
SpaceNet Manufacturing Status Review

Spring 2021

Planned LEO/GEO Missions

Plot from the ESA space debris portal https://sdup.esoc.esa.int/discosweb/statistics/

Increasing number of objects in Low Earth Orbit (LEO)

- CubeSats
- Commercial Constellations (Starlink, OneWeb)
- Debris

High fidelity phased-array sensors are limited

- Expensive
- Limited field of view
- Can only focus on a single object at a given time
- Time consuming to build and operate

What is SpaceNet?

A Low-Cost network of Software Defined Radio(SDR) equipt ground stations for monitoring LEO space domain

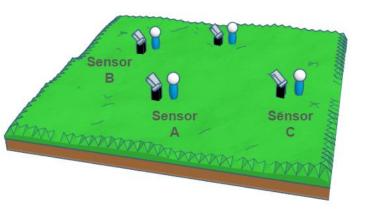
This type of network could be used to monitor LEO space domain relieving high fidelity sensors

The system would produce two-line element sets(TLE) that could be compared to expected orbits to determine if something is out of place

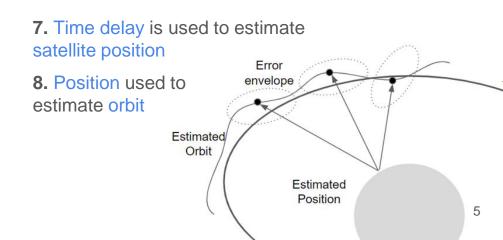
This Project

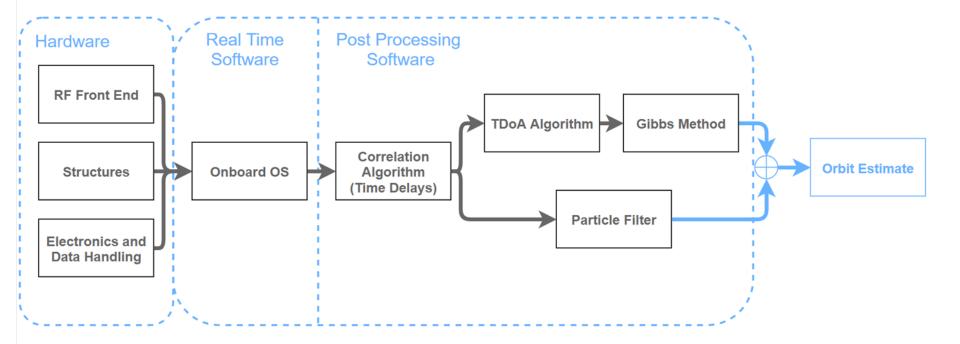
Four unit proof of concept proving hardware and software

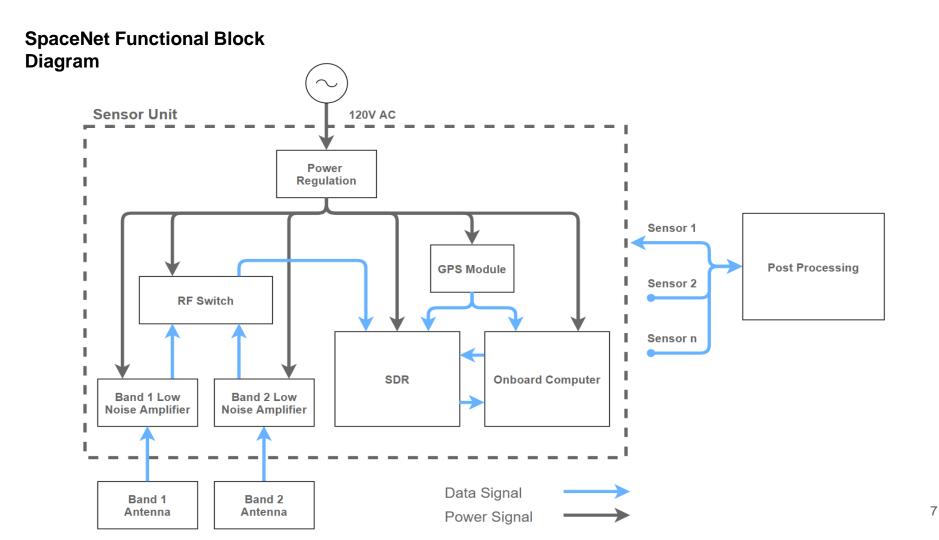
This project will produce four functional ground units that can record UHF/L-Band satellite Quadrature signal (IQ) data


The recorded data will be used to produce both a position estimation and orbit estimate

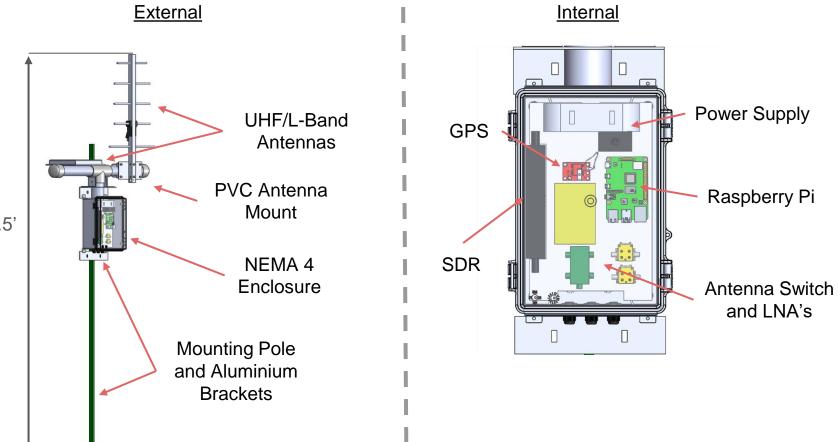
SpaceNet Concept of Operations (CONOPS)


- **1.** Sensors are temporarily deployed
- **2.** Sensors synchronize to UTC time


- **3.** Satellite transmits during flyby
- 4. Transmissions are received by sensors

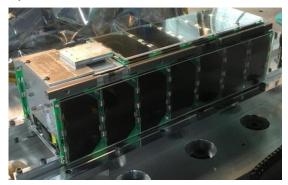


	Sensor A Data	Sensor B Data	
	UTC12:00:01.	UTC12:00:01.	
5. Transmissions are	UTC12:00:02.	UTC12:00:02. GO CU!	
identified post test	UTC12:00:03.	UTC12:00:03.	
	UTC12:00:04.	UTC12:00:04.	
C Time delay of signal	UTC12:00:05.	UTC12:00:05.	
6. Time delay of signal	UTC12:00:06.	UTC12:00:06.	
arrival is calculated	UTC12:00:07.	UTC12:00:07.	
from UTC time	UTC12:00:09 GO CU!	UTC12:00:08. UTC12:00:09.	
	UTC12:00:010	UTC12:00:010.	
	01012.00.010.	01012.00.010	



Conceptual Block Diagram

Baseline Design



7.5'

Satellite Targets

UHF Target: CSIM

The main target we will be using for this Frequency band is the CSIM Satellite operated locally here at CU Boulder

Operational characteristics:

- Fc = 437.25 MHz (Carrier)
- P = 5 W (Transmitted power)
- BW = 30 kHz (Beamwidth)
- DR = 9.6 kbps
- Demod = GMSK

L-Band Target: Iridium Next

Our primary target for this band is the Iridium NEXT Constellation.

