Solid Propellant Additive Manufacturing

Printing Solid Rocket Motors

Cameron Brown, Erick Chewakin, Max Feldman, Tony Lima Nick Lindholm, Caleb Lipscomb, Ryan Niedzinski, & Jon Sobol

Agenda

- Project Purpose and Objectives -> Ryan
- Design Description -> Jon
- Test Overview -> Erick
- Test Results

Aerosp

6411991

Gi

- Powder Bed
- Sintering Results
- Systems Engineering
- Project Management

- -> Nick
- -> Caleb, Tony
- -> Max
- -> Cameron

Project Statement

Design and integrate an additive manufacturing system such that it will print sucrose-potassium nitrate solid rocket propellant and compare the mechanical characteristics of the printed propellants to those manufactured by the traditional casting method.

Field of Application

Solid Rocket Motors

- Cylinders of solid rocket propellant (fuel + oxidizer) with different cross sectional grain shapes
- Grain shape determines thrust profile through available surface area to burn
 - Higher surface area -> Higher thrust
- Normally made by casting
 - Propellant cures in a cylindrical tube
 - Desired grain shape is bored through the middle

Example Grain Shapes and Thrust Profiles¹

Casting vs. Additive Manufacturing

- Problems with Traditional Casting:
 - O Limited number of grain shapes
 - Air bubbles in cast
 - O Nonuniform setting
- Impact of 3D Printing on SRM Manufacturing:
 - Produce complex grain shapes and new thrust profiles
 - No need to manufacture a different cast for each design
 - O Consistent material properties in each layer

Example complex shape produced from SLS printing

Management

Q

Levels of Success

Level	Description	Status
1.1	Design 3D Printing System for Sucrose-KNO3	Achieved
1.2	Characterize a Thermal Model for Propellant	Achieved
1.3	Use Analogous Method to form Solid Propellant	Achieved
2.1	Compare Material Properties (Casted vs Printed)	Not Achieved
2.2	Print a Solid Rocket Motor Cylinder	Achieved
3.1	Manufacture 5 Different Grain Shapes	Not Achieved

Purpose

Overview &

Management

Critical Project Elements

Functional Block Diagram

SLS Printer Components

Purpose Design Description Test Overview & Systems Project Engineering Management

Powder Bed Design

- Acrylic Body
- Rake System
 - Stepper motor and plastic wedge flatten powder and move it to the sintering region
- Gutter System
 - Acrylic body designed to direct water and powder away from the electronics
- Pistons
 - Stepper motors provide vertical motion

Powder Bed Full Cycle

CI /

Design Changes Since TRR

Water Safety System –
 Not Implemented
 →Outdoor testing location

Structural Testing of Motor – Non-feasible

 →Highly brittle product
 →Control cracked during casting
 (cross-section too thin)

pose

Design Description

Overview &

Management

Functional Requirements Overview

Designation	Requirement Description	Verified
FR 1	The project shall produce a printer capable of automated 3D additive manufacturing.	Provisionally
FR 2	The rocket propellant shall be a solid composite propellant consisting of oxidizer and fuel.	Yes
FR 3	The printer shall have a mechanism to transport the mixed fuel and oxidizer to the manufacturing area.	Yes
FR 4	The printed propellant properties shall be compared to traditionally cast propellant material properties.	Provisionally
FR 5	Safety shall be the primary concern in every aspect of the project.	Yes

- The project shall produce a printer capable of automated 3D additive manufacturing.
 - O Partially fulfilled
 - User intervention required at exchanges between powder bed and laser cutter

Test Overview & Results

- The rocket propellant shall be a solid composite propellant consisting of oxidizer and fuel.
 - O 35% Sucrose fuel : 65% Potassium Nitrate oxidizer
 - O Same ratio as defined in requirements
 - O Highest performing ratio (Naka, 2012)

- The printer shall have a mechanism to transport the mixed fuel and oxidizer to the manufacturing area.
 - Layers of 1.98 ± 0.2mm exceed requirements
 - Original target 1 ± 0.3mm layer gives poor results
 - Translated to ± 0.3mm maximum error

- The printed propellant properties shall be compared to traditionally cast propellant material properties.
 - Printed propellant less dense, less homogeneous, more brittle
 - Tensile/Compression testing incomplete
 - Printing process too unstable to manufacture dogbones
 - Sample cast is too small for brittle propellant

