

Manufacturing Status Review (MSR)

Solid Propellant Additive Manufacturing (SPAM)

Full Project Concept of Operations

- 1) Mix KNO3 and sucrose for printing
- Upload CAD file of desired grain shape to printer
- 3) Print desired cross section layer by layer
- Remove finished motor from printer bed and conduct material testing

Aeros

6uliaa1

Gi

Printer Concept of Operations

Aerost

6uliaaul

G

Design Solution

No Major Modifications Since CDR

Levels of Success -- Progress

Identify necessary modifications for the printer to accomplish the act of printing sugar-KNO3 propellant mixture

Aeros

6uliaau

Df

Levels of Success -- Progress

Characterize curing process, time to cure mold (+/-10 min), print temperature (+/-1°C) and phase change process

Aeros

6011991

Levels of Success -- Progress

Background Mechanical

Gi

6uliaan

Software & Electronics

Overall Schedule

Financial Status

G

Aerosa

6uuaau!

GJ /

Mechanical Systems Status

Subsystem Schedule

Most tasks can be completed concurrently as materials are received

Powder Bed Overview

 Stores and delivers powder to be sintered
Provides a volume in which the layers will stack
Provides vertical motion needed to transition to a new layer

Requirement I.D.	Description
2.4	The Manufacturing System shall be capable of autonomous sintering.

A 970 578

Background

Mechanical

Software & Electronics

Powder Bed Scale

A standard soda can fit in a lowered piston

The footprint of the Powder Bed will fit in a shoebox

Background Mechanical

Software & Electronics

Powder Bed - Body

 Acrylic body and metal brackets
Laser cut and held together with epoxy
Houses further components and attaches Powder Bed to the Frame

Background

Mechanical

Software & Electronics

6uijaan

Powder Bed-Body

Component	Status (% Complete)	Total Required Manufacturing Hours	Planned Completion Date
Acrylic Body	0%	12	February 8 th
Mounting Brackets	0%	1	February 8 th

Construction begins when components arrive

Laser &

Testing

Software &

Electronics

Powder Bed - Piston

Ball screw/nut driven shaft raises and lowers a piston head
Custom milled aluminum head provides a robust printing surface
Felt gasket minimizes powder leak
Entire assembly driven by a NEMA 23 motor

Requirement I.D.	Description
2.4.1	A piston controlled chamber shall hold a reservoir of powder to be used for sintering
2.4.2	A piston controlled chamber shall lower the sintering area to allow for another layer of propellant powder

Background

Mechanical

Software & Electronics

Powder Bed - Piston

G

6ui199u

Component	Status (% Complete)	Total Required Manufacturing Hours	Planned Completion Date
Aluminum Piston Head	20%	6	th February 15
Felt Gasket	75%	1	th February 15
Acrylic Piston 'Bottom'	10%	1	th February 15
Holder Rod	10%	12	nd February 22
Ball Nut/Screw	100%	2	th February 11
Drive Shaft Coupler	0%	1	nd February 22
Aluminum Faceplate	20%	8	th February 15
NEMA 23 Stepper Motor	100%	1	th February 11

Most components are trivial, some require milling, drilling, and tapping of holes which take considerably more time.

Background Mechanical

Software & Electronics

Powder Bed - Rake

3D printed rake pushes powder from reservoir piston to print piston
Driven by a NEMA 17 Stepper Motor
Support rods keep the rake level

Requirement I.D.	Description
2.4.3	A rake system shall move powder from the reservoir to the sintering area in a single sweep

Background

Mechanical

Software & Electronics

Powder Bed - Rake

Component	Status (% Complete)	Total Required Manufacturing Hours	Planned Completion Date
Support Brackets	20%	6	February 10
Support Rods	80%	2	February 10
NEMA 17 Motor	100%	1	February 3
Belt/Pulley	80%	2	February 3
Rake	10%	12	February 10
5mm Axle	0%	2	February 13

Green – Complete Blue – Under Construction Yellow/Clear – Shipping

Axles are expected to take several weeks to arrive, final assembly will be within schedule, but much later than other components.