Operation characteristics:

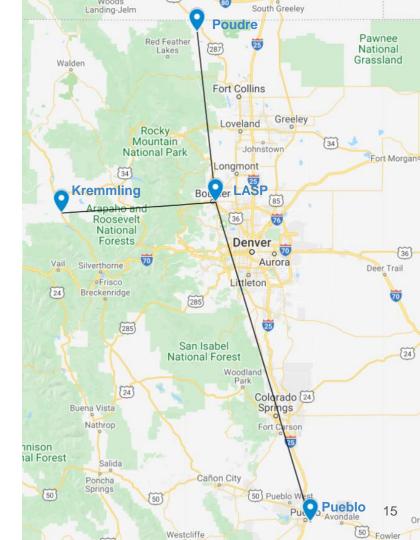
- Fc = 1616-1626.5 MHz (Carrier)
- P = 5 W (Transmitted power)
- BW = 30 kHz (Beamwidth)
- Possible data rates
 - Voice = 2.4kBps
 - Short Burst = 64 kBps

Environmental Readiness	Testing time will be dictated by satellite's orbital passes. The sensor unit must be ready to
	operate in rain, snow and the temperatures expected during spring semester in Boulder

Critical Project Element	Why is This Critical?
Environmental Readiness	Testing time will be dictated by satellite's orbital passes. The sensor unit must be ready to operate in rain, snow and the temperatures expected during spring semester in Boulder
RF Front End	The RF front enables UHF and L-band signal reception. The reception must be good enough to discern the transmission from the noise floor
RF Front End	

Critical Project Element	Why is This Critical?
Environmental Readiness	Testing time will be dictated by satellite's orbital passes. The sensor unit must be ready to operate in rain, snow and the temperatures expected during spring semester in Boulder
RF Front End	The RF front enables UHF and L-band signal reception. The reception must be good enough to discern the transmission from the noise floor
Timing Synchronization	The received data must be alignable such that time delay can be measured with extreme precision. Error here has a large impact on positional predictions

Why is This Critical?		
Testing time will be dictated by satellite's orbital passes. The sensor unit must be ready to operate in rain, snow and the temperatures expected during spring semester in Boulder		
The RF front enables UHF and L-band signal reception. The reception must be good enough to discern the transmission from the noise floor		
The received data must be alignable such that time delay can be measured with extreme precision. Error here has a large impact on positional predictions		
Time Delay of Arrival(TDoA) ranging is used to produce the positional information required for orbital prediction		
-		

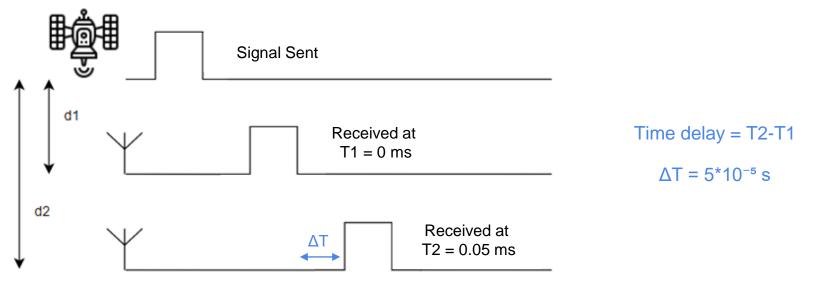

Environmental Readiness	Testing time will be dictated by satellite's orbital passes. The sensor unit must be ready to operate in rain, snow and the temperatures expected during spring semester in Boulder
RF Front End	The RF front enables UHF and L-band signal reception. The reception must be good enough to discern the transmission from the noise floor
Timing Synchronization	The received data must be alignable such that time delay can be measured with extreme precision. Error here has a large impact on positional predictions
Position Vector Estimate using TDoA	Time Delay of Arrival(TDoA) ranging is used to produce the positional information required for orbital prediction
Orbital determination	Two methods: Gibbs and Particle Filter. Both produce orbital predictions that are the final product of the project

Location and Deployment?

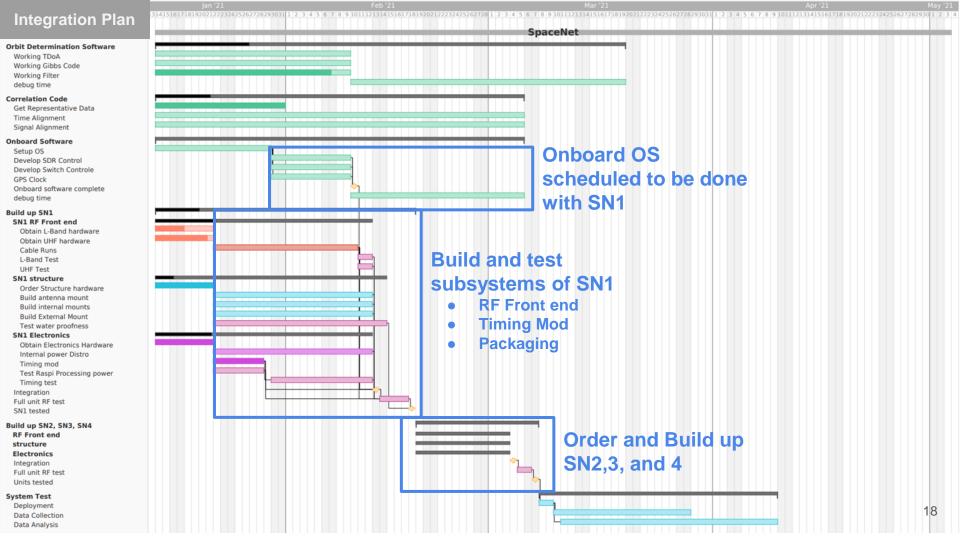
- Is this wall powered and will you have access?
- Are the locations safe?

The units are wall powered and will be stationed with friends and family giving us access as needed

If willing friends and family can also handle data collection(changing SD cards) to reduce our travel time.


What is the systems time accuracy?

Timing Accuracy: The level of accuracy the system can measure time delay with


Depends on:

SDR Sample rate - how many samples the SDR takes (up to 20 Ms/sec)

GPS Pulse Per Sec accuracy - How close the pulse period is to being exactly 1 second (+/- ns)

	Jan '21	Feb '21	Mar '21	Apr '21	May '2
Schedule	.3141516171819202122232425262728293031 1 2	3 4 5 6 7 8 9 1011121314151617181920212223242	5262728 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627. SpaceNet	18293031 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262	7282930 1 2 3
Orbit Determination Software Working TDoA Working Gibbs Code Working Filter debug time					
Correlation Code Get Representative Data Time Alignment Signal Alignment					
Onboard Software Setup OS Develop SDR Control Develop Switch Controle GPS Clock Onboard software complete debug time					
Build up SN1 SN1 RF Front end Obtain L-Band hardware Obtain UHF hardware Cable Runs L-Band Test UHF Test SN1 structure Order Structure hardware Build anternal mounts Build internal mounts Build External Mount Test water proofness SN1 Electronics SN1 Electronics Obtain Electronics Hardware Internal power Distro Timing mod Test Raspi Processing power Timing test Integration Full unit RF test SN1 tested					
Build up SN2, SN3, SN4 RF Front end structure Electronics Integration Full unit RF test Units tested					
System Test Deployment Data Collection Data Analysis					17