Printed (top) vs. Cast (bottom)

rpose Des

Test Overview & Results

Projec ng Managem

Test Overview & Results

- Safety shall be the primary concern in every aspect of the project.
 - Water identified as only reliable extiguisher
 - Safe operational settings identified
 - Powder temp between 24°C and 200°C; margin of 200°C
 - Outdoor system test
 - O <\$20 in hardware damage; ignition events contained</p>

Powder Bed Tolerance Testing

- Level powder bed to ensure uniform measuring surface
- Load pistons with expected mass (2.5kg)
- Dial micrometer (pictured) used for vertical measurements
- Perform tests:
 - 1. Record initial position
 - 2. Command known number of steps
 - 3. Record final position
 - 4. Repeat steps 2 and 3 for all trials

Test Overview & Results

Requirement ID	Description
1.4	Layers shall be <u>1+</u> 0.3mm

Powder Bed Tolerance Testing Results

Trial	Command [mm]	Actual [mm]	Error [%]
1	1.98	1.9558	-1.22
2	1.98	1.9431	-1.86
3	1.98	1.905	-3.79
4	1.98	1.9812	0.06
5	1.98	1.9177	-3.15
6	1.98	1.9304	-2.50
7	1.98	1.9558	-1.22
8	1.98	1.905	-3.79
9	1.98	1.9558	-1.22
10	1.98	1.9431	-1.86
11	1.98	1.8923	-4.43

- 77 Steps/trial commanded
- Bias towards loss suggests steps are smaller or are being skipped
- Error is within 30% at all times

Design Description Results

Engineeri

Managemen

Powder Bed Tolerance Testing Results

Theoretical:

 $\Delta Z = 38.88 \ steps/mm$

Actual (77 steps/trial): $\Delta Z_{avg} = 1.934 \text{ mm/trial}$ = 39.81 steps/mm

Even when under load pistons behave as expected

Actual height is less than commanded height by ~2%, well within the requirement of 30%

Thinner layers allow for sintering between layers

SA

Sintering Model: Assumptions

Test Overview &

Results

- Laser sweeps out a rectangle of area as it moves
- Layer depth is variable

A

S

- All laser energy is deposited uniformly into the layer
- No heat loss to surroundings
 - O Model limited to fast slew rates

 $Q_{in} = C_p * m * \Delta T$ $Q_{in} = (1 - al) * Power * \Delta t$ $m = \dot{m} * \Delta t$ $\dot{m} = t_{layer} * d_{laser} * r_{slew}$ $t_{layer} = \frac{(1 - al) * Power}{\Delta T * C_p * d_{laser} * r_{slew}}$

Slew Rate

Management

Propellant Layer that receives Laser energy

Sintering Model: Sucrose Predictions

Purpose Design Test System Description Results Engineer

Sintering Model: Sucrose Predictions

Sintering Model: Sucrose Predictions

Sintering Model: Sucrose Measurements

Sintering Model: Sucrose Measurements

Sintering Model: Sucrose Measurements

Overview & Results
Sintering Model: Propellant Predictions

Purpose Desc

Test Overview & Results

ring Manag

Sintering Model: Propellant Predicament

- Coarse KNO3 and Sucrose showed regularly uneven sintering
- Black spots appeared randomly
- Ignition starts when black spots grow too large (get too hot)
- Caused by non-uniformity in fuel mixture due to poor mixing
- Switched to Fine Powder

Sintering Model: Mirror Alignment Issues

Before Alignment:

- Biggest Source of error in our measurements
- Laser Spot was obscured by baffle
- Resulted in lower power and different sintering behavior

Sintering Model: Propellant Predictions

Purpose Design Test Systems Project Description Results Engineering Management

Sintering Model: Propellant Measurements

PurposeDesign
DescriptionTest
Overview &
ResultsSystems
EngineeringProject
Management

Sintering Model: Propellant Measurements

Sintering Model: Propellant Measurements

PurposeDesign
DescriptionTest
Overview &
ResultsSystems
EngineeringProject
Management

Propellant Heat Model: Optical Depth

- Optical Depth:
- $\tau = -\log T$, T = transmittance
- Sintering Depth:

•
$$d_{sint} = \frac{\tau}{A * \rho}$$
, A = absorptivity (A = 1-T)

Sintering Depths:

	Calculated	Measured
Sucrose	1.98 mm	2.3 +/- 0.35 mm
Propellant	1.61 mm	1.1 +/- 0.12 mm

Propellant Heat Model: Lumped Capacitance

- Assume: All heat is absorbed uniformly at in a cylinder with radius of laser beam and depth of optical depth
- Equation: gives time over spot as a function of laser power

$$dt = \frac{\pi * r_{laser}^2 * d_{sint} * \rho * Cp * T}{A * P_{laser}}$$

Time over spot converted to slew rate:

• slew rate =
$$2 * \frac{r_{laser}}{dt}$$

Propellant Thermal Model: Laser Cutter Settings

Test Overview & Results

- Optical depth and surface temp are inputs
 - 200 Cº lower bound
 - 300 C° upper bound
- Laser Power and Time over spot are outputs
- Time converted to slew rate

Propellant Thermal Model: Predictions

PurposeDesign
DescriptionTest
Overview &
ResultsSystems
EngineeringProject
Management

Sensor Operation and Model Validation

Sintering Model: Temp. Measurements

Purpose

Test Overview & Results

Systems Engineering

Sintering Model: Temp. Measurements

Overview & Results

Sintering Model: Temp. Measurements

Purpose Design Test Systems Description Results Engineering M

Propellant Test Results (Visual)

Material Properties: Microscopic Comparison

- Printed propellant less dense
- Both brittle, but casted is stronger

• Fracture occurs in shear along layers

Proof of Concept – First ever 3D printed Solid Rocket Motor

Inert Sugar Print–Over 15 layers (~30mm) in star pattern printed during Symposium demo—2 hours to complete

Material Comparison – printed propellant is lower quality than cast; still viable

Purpose

Overview & Results

Test

neering

Managemer

Systems Engineering Approach

Concept of Operation

Overview &

Engineering

Major changes made early lead to a well defined system CONOPS with no major changes throughout the project

Requirements Definition

Concept of Operation	s Validate Requirements Full System Validation
Requirements	Definition Subsystem Verification
	Verify Design
	Detailed Design

- FR 1: The manufacturing system shall be capable of manufacturing at least two layers of solid propellant
- FR 2: The manufacturing system shall be capable of automated additive manufacturing
- FR 3: The manufacturing system shall be verified through testing
- FR 4: The entire system shall be safe under normal operation

Systems

Engineering

Overview &

Project

Clear and continued communication with SAS facilitated sound Functional Requirements throughout the project

Detailed Design

Changes Since CDR: 1. Safety system 2. Piston motion data acquisition 3. Propellant particle containment

Component Fabrication

Fabrication Learning Curve:1. Acrylic tolerance issue2. Bracket shipping time delays3. Temperature sensor damages

Subsystem Verification

Systems

Engineering

Overview &

Slew Rate Testing
 CO₂ Power Output Testing
 Powder Bed Testing

- Rake Tests
- Piston Tests

Full System Validation

Requirements Definition

Detailed Design

Concept of Operations

Subsystem Verification

Component Fabrication

Full System Validatior

Successful final print with more time the team would print additional motors

Validate Requirements

Verify Design

Overview &

Systems Engineering

Managem

Project Management

<u>Approach</u>

- More laid-back approach to try to reduce micromanaging
 - Main management focus was on meetings, client interaction, and communication between members
- Systems leads were designated, but team members tended to move to work on multiple systems as needed

Successes

- Followed schedule fairly well
- Powder bed worked great/tolerances met
- 3D SRM was printed
- Happy customer/2nd gen project requested

Key Lessons Learned

- Communication can make or break a project
 - Action items help but only if they're utilized
 - The PM can help with communication, but it takes effort from the whole team
- Tasks rarely get done on time, always plan with margin
- Its important to understand problems from other team members' perspectives
- Nature of the project held it back initially
 - O Research based
 - First-generation
 - O Lack of direction/concept is new

e Design Test Systems Project Description Results Engineering Management

Budget

Industry Cost Analysis

Total Project Equivalent Cost

Number of Team Members	8
Total Hours	3,925 (Actual)
Salary Estimate	\$31.25/hour
Subtotal	\$123,623
200% Overhead	\$247,246
Material Cost	\$5,350
Total Project Cost	\$252,600

pose Design Test Systems Project Description Results Engineering Management

Acknowledgements

Team SPAM would like to thank everyone who made this project possible:

