
SP4CE Test Readiness Review (TRR)

Presenters:

Jesse Bartlett, Jasmin Chadha, Cesario Garcia, Vicki Hurd, Jack Lana

Additional Team Members:

Aneesh Balla, Gio Borrani, Ryan Charles, Zach Fields, Sarah Leary

Company Sponsor: Blue Origin

Faculty Advisor: Dr. Yu Takahashi

February 23, 2022 ASEN 4018-011 Team 1

Presentation Outline

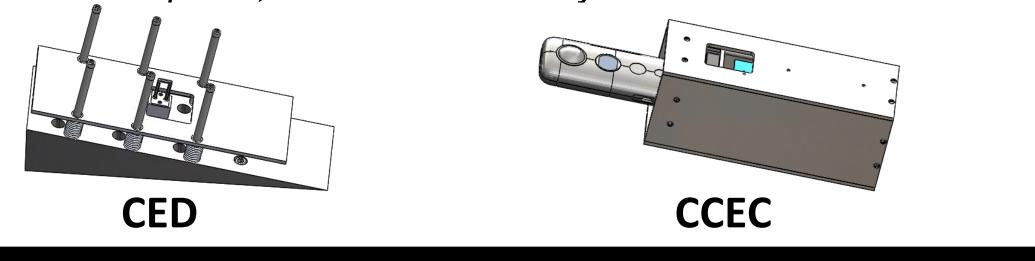
- Project Overview
- Project Updates
- Schedule
- Test Readiness
- Budget

