SpaceNet Test Readiness Review

Spring 2021

Team: Ryan Burdick, Sam Firth, Noah Francis, Jordan Gage, Forest Owen, Tyler Pirner, Keith Poletti, Ryan Prince, Israel Quezada, Colin Ruark, Benji Smith

Customer: Martin Wilson

Advisor: Francisco Lopez Jimenez

What is SpaceNet?

A Low-Cost network of Software Defined Radio(SDR)

equipt ground stations for monitoring LEO space domain to relieve existing high fidelity sensors

The system would produce two-line element sets(TLE) that could be compared to expected orbits to determine if something is out of place

This Project

Four unit proof of concept proving hardware and software

This project will produce four functional ground units that can record UHF/L-Band satellite Quadrature signal (IQ) data

The recorded data will be used to produce both a position estimation and orbit estimate

Planned LEO/GEO Missions

Plot from the ESA space debris portal https://sdup.esoc.esa.int/discosweb/statistics/

SpaceNet Concept of Operations (CONOPS)

- 1. Sensors are temporarily deployed
- 2. Sensors synchronize to UTC time

- 3. Satellite transmits during flyby
- **4.** Transmissions are received by sensors

	Sensor A Data	Sensor B Data
5. Transmissions are	UTC12:00:01. UTC12:00:02.	UTC12:00:01. UTC12:00:02. GO CU!
identified post test	UTC12:00:03. UTC12:00:04.	UTC12:00:03. UTC12:00:04.
6. Time delay of signal	UTC12:00:05. UTC12:00:06.	UTC12:00:05. UTC12:00:06.
arrival is calculated	UTC12:00:07. UTC12:00:08.	UTC12:00:07. UTC12:00:08.
	UTC12:00:010.	UTC12:00:010.

Baseline Design

7.5'

Satellite Targets

UHF Target: CSIM

The main target we will be using for this Frequency band is the CSIM Satellite operated locally here at CU Boulder

Operational characteristics:

- Fc = 437.25 MHz (Carrier)
- P = 5 W (Transmitted power)
- BW = 30 kHz (Beamwidth)
- DR = 9.6 kbps
- Demod = GMSK

L-Band Target: Iridium Next

Our primary target for this band is the Iridium NEXT Constellation.

Operation characteristics:

- Fc = 1616-1626.5 MHz (Carrier)
- P = 5 W (Transmitted power)
- BW = 30 kHz (Beamwidth)
- Possible data rates
 - Voice = 2.4kBps
 - Short Burst = 64 kBps

Critical Project Element Why is This Critical?

Environmental Readiness	Testing time will be dictated by satellite's orbital passes. The sensor unit must be ready to operate in rain, snow and the temperatures expected during spring semester in Boulder
RF Front End	The RF front enables UHF and L-band signal reception. The reception must be good enough to discern the transmission from the noise floor
Timing Synchronization	The received data must be alignable such that time delay can be measured with extreme precision. Error here has a large impact on positional predictions
Position Vector Estimate using TDoA	Time Delay of Arrival(TDoA) ranging is used to produce the positional information required for orbital prediction
Orbital determination	Two methods: Gibbs and Particle Filter. Both produce orbital predictions that are the final product of the project

Levels of Success Key Objectives

- TDOA from artificial data
- Orbital Prediction from artificial data
- 4 units built
- Sensor Units shall receive on single band
- Sensor units shall be able to synchronize to UTC time via GPS
- TDOA prediction from 2 units data
- Sensor Units shall receive on dual bands
- Sensor Units shall be able to recover in result of a power outage
 - Sensor Units data shall be synchronized to within 420 ns
 - Four Units are deployed and operational
 - Manufacturing Documentation (schematics, procedure, manufacturing analysis, suggested improvements, and ways to drive down cost)
 - TDOA prediction from 4 units data
 - Orbital prediction from data

3

2

Test Methodology

Compone	nt Level Testing	SubSyste	em Level Testing	Full System Level Testing				
Box Weatherproof	Test that the box and cable pass throughs are weather resistant and leak proof	Temperature	Ensure that the internal temperature of the box will remain within operating conditions as modeled	Signal Correlation	Ensure that the signals from boxes can be aligned and maintain the timing accuracy calculated			
GPS	Ensure the GPS Pulse Per second meets the device specifications	Onboard OS	Ensure that the subscripts run on start- up and operate as expected.	Full suite test	Ensure that the predicted orbited from test data is within the expected error			
HackRF & Timing scheme	Ensure the SDR meets the device specifications for sample rate and that timing scheme operates as expected	Raspi HackRF Compatibility	Ensure the HackRF performs the same when connected to the Raspi					
UHF LNA	Ensure the UHF LNA performs per spec sheet	Circuit Board	Test the power and signal distribution board behaves as expected					
L-Band LNA	Ensure the L-band LNA performs per spec sheet	UHF Frontend	Ensure that the UHF front end meets the design Signal to noise ratio and other parameters	Tests we plan to cover				
RF Switch	Measure the noise level with switch and without switch	L-band Frontend	Ensure that the L-band front end meets the design Signal to noise ratio and other parameters	Crit Rel	ical to project success			
RF_Control.py	Ensure the Raspi can command the switch to change between the two RF Inputs	Post Processing software	Ensure the orbit determination meets requirements given TDOA output					
GPS_timer.py	Ensure the Raspi can use GPS time to determine when to start data collection	Single Unit	Build an unit and repeat all subsystem to unit to see if the results match.					
Data_handler.py	Ensure recorded data can be slimmed and moved to proper location for off loading							
Correlation Testing (TDOA)	Ensure that the correlation scheme works and does not add delay above required max							
Orbit determination	Ensure orbit prediction works based on simulated data.				15			