Special Aerospace Services
Dr. Ryan Starkey
CU Boulder Aerospace PAB
Ifuzion 3D Printing
Andreas Bastian (OpenSLS)
Richard Nakka Rocketry
Frontier Astronautics

References

- ¹Braeunig, Robert A. "Space Pictures". *Rocket and Space Technology*. Accessed October 2015. Available:
- <u>http://www.braeunig.us/space/pics/fig1-14.gif</u>
- 2"Saltpetre". The Ingredient Store.com Accessed October 2015. Available: <u>http://store.theingredientstore.com/saltpetre-food-gradepotassiumnitrate.aspx</u>
- 3"Sucrose Advanced Inorganics". India Mart. Accessed October 2015. Available: http://dir.indiamart.com/impcat/sucrose-powder.html
- 4Miller, E., "Rapid Prototyping Technology Animations," PADT, Inc Available: http://www.padtinc.com/blog/the-rp-resource/rapid-prototyping-technology-animations
- 5"Selective Laser Sintering (SLS)," MαkeAGif Available: <u>http://makeagif.com/cpjtel</u>
- ⁶Sher, D., "Using SnowWhite to Laser Sinter Sugar," 3D Printing Industry Available: <u>http://3dprintingindustry.com/2014/09/26/sharebot-used-snowwhite-laser-sinter-sugar-worked-perfectly/</u>.
- * 7"Selective Laser Sugar Snowflakes," *Collected Edition* Available: http://blog.collected-edition.com/post/41556924865/slssnowflakes.
- * **EngArc L Stress-Strain Diagram," EngArc L Stress-Strain Diagram Available: http://www.engineeringarchives.com/les_mom_stressstraindiagram.html.
- ⁹ "Fracture Toughness," *Fracture Toughness* Available: https://www.nde-ed.org/educationresources/communitycollege/materials/mechanical/fracturetoughness.htm.
- ¹⁰"Part 3: How to Build a High Power Rocket Casting the Fuel into BATES Grains," YouTube Available: <u>https://www.youtube.com/watch?v=dfrnimt2bu4</u>.
- ¹¹"HD How to make & cast R-Candy Fuel (BEST RESULTS)," YouTube Available: <u>https://www.youtube.com/watch?v=uhm7nrv3bs8</u>

References

- ¹² "Sucrose," National Institute of Standards and Technology Available: <u>http://webbook.nist.gov/cgi/cbook.cgi?id=c57501&mask=80</u>
- ¹³ AC110V 1' Solid Coil Electric Solenoid Valve Gas Water Fuels Air Solid Coil," Amazon Available: <u>http://www.amazon.com/ac110v-solid-electric-solenoid-valve/dp/boolapocie/ref=pd_sim_60_21?ie=utf8&refrid=1wa1qjzcp57mkscsykh7</u>
- ¹⁴Shoberg, R., "Engineering Fundamentals of Threaded Fastener Design and Analysis". PCB Load & Torque, Inc. Accessed Oct. 2015. Available: http://www.hexagon.de/rs/engineering%20fundamentals.pdf
- ¹⁵"Dissecting the Nut Factor". Archetype Joint. Accessed Oct. 2015. Available: <u>http://archetypejoint.com/?page_id=135</u>
- ¹⁶"Joint1.gif". Bolt Science. Accessed Oct. 2015. Available: <u>http://www.boltscience.com/pages/nutorbolttightening.htm</u>
- ¹⁷Herder, G., Weterings, F. P., and de Klerk, W. P. C., "MECHANICAL ANALYSIS ON ROCKET PROPELLANTS," *Journal of Thermal Analysis and Calorimetry*, vol. 72, 2003, pp. 921–929.
 ¹⁸"Stereolighography," *Wikipedia* Available: https://en.wikipedia.org/wiki/stereolithography.
 ¹⁹"Testing Testing?," *IMPRESS Education: Mechanical Properties, Testing* Available: http://www.spaceflight.esa.int/impress/text/education/mechanical properties/testing.html.
 ²⁰Tussiwand, G. S., Saouma, V.,
 Terzenbach, R., and Luca, L. D., "Fracture Mechanics of Composite Solid Rocket Propellant Grains: Material Testing," *Journal of Propulsion and Power*, pp. 60–73.