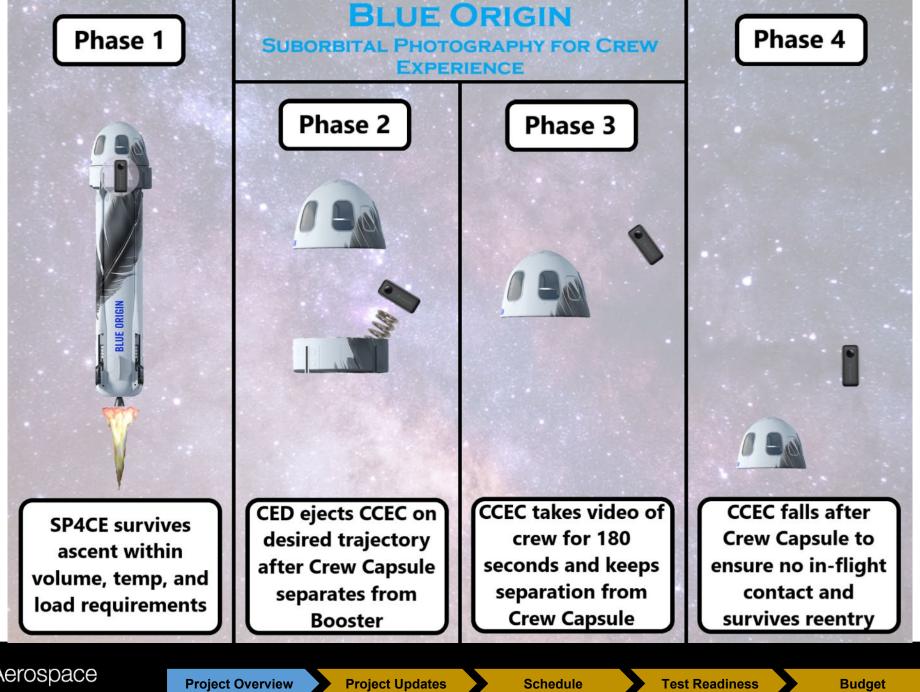
Project Overview

Cesario Garcia

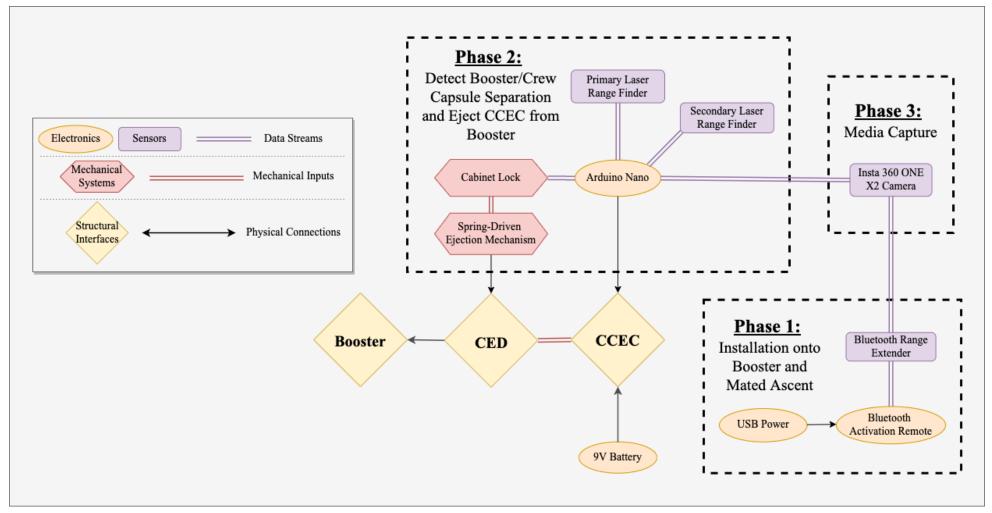
SP4CE Motivation

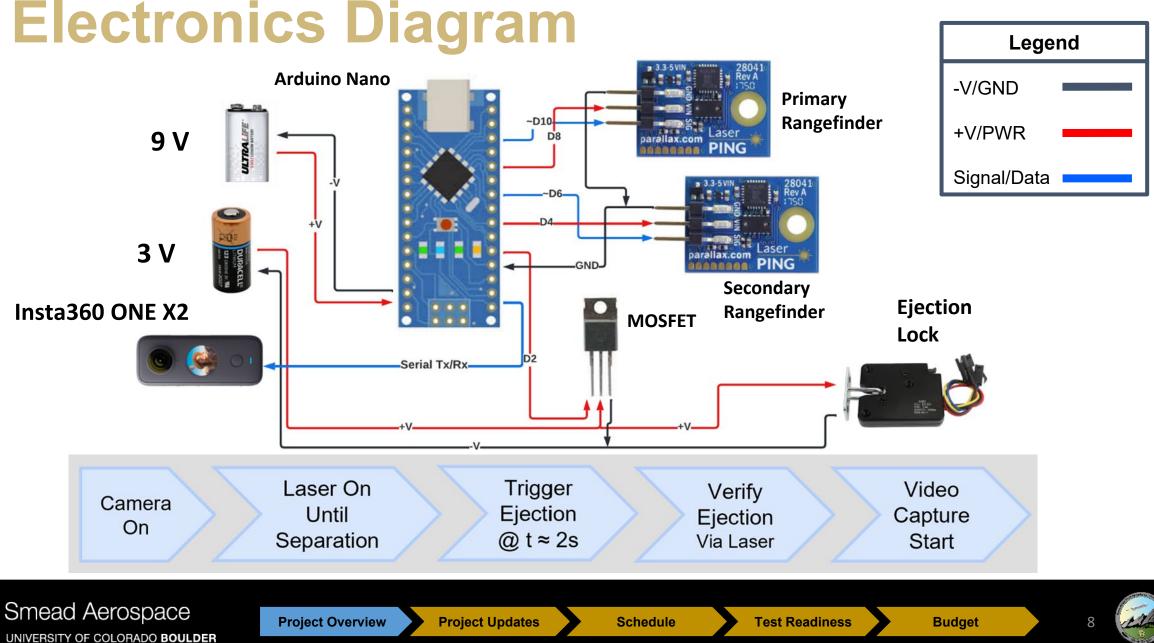
Background: Blue Origin needs a camera module that ejects from the New Shepard Booster at Booster/Crew Capsule separation, safely takes images/videos of astronauts in the Crew Capsule with Earth's horizon in the background, and survives reentry.




Mission Statement

The Suborbital Photography For Crew Experience (SP4CE) module will provide Blue Origin with both a Camera Ejection Device (CED), intended to be mounted inside of the Booster, and a Crew Capsule Experience Camera (CCEC) that will be ejected from the Booster, take pictures of the astronauts inside the Crew Capsule, and survive reentry.