Integration	Plan
-------------	------

Orbit Determination Software

Working TDoA Working Gibbs Code Working Filter debug time

Correlation Code

Get Representative Data Time Alignment Signal Alignment

Onboard Software

Setup OS Develop SDR Control Develop SWitch Controle GPS Clock Onboard software complete debug time

Build up SN1

SN1 RF Front end Obtain L-Band hardware Obtain UHF hardware Cable Runs L-Band Test UHF Test SN1 structure Order Structure hardware Build antenna mount Build internal mounts Build External Mount Test water proofness

SN1 Electronics

Obtain Electronics Hardware Internal power Distro Timing mod Test Raspi Processing power Timing test Integration Full unit RF test SN1 tested

Build up SN2, SN3, SN4

RF Front end structure Electronics Integration Full unit RF test Units tested

System Test

Deployment Data Collection Data Analysis

SpaceNet
- Cori
deve unti com

Orbital Determination code development will be done with SN1 and have until we get data back for debug

Correlation Code development runs until SN2, 3 and 4 are completed

	Jan '21	Feb '21	Mar '21	Apr '21	May '21
Critical Path	.3141516171819202122232425262728293031 1 2	3 4 5 6 7 8 9 101112131415161718192021222324252627	28 1 2 3 4 5 6 7 8 9 101112131415161718192021	122232425262728293031 1 2 3 4 5 6 7 8 9 1011121314151617	18192021222324252627282930 1 2 3 4
			SpaceNet		
Orbit Determination Software Working TDoA Working Gibbs Code Working Filter debug time Correlation Code Get Representative Data Time Alignment Signal Alignment Onboard Software					
Setup OS Develop SDR Control Develop Switch Controle GPS Clock Onboard software complete debug time					
Build up SN1 SN1 RF Front end Obtain L-Band hardware Obtain UHF hardware Cable Runs L-Band Test UHF Test SN1 structure Order Structure hardware Build antenna mount Build antenna mounts Build External Mount Test water proofness SN1 Electronics SN1 Electronics SN1 Electronics Internal power Distro Timing mod Test Raspi Processing power Timing test Integration Full unit RF test SN1 tested				Critical Paths to end of semester	
Build up SN2, SN3, SN4 RF Front end structure Electronics Integration Full unit RF test Units tested					
System Test Deployment Data Collection Data Analysis					20

Manufacturing Tasks

Hardware:

Packaging

Timing

RF front end

Software:

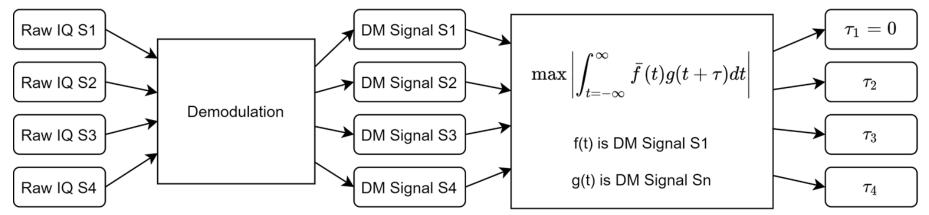
Signal Cross-Correlation for TDoA

Particle Filter

Gibb's Method

Onboard OS

Work Status:	Completion Date:
Open ↓↓ In Progress ↓↓ Testing ↓↓ Done	Ahead of Schedule ↓ On Time ↓ Behind


Software: Signal Cross-Correlation for TDoA [In Progress]

Completed:

- Acquisition of representative Raw IQ
- Demodulated sample data

Remaining:

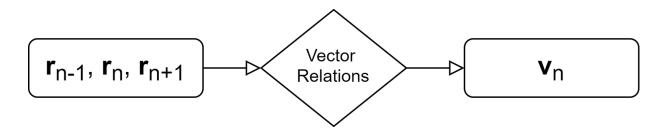
- Correlation peak finding MATLAB function
- Verification and qualification testing with actual data

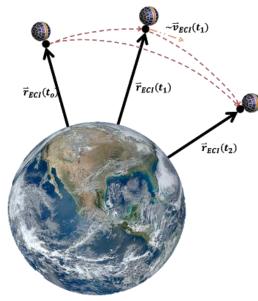
Road Blocks:

- Specific demodulation parameters
- Realistic raw data (working on simulating)

Sched. Completion: 03/05/21 Est. Completion: 03/05/21

On Time


Software: Gibb's Method [Testing]

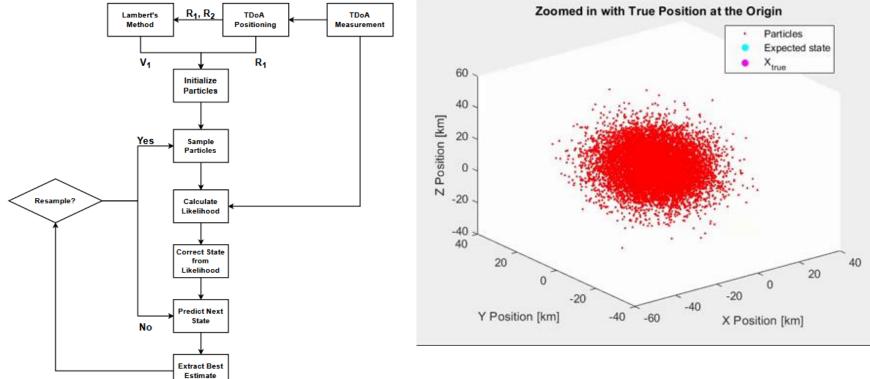

Inputs:

• Three time-sequential position vectors

Outputs:

 Velocity vector at the second time

Completed:


• Software Package (MATLAB function)

Remaining:

- Streamline post processing
- Verification and qualification testing with actual data

Sched. Completion: 02/09/21 Est. Completion: 02/01/21 Ahead of Schedule

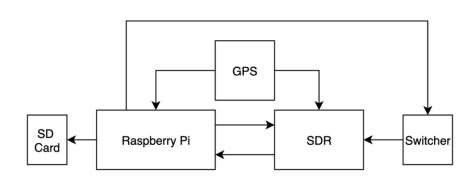
Software: Particle Filter [Testing]

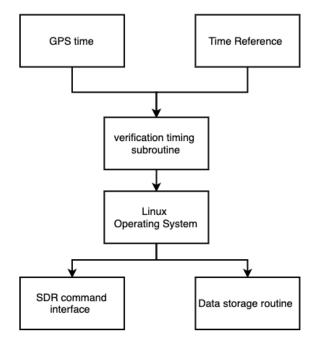
Software: Particle Filter [Testing]

Progress:

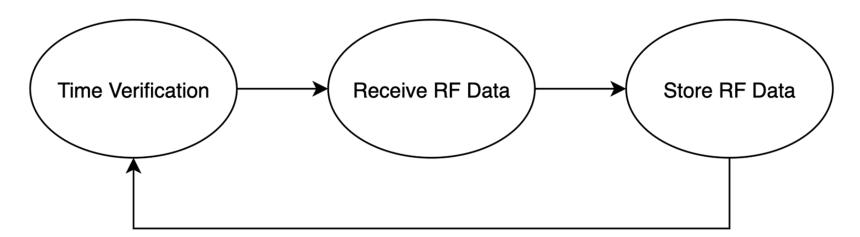
- Have an initial particle filter complete
- Needs to be tested with more STK simulated data

Concerns:


- Correlation data is far noisier than suspected
- Integration with the rest of software has yet to be started


25

Software: Onboard OS [In Progress]


Hardware Block Diagram:

Software Block Diagram:

OnBoard OS: State Diagram

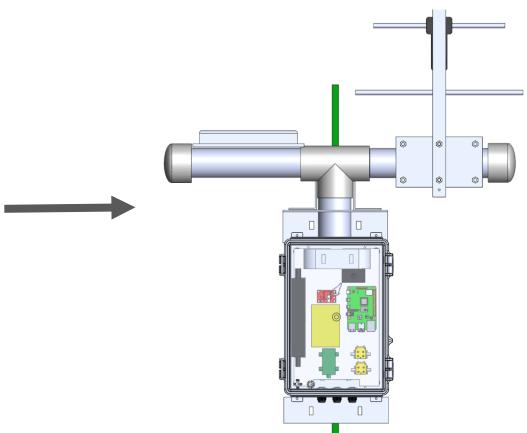
Compare GPS times to known flybys to determine when to start data collection. Turn on the SDR. Set frequency, bandwidth, and sampling rate. Stop data acquisition and export data with necessary information. Time, Date, sample rate etc.

Software: Onboard OS [In Progress]

Progress:

- All parts delivered for first unit
- Downloaded Software
- Begun programing/coding

Concerns:


- Learning curve
- Any debugging issues
- Hardware/Software compatibility issues

Sched. Completion: 03/05/21 Est. Completion: 02/16/21 <u>Ahead of Schedule</u>

28

Hardware: Packaging [In Progress]

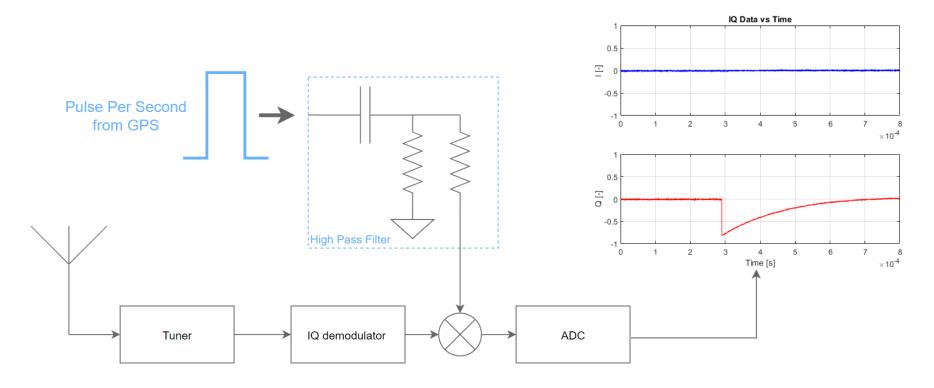
Hardware: Packaging [In Progress]

Progress:

- Internal mount cut, drilled and installed
- Hardware checklist (what needs changed versus what is good)
- New component placement

Concerns:

 None at the moment


To Do's:

- Determine finalized antenna mounting
- Update CAD based on component sizes/needs along with add mounting holes from components/box

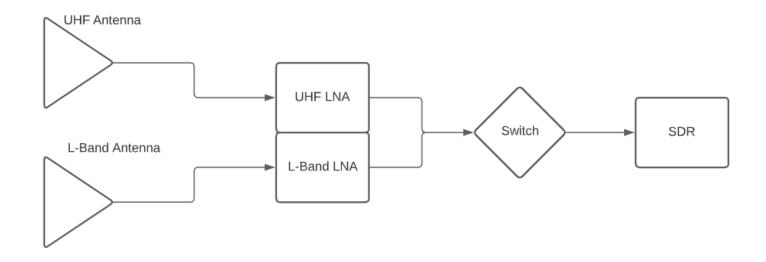
Sched. Completion: 02/12/21 Est. Completion: 02/01/21 <u>Ahead of Schedule</u>

30

Hardware: Timing [Testing]

Hardware: Timing [Testing]

Progress:


- Timing system works on HackRF at 10Ms/sec (100ns)
- Filter tuned to reduce number of data points modified

Concerns:

- Dropping samples at higher sampling rates (>10Ms/s)
- Debug is underway

Sched. Completion: 02/12/21 Est. Completion: 02/05/21 <u>Ahead of Schedule</u>

Hardware: RF Front end[In Progress]

Hardware: RF Front end[In Progress/ On Hold]

UHF [In Progress]

Analysis

- Link Budget has been verified and antenna has been ordered

Procurement

- Waiting for connectors Assembly
 - Waiting for connectors

L-band [On Hold]

Analysis

- Link Budget being verified
- New Satellite selection

Procurement

- Waiting on antenna
 - Backordered currently

Concerns:

Main concern is difficulty achieving proper downlink from L-Band satellites due to high data rate and packets, and order times due to part uniqueness

Sched. Completion: 02/12/21 Est. Completion: 02/25/21

Behind

Manufacturing Tasks

Hardware:

Packaging [In progress]

• Waiting for integration

Timing [Testing]

• debugging samples rates

RF front end [In progress/On Hold]

- Waiting on adapters
- Verify L-Band Link budget

Software:

Signal Cross-Correlation for TDoA [In progress]

Particle Filter [Testing]

• Test with more data

Gibb's Method [Testing]

• Working on improvements

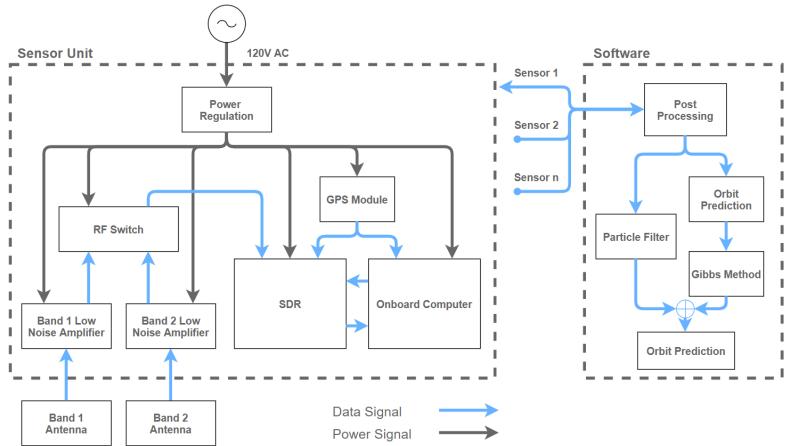
Onboard OS [In progress]

