

Solid Propellant Additive Manufacturing

Preliminary Design Review

Customer: Special Aerospace Services (SAS) <u>Advisor:</u> Dr. Ryan Starkey

Team Members

Cameron Brown Erick Chewakin

Max Feldman

Anthony Lima

Nicholas Lindholm Caleb Lipscomb Ryan Niedzinski Jonathan Sobol

Agenda

- Project Overview
 - Project Motivation
 - CONOPs
 - FBD
 - Baseline Design
- Evidence of Baseline Feasibility
 - Thermal Model
 - Safety Analysis
 - Powder Bed Design
 - Software and Component Integration
 - Structural Testing
- Status Summary

Definitions

- <u>Grain</u> the cross-sectional geometry of solid propellant
- FDM Fused Deposition Modeling
- <u>SLS</u> Selective Laser Sintering
- <u>Propellant Cake</u> a disk of solid rocket motor propellant
- <u>SRM</u> Solid Rocket Motor
- <u>SOH</u> State of Health
- <u>PWM</u> Pulse Width Modulation

Project Overview

Motivation

- Traditional Casting Limitations:
 - Limited number of grain shapes
 - Air Bubbles in cast
 - Nonuniform setting

 $O_{1}^{True} \xrightarrow{True} O_{2}^{True} \xrightarrow{True} O_{2}^{$

Example Grain Shapes and Thrust Profiles¹

- 3D printing can improve the traditional casting method:
 - Produce complex grain shapes and new thrust profiles
 - Does not need to manufacture a different cast for each design

Solid Rocket Composite Propellant: Sucrose - KNO₃

Melting Points:

- Sucrose: ~186 °C
- KNO3: ~333 °C
- Propellant Auto-Ignition ~ 400 °C

Propellant Composition:

- Fuel = Sucrose(35% by mass)
 - Oxidizer = KNO3 (65% by mass)

Potassium Nitrate Powder²

Reason for choosing Sucrose-KNO3

- Safer than other solid rocket fuel (non-explosive)
- Easy to obtain
- Not restricted by the International Traffic in Arms Regulation (ITAR)

Sucrose Powder³

Project Statement

Design and integrate **an additive manufacturing system** such that it will print Sucrose-potassium nitrate solid rocket propellant and **compare the mechanical characteristics** of the printed propellants to those manufactured by the traditional casting method.

Baseline

Feasibility

Status

Summary

7

Project

Overview

Full Project Concept of Operations

- 1) Mix KNO3 and sucrose for printing
- Upload CAD file of desired grain shape to printer
- 3) Print desired cross section layer by layer
- 4) Remove finished motor from printer bed and conduct material testing

Project Overview Baseline Feasibility Status Summary

8

Printer Concept of Operations

System Functional Block Diagram

Baseline Design Overview

What is Selective Laser Sintering?

Baseline

Feasibility

• Selective Laser Sintering (SLS) is a type of Additive Manufacturing which sinters/melts a powder with a laser

SLS Operation:

- 1. A CAD file is uploaded to the printer
- The printer uses a CO₂ laser to heat a specified cross-sectional area of the powdered material
- 3. The heated material binds together forming a solid
- 4. The powder bed is then lowered by one layer thickness
- 5. A new layer of powder material is then swept on top of the previously fused layer

Project

Overview

Selective Laser Sintering (SLS)

SLS Process (Top View)⁵

12

Status

Summary

Baseline Requirements

Functional Requirements

Designation	Requirement Description
FR 1	The project shall produce a printer capable of automated 3D additive manufacturing.
FR 2	The rocket propellant shall be a solid composite propellant consisting of oxidizer and fuel.
FR 3	The printer shall have a mechanism to transport the mixed fuel and oxidizer to the manufacturing area.
FR 4	The printed propellant properties shall be compared to traditionally cast propellant material properties.
FR 5	Safety shall be the primary concern in every aspect of the project.

Baseline

Feasibility

Status

Summary

14

Project

Overview

Design Requirements

Parent Functional Requirement	Design Requirements
FR 1	 1.1: The printer shall have a functional 3D positioning system. 1.2: The printer shall be capable of manufacturing user-defined designs given a .step file input. 1.3: Each layer of manufactured material shall bond to the previous and following layer (when applicable).
FR 2	2.1: The fuel and oxidizer shall be mixed into a homogeneous mixture prior to manufacturing.2.2: The fuel shall be composed of potassium nitrate and sucrose.