Smead Aerospace UNIVERSITY OF COLORADO BOULDER

Functional Block Diagram

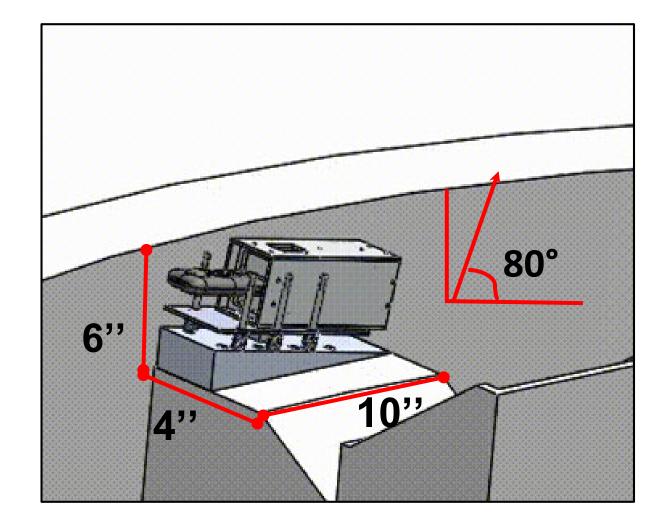
Electronics Diagram

Primary Objectives

1. CED ejects CCEC 2 s after Crew Capsule separation

1. CED imparts 9 ft/s delta-v at 80° angle on CCEC

- 1. CCEC camera captures video for 180 s
- 1. CCEC camera maintains temperature <185°F

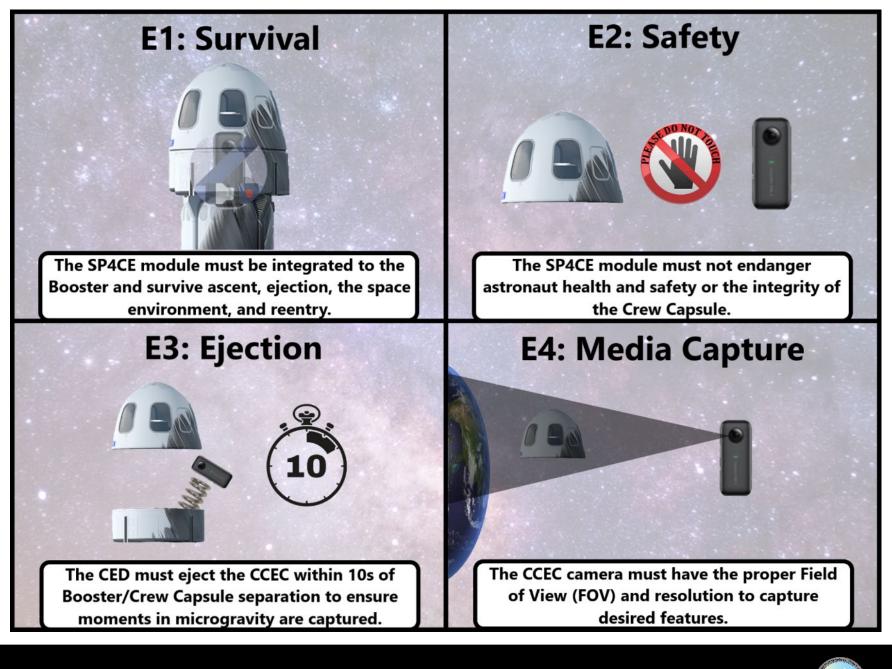

	Кеу
CED = Camera Ejection Device	CCEC = Crew Capsule Experience Camera

Design Solution

- LaserPING Rangefinder (x2)
 - FOV: 50°
 - o fs: **25 ms**
- Insta360 ONE X2
 - AOV: 200°
 - Resolution: **5.7K**
- Springs (x6)
 - Constant: 37.7 lbf/ft
 Compression distance: 2 in
- Max force for lock: **110 lbf**
- Material: Aluminum