Componen	t Level Testi	ng	SubSystem	n Level Tes	ting	Full Syste	em Leve	el Testing	
Box Weatherproof	In Progress Est. 2/28		Temperature	In Progress Est. 2/28		Signal Correlation	Incom Est. 3	plete 3/23	
GPS	Done Completed 2/27		Onboard OS	In Progress Est. 2/28		Full suite test	Incom Est. 3	<mark>plete</mark> 3/15	
HackRF & Timing scheme	Done Completed 2/10		Raspi HackRF Compatibility	Done Completed 2/24					
UHF LNA	Incomplete Revised 3/8	Will be tested as part of frontend testing	Circuit Board	Incomplete Est. 2/28	Waiting on hardware		Done	•	
L-Band LNA	Incomplete Revised 3/8	Will be tested as part of frontend testing	UHF Frontend	Incomplete Revised 3/8			In Progr	ess	
RF Switch	Incomplete Revised 3/8	Will be tested as part of Onboard OS testing	L-band Frontend	Incomplete Revised 3/8			Incompl	ete	
RF_Control.py	Done Completed 2/24		Post Processing software	In Progress Est. 3/23		Complet	ted	Date Finished	
GPS_timer.py	Done Completed 2/24		Single Unit	In Progress Revised 3/8	Waiting on other subsystems	Estimat	ated Planned Deadline		
Data_handler.py	In Progress Est. 2/28	Will be tested with onboard OS				Revise	ed Be	ehind Schedule. New Deadline	
Correlation Testing (TDOA)	In Progress Est. 3/12	Needs Data							
Orbit	Done							1	6

determination

Completed 2/01

Component Level Tests

Tests	Test Goal
Correlation Testing (TDOA)	Ensure that the correlation scheme works and does not add delay above required max
Orbit determination	Ensure orbit prediction works based on simulated data.

Correlation Testing (TDOA) Test

Overall Test Goal(s): Ensure that the correlation scheme works and does not add delay above the required max. Requirements: FR 5, FR 6

Risk Mitigated: SDRs cannot be aligned according to GPST.

Modeled Results: Simulated TDoAs.

Test(s)	Status	Test Goal
Zero TDoA	In Progress	Cross correlate 2 signals and pull out a TDoA = 0 to heuristically evaluate SDR noise
B-A TDoA	Incomplete	Cross correlate 2 signals between (B)oulder and (A)urora

Zero TDoA Test Overview

Procedure:

- Collect Data with SDRs at the same location.
- Press 'collect' within one second of each other for gps alignment.

Equipment/Facilities needed:

Two SDRs.

0.8

0.6

0.4

0.2

0

-2

-1.5

-1

Correlation

Test goal - Verify that TDoA between two SDRs at the same location is zero.

-0.5

0

B-A TDoA Test Overview

Procedure:

- Collect Data with SDRs in Aurora, CO and Boulder, CO.
- Press 'collect' within one second of each other for gps alignment.

Equipment/Facilities needed:

Two SDRs.

0.8

0.6

0.4

0.2

0

-1.5

-1

-0.5

0

Possible TDoAs [s]

0.5

1.5

Correlation

Test goal - Verify that TDoA between two SDRs at different locations is at the predicted value.

Orbit Determination Test

Overall Test Goal(s): Prove Determination software predicts Orbits within margins. Requirements: FR 5, FR 6

Risk Mitigated: Verified that post processing is free of systematic errors.

Modeled Result: Post processing steps completed successfully.

Test(s)	Status	Test Goal
Verify PF	Done	Verify Particle Filters ability to successfully generate the state time series
Verify TLE	Done	Verify that the state time series can be successfully used to generate a TLE
Verify SGP4	Done	Verify SGP4 propagators ability to generate accurate satellite passover list

Orbit Determination Test Overview

Test Procedure Overview:

- STK produced multiple sample satellite orbits and range data from the orbit to each sensor.
- Calculated sample TDoA values from the ranges with induced 100 ns measurement error.
- TDoA values initialized the orbital determination method.
- Update estimate with remaining TDoA values.
- Compared output estimates to STK data.
 Calculated the difference between them or residual vectors.

Equipment/Facilities needed:

Position Error vs time

STK and Matlab

Orbit Prediction Results:

- Verifies FR5: position estimate with 100 km of the true position.
- Consistently within 0.5 km error and 0.050 km/s error.
 - Satellites position has the greatest effect on error.

Average Position Error: 0.409 km

Average Velocity Error: 0.015 km/s

TLE Generation Test Overview

Procedure:

- Use predicted state vector series from PF analysis to generate keplerian elements
- Port over to applicable TLE elements
 - Verify that the produced TLE is consistent with the satellite in question

Equipment/Facilities needed:

- Team developed TDoA \rightarrow PF \rightarrow State Vector software
- Team developed State Vector → Keplerian elements software

Test goal - Validation of SGP4 propagator to be used for final comparison of TLE sets.

```
function [i, Omega, e, omega, M, n, theta, h, r_p, r_a] = orbitElements(app, state_vec, mu)
      Use a given state vector (x, y, z, xdot, ydot, zdot)' to
       compute Keplerian orbital elements.
       Inputs:
        'mu' -- Standard Gravitational Parameter of the body orbited [km^3 / s^2]
        state vec' -- vector with position and velocity components in the ECEF frame [km] and [km / s]
       Returns:
       'i' -- inclination [deg]
        'Omega' -- right ascension of the ascending node [deg]
               -- eccentricity [~]
        'omega' -- argument of perigee [deg]
               -- mean anomaly [deg]
               -- mean motion [rev / day]
       'theta' -- true anomaly [deg]
               -- magnitude of the specific angular momentum [km^2 / s]
              -- radius of perigee [km]
      `r p`
   % `r_a`
              -- radius of apogee [km]
   % distance
   r = norm(state_vec(1:3));
   % speed
   v = norm(state_vec(4:6));
   % radial speed
   vr = dot(state_vec(1:3), state_vec(4:6)) / r;
   % if (vr > 0): satellite is flying away from perigee
   % if (vr < 0): satellite is flying toward perigee
   % specific angular momentum
   h vec = cross(state_vec(1:3), state_vec(4:6));
   % magnitude of specific angular momentum
   h = norm(h_vec);
   % inclination
   i = acosd(h_vec(3) / h);
   % node line vector
   N_vec = cross([0,0,1], h_vec);
   % node line magnitude
   N = norm(N_vec);
   % right ascension of the ascending node
   if (N_vec(2) \ge 0)
Calculated TLE
                                         .00000970 00000-0 90492-4
           97.6767 132.8334
                                           0014184 58.2471 302.0131 14.964058071219
```

28 Feb 2021

Sunrise: 06:35; Noon: 12:13; Sunset: 17:51

SGP4 Verification Test Overview

Procedure:

- Get a list of predicted flybys from each propagator
- Compare predicted flybys from OreKit and In-The-Sky.org to Matlab SGP4 TLE propagator
 - Validate that passover predictions are consistent

Equipment/Facilities needed:

- Matlab SGP4 propagator
- In-The-Sky.org Satellite pass prediction software
- OreKit Continually updated Python based SGP4 propagator

Test goal - Validation of SGP4 propagator to be used for final comparison of TLE sets.