Design Requirements Contd.

Parent Functional Requirement	Design Requirements
FR 3	3.1: The printed layer of propellant shall be no more than 1.0 mm.3.2: Each layer shall have a tolerance of ±30%.
FR 4	4.1: The following properties of additively manufactured propellant and cast propellant shall be measured: density, tensile strength, crush strength, and energy released during combustion.
FR 5	 5.1: The energy released during combustion of the propellant shall be measured. 5.2: The chemical species created as reactants during combustion of the propellant shall be identified 5.3: The printer design shall include a fire-extinguishing safety system.

Design Requirements Contd.

Parent Functional Requirement	Design Requirements
FR 5	 5.4: The project shall produce a thermodynamic model to predict temperature distribution of the propellant during manufacturing to within 10 C⁰. 5.5: The 3D printer shall have a State of Health System capable of measuring the propellant temperature to within 5 C⁰. 5.6: The State of Health System shall be capable of cutting off power to the laser if a propellent temperature of over 350 C⁰ is detected 5.7: The State of Health System contain the following sensors for redundancy: Carbon Monoxide sensor, Temperature sensor, Optical Dust sensor.

Critical Project Elements for SLS

Critical Project Element (CPE)	Description		
CPE #1: Thermal Model	SafetyLaser requirements		
CPE #2: Safety Design	Fire riskPrevention		
CPE #3: Powder Bed	Layer thicknessMotor control		
CPE #4: Software and Electronics Integration	Electronics system designSoftware integration		
CPE #5: Material Testing	Necessary testsMachinery		

Printing Method Trade Study

Methods compared in trade study

- Fused Deposition Modeling (FDM)
- Stereolithography (SLA)
- Selective Laser Sintering (SLS)

METHOD NAME					
Parameter Score	5	4	3	2	1
Cost (\$)	0 - 1,000	1,000 - 2,000	2,000 - 3,000	3,000 - 4,000	4,000 - 5,000
Number of Modifications	Zero	0 to 5	5 to 10	10 to 15	15 to 20
Technology Readiness Level (TRL)	Actual system proven successful through mission operations under actual operating mission conditions		Components have been integrated and validated in the system operation environment to a high fidelity level.		Basic principles observed and reported. Lowest level of TRL, basic research and paper studies have been performed.
Safety (Temp)	System temperature never goes over autoignition temperature of 400°C		System temperature is capable of exceeding autoignition temperature		System is capable of exceeding autoignition temperature. Temperature cannot be controlled to within 50°C.

Trade Study Results

Winner: Selective Laser Sintering (SLS)

- TRL: Multiple demonstrations of feasibility with sugar as printed material
- Safety: Energy output of laser can be finely tuned to avoid combustion
- Modifications: Fewer modifications than standard FDM printers to convert a laser cutter

Functional Requirement:

FR 1: The project shall produce a 3D printer capable of automated additive manufacturing.

Maker Faire mascot sugar model⁶

SLS printing pure sucrose⁷

Baseline Feasibility

¢

ธีมมูอย

CPE #1: Thermal Model

CPE #1: Thermal Model Design

- A thermal model is essential in determining the power and safety of the SLS printer
- It ensures feasibility of the laser sintering complete layers of sucrose
- It allows calculation of laser power restrictions and safety margins to prevent autoignition

Baseline Design: Laser Location

Baseline Feasibility

CPE #1: Assumptions

- Heat transfer modeled as a 1D rod
 - Only area in laser beam is heated (Diameter = beam width)
 - No heat is transferred to surrounding powder
- Reaches steady state instantaneously
 - Flux is assumed to be total energy per unit area of laser pulse
- Powder mixture is modeled as a solid
- Initial condition: uniform temperature throughout powder, T_i
- Boundary conditions:
 - Bottom of powder bed is forced to be T_i
 - Top of powder bed experiences constant heat flux, φ_{beam}