- Testing GPS and pi
- Testing SDR and pi

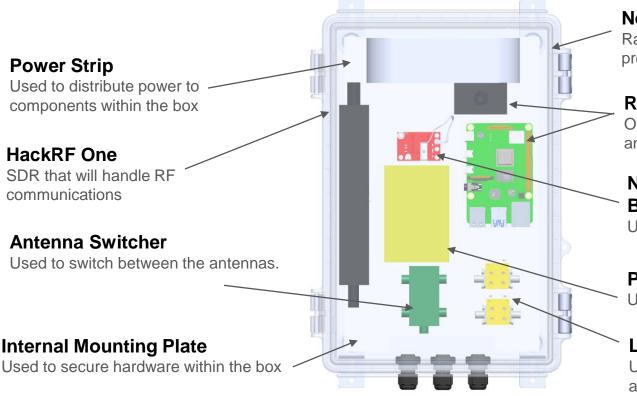
Budget

SpaceNet Unit 1

SpaceNet Units 2-4


Group	Part		Status		Group		Part		Status	
Off the Shelf Electronics	HackRf One	Electronic RF Logic Switch			Off the Shelf Electroni	Raspberry Pi 4 HackRf One ics Electronic RF Lo GPS Module		. ,	Pending SN1 Testing	
RF Front End	UHF Antenna		Received		RF Front End			UHF Antenna I UHF Low Noise Amplifier S L-Band Low Noise Amplifier		
	UHF Low Nois	se Amplifier	Pending				L-Band Antenna			
	L-Band Low Noise Amplifier L-Band Antenna		Pending Decision		Hardward	Miscellaneous H		Nema Enclosure Iardware Electronics Hardware	Pending SN1 Testing	
Hardware	Miscellaneous	WH-16 Hinged Nema EnclosureReceivedMiscellaneous HardwareAiscellaneous Electronics Hardware			*Some Hardware orders for SN1 include numbers required for all 4 units, i.e. bolts that come in packs of 50					
	Expenses To Date \$974.05			Remaining Expected				Remaining Developm Budget	nent	
				\$3,089.61	39.61			\$936.34		

Acknowledgements


- Dr. Francisco López Jiménez
- Martin Wilson (Raytheon)
- Mike Walker (Raytheon)
- Sheldon Clark (Raytheon)
- Mark Werremeyer (Raytheon)
- Dr. Zachary Sunberg

SpaceNet Functional Block Diagram

Baseline Sensor Unit Design

Nema 4 Enclosure

Rated housing ensures component protection. Clear top enables GPS lock

Raspberry Pi 4 & Power Supply

On Board Computer for data collection and transfer

Neo-7M GPS Breakout Board

Used to synchronize data timestamps

Power Regulator Board

Used to supply steady voltage too.. (add)

LNA's

Used to improve G/T metric ensuring adequate reception of satellite transmission.

40

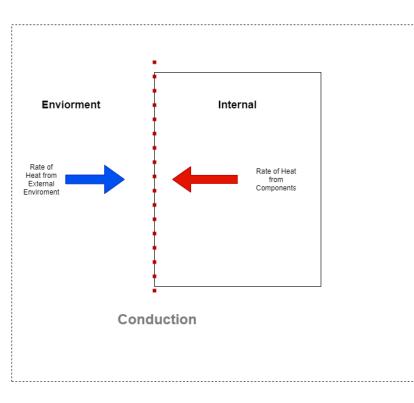
Hardware

Key Driving Requirements

DR1.1.

The sensor unit packaging shall be able to maintain a dry environment in rain and snow




DR1.2.

The sensor unit packaging shall be capable of maintaining an internal operating temperature range of 0-50 degrees Celsius

DR2.2.

The deployed sensor unit and antenna shall fit within a 5x5x5' space

Thermal Analysis Equations:

$$\dot{Q}_{components} = 19.8W$$

$$\dot{Q}_{conduction} = kA \frac{T_1 - T_2}{\Delta x}$$

 $\dot{E}_{gained} = \dot{E}_{lost}$

 $\dot{Q}_{components} = \dot{Q}_{conduction}$

$$\frac{\dot{Q}_{components} * \Delta x}{k} + T_2 = T_1$$

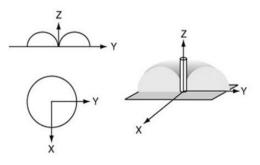
 $T_1 = Internal Temperature$

 $T_2 = External Temperature$

Results:

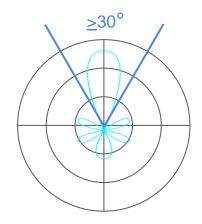
Min Operating Temperature (COLD): 0°C

$$T_2 = -11^{\circ}\mathrm{C}$$


Min Operating Temperature (HOT): 50°C

 $T_2 = 33^{\circ}C$

Key Driving Requirements


DR4.1.

Antenna(s) will have have 360° azimuth field of view

Linx Technologies

DR4.2. Antenna(s) will have have minimum beamwidth of 30°

Key Driving Requirements

DR3.1.

Each sensor unit shall have a minimum UHF system noise temperature of -20dB/K with a target value of -15 dB/K

> Overall UHF noise temperature > -20 dB/k

DR3.2.

Each sensor unit shall have a minimum L-band system noise temperature of -17dB/K with a target value of -13 dB/K

Overall L-band noise temperature > -17 dB/k

System Noise Temperature Results

UHF

Satellite Target: CSIM

Frequency: 437.25 MHz

Data Rate: 9.6kbps

Based on UHF/VHF hardware:

- Gain_a = 9 dBi
- Losses = 1.76 dB
- Ts = 275 °K

Calculated G/T = -17.15 dB/K

> -20 dB/k

VHF Satellite Target: Iridium NEXT

Frequency: 1616 MHz

Data Rate: 64kbps

Based on UHF/VHF hardware:

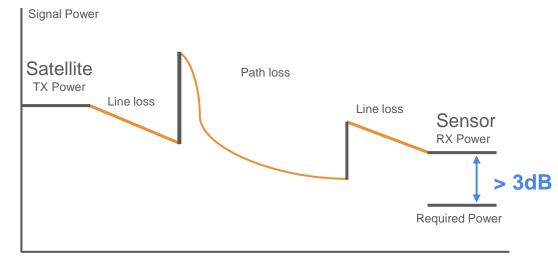
- Gain_a = 9 dBi
- Losses = 1.76 dB
- Ts = 275 °K

L-Band Satellite Target: Iridium NEXT

Frequency: 1616 MHz

Data Rate: 64kbps

Based on L-band hardware:


- $Gain_a = 8 dBi$
- Losses = 1.76 dB
- Ts = 243 °K

Calculated G/T = -17.15 dB/K Calculated G/T = -15.62 dB/K > -20 dB/k > -17 dB/k

46

Key Driving Requirements

Signal Power Over Transmission

Transmission Path

DR3.3./3.4. Each sensor unit shall have a minimum UHF & L-Band link margin of 3dB

Link Margin Results

UHF

Satellite Target: CSIM

Frequency: 437.25 MHz

Data Rate: 9.6kbps

VHF

Satellite Target: AO-91 (RadFxSat / Fox-1B)