			Start			Highest				End				
Satellite Name		Time	Dir	Alt	Mag	Time	Dir	Alt	Mag	Time	Dir	Alt	Mag	Diagram of pass
CSIM-FD	1 hour ago	10:10:57	NNE	10°	7.0 ?	10:15:04	ESE	40°	9.3 ?	10:18:44	S	10°	10.3 ?	Chart
CSIM-FD	5 mins away	11:47:16	NNW	10°	6.6?	11:50:03	WNW	16°	6.7 ?	11:52:16	WSW	10°	7.8 ?	Chart
CSIM-FD	9 hours away	20:59:27	ESE	10°	6.2 ?	21:02:51	ENE	24°	5.5 ?	21:05:59	NNE	10°	7.4 ?	Chart
CSIM-FD	10 hours away	22:34:31	SSW	10°	6.8?	22:38:01	W	25°	6.4 ?	22:41:16	NW	10°	8.5 ?	Chart

1 Mar 2021

Sunrise: 06:34; Noon: 12:13; Sunset: 17:52

		Start			Highest				End					
Satellite Name		Time	Dir	Alt	Mag	Time	Dir	Alt	Mag	Time	Dir	Alt	Mag	Diagram of pass
CSIM-FD	22 hours away	10:15:13	NNE	10°	7.0 ?	10:19:13	ESE	45°	8.6 ?	10:23:07	S	10°	10.1 ?	Chart
CSIM-FD	1 day away	<u>11:51:49</u>	NNW	10°	6.6 ?	11:54:23	WNW	14°	6.9 ?	11:56:15	W	10°	7.7 ?	Chart
CSIM-FD	1 day away	21:03:35	SE	10°	6.2 ?	21:07:25	ENE	26°	5.4 ?	21:10:23	NNE	10°	7.5 ?	Chart
CSIM-FD	1 day away	22:39:00	SSW	10°	6.9 ?	22:42:15	W	22°	6.6 ?	22:45:27	NW	10°	8.4 ?	Chart

SubSystem Level Tests

Tests	Test Goal
Onboard OS	Ensure that the subscripts run on start-up and operate as expected.
Raspi HackRF Compatibility	Ensure the HackRF performs the same when connected to the Raspi
UHF Frontend	Ensure that the UHF front end meets the design Signal to noise ratio and other parameters
L-band Frontend	Ensure that the L-band front end meets the design Signal to noise ratio and other parameters

Onboard OS Test

Overall Test Goal(s): Ensure that the subscripts run on start-up and operate as expected. Requirements: FR2 DR2.4 and DR2.5

Risk Mitigated: Possible malfunction while testing the required individual components in each unit

Results: We have found that the Raspbian OS is compatible with the required devices to receive and store RF data

Test(s)	Status	Test Goal
Fly-by test	In Progress	To have the pi autonomously run all implemented software and subscripts to receive and collect simulated fly by data and to visually verify the test follows the state machine model.

Test Procedure Overview:

1. Store a set amount of specific times on the Pi that will relate to simulated fly-by orbit times.

2. Pi will autonomously run all implemented scripts and programs to collect data for all the respective stored fly bys.

3. After last fly by orbit has finished, USB will be ejected and the stored data will be verified for the proper naming convention, correct slimmed file size, and expected data results.

It is important to note that there is no need for special equipment or facilities for these tests outside the hardware and software itself.

State Machine Model:

Raspberry Pi and HackRF Compatibility Test

Overall Test Goal(s): Ensure the HackRF is operable when connected to the Raspberry Pi Requirements: FR2 DR2.4

Risk Mitigated: Not compatible with the onboard OS and Raspberry pi. Failure to collect necessary amount of samples per second.

Modeled Results: Seeing anywhere between 10Ms/s - 20Ms/s based on settings

Test(s)	Status	Test Goal
Acquired Sample Rate	Done	Verify that the correct amount of samples is being recorded from the SDR each second

Raspberry Pi and HackRF Compatibility Test Setup

Micro HDMI Connection

USB Type-A to Micro USB connection between Raspberry Pi and HackRF

Raspberry Pi 4

HackRF One SDR

Raspberry Pi and HackRF Compatibility Test Procedure Overview

- 1. The HackRF is hooked up to the Pi.
- 2. Using GNU Radio Companion and a GUI slider, the HackRF is then changed to different sample rates ranging from 1Ms/s to 20 Ms/s.
- 3. The data is then recorded at different sample rates and verified with Matlab that the proper data was received by the Pi.

There was no need for special equipment or facilities for these tests outside the hardware itself.