1D Heat Transfer Model

Baseline Feasibility

23

CPE #1: Values Used in Model

- d_{beam} = 0.1 mm
- Δt = 1 ms
- L = 0.05 m
- $K_0 = 0.502 \text{ W/(m*k)}$
 - Weighted average by mass of K₀ of sucrose and KN03
 - 35% Sucrose, 65% KN0₃
 - K₀ for KN0₃ is 0.691 W/(m*K)
 - K₀ for Sucrose is 0.151 W/(m*K)
- $T_i = 20 C^0$ and $100 C^0$
- ϕ_{beam} varies proportionally with P_{beam}
 - P_{beam} is a design parameter

1D Heat Transfer Model

Baseline Feasibility Status Summary

CPE #1: Results of Room Temp Powder Bed (20 C⁰)

- $P_{beam} = 13.4 \text{ mW}$ $\phi_{beam} = 1.7 \text{ kJ/m}^2$
- Green region = molten propellant •
- Take-away: sintering without propellant ignition is feasible

25

CPE #1: Conclusions & Future Tasks

- Conclusions:
 - Achieve sintering with safety margin of about ~200⁰ C
 - Need to reduce power of 40 W laser for safe sintering
 - Laser system viable for sintering
- Future Tasks:
 - Develop time dependent heat transfer model
 - Find more accurate value of K₀
 - Characterize reflectivity of Propellant powder
 - Create more accurate model of beam power
 - Develop model of heat transfer through a powder

Thermal Model Requirements Fulfillment

Functional Requirement:

FR 5: Safety shall be the primary concern in every aspect of the project.

Design Requirement:

DR 5.4: The project shall produce a thermodynamic model to predict temperature distribution of the propellant during manufacturing.

Baseline Design:

Complete the thermal model and implement power correction on laser output

¢

ธิบบอะ

CPE #2: Safety Design

- Team will have training in HazMat Disposal and Laser Safety
- Low Chance of Combustion (From Heat Model)
- "State of Health" System monitors Powder Bed
- Integrated Extinguishing Mechanism

Baseline Design: Safety System

Baseline Feasibility Status Summary

29

CPE #2: State of Health System

- Three Sensors:
 <u>-Optical Dust Sensor</u>
 <u>-Infrared Thermometer</u>
 <u>-Carbon Monoxide Sensor</u>
- Emergency Response:

 -Cut power to laser diode
 Activate release valve for H2O
 reservoir

Baseline Design: SOH System Location

Baseline Feasibility Status Summary

30

CPE #2: Water Safety System

- Water dilutes powder and flushes into waste container
- Total Energy Release of Entire Powder Bed: 1.7 MJ
- Required Volume of <u>Water</u> <u>Reservoir</u> for ΔT = 20°: 50 L
- Container dimensions:
 - 0.62m x 0.39m x 0.22m
- Safety Factor: 2.4

Status

Summary

Safety Requirements Fulfillment

Functional Requirement:

FR 5: Safety shall be the primary concern in every aspect of the project.

Design Requirement:

DR 5.4: The project shall produce a thermodynamic model to predict temperature distribution of the propellant during manufacturing to within 10 C⁰.

<u>**DR 5.5**</u>: The 3D printer shall have a State of Health System capable of measuring the propellant temperature to within $5 C^{0}$.

DR 5.6: The State of Health System shall be capable of cutting off power to the laser if a propellant temperature of over 350 C⁰ is detected

DR 5.7: The State of Health System contain the following sensors for redundancy:

Carbon Monoxide sensor, Temperature sensor, Optical Dust sensor.

Baseline Design:

Implement SoH sensors with emergency relief reservoir of water

CPE #3: Powder Bed

CPE #3: Powder Bed

- Holds printed product and powdered propellant
- Consistently spreads the powder across the bed
- Contain surplus powder

Baseline Design: Powder Bed System

Baseline Feasibility

CPE #3: Powder Bed Components

Powder Bed Mechanical Design²¹

Powder Bed Aerial View²¹

Lift Feasibility: Resolution

$$\Delta Z = \frac{\theta_{rot} P}{360^{\circ}}$$

 θ_{rot} = Motor rotation (1.8°±5%)

- = Thread pitch (1.25mm)
- = Vertical travel (0.004mm±5%)

- 1. Powder Reservoir
- 2. Print Surface
- 3. Arm/Rake

Ρ

 ΔZ

Baseline Feasibility
Powder Bed Requirements Fulfillment

Functional Requirement:

FR 3: The printer shall have a mechanism to deliver the mixed fuel and oxidizer to the manufacturing area.

