeAGif Available: <u>http://makeagif.com/cpjtel</u>
- ⁶Sher, D., "Using SnowWhite to Laser Sinter Sugar," 3D Printing Industry Available: <u>http://3dprintingindustry.com/2014/09/26/sharebot-used-snowwhite-laser-sinter-sugar-worked-perfectly/</u>.
- 7"Selective Laser Sugar Snowflakes," *Collected Edition* Available: http://blog.collected-edition.com/post/41556924865/slssnowflakes.
- * **EngArc L Stress-Strain Diagram," EngArc L Stress-Strain Diagram Available: http://www.engineeringarchives.com/les_mom_stressstraindiagram.html.
- 9"Fracture Toughness," *Fracture Toughness* Available: https://www.nde-ed.org/educationresources/communitycollege/materials/mechanical/fracturetoughness.htm.
- 10"Part 3: How to Build a High Power Rocket Casting the Fuel into BATES Grains," YouTube Available: https://www.youtube.com/watch?v=dfrnimt2bu4
- 11"HD How to make & cast R-Candy Fuel (BEST RESULTS)," YouTube Available: <u>https://www.youtube.com/watch?v=uhm7nrv3bs8</u>

References

- 12"Sucrose," National Institute of Standards and Technology Available: <u>http://webbook.nist.gov/cgi/cbook.cgi?id=c57501&mask=80</u>
- ¹³*AC110V 1' Solid Coil Electric Solenoid Valve Gas Water Fuels Air Solid Coil," Amazon Available: <u>http://www.amazon.com/ac110v-solid-electric-solenoid-valve/dp/boolapocie/ref=pd_sim_6o_21?ie=utf8&refrid=1wa1qizcp57mkscsykhz</u>
- ¹⁴Shoberg, R., "Engineering Fundamentals of Threaded Fastener Design and Analysis". PCB Load & Torque, Inc. Accessed Oct. 2015. Available: <u>http://www.hexagon.de/rs/engineering%20fundamentals.pdf</u>
- 15"Dissecting the Nut Factor". Archetype Joint. Accessed Oct. 2015. Available: <u>http://archetypejoint.com/?page_id=135</u>
- 16"Joint1.gif". Bolt Science. Accessed Oct. 2015. Available: <u>http://www.boltscience.com/pages/nutorbolttightening.htm</u>
- ¹⁷Herder, G., Weterings, F. P., and de Klerk, W. P. C., "MECHANICAL ANALYSIS ON ROCKET PROPELLANTS," *Journal of Thermal Analysis and Calorimetry*, vol. 72, 2003, pp. 921–929.
 ¹⁸"Stereolighography," *Wikipedia* Available: https://en.wikipedia.org/wiki/stereolithography.
 http://www.spaceflight.esa.int/impress/text/education/mechanical properties/testing.html.
 Grains: Material Testing," *Journal of Propulsion and Power*, pp. 60–73.
 Available: http://reprap.org/wiki/Flle:R2_final_assembly.png
 ¹⁹"Testing Testing?," *IMPRESS Education: Mechanical Properties, Testing* Available:
 ²⁰Tussiwand, G. S., Saouma, V., Terzenbach, R., and Luca, L. D., "Fracture Mechanics of Composite Solid Rocket Propellant
 ²¹Bastian, Andreas. "R2 Final Assembly". *RepRap Wiki*. Open Source CAD Files. Modified 7 December 2013. Accessed October 2015.
- 22Kodikara, J., "Tensile strength of clay soils," Tensile strength of clay soils Available: <u>http://eng.monash.edu.au/civil/research/centres/geomechanics/cracking/tensile-clay.html</u>
- 23"What is a Creep Test?," What is a Creep Test? Available: <u>http://www.wmtr.com/en.whatisacreeptest.html</u>.
- ²⁴Jacobsson, L., and Flansbjer, M., "Uniαxial compression tests," Uniαxial compression tests Available: <u>http://www.sp.se/en/index/services/rockmechanicaltesting/uniaxial/sidor/default.aspx</u>.
- ²⁵Full Spectrum Laser, "Hardware Setup and Operation," FSL 40w Hobby Laser Manual
- ²⁶ Laser Institute of America, "American National Standard for Safe Use of Lasers," ANSI Z136.1, published 2007
- ²⁷ Occupational Safety & Health Administration, "Laser Hazards," OSHA Technical Manual, Section III: Chapter 6
- ²⁸ CU Boulder Environmental Health and Safety, "Hazardous Materials & Waste Management," <u>http://ehs.colorado.edu/about/hazardous-materials-and-waste-management/[retrieved 15 November 2015]</u>
- ²⁹ National Fire Protection Agency, "NFPA 704: Standard System for the Identification of the Hazards of Materials for Emergency Response," <u>http://www.nfpa.org/codes-and-standards/document-information-pages?mode=code&code=704</u> [retrieved 20 November 2015]

Questions?