Set Test Sample Rate Ms/s	Average Sample Deviation from Set Rate	Timing Error Due to Deviation
10	1 Samples	100 ns
13	2 Samples	153.84 ns
16	2 Samples 125 ns	
20	375626 Samples	18781300 ns

RF Front End Testing Overview

- Due to the symmetry of this system between the UHF/VHF and the L-Band systems, namely their constituent components, they will have almost identical tests.
- The only difference will be the frequencies used
 - VHF: 30 MHz to 300MHz
 - UHF: 300 MHz to 3 GHz
 - L-Band (IEEE*): 1-2GHz
- System Components for both:
 - Antenna
 - LNA
 - Switch
 - Cables

* IEEE stands for the Institute of Electrical and Electronics Engineers designation

RF Front End Tests: UHF, VHF, and L-Band

Overall Test Goal(s): Ensuring that products, our team has purchased, work as advertised and more importantly these devices will ensure our received signals stand out of the noise floor. Requirements: DR3.1, DR3.3

Risk Mitigated: Unanticipated noise as well as finding other unexpected blind spots

Modeled Results: In Progress

Test(s)	Status	Test Goal
G/T and SNR Conformance	In Progress	Gain to Temperature ratio compliance confirmation.
Bandwidth	In Progress	Bandwidth / Received signal roll-off required to meet frequencies of satellites

Test Setup #1: G/T and SNR Conformance

Test Setup Overview:

- Start by hooking up an RF emitter, and LNA to a power source
- Using the SMA connector from the to antenna to an RMS Voltmeter to measure the overall strength of the received signal compared to the noise floor

The results of this test will be a value for S/N (Unitless).

Equipment/Facilities needed:

RF Signal Generator, RMS Voltmeter, Power Supply

Test Setup #2: Bandwidth test

Test Setup Overview:

- Start by hooking up an RF emitter, and LNA to a power source
- Followed by connecting the RF front end to an Wattmeter to measure the power received
- Sweeping through a range of frequencies determined by the sensitivity of the antenna as provided by the manufacturer measuring the overall received power.

Equipment/Facilities needed:

Wattmeter, Power Supply, RF Emitter

Full Suite Test

Overall Test Goal(s): Ensure that the predicted orbit is within the expected error. Requirements: FR 5, FR 6

Risk Mitigated: Verification of simulated models and allocated tolerances.

Modeled Results: Compliance with FR 5 and FR 6.

Test(s)	Status	Test Goal
Practice Run	Incomplete	Verify unit and data collection process by practicing data collection of a CSIM or IRIDIUM flyby with all units stationed in Boulder.
Iridium Flyby	Incomplete	Run data collection process on Iridium satellite candidate flyby with sensor units stationed across CO to verify FR 5 & FR 6 compliance for L-Band.
CSIM Flyby	Incomplete	Run data collection process on CSIM satellite candidate flyby with sensor units stationed across CO to verify FR 5 & FR 6 compliance for UHF-Band.

Practice Run Test Overview

Procedure:

- 1. Collect and store data with SN1-SN4 at the same location (single flyby).
- 2. Stored data is off-loaded for post processing.
- 3. Verify that TDoA output is zero for all sensors.
 - Baseline verification (cannot find orbit here).

Equipment/Facilities needed:

- Four assembled units (SN1, SN2, SN3, SN4)
- Two to three team-members
- Laptop
- Park

Test goal - Final validation of hardware and software before full-scale test.

Iridium/CSIM Flyby Test Overview

Procedure:

- Collect and store data with SN1-SN4 around 1 Colorado (multiple flybys).
- Stored data is off-loaded for post processing. 2.
- 3. Cross Correlation \rightarrow TDoA \rightarrow Satellite State Vectors
 - Verify State Vectors consistent with FR 5. 0
- 4 Satellite State Vectors \rightarrow TLE
 - Verify TLE consistent with FR 6. 0

Equipment/Facilities needed:

- Four Assembled units (SN1, SN2, SN3, SN4)
- Four team-members/volunteers
- Laptops
- Units deployed to Pueblo, Boulder, Kremmling, and Virginia Dale
- Test goal Satellite position accuracy and TLE prediction characteristics consistent with FR 5 and FR 6

Cost Plan

SpaceNet Unit 1

SpaceNet Units 2-4

Group	Part	Status	Group	Part	S
Off the Shelf Electronics	Raspberry Pi 4 Model B (4 GB) HackRf One Electronic RF Logic Switch GPS Module	Received	Off the Shelf Electronics	Raspberry Pi 4 Model B (4 GB) HackRf One Electronic RF Logic Switch GPS Module	0
RF Front End	UHF Antenna UHF Low Noise Amplifier L-Band Low Noise Amplifier L-Band Antenna	Received	RF Front End	UHF Antenna UHF Low Noise Amplifier L-Band Low Noise Amplifier L-Band Antenna	0
Hardware	WH-16 Hinged Nema Enclosure Miscellaneous Hardware Miscellaneous Electronics Hardware	Received	Hardware*	WH-16 Hinged Nema Enclosure Miscellaneous Hardware Miscellaneous Electronics Hardware	0

*Some Hardware orders for SN1 include numbers required for all 4 units, i.e. bolts that come in packs of 50

Expenses To Date	
\$3,380.61	

Remaining Expected Costs

\$323.23

Cost Plan

	Initial Budget			
	\$5000		Long Lead Time	Status
Single Unit Cost Goal		1		
<\$1,000		This includes RTL SDRs	RF Switch	Ordered
	Developmental Costs	ordered for very early	HackRF One	Ordered
	\$200.22	parts to support those tests.		May be slightly delayed due to stock
Designed Single Unit Cost				before March 5th
\$1,045.93	Expected Full Suite Cost		Raspberry Pi	Ordered May be slightly delayed
	\$4183.70			due to stock Expected to arrive before March 5th
Designed Full Suite Cost			UHF LNA	Ordered
\$4,183.70	Budget Margin			Scheduled to arrive on March 5th
	\$616.08			

Acknowledgements

- Dr. Francisco López Jiménez
- Martin Wilson (Raytheon)
- Mike Walker (Raytheon)
- Sheldon Clark (Raytheon)
- Mark Werremeyer (Raytheon)
- Dr. Zachary Sunberg
- KatieRae Williamson

PRODUCT NAME	SpaceNet Ground Station	CONTACTINEO
APPROVED BY		
DATE OF APPROVAL		
PART COUNT	58	
TOTAL COST	\$ 1,045.93	This is not accuratell look below