²¹Bastian, Andreas. "R2 Final Assembly". *RepRap Wiki*. Open Source CAD Files. Modified 7 December 2013. Accessed October 2015. Available: http://reprap.org/wiki/File:R2_final_assembly.png

- 22Kodikara, J., "Tensile strength of clay soils," Tensile strength of clay soils Available: http://eng.monash.edu.au/civil/research/centres/geomechanics/cracking/tensile-clay.html
- 23"What is a Creep Test?," What is a Creep Test? Available: http://www.wmtr.com/en.whatisacreeptest.html .
- ²⁴Jacobsson, L., and Flansbjer, M., "Uniaxial compression tests," Uniaxial compression tests Available: <u>http://www.sp.se/en/index/services/rockmechanicaltesting/uniaxial/sidor/default.aspx</u>.
- 25Full Spectrum Laser, "Hardware Setup and Operation," FSL 40W Hobby Laser Manual
- ²⁶ Laser Institute of America, "American National Standard for Safe Use of Lasers," ANSI Z136.1, published 2007
- ²⁷ Occupational Safety & Health Administration, "Laser Hazards," OSHA Technical Manual, Section III: Chapter 6
- ²⁸ CU Boulder Environmental Health and Safety, "Hazardous Materials & Waste Management," <u>http://ehs.colorado.edu/about/hazardous-materials-and-waste-management/</u> [retrieved 15 November 2015]
- ²⁹ National Fire Protection Agency, "NFPA 704: Standard System for the Identification of the Hazards of Materials for Emergency Response," <u>http://www.nfpa.org/codes-and-standards/document-information-pages?mode=code&code=704</u> [retrieved 20 November 2015]
- https://www.rocket.com/article/aerojet-rocketdyne-completes-successful-leo-46-rocket-motor-test

S/

Back Up Slides

SAS

Aero
Powder Bed Tolerance Testing Results (BACKUP)