Design Requirement:

DR 3.1: The printed layer of propellant shall be no more than 1.0 mm. **DR 3.2:** Each layer shall have a tolerance of ±30%.

Baseline Design:

Manufacture using a pre-existing open source design – R2 Module

37

CPE #4: Software and Electronics Integration

CPE #4: Software Integration

Software Integration Diagram

SLS Printer Software Control

- 1. Rake motor activated to spread powder
- 2. Laser cutter activated for a single cut
- 3. Wait 2 minutes to allow layer to cure
- 4. Thermal control sensors checked
- 5. Activate reservoir piston motors
 - a. Powder reservoir moves up
 - b. Print bed moves down
- 6. Repeat loop until propellant is completely manufactured

Baseline Feasibility

CPE #4: RAMBo Board

- Used for integration with Computer Numerical Control (CNC) machines
- Programmable using Arduino software
- Laser pulse rate 0.125 mHz
- Arduino-mega clockrate is 16 mHz

¢

CPE #5: Material Testing

CPE #5: Propellant Structural Testing

Common Tests in Industry

Project

Overview

- Tension, Torsion, Compression, Shear, Fracture Toughness, Stiffness, Creep, and Temperature Cycling
- Intended to assure safety and performance
- SPAM Testing
 - Stress/Strain curves, Poisson's Ratio, Fracture Toughness, Critical Crack Length, Young's Modulus

Baseline

Feasibility

Status

Summary

42

stress: $\sigma = F/A$ strain: $\epsilon = \Delta L/L$

CPE #5: Propellant Material Testing

Instron machine⁸

Fracture Toughness Diagram⁹

Material Testing Requirements Fulfillment

Functional Requirement:

FR 4: The printed propellant properties shall be compared to traditionally cast propellant properties.

Design Requirements:

DR 4.1: The additively manufactured propellant and cast propellant shall each be characterized by density, tensile strength, crush strength, and energy release.

Baseline Design:

Material testing through accessible or analogous machinery

Status Summary

Critical Project Element Feasibility Review

CPE	Critical Proofs of Feasibility				
	Metric	Result	Safety Factor or Error Margin		
SLS Method (Thermal Model)- Maximum Operating Temperature Below 400°C		- Maximum Operating Temperature 200°C	2		
Safety Design	Design - Energy release from propellant ignition can be contained (1.7MJ)- Water safety system can contain any energy release (4.1MJ)		2.4		
Powder Bed	- Lift and Rake assembly can transport a mass of 2.5Kg to print area	 Powder Bed motors use 0.43 Nm 0.0273 Nm of torque is required 	15.75		
Software and Electronics Integration	 Software can be modified and/or is available as Open Source Motherboard has sufficient functionality 	 Software is Open Source (RepRap) 6 motor pin outs available, designed for SLS manufacturing 	N/A		
Material Testing	- Motors can be safely tested for structural performance	- 72.1MPa axial loading before predicted auto-ignition, axial loading will be applied up to 24.0MPa if needed	3		

Project Baseline Status 46 Overview Feasibility Summary 46

Ø

Budget Analysis

- Budget is driven by cost of laser cutter
- Because laser power is not imperative to system functionality, lower power lasers can be used (40W instead of 60-80W) and money can be saved
- Budget Margin 35%

System	Cost
Laser Cutter (CNC 40 Watt CO2) *Free Shipping	\$2,200.00
Powder Bed	\$220.00
Propellant Raw Materials (Sugar and KNO3)	\$400.00
Safety Equipment	\$200.00
Integration Hardware and Electronics	\$230.00
Grand Total	\$3,250.00

Steps in Moving Forward

- Compile safety documentation before testing and manufacturing
- Testing to verify mathematical models
 - Laser tested on melting sucrose
 - PWM control tested for a laser diode
- Compile list of individual powder bed components and corresponding manufacturing material
- Software and Electronics Integration