Changes to Design

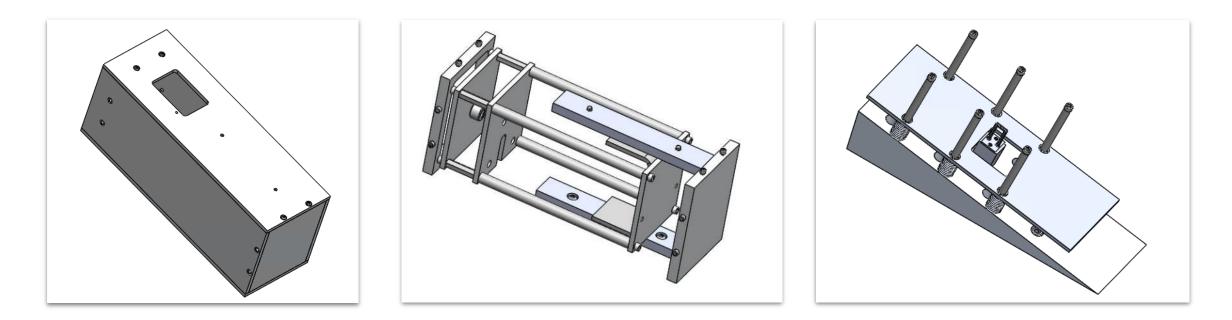
- 1. Using Insta360 ONE X2
 - In lieu of ONE X
- 1. X2 will turn-on via Insta360 GPS remote before New Shepard Launch
 - Blue Origin approves of manual turn-on



Budget

Critical Project Elements

Budget


Project Updates

Jesse Bartlett

Manufacturing Updates

Stage 1: CCEC Exterior

Stage 2: CCEC Interior

Stage 3: CED

Schedule

Jasmin Chadha

Spring Schedule Overview

Legend								
Current Date								
Complete								
Milestone								

Tasks	Start Date	Internal Due				Jan				Feb				Mar				A;	pr			
		Date	Date	Jan 2	Jan 9	Jan 16	Jan 23	Jan 30	Feb 6	Feb 13	Feb 20	Feb 27	Mar 6	Mar 13	Mar 20	Mar 27	Apr 3	Apr 10	Apr 17	Apr 24	May 1	May 8
Manufacturing	01/10/21		03/14/22							1		1.1	Î.	Manufa	cturing							
Order Parts	01/10/21	01/17/22	01/24/22				Order F	Parts														
Machine Shop Trainings	01/10/22	01/24/22	02/07/22						Machin	e Shop Trair	nings											
Build SP4CE Components	01/28/22	02/14/22	02/28/22									Build	P4CE Compo	nents								
Assemble SP4CE	02/14/22	03/07/22	03/14/22											- T	sle SP4CE							
Complete Manufacturing	03/14/22		03/14/22											Complete	Manufactur	ing						
Electronics and Software	01/23/22		02/28/22						1			Electro	nics and Soft	ware								
Create Arduino Nano Code	01/23/22	02/21/22	02/28/22				1					Create	Arduino Nano	Code								
Construct Circuit Board	01/23/22	02/21/22	02/28/22									Const	uct Circuit Boa	ard								
Testing	01/31/22		04/18/22					P					1						Testin	9		
Ejection Trigger	01/31/22	02/03/22	02/07/22						Ejectio	n Trigger												
Camera Resolution	01/31/22	02/03/22	02/07/22						Camer	a Resolution	8											
Camera Activation	02/08/22	02/14/22	02/19/22						Y		Camira	Activation										
Camera Rotation	02/08/22	02/14/22	02/19/22							-	Camra	Rotation										
Bluetooth Range	02/20/22	02/25/22	03/04/22								1		Bluetooth Ra	nge								
Reentry Heating	03/01/22	03/06/22	03/15/22									Y		Reent	ry Heating							
Cold Temperature	03/01/22	03/06/22	03/15/22									1		Cold 1	Temperature							
Spring Loading	03/15/22	03/20/22	03/25/22											1	-	Spring Loa	ding					
Ejection Validation	03/26/22	04/02/22	04/07/22							L					*		E	jection Valid	ation			
Launch Vibration	04/06/22	04/13/22	04/18/22															-	Launci	h Vibration		
Complete Testing	04/18/22		04/18/22																Complet	te Testing		
Project Milestones	01/10/22		05/02/22		-	-			1	-		-	-				-	-			Project	Milestones
AIAA Abstract	01/14/22	01/30/22	02/06/22				die		AIAA Ab	stract												
Internal Design Review	01/10/22	01/21/22	01/28/22					Internal Desi	ign Review													
Test Readiness Review	01/29/22	02/07/22	02/14/22							Test R	eadines R	eview										
AIAA Conference Paper	02/07/22	03/07/22	03/13/22									1 1		AIAA Cor	ference Pap	er						
Senior Design Symposium	04/13/22		04/13/22															Se	nior Design \$	Symposium		
Spring Final Review	03/14/22	04/11/22	04/18/22																Spring	Final Review		
Project Final Report	04/12/22	04/30/22	05/02/22																		Project	Final Repo