Background Mechanical

Software & Electronics

Aerosp

6ullaau!

GI

Subsystem Schedule

Aerosa

6ullaaul

GJ /

Subsystem Completion Table

Component	Status (% Complete)	Total Required Manufacturing Hours	Planned Completion Date
Bucket Holes	100%	1	February 8th
Bulkhead	100%	2	February 8th
Cut PVC to length	10%	2	February 8th
Install fan and duct	10%	3	February 15th
Fully Assemble Plumbing	38%	9	February 15th

Aeros

6uliaaul

G

Laser Cutter Frame Subsystem

Overall System Design

- Color Coding Scheme:
- Red Not ordered
- Yellow Ordered, in route
- Light Blue In progress
- Green Finished

Background

Mechanical

Laser & Testing

Software &

Electronics

Subsystem Schedule Overview

- Frame Manufacturing
 - Cut and size aluminum COMPLETE
 - Edge aluminum bar ends COMPLETE
 - Tap ¼"-20 holes in each bar COMPLETE
 - Assemble frame waiting on Powder bed (lock tight and finish)

Mechanical

Software &

Electronics

Laser &

Testing

- Frame Integration
 - Attach laser cutter to top of frame by <u>February 5th</u>
 - Attach powder bed to frame by February 10th

Background

Frame Subsystem - Progress

Aeros

6uiraan

G

Frame Subsystem - Progress

GI

Aerost

6ullaau!

GJ /

Software & Electronics Status

Aeros

Guilaan

Q

Software Schedule

Software Overview

> Three Programs in use:

Retina Engrave Program: Laser Cutter Control

➢Runs on User's Laptop

Arduino Firmware Code: Powder Bed Control

➢ Uploads from Laptop to Arduino Mega Microcontroller

Sikuli Python Code: Image Recognition Software

➢ Runs on User's Laptop

Ø

641199

Firmware deadline February 15th is critical for full system testing

Laser &

Testing

Background Mechanical Software & Electronics

Laptop Display During Operation

Aleroso Correst

Background Mechanical

ical Software & Electronics

Automation

Background Mechanical

Software & Electronics

Software Progress

Subsystem Schedule

Stepper Motor Manufacturing & Testing

- Manufacturing: Soldering and Component Testing
- Verify Stepper Motor meets requirements
 - Solder wires to motor driver
 - Command Stepper to move 10 steps (18⁰). Measure total distance rotated.
 - Command Stepper to move 10 Rotations (3600⁰ of total rotation). Measure error from initial starting position
 - In-line testing with software- motor integration

Requirement I.D.	Description
1.4	sintered propellant layers 1 mm ± 30%
2.4.1	vertically move the reservoir chamber piston by 1 mm ± 0.3 mm
2.4.2	vertically move the sintering area piston by 1 mm ± 0.3 mm
2.4.3	autonomously move 10 cm ³ of powder from the reservoir to the sintering area

Background Mechanical

Software & Electronics

Slide Including Subsystem and Completion Table

Component(s)	Status (% Complete)	Total Required Hours	Planned Completion Date
Stepper Motors and Drivers	50%	5	Feb 3 rd
Snap Switches	100%	1	January 27 th
Slide potentiometers	50%	4	Feb 5 rd
Infrared Thermometer	25%	5	Feb 12 th
CO sensor	25%	3	Feb 12 th
LED	25%	1	Feb 5 th
Buzzer	100%	1	January 27 th

Software & Electronics

Aerost

6ullaau!

G

Laser System and Testing Status

Laser Schedule

Aeros

6411991

C

Software & Electronics

Thermal Model

- Characterized Power and Rate controls ahead of schedule
- Proceed to sintering tests
 - Start with only sugar
 - Validate and update thermal model with sugar data

Background

Requirement I.D.	Description
1.3.2	Laser shall raise the propellant powder to 180-185 °C for sintering