Project

Overview

- Timing of mechanical components/trade-offs
- Automated powder bed control
- Water safety system software design and circuit integration

Baseline

Feasibility

Status

Summary

48

Schedule Timeline (Overall Project)

Fall Semester

ธีแม่ออเ

Augu	ust Se	eptember	October	November	December	January	February	March	April	Мау
	Project Definitio and Researc	n h Preli De	Fin ver minary esign	Detailed Design evelopment alize and fy heat del						
			F I I S	Detailed Design Development nalize: Powder bed /stem		Implemer and Purcl	hasing	egration and To	est	tion
We	Are Her	e	2	Safety system Detailed Design Development	ort (12/14)		ng Status Revie	less Review	Syst Verific an Valida	em ation being bei
		PDD (9/14)	CDD (9/28)	Electronics and software	CDR (12/1)		 Manufacturi Manufacturi 	 Test Readin 		
			Proj Overv	ect view	Bas Feas	eline ibility	S	Status ummary		49

References

¹Braeunig, Robert A. "Space Pictures". *Rocket and Space Technology*. Accessed October 2015. Available: <u>http://www.braeunig.us/space/pics/fig1-14.gif</u>

²"Saltpetre". The Ingredient Store.com Accessed October 2015. Available: <u>http://store.theingredientstore.com/saltpetre-food-gradepotassiumnitrate.aspx</u>

³"Sucrose Advanced Inorganics". *India Mart.* Accessed October 2015. Available: <u>http://dir.indiamart.com/impcat/sucrose-powder.html</u>

⁴Miller, E., "Rapid Prototyping Technology Animations," *PADT, Inc* Available: <u>http://www.padtinc.com/blog/the-rp-resource/rapid-prototyping-technology-animations</u>

⁵"Selective Laser Sintering (SLS)," *MakeAGif* Available: <u>http://makeagif.com/cpjtel</u>

⁶Sher, D., "Using SnowWhite to Laser Sinter Sugar," *3D Printing Industry* Available:

http://3dprintingindustry.com/2014/09/26/sharebot-used-snowwhite-laser-sinter-sugar-worked-perfectly/.

⁷"Selective Laser Sugar Snowflakes," *Collected Edition* Available: http://blog.collected-edition.com/post/41556924865/slssnowflakes.

⁸"EngArc - L - Stress-Strain Diagram," *EngArc - L - Stress-Strain Diagram* Available:

http://www.engineeringarchives.com/les_mom_stressstraindiagram.html.

⁹"Fracture Toughness," *Fracture Toughness* Available: https://www.nde-

ed.org/educationresources/communitycollege/materials/mechanical/fracturetoughness.htm.

¹⁰"Part 3: How to Build a High Power Rocket - Casting the Fuel into BATES Grains," *YouTube* Available: <u>https://www.youtube.com/watch?v=dfrnimt2bu4</u>

¹¹"HD How to make & cast R-Candy Fuel (BEST RESULTS)," YouTube Available:

https://www.youtube.com/watch?v=uhm7nrv3bs8

References (Continued)