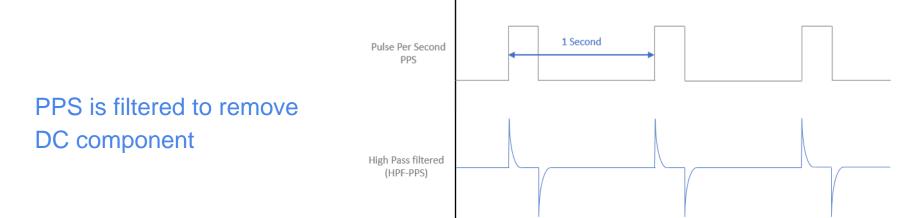
Frequency: 145 MHz

Data Rate: 9.6kbps

L-Band Satellite Target: Iridium NEXT

Frequency: 1616 MHz

Data Rate: 64kbps

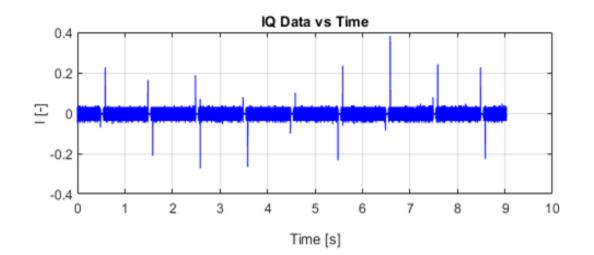

Calculated Link Margin = 9.2 dB

Calculated Link Margin = 20.5 dB

Calculated Link Margin = 11.2

dB

Link margins for both UHF and L-band are > 3 dB based on our hardware selection, satellite characteristics, and expected atmospheric losses

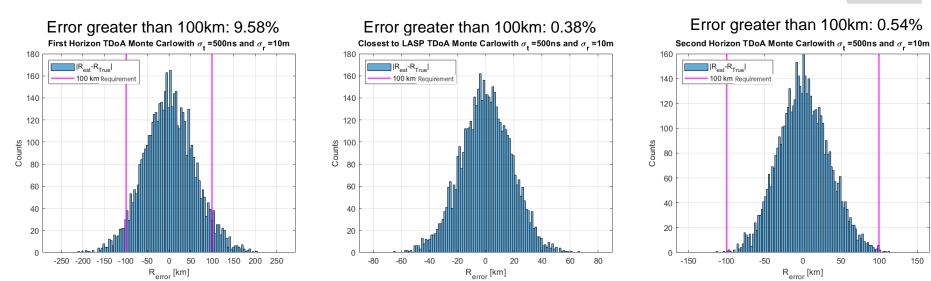


Time (s)

HackRF can record 20M samples per second

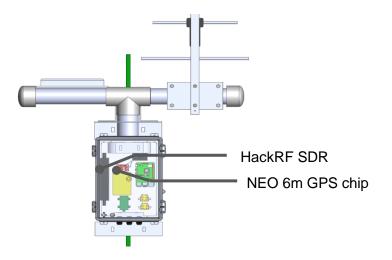
PPS can be aligned with 2 sample precision

~100ns alignment precision



FR5. Recorded data can be used to produce an orbital position within 100km absolute error of a known satellite

error


51

- Primary source of TDoA error is how accurately we can time stamp incoming signals for later post processing
- GPS provides time synchronizing pulse per second (pps) signal
- SDR needs to be capable of stamping pps timing signals onto input data and achieving data rate of 20MHz (50ns)
 - 500ns timestamp accuracy provides us a large timing margin

FR6. A TLE will be calculated from a satellite passover. TLE will predict a future passover occurring within a day of TLE calculation. This prediction will include expected time to within ±45 minutes, azimuth start angle to within ±30°, and max elevation angle to within ±15°.

• In order to produce a TLE within the characteristics detailed by FR6, the TDoA accuracy requirement detailed in FR5 must also be satisfied. If the timing requirements for FR5 are met, the timing requirements for FR6 are also met. This means the design decisions driven by FR5 also satisfy our requirements for FR6.

					(Calc Error
	51.6416	247.4627	0.0006703	130.5360	325.0288	15.72125391
th TLE						
	RYA)				Error:	
uth TLE ISS (ZAF 25544U	(YA) 98067A	20319.60372921	00000214	00000-0	Error: 42508-5	0 9997

SpaceNet

Orbit Determination Software Working TDoA Working Gibbs Code Working Filter debug time

Correlation Code

Get Representative Data Time Alignment Signal Alignment

Onboard Software

Setup OS Develop SDR Control Develop Switch Controle GPS Clock Onboard software complete debug time

Build up SN1

SN1 RF Front end Obtain L-Band hardware Obtain UHF hardware Cable Runs L-Band Test UHF Test

SN1 structure

Order Structure hardware Build antenna mount Build internal mounts Build External Mount Test water proofness SN1 Electronics

Obtain Electronics Hardware Internal power Distro Timing mod Test Raspi Processing power Timing test Integration Full unit RF test SN1 tested

Build up SN2, SN3, SN4

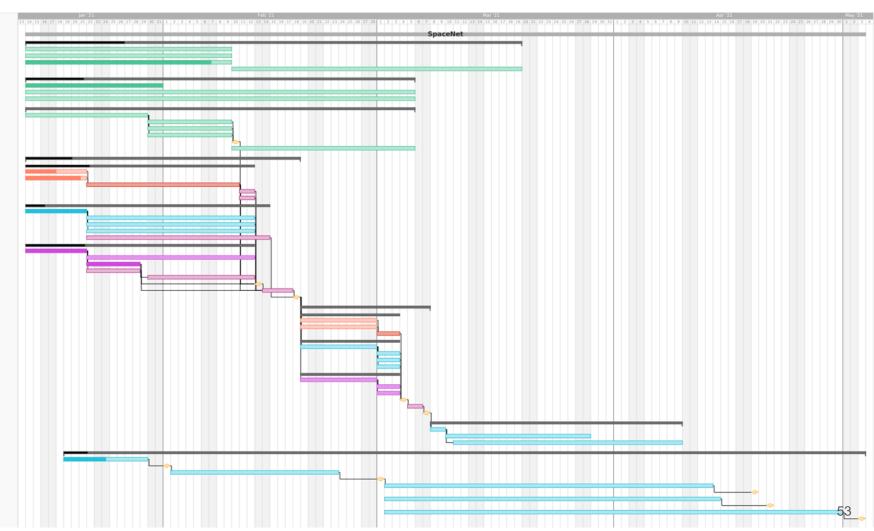
RF Front end Obtain L-Band hardware Obtain UHF hardware Cable Runs

structure

Obtain Structure hardware Build antenna mount Build internal mounts

Build External Mount Electronics

Obtain Electronics Hardware


Internal power Distro Timing mod Integration Full unit RF test Units tested

System Test

Deployment Data Collection Data Analysis

Reports

MSR MSR Due TRR TRR Due SFR Presentation SFR Due Symposium Stuff Symposium Final Report Final Report Due

Satellite Target Candidates

UHF Target: CSIM

The main target we will be using for this Frequency band is the CSIM Satellite operated locally here at CU Boulder

Operational characteristics:

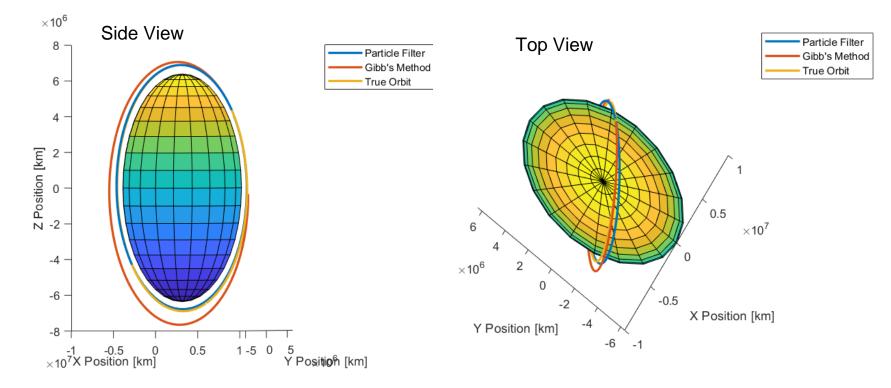
- Fc = 437.25 MHz (Carrier)
- P = 5 W (Transmitted power)
- BW = 30 kHz (Beamwidth)
- DR = 9.6 kbps
- Demod = GMSK

L-Band Target: Iridium Next

Our primary target for this band is the Iridium NEXT Constellation.

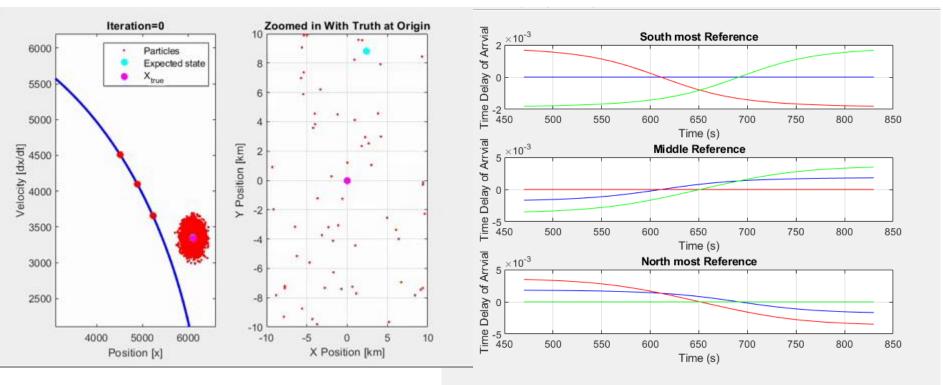
Operation characteristics:

- Fc = 1616-1626.5 MHz (Carrier)
- P = 5 W (Transmitted power)
- BW = 30 kHz (Beamwidth)
- Possible data rates
 - Voice = 2.4kBps
 - Short Burst = 64 kBps

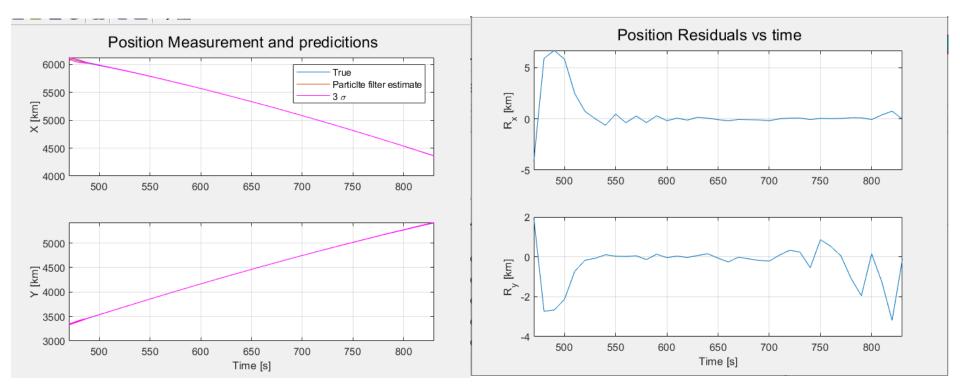

Backup L-Band Target

NOAA 15,18, or 19 All three of these are in Polar orbits

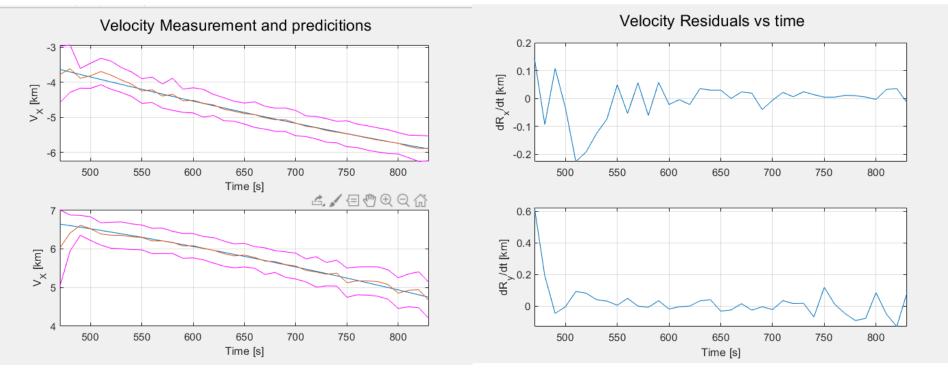
Operation characteristics respectively:


- Fc = 1702.5, 1707, 1698 MHz (Carrier)
- P = 6.35 W (Transmitted power)
- BW = 2.66 MHz (Beamwidth)
- DR = .665 Mbps
- Demod = BPSK or QPSK

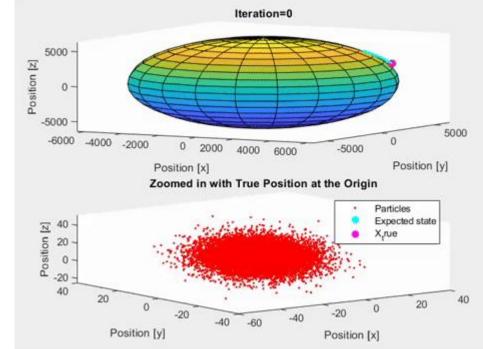
Orbital Partilce Filter One Orbit Comparisons



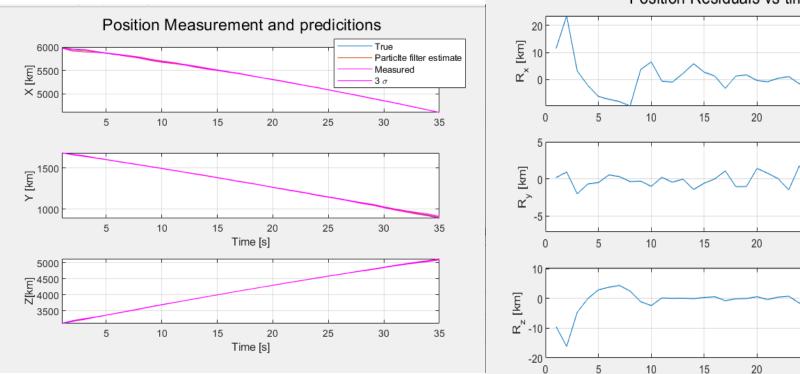
*Gibbs shown here DOES NOT have smoothing on TDoA Data