Aero

6uliaar

Q

Testing Schedule Overview

Full System

Background Mechanical

Software & Electronics

Looking Forward: Testing Progress

Laser

- 50% > COTS test: laser accuracy upper bound
- 100% > Slew rate calibration
 - Laser power calibration
 - Sugar sinter grid characterization
 - Sugar sinter layer test
- Electronics
- 70% > Slide potentiometer calibration
 - Motor step size test
 - Driver temperature test
 - Fire sensors burn test

Safety 100% > Flow rate test

- Integration flow test
- Powder Bed
 - Piston depth test
 - Rake depth and uniformity test
 - Powder bed test
- Full System
 - Sugar print
 - Propellant
- Material Properties

20% > Instron load testing

Background Mechanical

Software & Electronics

Looking Forward: Highlights

Laser

- 50% > COTS test: laser accuracy upper bound
- 100% > Slew rate calibration
 - Laser power calibration
 - Sugar sinter grid characterization
 - Sugar sinter layer test
- Electronics
 - Slide potentiometer calibration
 - Motor step size test
 - Driver temperature test
 - Fire sensors burn test

Safety

100% > Flow rate test

- Integration flow test
- Powder Bed
 - Piston depth test
 - Rake depth and uniformity test
 - Powder bed test
- Full System

Software &

Electronics

- Sugar print
- Propellant
- Material Properties

20% > Instron load testing

Upcoming Tests: Sugar Sinter

Sugar Sinter test

Sinter a 1±.3 mm layer of a grain cross-section

- ≻Why is this important?
 - Adding KNO₃ is the last piece of Level 1 Success
- ➢No further manufacturing needed
- ➢Only need laser power calibration

"Sugar Sintering in a Lasercutter." *Fablab013*. Cooperatief Fablab013 U.A. Web. 28 Jan. 2016.

Background Mechanical

Software & Electronics

Upcoming Tests: Sugar Sinter

- > Laser power output controlled by pulse width modulation (PWM)
 - Using black body meter, create PWM percentage to power delivered curve
- Validate thermal model predictions
 - > Grid test to characterize sintering behavior over the operating range

Requirement	Description
1.1.1 & 1.3.2	Laser heats sugar to melting 180- 185°C
1.4	Print layers of 1 mm ± 30%
3.4	Laser power measured to 1±0.5 W
4.3	Sintering process modeled/characterized.
4.3.1	Determine laser parameters (slew rate & power)

Upcoming Tests: Motor Instron Testing

- Difficulties: debris containment
 - ➢ 6-sided enclosure
 - Does not interfere with data
- Possible solutions
 - Laser cut acrylic box
 - Acrylic shield with bag enclosure
- Budget and schedule impact
 - Estimated 25 hours to complete
 - Design by March 1 to give 2 week window for manufacture
 - > No affect on schedule margin
 - Estimated \$25 for acrylic, \$30 for miscellaneous
 - Remaining budget margin: \$217 + \$500 (SAS contribution)

"Instron 5985." Web. 01 Feb. 2016.

Background Mechanical

Software & Electronics

Backup Slides

Upcoming Tests: Component Level

Slide potentiometers

- > Calibration on CNC with positional accuracy of 0.002", need 0.012" per requirements
- Necessary to measure layer depth and stepper motor fidelity

Rake depth test

- > 5 point depth measurement on print piston after rake sweep; 1 mm target
- Ensure rake is not displacing and depositing powder out of tolerance

Requirement	Description
2.1.2	(Z) The Powder bed shall be capable of moving 1 ± 0.3 mm
2.4.1.1	A piston shall be capable of vertically moving the reservoir chamber 1 mm \pm 0.3mm
2.4.2.1	A piston shall be capable of vertically moving the sintering area 1 mm \pm 0.3mm

Upcoming Tests: Component Integration

Fire Detection Subsystem

- ➤Can a fire event be detected reliably?
- ➢ Fire detection test
- ➢Location: welding shop fume hood
- Burn wood with limited air access
 - ➤ 300°C -- 600°C burn temp
 - Insufficient Oxygen causes CO production

➤Completion criteria

- ➤ 5 trials
- ➢ both sensors ID 3 fires consecutively,
- ➤ at least one detects all 5

Laser System - COTS Test

> Objectives:

Gi

- Verify Basic Functionality
- Test PWM and Slew Rate Functionality
- Measure X Y Positional Accuracy
- Progress: 100% Complete
 - Tested basic functionality on 1/26 (On Schedule)
 - Mirror Alignment, Focusing Capabilities, Power and Slew Rate Controls

Requirement I.D.	Description
2.1.1	(X-Y) laser positioning within +/- 1 mm (2.5% of Motor Diameter)
2.2	The Manufacturing system shall be capable of manufacturing custom, user created propellant grain patterns.
Space	

Laser System - COTS Test

Procedure:

- Turn on Laser Cutter
- Engrave simple shapes on scrap material using different PWM and Slew Rate settings
- Design Sample Grain Patterns to-size in Solid Works
- Engrave Sample Grain Patterns onto scrap material
- Measure dimensions of Grain Patterns with Calipers to verify X-Y tolerances

Laser System – Print Area Power Test

- > Objectives:
 - > Measure and Correct for any power variations across print area
- Progress: 100% Complete
 - > Experiment Conducted on 1/27 (Ahead of Schedule)
 - Mirrors were aligned when the cutter arrived

Requirement I.D.	Description
3.4	The laser power shall be measured to 1 +/- 0.5 W

Laser System – Print Area Power Test

Procedure:

- > Affix receipt paper below lens
- Fire laser and observe spot on receipt paper
- Test fire laser on receipt paper in all four corners of print area
- If the laser spot "walks" then the mirrors are misaligned
- Adjust mirror alignment accordingly

Berghotel Grosse Scheidegg 3818 Grindelvald Familie R.Müller					
Rech.Nr. 4572 Bar		30.07.	2007/ Tiscł	13:29:17 n 7/01	
2xLatte Macchiato 1xGloki 1xSchweinschnitzel 1xChässpätzli	àààà	4.50 5.00 22.00 18.50	CHF CHF CHF CHF	9.00 5.00 22.00 18.50	
Total : Incl. 7.6% MwSt 54	.50	CHF:	54 3.8	1,50 5	
Entspricht in Euro 36.33 EUR Es bediente Sie: Ursula					
MwSt Nr.: 430 234 Tel.: 033 853 67 16 Fax.: 033 853 67 19 E-mail: grossescheidegg®bluewin.ch					

Receipt

Laser System – PWM Characterization

- > Objectives:
 - Correlate PWM control values (%) to power measurements (W)
- Progress: 100% Complete
 - Scheduled for 2/1 (On Schedule)
 - > Waiting for Black Body Power Meter
 - > Will fall behind if BB Power Meter does not arrive by next week

Requirement I.D.	Description
4.3.1	Laser Control Parameters shall be determined for proper sintering

Laser System – PWM Characterization

- > Procedure:
 - > Place BB power meter in laser path w/ clamps and camera facing dial
 - ➢ Fire laser and record max reading on the power meter.
 - Adjust PWM setting in software. Repeat measurement.
 - Analyze readings and construct trend. We expect a linear relationship.

- > Objectives:
 - Correlate Slew Rate control values (%) to linear speeds (mm/s)
- Progress: 100% Complete
 - Experiment Conducted on 1/28 (Ahead of Schedule)
 - Videos Analyzed in Logger Pro
 - Trend Constructed (See Following Slides)

Requirement I.D.	Description
4.3.1	Laser Control Parameters shall be determined for proper sintering

Procedure:

- Place ruler behind optics carriage. Start video.
- Move optics carriage using software at designated slew rate. Stop video.
- Adjust Slew rate setting in software. Repeat measurement.
- Analyze videos in LoggerPro to retrieve speed measurements.
- Use data to construct a trend. We expect a linear relationship.

G

— 0 <u>— X</u>

1 Logger Pro - Untitled*

File Edit Experiment Data Analyze Insert Options Page Help

🕞 🕨 📑 🔝 🔍 🔍 🋫 🚰 🔐 🎢 🖍 🔛 🖸 Collect 🗋 🚘 具 🚑 🔶 Page 1

No device connected.

6

X

(mm)

Aeros ¢

6uijaan