94812A100

Nyoin Nut

threaded nylon nit

IDIAL COS	5 1,040.73	This is not decordinate took balow			0.000	8					
PART NUMBER	PARTNAME	DESCRIPTION	Purchase Link	QUANTITY		PART WAGE	UNIT COST	UNITS	AMOUNT	Inventory	Required
	Rospberry Pi 4 Model 8 (4 G8)	On board computer	https://www. workfun. com/products/154 42	1	eq		\$ 55	00 1	\$ 55.00	1	4
	SD-card	On board storage	https://www. omoton. com/SAASUNG. Select-microSDIC. Adopter.MB.	1	ea	SAMSUNG	\$ 18	99 1	\$ 18.99	1	
	SPF51892 RF Amplifier	UHF LNA	https://www. omoton. com/Zerone. Ampilier.40026452. SPF51897.	1	ea		\$ 15	00 1	\$ 15.00	1	•
	2880-242GLN-S+	L Band INA	https://www. mouter. com/ProductDatol VMrsi: Circuits/Dido-	1	eq	Carlo a	\$ 74	82 1	\$ 74.82	1	
	Power Strip	handles al internal power distribution	https://www. amazon. com/do/8083XR.00 SD/ref~emc.b.5.i	1	eq	S	\$ 14	00 1	\$ 14.00	ĩ	•
	Rospberry Fi 4 Official Power Supply	AC to DC supply for respherry pi	tittps://deas. com/collections/o flicid-rosoberv-pi- occessories/orodu cts/official-	1	eq	50	\$ 8	00 1	\$ 8.00	1	4
	ProtoBoard 32 pack	Used to handle power distribution to the LNAs, GPS Module, and Switcher Device	tillos://www. omozon. com/EEGOO: Pototype: Soldeing-	1	pock of 32		\$ 10	00 4	\$ 2.50	ï	6
	Great Scott Gadgets HackRI One-Software Defined Radio	Software Defined Radio that will handle demodulatin the RF Signal	https://www. ociatuit. com/product/358 38 ocia=CRXCQAvb	1	ea		\$ 339	95 1	\$ 339.95	1	
972-F2932EVB	P2932EVBI Evaluation Board	RFlagic computer controlled switch	https://www. mouter. com/ProductDetoi /Renesos. IDT/2932EV882	'n.	eo		\$ 248	75 1	\$ 248.75	2	•
	Mopower Micro USB Cable, 10 Pcs 3FT High Speed USB 2.0 A	Used to channel power from power ship USB parts to protoboard to power the LNAs, QPS Module, and Switcher Device	https://www. amazon. com/go/oraduct/ 807.9WLFQ/ref=c d.ewc.\$te.do.18	1	pack of 10	I Park	\$ 13	97 4	\$ 3.50	o	
	WH-16 Hinged Nema Enclosure	Nemanated enclosure to house electronics, includes clear top to enable GPS lock	https://www. polycose. com/wh-148 mickid=48/4cidds 20c12c2rded292h	1	eα	J	\$ 50	75 1	\$ 50.75	i.	•
	SOft outdoor extension chord	used to produce an outdoor rated cable leading from the box to the wall outlet	https://www. homedepot. com/p/HDX-50.8. 14.31.ondicope. Extension-Cord-	1	eo	3	\$ 13	29 1	\$ 11.29	i.	•
94639A713	Nylon Unthreaded spacer, for number 2 boit [1/2*]	Used for offesting electronics from the hordware rack	https://www. mcmoster. com/oonei. standafti/nsian. unthreaded.	1	pack of 100	0	\$ 10	60 4	\$ 2.45	3	0
94639A536	Off-White Nyton Unthreaded Spacer, 1/21 OD, 11 Long, for Number 8 Screw Size	tised for offesting electronics from the hordware rack	tittos://www. mcmaster. com/sanet. standatti/mion- unthreaded-	1	pack of 100	0	\$ 13	04 4	\$ 3.26	3	
94613A086	Nylon Balf	threaded rylan balt	https://www. mcmoster. com/bolts/length-	5	pack of 100	1	\$ é	49 4	\$ 1.47	1	4

2/length-1/plostic: https://www. momoster. com/outs/moterial -plastic/nutbioe-hex/height-