Budget

Testing Schedule

<u>Legend</u>									
Current Date									
Complete									
Milestone									

Tasks	Start Date	Internal Due				Jan				Feb				Mar				Apr		
Date	Date	Jan 2	Jan 9	Jan 16	Jan 23	Jan 30	Feb 6	Feb 13	Feb 2	20 Feb 2	7 Mar 6	Mar 13	Mar 20	Mar 27	Apr 3	Apr 10	Apr 17	Apr 24		
Testing	01/31/22		04/18/22					1											Testing	
Ejection Trigger	01/31/22	02/03/22	02/07/22						Ejectio	n Trigger										
Camera Resolution	01/31/22	02/03/22	02/07/22						Camer	a Resolution										
Camera Activation	02/08/22	02/14/22	02/19/22						•		Carrer	a Activation								
Camera Rotation	02/08/22	02/14/22	02/19/22								Caner	a Rotation								
Bluetooth Range	02/20/22	02/25/22	03/04/22										Bluetooth Ra	ange						
Reentry Heating	03/01/22	03/06/22	03/15/22											Reen	try Heating					
Cold Temperature	03/01/22	03/06/22	03/15/22											Cold	Temperature					
Spring Loading	03/15/22	03/20/22	03/25/22												•	Spring Loadin	ng			
Ejection Validation	03/26/22	04/02/22	04/07/22														Eje	ection Validati	on	
Launch Vibration	04/06/22	04/13/22	04/18/22																Launch	Vibration
Complete Testing	04/18/22		04/18/22	>															Complete	Testing

Budget

Test Readiness

Jesse Bartlett, Jack Lana, Vicki Hurd

Test Readiness: Scope

Phase	Test	Model V&V	Equipment/Facilities				
1: Ascent	Launch Vibration		Shaker table, accelerometers (x2), DAQ				
	Ejection Trigger	Flowchart					
2: Figstion	Cold Temperature	Thermal shock, Insulation model	Thermocouples (type K, x3), LabView				
2: Ejection	Spring Loading	Rotational Dynamics model	Load cells, DAQ				
	Ejection Validation	Trajectory model	Logger Pro				
	Camera Resolution	Distance vs. Pixels model					
3: Media Capture	Camera Rotation	Rotational Dynamics model	Spin module, LabView				
	Camera Activation	Flowchart					
4: Reentry	Reentry Heating	Thermal model	Machine shop oven, thermocouples (type K, x4), LabView				
	Drop Test	Ballistic coefficient	Logger Pro, altimeter				

19

Ejection Validation (FR. 2, 4)

DR. 2.1-2.3: CCEC ejects 2 ± 1 seconds after separation at 80 ± 3° with a velocity of 9 ± 1 ft/s
DR. 4.1: Camera turns on and records 1 second after ejection