Print Piston Accuracy Test			est						Print Piston Step Test								
trial	disp [mil]	disp [mm]	cumulat.	com [mm]	cumulat.	err [mm]	err [%]	tr	ial	disp [mil]	disp [mm]	cumulat.	com [mm]	cumulat.	err [mm]	err [%]	
1	. 77	1.9558	1.9558	1.98	1.98	-0.0242	-1.22222		1	39	0.9906	0.9906	1	1	-0.0094	-0.94	
2	76.5	1.9431	3.8989	1.98	3.96	-0.0369	-1.86364		2	-36	-0.9144	0.0762	-1	0	0.0856	-8.56	
3	75	1.905	5.8039	1.98	5.94	-0.075	-3.78788		3	39	0.9906	1.0668	1	1	-0.0094	-0.94	
4	78	1.9812	7.7851	1.98	7.92	0.0012	0.060606		4	-33	-0.8382	0.2286	-1	0	0.1618	-16.18	
5	75.5	1.9177	9.7028	1.98	9.9	-0.0623	-3.14646		5	38	0.9652	1.1938	1	1	-0.0348	-3.48	
6	76	1.9304	11.6332	1.98	11.88	-0.0496	-2.50505										
7	77	1.9558	13.589	1.98	13.86	-0.0242	-1.22222										
8	75	1.905	15.494	1.98	15.84	-0.075	-3.78788										
9	77	1.9558	17.4498	1.98	17.82	-0.0242	-1.22222										
10	76.5	1.9431	19.3929	1.98	19.8	-0.0369	-1.86364										
11	. 74.5	1.8923	21.2852	1.98	21.78	-0.0877	-4.42929										
12	77.5	1.9685	23.2537	1.98	23.76	-0.0115	-0.58081										
13	74.5	1.8923	25.146	1.98	25.74	-0.0877	-4.42929										
	MEAN	1.934308															
Rese	ervoir Pisto	n Accuracy	Test						Re	servoir Pis	ton Step T	est					
trial	disp [mil]	disp [mm]	cumulat.	com [mm]	cumulat.	err [mm]	err [%]	tr	ial	disp [mil]	disp [mm]	cumulat.	com [mm]	cumulat.	err [mm]	err [%]	
1	. 74.5	1.8923	1.8923	1.98	1.98	-0.0877	-4.42929		1	-24.5	-0.6223	-0.6223	-1	-1	0.3777	-37.77	
2	74.5	1.8923	3.7846	1.98	3.96	-0.0877	-4.42929		2	32.5	0.8255	0.2032	1	0	-0.1745	-17.45	
3	76	1.9304	5.715	1.98	5.94	-0.0496	-2.50505		3	-35	-0.889	-0.6858	-1	-1	0.111	-11.1	
4	75	1.905	7.62	1.98	7.92	-0.075	-3.78788		4	35	0.889	0.2032	1	0	-0.111	-11.1	
5	76.5	1.9431	9.5631	1.98	9.9	-0.0369	-1.86364		5	-26	-0.6604	-0.4572	-1	-1	0.3396	-33.96	
6	i 73	1.8542	11.4173	1.98	11.88	-0.1258	-6.35354		6	35	0.889	0.4318	1	0	-0.111	-11.1	
7	75.5	1.9177	13.335	1.98	13.86	-0.0623	-3.14646		7	-38	-0.9652	-0.5334	-1	-1	0.0348	-3.48	
8	76	1.9304	15.2654	1.98	15.84	-0.0496	-2.50505		8	42.5	1.0795	0.5461	1	0	0.0795	7.95	
9	76	1.9304	17.1958	1.98	17.82	-0.0496	-2.50505		9	-33.5	-0.8509	-0.3048	-1	-1	0.1491	-14.91	
10	76	1.9304	19.1262	1.98	19.8	-0.0496	-2.50505		10	38	0.9652	0.6604	1	0	-0.0348	-3.48	
11	75.5	1.9177	21.0439	1.98	21.78	-0.0623	-3.14646										
12	75.5	1.9177	22.9616	1.98	23.76	-0.0623	-3.14646										
13	76	1.9304	24.892	1.98	25.74	-0.0496	-2.50505										
	MEAN	1.914769															

SAS

Powder Bed Tolerance Testing Results (BACKUP)

Actual

······ Linear (Actual)

Commanded

*Positive down, negative up

Slow increase of actual position relative to commanded position suggests the system has a harder time moving up than down

Relative error can be as high as 37%

The system does not rely on up and down motion, only continuous motion in one direction (see main slides for results)

Requirement 2.4.1.2/2.4.2.2: Pistons shall support 2.5kg + own weight (BACKUP)

• Scrap metal taken from machine shop and massed:

Description	MASS (kg)
Hexagonal steel	0.47
Short round copper	0.62
Tall round copper	1.02
Round brass	0.45
TOTAL	2.56

 Empirical evidence shows pistons support the load and can lift without difficulty

Nominal engrave job: ~195 second

5 min = 300 sec

Time left = 300 – 195 = 105

Nominal PB cycle << 105 sec

Depends heavily on geometry and cutter DPI but is generally less than 5 min

Requirement 2.4.1.4: Reservoir shall deliver 150% of powder needed (BACKUP)

150% by volume.

Volume is driven by vertical motion of the pistons.

Software has a variable that controls how much more vertical distance the reservoir covers. For most prints this is set at 1.3 (130%) but there is no limitation on how large this value can be. This value can be fully controlled by the user.

Rake Tolerance Testing

- 1. Level pistons and place in a known position
- 2. Fill both pistons with powder
- 3. Run a powder bed cycle
- 4. Measure layer depth at corners and center

Requirement ID	Description
3.7	Rake performance shall be characterized through depth measurements

De Desci Test Overview & Results

systems gineering

Management

Rake Tolerance Testing Results

	Trial	1 [in]	2 [in]	3 [in]	4 [in]	5 [in]
IIIIIOOT	BASE					
	1(ΔZ)					
	2 (ΔZ)					
	3 (ΔZ)					
	4 (ΔZ)					

Management

Data biases towards... This implies... This affects us like...