pack of 100

2

7.34 4 \$ 3.57 1 2

\$

8982K124	4 ff long, 2 % ", Angled Aluminum"	For anetenna Mounting	ottps://www. mcmaster. com/angles/multi putpose-6061. aluminum-90.	1	ea	L	\$	26.92	4	\$	6.73	1	1
89015K232	4ft lang, Aluminum flat stock	For aneterna Mounting	https://www. mcmoster. com/oluminum. stock/multiouroos e-6061-oluminum-	i.	ea		\$	19.68	4	\$	4.92	1	ı.
	Rivets	For aneterna Mounting	https://www. homedepol. com/p/Arrow-1-8- n-Aluminum-Short- Rivets-100-Pack-	i.	pack of 50		\$	5.98	4	\$	1.50	1	i.
69915K54	Nema Cord Grips	For power	https://www. mcmaster. com/cont- grips/compact- plastic-	a.	ea		s	3.34	1	\$	3.34	3	4
69915k52	Nema Cord Grips	For Coax	https://www. mcmaster, com/69915K52/	2	ea		\$	3.30	1	\$	6.60	0	8
	Coaxial cable	Outdoor Rated Coaxial Cable to antennas	https://www. omozon, com/CIMPLE-CO- Connectors- internet-	1	ea	0	\$	8.97	4	\$	2.24	i.	i.
	Coaxial cable	LNA to Swlich/Swlich to SDR Coaxial Cable:	https://www. amazon. com/Monoprice- Shield-Coaxial- Coble-	1	ea	O	\$	4.99	4	s	1.25	i.	i.
	SMA Connectors male	Internal connectors	https://www. omozon. com/dp/8089CJY IGX/ref=spo. dk. detail.38	i.	pack of 10	9,9,9, 9,9,9, 9,9,9,9,	s	8.89	1	\$	8.89	1	4
	SMA Connectors female	external connector to anterna	https://www. amazon. com/dp/8089hHW 2X9/hef=spa_dk_d etai_32	1	pack of 10	8, 8, 8, 8, 8, 8, 8, 8, 8, 8,	\$	8.89	4	\$	2.22	0	a.
8560K214	Acrylic	Plastic Sheet for Mounting Plate:	https://www. mcmoster. com/8560K214//	a.	ea	S	\$	32.75	4	\$	8.19	a.	a.
5415K38	Steel Screw, 1/2" Band Width, 4-1/8" to 7" Clamp ID	For mounting bax to something	https://www. mcmoster. com/5415638/	1	pack of 10	0	\$	15.05	4	\$	3.76	0	a.
	T-post	to mount bac to	https://www. homedepot. com/p/Everbit-1- 3-4in-x-3-1-2-in-x- 6-ft-Green-Steel-	1	ea		\$	4.70	1	\$	4.70	1	4
	PVC pipe	Antenna maunt, 10th, 2inch, Schedule 40	https://www. homedepot. com/p/2-in-x-10-ft- 280-PSI-Schedule- 40-PVC-DWV-	2	60	And the owner	\$	8.84	4	\$	4.42	2	2
	PVC cap	Antenna mount	https://www. homedepot. com/p/Charlotte- Pipe-2-in-PVC- Schedule-40-	2	ea		\$	1.86	1	s	3.72	2	8
	PVC Tee fitting		https://www. homedepot. com/p/NBCO-2- in-PVC-DWV-All- Hub-Sonitory-Tee-	1	ea		\$	3.53	1	\$	3.53	1	4
91257A634	Bolts	Balls for antenna	https://www. mcmaster. com/bolts/hex. bead-screws/high- strength-grade-8.	1	pack of 25		\$	12.76	4	\$	3.19	1	i.
95462A031	Nuts	Nuts for antenna	https://www. mcmaster. com/nuts/hex- auts/medium- strength-steel-hex-	1	pack of 100	•	\$	8.79	4	s	2.20	1	i.
92620A726	baits	PVC to Aluminum	https://www. mcmasher. com/92620A726/	1	ea		\$	1.37	1	\$	1.37	0	4
92620A726	M5 x 0.8 mm Thread, 35 mm Long	Internal mount	https://www. mcmosler, com/92005A334/	1	pack of 100	-9	s	10.20	4	\$	2.55	0	a.

91831A137	18-8 Stainless Steel Nylon- Insert Locknut	PVC to Aluminum	https://www. mcmaster. com/91831A137/	1	pack of 10	9	\$	4.70	4	\$	1.18	٥	1	
	PVC Glue	For pvc end cops etc.	https://www. homedepot. com/o/Weld-On. Weld-On-700-PVC- Solvent-Cement-	Intrifuence, introducto, Co., 1 eo 5		\$	2.98	4	\$	0.75	0	1		
	10uf cap	for posifiler	https://www. sparktun. com/products/523	5	ea	9	\$	0.45	4	\$	0.56	0	5	
	Resistor Kit - 1/4W (500 total)	1k, 4.7k, 10k	https://www. sparktun. com/products/109 69	1	ea		\$	7.95	4	\$	1.99	0	4	
	Jumper Wires	To get power/pps/data to everything	https://www. omozon. com/i2OKEE- Solderless- Breadboard-	1	ea		\$	8.99	4	\$	2.25	o	1	
	male Header	Found in a trash pin (prince has them), note normally you only ever want nonpowerd pins to be sticking up where someone could fouch them but this is cheap and the whole thing should be a		1	ea	###	\$	-	4	\$	0.00	1	i.	
	veloro	Velcro to secure: power strip, Hackt, GPS antenna	https://www. omozon. com/Strenco-Inch- Self-Achesive. Hook/dp/800EQ93	1	15 ft of both side	0	5	7.92	4	\$	1.98	٥	1	
	Proxicost Pro-Grade Extra Strong 30mil Weatherprool Self-Fusing Silicone Rubber Sealing Tape	Used for water proofing under electrical tape(no UV resistance)	https://www. amazon. com/Proxicast. Pro-Grade. Weatherproof.Sett.	2	15' 1" roll	-	\$	17.95	4	\$	8.98	0	2	
22508	Permatex Dielectric 22508	used inside the connector to keep water and moisture out	https://www. omozon. com/Permotex. 22058.Dielectric. Tune.Up.	1	302		\$	6.99	4	\$	1.75	o	4	
Super 88	3M Scotch Vinyl Electrical Tape Super 88, Premium Grade All-Weather, 3/4 in x 44 ft, 8.5-mil thick, Black, 1 roll	Used for uv protection	https://www. amazon.com/3M. 88.Super.3-4x44FL Vinyl. Bectrical/dp/8000	1	3/4 in x 44 ft	E	\$	7.20	4	\$	1.80	0	1	
	UHF Antenna	400 to 470MHz9 dbi antenna	https://www. ameron.com/HYS. Antenno. Bements. Motorolo.	1	ea	++++	5	50.00	1	\$	50.00	1	4	
	pi259 to SMA adapter	adapt UHF antenna to SMA	https://www. omozon. com/SMA-UHF- Connectors- Nickel-Ploted-	1	ea	6	\$	7.68	1	\$	7.68	1	4	
RE1208P-SM	LBand Antenna	1.616 GHz	https://www. mouser. com/ProductDetai //Tooglas/IAA0112 1111/2	1	ea	$\langle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	\$	25.11	1	\$	25.11	1	4	
	GPS Module	GPS Module GPS NEO-6M/Ar duino GPS, Drane Microcontroller GPS Raceiver/ Compatible with 51 Microcontroller STM32 Ar duino UNO R3 with PEX Antenna High Sensitivity for Navigation	https://www. omozon. com/Microcontroll er-Compatible- Sensitivity-	1	ea	t	\$	10.90	1	\$	10.90	4	4	
			TOTAL PARTS	58			101	AL	\$ 1,045.93	To 4	tal Per Units	\$ 4,183.70	fotal Spent on units	\$ 1,300.97

Conceptual Block Diagram

Box Weatherproof Test

Overall Test Goal(s): Test that the box and cable pass throughs are weather resistant and not susceptible to ingress of water. Requirements: DR1.1

Risk Mitigated: Hardware not fully operational/could be damaged during satellite pass over.