¹²"Sucrose," National Institute of Standards and Technology Available: http://webbook.nist.gov/cgi/cbook.cgi?id=c57501&mask=80 ¹³"AC110V 1' Solid Coil Electric Solenoid Valve Gas Water Fuels Air Solid Coil." Amazon Available: http://www.amazon.com/ac110v-solid-electric-solenoidvalve/dp/b00lap0cie/ref=pd sim 60 21?ie=utf8&refrid=1wa1qjzcp57mkscsykh7 ¹⁴Shoberg, R., "Engineering Fundamentals of Threaded Fastener Design and Analysis". PCB Load & Torque, Inc. Accessed Oct. 2015. Available: http://www.hexagon.de/rs/engineering%20fundamentals.pdf ¹⁵"Dissecting the Nut Factor". Archetype Joint. Accessed Oct. 2015. Available: http://archetypejoint.com/?page_id=135 ¹⁶"Joint1.gif". Bolt Science. Accessed Oct. 2015. Available: <u>http://www.boltscience.com/pages/nutorbolttightening.htm</u> ¹⁷Herder, G., Weterings, F. P., and de Klerk, W. P. C., "MECHANICAL ANALYSIS ON ROCKET PROPELLANTS," Journal of Thermal Analysis and Calorimetry, vol. 72, 2003, pp. 921–929. ¹⁸ "Stereolighography," *Wikipedia* Available: https://en.wikipedia.org/wiki/stereolithography. ¹⁹"Testing – Testing?," *IMPRESS Education: Mechanical Properties, Testing* Available: http://www.spaceflight.esa.int/impress/text/education/mechanical properties/testing.html. ²⁰Tussiwand, G. S., Saouma, V., Terzenbach, R., and Luca, L. D., "Fracture Mechanics of Composite Solid Rocket Propellant Grains: Material Testing," Journal of Propulsion and Power, pp. 60–73. ²¹Bastian, Andreas. "R2 Final Assembly". *RepRap Wiki*. Open Source CAD Files. Modified 7 December 2013. Accessed October 2015. Available: http://reprap.org/wiki/File:R2 final assembly.png ²²Kodikara, J., "Tensile strength of clay soils," Tensile strength of clay soils Available: http://eng.monash.edu.au/civil/research/centres/geomechanics/cracking/tensile-clay.html ²³"What is a Creep Test?," What is a Creep Test? Available: <u>http://www.wmtr.com/en.whatisacreeptest.html</u>. ²⁴Jacobsson, L., and Flansbjer, M., "Uniaxial compression tests," Uniaxial compression tests Available: http://www.sp.se/en/index/services/rockmechanicaltesting/uniaxial/sidor/default.aspx .

Backup Slides

Agenda

- Project Overview
 - Project Motivation
 - CONOPs
 - FBD
 - Baseline Design
- Evidence of Baseline Feasibility
 - Thermal Model
 - Safety Analysis
 - Powder Bed Design
 - Software and Component Integration
 - Structural Testing
- <u>Status Summary</u>

Backup Slides

Sugar-based rocket fuel FDM **SLA Trade Study CPE #1 CPE #2 CPE #3** Testing **Risk Matrix**

Manufacturing Sugar Based Solid Rocket Fuel

Traditional Method: Casting

- 1. Mix KNO₃ and Sucrose powder into homogeneous mixture
- 2. Heat mixture on stove top for ~20-30 min
- 3. Pour molten mixture into a cast
- 4. Let propellant set for several hours

Casted Propellant Curing in Mold¹⁰

Casted Propellant Showing Grain Shape¹¹

Sugar Properties Table

	Sucrose	Sorbitol	Dextrose
Chemical Formula	$C_{12}H_{22}O_{11}$ $C_6H_{14}O_6$ [1]		C ₆ H ₁₂ O ₆
Molecular Weight (g/mole)	342.3	182.2 [1]	180.16
Melting Point (C.)	185 (d)	110-112 [2]	146 (d) [3]
Density (g/cm ³)	1.581	1.489	1.562
Enthalpy of Formation (kJ/mol)	-2221.2	-1353.7	-1274.5
Enthalpy of Formation (cal/gram)	-1549.9 [4]	-1774.8 [4]	-1689.7 [4]
Appearance	white granular or cohesive powder	white granular or cohesive powder	dry white powder

FDM - Fused Deposition Modeling

The material is melted and extruded onto the print surface by the nozzle. The nozzle, print surface, or both may move.

Not feasible

- propellant cannot be held in molten state without decomposing ^[2]
- maximum ~30min of pliability
- additional safety concerns holding propellant at high temps for extended periods underpressure

SLA - Stereolithography

Focus a beam of ultraviolet light on a vat of photopolymer. The beam cures each layer of the resin onto a moveable platform.