2D Particle Filter

2D Particle Filter Position

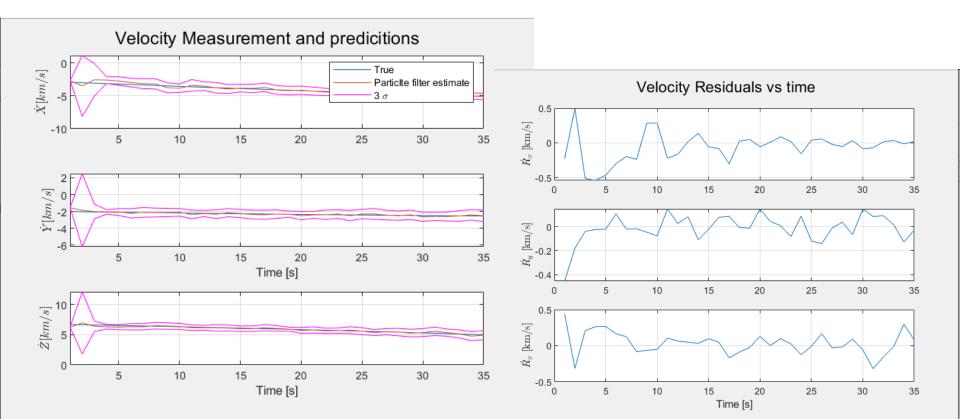


2D Particle Filter Position



Particle Filter Verification

- New Range data will be generated in STK
- This will be used to create TDoA data
 - Add some noise
- See how well it predicts the orbit
- Compare to Gibb's and Lamberts


Particle Results: Position

Position Residuals vs time

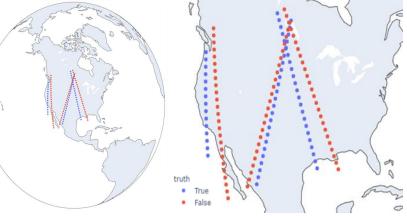
Time [s]

Particle Results: Velocity

SGP4 Implementation: 1 of 2, Python Orekit Package

Orekit

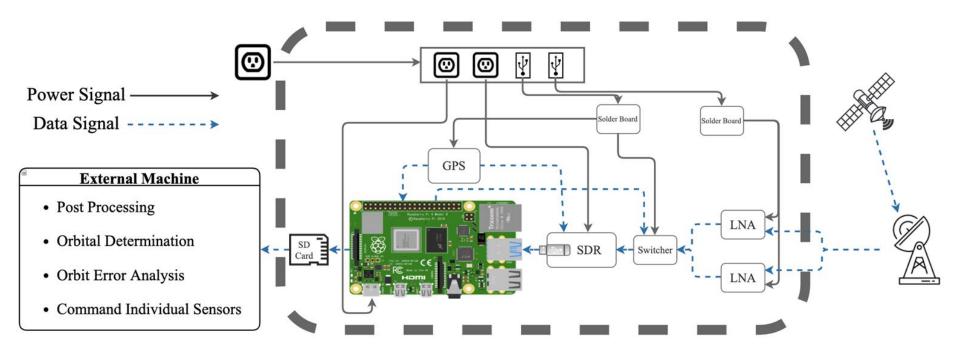
An accurate and efficient core layer for space flight dynamics applications


Orekit 10.3 released, get it!

Simplified General Perturbations model 4(SGP4) includes the effects of drag and other orbital decay mechanisms for near earth objects with an orbital period less than 225 min.

#CSIM-FD (Nov. 17, 2020) {CelesTrak} tle_line1_1 = '1 43793U 18099AM 20322.77650623 .00000294 00000-0 31140-4 0 9996' tle_line2_1 = '2 43793 97.6901 32.0620 0013721 41.5085 318.7175 14.96224559106613'

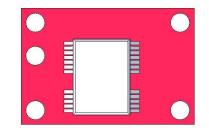
#CSIM-FD (Nov. 17, 2020) {Calculated from purturbed position data}
tle_line1_2 = '1 43793U 18099AM 20322.77650623 .00000294 00000-0 31140-4 0 9996'
tle_line2_2 = '2 43793 99.3581 44.5458 0288570 117.3180 15.5230 14.3573000106613'



SGP4 Implementation: 1 of 2, Matlab App

🚯 OrbProp	
Calculated TLE	Orbit Viewer
CALSPHERE 1	Ground Track 3D
00900U 64063C 21032.51669282 .00000207 00000-0 21136-3 0 9990	
00900 90.1672 34.9062 0019045 156.1997 325.7590 13.526913605910	
Truth TLE	and the second second
CALSPHERE 1 02-01-2021 *	A the set of the
00900U 64063C 21032.51669282 .00000207 00000-0 21136-3 0 9990	2 5 5 million se
00900 90.1569 32.1447 0029409 87.9360 34.4201 13.734776778018	and the all all and the
TLE Analyze Gibbs PF	
Trapeit Assass Bosults:	N ~ Ecgwand me
Date Start UTC (e.g., 01-Feb-2016 02:25:03) Comparison TLE Ref. TLE Calc.	All and a second
01-Feb-2021 00:00:00 2/1/21 00:40:00 - 2/1/21 01:20:00	
Date Stop UTC Prop. [days]: 0 - 2/1/21 08:34:00 - 2/1/21 09:57:00	
1-Feb-2021 00:00:00 Access 3	
Step Resolution (mins) Access 4	
.5	
Load TLE	
Observer Location	
Lat (deg) Lon (deg) Alt (m WGS84)	W. moo
40.0149856 -105.2705456 1630	
Constrain to Observer Sector	and and
Max El (deg) Left Az (degT)	
Min El (deg) Right Az (degT)	
Extrude KML Transit to Ground	
Output Files:	
Access Summary LLA Transit (Full Window)	
Access Polar Plot Access Transit (Access Times Only) KML Transit (Full Window)	
Analyze	
Hitaly20	

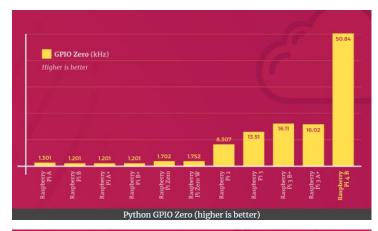
Power & Data Pipeline

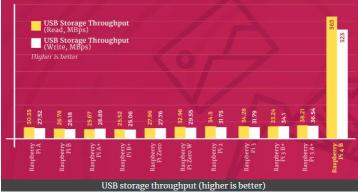


Data Transfer Bottlenecks: SDR and GPS Module

HackRF One

The HackRF One is capable of receiving and transmitting on a frequency range of 1MHz to 6GHz with output power of 30 mW to 1 mW depending on the band.


Ublox NEO 7M


The maximum reference output clock per the data sheet is 10 MHz.

Has also been reported to be stable at 13 MHz.

Data Transfer Bottlenecks: Raspberry Pi 4

- The rate at which the Pi 4 can transfer data through its GPIO ports is heavily controlled by the programming language, and by the interrupt configuration used:
 - Python (upper right figure)
 - Typically ~ 50 kHz
 - **C**
 - Typically ~ 131 MHz
- The rate at which the Pi 4 can transfer data through its USB 3.0 ports is comparatively shown in the bottom right figure
 - Read: 363 MBps
 - Write: 323 MBps