Results: Box unit from manufacture is weather resistant and not susceptible to ingress of water. With cable pass throughs in place, some water leakage due to the hole size used.

Test(s)	Status	Test Goal	
Baseline (water)	Done	To ensure the box from the factory is waterproof	
Baseline (snow)	Done	To ensure the box from the factory can handle sitting water that would occur as snow melts	
Box+cable pass throughs (water)	In Progress	To ensure the box is still waterproof after the cable pass throughs have been installed	47

- Measure water flow from water source being used in order to determine flow rate.
- Inlay the box with paper towels on all edges of the box for coverage of areas of possible water ingress, and inspect after test.

Equipment/Facilities:

- Volume container with measurements indicated on the side.
- Access to water source
- Paper Towels
- Stop Watch

GPS Test

Overall Test Goal(s): Ensure the GPS Pulse Per second meets the device specifications Requirements: DR5.1

Risk Mitigated: Debugging the timing hardware during the full system test.

Modeled Results : Per GPS data sheet the PPS is expected to be a pulse wave with a on duty cycle of 10%. PPS should start with in a indistinguishable amount of time from one another.

Test(s)	Status	Test Goal
Compare GPS(s) PPS	Done	To ensure that the rising edge of the GPS timepulse(s) are within 10ns of each other.

Test Procedure Overview: Equipment: AD2 Oscope

Two GPS modules were connected to a Digilent analog discovery 2 Oscope.

PPS from each GPS were placed on different channels.

Test Results:

Rising edge of both GPS PPS started within less than ≤ 10 ns of each other.

Note. The Rise time, duty cycle and accuracy to UTC do not matter. As long as error related to the Rising edge is consistent across all units.

Pictures or diagrams explaining the results or test setup(use another slide if needed)

HackRF & Timing Scheme Test

Overall Test Goal(s): Ensure the SDR meets the device specifications for sample rate and that timing scheme operates as expected Requirements: DR5.1

Risk Mitigated: Debugging the timing hardware during the full system test.

Modeled Results : Per SDR data sheet the hackRF is capable of sustained sample rates at up to 20Ms/s (50ns per sample)

Test(s)	Status	Test Goal
Verify Sample Rate Stability 20Ms	Done	Verify that the SDR is capable of maintaining the claimed 20Ms/s
Verify Sample Rate Stability (<20Ms/s)	Done	If the SDR cannot maintain 20Ms/s find the highest sample rate possible

Test Procedure Overview: Equipment: HackRF, GPS, Matlab, SDRsharp, SDRConsole

The hackRF was equipped with the GPS timing modification. SDRsharp/SDRConsole were used to set/record data from the SDR. The PPS was used to identify 1s intervals in the recorded data.

Test Results:

Depending on the software used the SDR was able to achieve 20Ms/s (+/-) 3. This error decreased at lower sample rates.

Unknown if the sample variation is due to the GPS, SDR or PPS detection method. The sample variation is acceptable for this application.

Sam	ple Rate MS/s	Avg. Sar	mples per sec	σ (Samples)				
	10		10		1			
	12.5		12.5	3				
	16		16		4			
	20		17	3e6				
0.04		-, , ,		3	Deviation from 20Ms/s			
0.035 - 0.03 - 	←	S in RF data d to measure ec		2.5 - 2 -				
0.02 - 0.015 -				1.5 -				

0.01

0.005

samples [s]

Samples per Second Deviation from set rate

2.5

Orbit Determination Test Overview

Test Procedure Overview:

- STK produced multiple sample satellite orbits and range data from the orbit to each sensor.
- Calculated sample TDoA values from the ranges with induced 100 ns measurement error.
- TDoA values initialized the orbital determination method.
- Update estimate with remaining TDoA values.
- Compared outputs to STK data.
 Calculated the difference between them or residual vectors.

Equipment/Facilities needed:

STK and Matlab

Y Position Error [km]

Orbital View of Particle Filter

Results: Orbit determination method converges on truth

Results: Average Position Error = 627 m Average Velocity Error: 54 m/s

Temperature Test

Overall Test Goal(s): Ensure that the internal temperature of the box will remain within operating conditions as modeled Requirements: DR 1.2

Risk Mitigated: Component failure due to being outside of operating conditions, which would result it incorrect or no pass over data being captured.

Modeled Results:		
Test(s)	Status	Test Goal
Indoor Operation	Incomplete	Determine actual Q in order to more accurately determine current operating conditions of the unit.
Heater Freezer Test	Incomplete	If heater is determined necessary, test that desired operating conditions can be met when placed in a cold environment.
Outdoor Operation	Incomplete	Ensure that sensor unit hardware remains operational over a 24 hour period.

- Run thermal test such that the box is operating for an extending duration of time (Approx: 1-3 hours).
- Use raspberry pi to measure the temperature inside the box in each scenario and use this data to more accurately model the Qⁱ to determine whether heater is necessary and if so the required size.

Equipment/Facilities Needed:

- Fully integrated unit with operational hardware
- Clock/Timer
- External Temperature Sensor/Thermometer

Onboard OS Sub-System Test

Overall Test Goal(s): Ensure that the subscripts run on start-up and operate as expected. Requirements: FR2 DR2.4 and DR2.5

Risk Mitigated: Possible malfunction while testing the required individual components in each unit

Results: We have found that the Raspbian OS is compatible with the required devices to test

Test(s)	Status	Test Goal	
RF Control	In Progress	Esure the Raspberry Pi can command the switch to change between the two R inputs.	 ۲F
GPS Control	In Progress	Esure the Raspberry Pi can use GPS time to determine when to start data collection.	
Data Handling	In Progress	Ensure record data can be slimmed and moved to the proper location for off loading.	60

RF Control:

• Attach the raspberry pi to the switch and program the pi to switch between 2 different radio station. This will be verified using a GUI on GNU Radio Companion.