Not feasible

- photoresin is prohibitively expensive
- photopolymer is the only possible fuel
- No time to test/too much research

Baseline Design Trade Study

Design Decision: Modify Laser Cutter Machine

- Laser must be integrated and calibrated by the team
- Print chamber must be designed and fabricated
- Higher cost
- Team must design and build system around safety requirements

		Lulzbot	Laser Cutter
Metric	Weight	Score	Score
Laser	<mark>25%</mark>	3	5
Print Chamber	<mark>10%</mark>	0	3
Safety	<mark>25%</mark>	2	4
Est. Cost	<mark>15%</mark>	2	3
Est. Time	<mark>10%</mark>	0	2
Precedent	<mark>15%</mark>	2	4
Weighted Total:	100%	1.85	3.8

CPE #1: Thermal Model - Software

Laser power output can be tuned with Pulse Width Modulation (PWM)

Pulse Width Modulated Current

CPE #1: Heat Transfer Model

Initial condition:

• $u(x, 0) = T_{h}$

- Boundary conditions:
 - $\partial_x u(0,t) = \frac{\Phi_{beam}}{K_0}$
 - $u(L,t) = T_b$
- Solution to heat equation:

$$u(x) = \frac{\Phi_{beam}}{K_0}(L - x) + T_b$$

$$\phi_{beam} = \frac{P_{beam}\Delta t}{\pi \frac{d^2}{4}}$$

Where:

- K₀ = thermal resistivity
- L = length of "rod"
- φ_{beam}= heat flux of beam
- d = beam diameter

- $P_{beam} = beam power$
- $\Delta t = time of beam pulse$
- u(x)= temperature of rod in C⁰

CPE #1: Results for the 100 C⁰ Powder Bed

 $\begin{array}{l} \mathsf{P}_{\mathsf{beam}} = 6.92 \text{ mW} \\ \phi_{\mathsf{beam}} = 0.88 \text{ kJ/m}^2 \\ \bullet \text{Red region} = \text{melted powder} \end{array}$

60000

Link

CPE #1: Laser Wavelength Selection

- Most Common: CO₂ Lasers
- Two Main Wavelengths: 94,000 and 106,000 Angstroms
- Sucrose absorbs ~95%

SAS

CPE #2: Safety Design - Risks

Propellant Ignition During Storage or Transport	Laser Radiation	Propellant Ignition From Laser in Powder Bed	
		High Voltage Electronics	
			Waste Disposal

Probability

Consequence

Energetic Material Safety

Detonation =/= Deflagration

- Deflagration ~ low velocity burn rate
- Detonation ~ supersonic shock front propagation
 Example of Detonation: TNT burns at 5.8 km/s^[17]
 Example of Deflagration: Sugar propellant burns at 386 mm/s^[2]

Therefore, we make a couple more assumptions:

- The propellant will <u>only</u> deflagrate and <u>not</u> detonate during the manufacturing process (powder held at standard conditions: 1 atm, 25 °C)
- Deflagration occurs uniformly

Chemistry Calculations

<u>Key:</u> Solid Gas Liquid

 $C_{12}H_{22}O_{11} + 6.29 \text{ KNO}_3 \rightarrow 3.80 \text{ CO}_2 + 5.21 \text{ CO} + 7.79 \text{ H}_2\text{O} + 3.07 \text{ H}_2 + 3.14 \text{ N}_2 + 3.00 \text{ K}_2\text{CO}_3 + 0.27 \text{ KOH}$

Heat:

- Calculate Energy Release of Reaction using Specific Enthalpy
 - Per Gram: 1.231 kJ
 - Total Powder Bed: 1.737 MJ
- Products Assumed to be at STP
 - Upper Bound on Energy

Gas Volume:

- Calculate Volume of Gaseous Products
 - Per Gram: 321.7 cm³
 - Total Powder Bed: 0.454 m³

COLUMN STREET

CPE #2: Laser Safety

- CO₂ Lasers operate on the infrared wavelength spectrum (they are not visible to the naked eye)
 - Retinal burns and/or blindness can occur
- All team members will complete training:
 - OSHA General Industry (29 CFR 1910) and Construction Industry (29 CFR 1926) training requirements for Laser Safety
- Laser-Safe Facilities:
 - Prof. Starkey's Lab (will need to confirm)
 - JILA (Joint Institute for Lab Astrophysics) operates lasers

Facilities

Propellant Storage:

- Fuel and oxidizer materials will be stored separately in locker
- When fuel-oxidizer material has been mixed it will be disposed of at any RCRA waste approved facility
 - Option: Hazardous Waste Disposal in Boulder County

System Storage:

SLS system must be stored in a facility that is approved for the systems 40Watt CO₂ laser