Sintering Model: Sucrose Predictions

Sintering Model: Sucrose Measurements

Sintering Model: Sucrose Measurements

Sintering Model: Propellant Predictions

Purpose Design Test Systems Description Results Engineering M

Sintering Model: Propellant Predicament

- Coarse KNO3 and Sucrose showed regularly uneven sintering
- Black spots appeared randomly
- Ignition starts when black spots grow too large (get too hot)
- Caused by non-uniformity in fuel mixture due to poor mixing
- Switched to Fine Powder

Sintering Model: Mirror Alignment Issues

Before Alignment:

- Biggest Source of error in our measurements
- Laser Spot was obscured by baffle
- Resulted in lower power and different sintering behavior

Sintering Model: Propellant Predictions

PurposeDesign
DescriptionTest
Overview &
ResultsSystems
EngineeringProject
Management

Sintering Model: Propellant Measurements

Sintering Model: Propellant Measurements

Updated Propellant Conduction Model

Numerically solve 1D transient heat transfer equation

•
$$\frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial x^2}$$
 where $\kappa = \frac{k}{\rho c}$

- c = heat capacity, ρ is density, k is thermal conductivity, and κ is thermal diffusivity.
- Numerically solve by combining midpoint method and Euler's method:

$$\left. \frac{\partial T}{\partial t} \right|_{i,j} = \frac{T_{i,j+1} - T_{i,j}}{\Delta t} , \left. \frac{\partial^2 T}{\partial x^2} \right|_{i,j} = \frac{T_{i+1,j} - 2T_{i,j} + T_{i-1,j}}{(\Delta x)^2}$$

$$T_{i,j+1} = \kappa * \frac{\Delta t}{(\Delta x)^2} * \left[\left(T_{i+1,j} - 2T_{i,j} + T_{i-1,j} \right) + T_{i,j} \right]$$

Purpose Design Test Systems Project Description Results Engineering Management

Updated Propellant Conduction Model

- Values used for a 35% Sucrose, 65% KNO₃ (by mass) propellant :
 - c = 1046.5 J/(kg*K)
 - $\circ \rho$ = 1927.4 kg/m³
 - k = 0.5020
 - \circ κ = 2.4888*10⁻⁷
 - O Powder bed length: 5 mm
 - IC: Room temp and Optical Depth @ sintering temp
 - O BC: Room temp and sintering temp

Test Overview & Results

BC: Top layer @ 200 C° Bottom layer at 24 C° Optical Depth Starts at 200 C°

- Heat conduction negligible
- Propellant is an insulator
- Optical depth determines layer depth
- Select Laser power/slew rate based on surface temp

- Heat conduction negligible
- Propellant is an insulator
- Optical depth determines layer depth
- Select Laser power/slew rate based on surface temp

- Heat conduction negligible
- Propellant is an insulator
- Optical depth determines layer depth
- Select Laser power/slew rate based on surface temp

Propellant Heat Model: Optical Depth

- Optical Depth:
- $\tau = -\log T$, T = transmittance
- Sintering Depth:

•
$$d_{sint} = \frac{\tau}{A*\rho}$$
, A = absorptivity (A = 1-T)

- Sintering Depths:
 - O Sucrose: d_{sint} = 1.98 mm

 \bigcirc Propellant (35% Sucrose, 65% KNO₃): d_{sint} = 1.61 mm

Propellant Heat Model: Lumped Capacitance

- Assume: All heat is absorbed uniformly at in a cylinder with radius of lase beam and depth of optical depth
- Equation: gives time over spot as a function of laser power

$$dt = \frac{\pi * r_{laser}^2 * d_{sint} * \rho * Cp * T}{A * P_{laser}}$$

Time over spot converted to slew rate:

• slew rate =
$$2 * \frac{r_{laser}}{dt}$$

Purpose Design Test Systems Project Description Results Analysis Analysis Project Description Description Results

Propellant Thermal Model: Laser Cutter Settings

- Optical depth and surface temp are inputs
 - 200 Cº lower bound
 - 300 C° upper bound
- Laser Power and Time over spot are outputs
- Time converted to slew rate

Propellant Thermal Model: Laser Cutter Settings

Purpose Design Description Test Overview & Systems Project Engineering Management