GPS Timer:

 Give the Raspberry Pi a set of times. Attach the GPS to the Raspberry pi. Connect a LED to the Pi and verify that the LED lights up when the times programmed times line up with the GPS time.

Pictures or diagrams explaining the results or test setup(use another slide if needed)

Data Handling:

- Collected RF Data for a specific amount of time and store the data onto a flash drive.
- Program the Pi to slim the data and collect data for the same amount of time as the sampled collection.
- Compare the slimmed data file size is significantly smaller than the original collected data.
- Ensure that the data is stored with the proper naming convention in relation to the fly by time and respective sensor unit.

It is important to note that there is no need for special equipment or facilities for these tests outside the hardware itself.

Pictures or diagrams explaining the results or test setup(use another slide if needed)

RF Front End Test #1: G/T Conformance

Overall Test Goal(s): Make sure each sensor unit has a minimum UHF G/T of -20 dB/K with a target value of -15dB/K.

Requirements: DR3.1

Risk Mitigated: Too much noise on the signals received, leading to misinterpreted information

Results:

Test(s)	Status	Test Goal
VHF	In Progress	VHF G/T of -20 dB/K with a target value of -15dB/K.
UHF	In Progress	UHF G/T of -20 dB/K with a target value of -15dB/K.
L-Band	In Progress	L-Band G/T of -17 dB/K with a target value of -13 dB/K

RF Front End Test #2: Bandwidth / Received signal roll-off

Overall Test Goal(s): Verify that the RF front end must is able to cover ±10MHz of the target UHF frequency.

Requirements:, DR3.3

Risk Mitigated: Limits signal contamination of our desired signals by using a relatively small bandwidth. As well as proving that our antennas are capable of receiving satellite signals

Results:

Models: None(?)

Test(s)	Status	Test Goal
UHF	In Progress	±10MHz of the target (437.25 MHz)
VHF	In Progress	±10MHz of the target (145.3 MHz)
L-Band	In Progress	±10MHz of the target (1616 MHz)

RF Front End Test #3: Beamwidth/Azimuth

Overall Test Goal(s): Verifies that our antenna selections meet our requirement for a maximum beamwidth of 30°

Requirements: DR3.6

Risk Mitigated: Helps eliminate the need for pointing control by ensuring a large over head region will be in a roughly optimal configuration to receive satellite signals

Results:

Models: None	e(?)	
Test(s)	Status	Test Goal
VHF	In Progress	Maximum beamwidth of 30°, AZ FOV 360°
UHF	In Progress	Maximum beamwidth of 30°, AZ FOV 360°
L-Band	In Progress	Maximum beamwidth of 30°, AZ FOV 360°

Using the antenna attached to the wattmeter and an RF emitter, have the antenna mounted on in the ground plane while the emitter is swept across the front at a constant radius to determine the frequency rolloff of the antenna.

Equipment/Facilities needed:

Wattmeter, Power Supply, RF Emitter

Test Setup #2

RF Control:

• Attach the raspberry pi to the switch and program the pi to switch between 2 different radio station. This will be verified using a GUI on GNU Radio Companion.

GPS Timer:

 Give the Raspberry Pi a set of times. Attach the GPS to the Raspberry pi. Connect a LED to the Pi and verify that the LED lights up when the times programmed times line up with the GPS time.

Pictures or diagrams explaining the results or test setup(use another slide if needed)

Data Handling:

- Collected RF Data for a specific amount of time and store the data onto a flash drive.
- Program the Pi to slim the data and collect data for the same amount of time as the sampled collection.
- Compare the slimmed data file size is significantly smaller than the original collected data.
- Ensure that the data is stored with the proper naming convention in relation to the fly by time and respective sensor unit.

It is important to note that there is no need for special equipment or facilities for these tests outside the hardware itself.

Pictures or diagrams explaining the results or test setup(use another slide if needed)

Signal Correlation Test

Overall Test Goal(s): Ensure that the signals from boxes can be aligned and maintain the timing accuracy calculated. Requirements: FR 5, FR 6

Risk Mitigated: Sensor Units can't be aligned according to GPST

Modeled Results: Simulated TDoAs

Test(s)	Status	Test Goal
Practice Run	Incomplete	Verify zero TDoA values at a single location.
Iridium Flyby	Incomplete	Verify expected TDoA with sensor units stationed across CO.
CSIM Flyby	Incomplete	Verify expected TDoA with sensor units stationed across CO.

Full System Level Tests

Tests	Test Goal
Full suite test	Ensure that the predicted orbited from test data is within the expected error

Practice Run Test Overview

Procedure:

- Collect Data with Sensor Units at the same location.
- Press 'collect' within one second of each other for gps . alignment.

Equipment/Facilities needed:

4 Sensor Units.

0.8

0.6

0.4

0.2

0

-2

-1.5

-1

-0.5

0

Correlation

Test goal - Verify that TDoA between all Sensor Units at the same location is zero.

Iridium/CSIM Flyby Test Overview

Procedure:

- Collect Data with Sensor Units around Colorado.
- Press 'collect' within one second of each other for gps alignment.

Equipment/Facilities needed:

4 Sensor Units.

Test goal - Verify that TDoA between all Sensor Units at different locations is around the predicted value.

Planned LEO/GEO Missions

Plot from the ESA space debris portal https://sdup.esoc.esa.int/discosweb/statistics/

Increasing number of objects in Low Earth Orbit (LEO)

- CubeSats
- Commercial Constellations (Starlink, OneWeb)
- Debris

High fidelity phased-array sensors are limited

- Expensive
- Limited field of view
- Can only focus on a single object at a given time
- Time consuming to build and operate

What is SpaceNet?

A Low-Cost network of Software Defined Radio(SDR) equipt ground stations for monitoring LEO space domain

This type of network could be used to monitor LEO space domain relieving high fidelity sensors

The system would produce two-line element sets(TLE) that could be compared to expected orbits to determine if something is out of place

This Project

Four unit proof of concept proving hardware and software

This project will produce four functional ground units that can record UHF/L-Band satellite Quadrature signal (IQ) data

The recorded data will be used to produce both a position estimation and orbit estimate