On Campus Laser Facility Options:

- Dr. Ryan Starkey's Lab
- Joint Institute for Lab Astrophysics (JILA) facility

Cycle Time Profile

- 3 Major 'Phases'
 - Activate Lifts
 - Activate Arm

+20 Start Lase

• RUN Lasers

• Torque loss with high RPM $_{\Lambda Z}$

$$T_{lift} = \frac{\Delta Z}{P\omega_{lift}}$$

- = Thread pitch (1.25mm)
- ω_{lift} = Rotation speed (1/3 rps)
 - = Vertical distance (0.1mm)

= Time to lift (0.24 sec)

$$T_{arm} = \frac{\omega_{arm} \Delta X}{\pi r}$$

- = Radius of wheel (5mm)
- = Travel distance (230mm)
- = Rotation speed (4/3 rps)

= Time to sweep (19.53 sec)

+0.25 Start Arm

TO Start Lifts

+100 Restart cycle

Ρ

ΔZ

T_{lift}

ΔΧ

 ω_{arm}

T_{arm}

CPE #3: Powder Bed Feasibility

The Motosh Equation^[10,11]

$$T_{in} = F_p \left[\frac{P}{2\pi} + \frac{\mu_t r_t}{\cos(\beta)} + \mu_n r_n \right]$$

$$F_{P}$$
 = Load on nut (~2.5kg, 24.525N)

= Thread pitch

- $\mu_{t/n}$ = Coef. of friction of thread surface
- r_{t/n} = Radius of thread surface contact
 - = Half angle of thread (30°)
 - = Torque to spin nut (0.0273Nm)

Max torque of chosen motor: 0.43Nm

Parameters for the Motosh Equation¹²

Ρ

β

T_{in}

Testing Safety

Thermoelastic stress analysis

 $\Delta T = -T_0 \alpha / (\rho c_p) \Delta \sigma_{kk}$ Assume: Temperature increase due to plane stress

- $-\rho = 1000 \text{ kg/m}^3$
- $c_p = 3.89 \text{ kJ/kg}$
- T₀ = 293 K
- $\alpha = 70 e^{-6} m/m/K$

 $\Delta \sigma_{kk} = \sigma_{kk} = 72.1$ MPa to cause auto-ignition Approx. 2x ultimate strength of concrete.

Tensile Testing

- Dogbone of both cast and printed propellant
- Brittle material cannot interface with the Instron
 - Dip ends in epoxy resin to avoid crush
- Test to failure
- Stress versus Strain curve reveals:
 - material classification
 - yield strength: σ_y
 - ultimate strength: σ_u
 - Poisson's Ratio: $v = -\varepsilon_t/\varepsilon$
 - expect ~1/3 for brittle material
 - Young's Modulus: E=σ/ε

Indirect Tensile Testing

- Propellant is loaded diametrically
- The loading causes a tensile deformation perpendicular to the loading direction

Load Induced Cracking from Indirect Tensile Test [22]

Uniaxial Compression Test

- Specimen is loaded axially until failure using the loading platens
- Deformation measurement equipment is attached around the specimen
- Radial and axial strain vs axial stress data is recorded
- Volumetric strain and crack volume strain vs axial stress data is also recorded
- Safety note
 - Estimated stress of 72.1 MPa before reaching auto-ignition temperature

Compression Test [24]

Fracture Toughness

Which propellent is more resistant to crack propagation? Which has the shorter critical crack length?

 $K_{Ic} = \sigma (\pi a \beta)^{\frac{1}{2}}$

- Expect ~25 MN/m^{1/2}
- $B \ge 2.5 (K_{Ic}/\sigma_y)^2$
 - for best results

Fracture Toughness Sample [13]

- Pre-crack the sample and tensile test to failure

Creep Testing

- High temperature progressive deformation at constant stress
- Strain is recorded
 - Stage 1: non steady rate of creep
 - Stage 2: steady state creep
 - Stage 3: creep rate accelerates as cross sectional area decreases due to necking of the specimen

Project Risk Matrix

Lack of Available Testing Facilities		Lead Time for Part Delivery	
Module Integration	Electronics Integration		
		Software Functionality	

Probability

Consequence