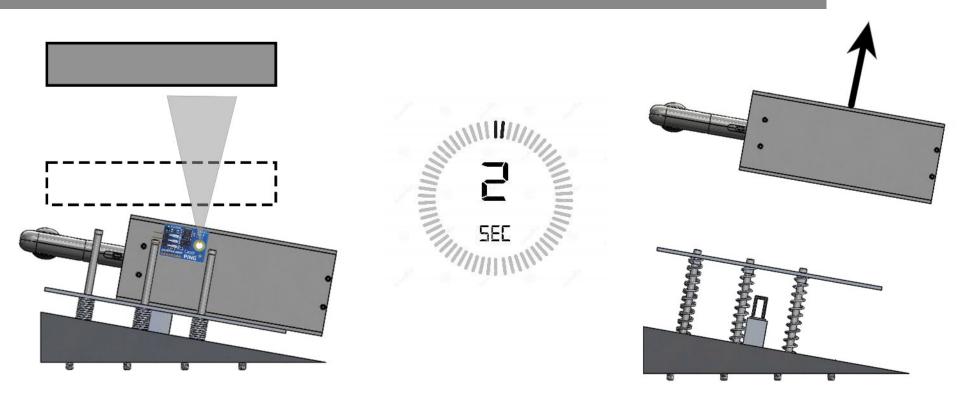
Deadline: 04/07 Status: Not Started

Rationale/Requirements for V&V:

- Demonstrate the SP4CE module's ability to satisfy **DR. 2.1-2.3** and **DR 4.1** Equipment/Facilities:
- SP4CE module, 3"x3" opaque object, landing area padding, reference object for Logger Pro **Procedure:**
- Move 3"x3" object away from CCEC, simulating the Crew Capsule
- Film ejection with reference object in view

Risk Reduction:

• Mitigates likelihood of CCEC hitting the Crew Capsule

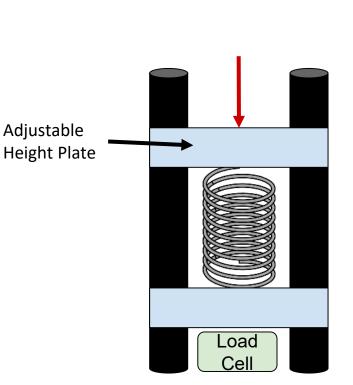


Ejection Validation (FR. 2, 4)

DR. 2.1-2.3: CCEC ejects 2 ± 1 seconds after separation at 80 ± 3° with a velocity of 9 ± 1 ft/s
DR. 4.1: Camera turns on and records 1 second after ejection

Deadline: 04/07 Status: Not Started

Spring Loading (FR. 2)


DR. 2.3.1: Spring force of 37.7 ± 7.5 lbf

Rationale/Requirements for V&V:

- Verify each spring force varies ≤ 20%
- Equipment/Facilities:
- CED springs, load cell, DAQ, spring compression structure

Procedure:

- Place a load cell on one of the six springs
- Compress springs 2 inches and release
- Measure force output of spring
- Repeat for all remaining springs

Budget

Deadline: 03/25

Status: Not Started

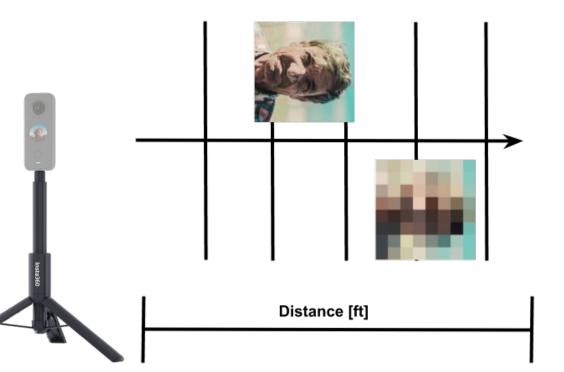
Camera Resolution (FR. 1)

DR. 1.2: Astronaut faces are visible up to 75 feet

Rationale/Requirements for V&V:

- Detect, Recognize, and Identify human faces at **80 feet**, **20 feet**, and **10 feet**, respectively **Equipment/Facilities:**
- Insta360 One X2, tripod, tape measure, distance markers

Procedure:


• Record video of subject at distances ranging from 10-100 ft

Risk Reduction:

• Increases likelihood of videos containing astronaut faces and desired features

Deadline: 02/07

Status: Complete


Project Overview Project Updates

Schedule

Camera Resolution (FR. 1)

DR. 1.2: Astronaut faces are "detectable" up to **75 feet**

Project Updates

Project Overview

UNIVERSITY OF COLORADO BOULDER

Deadline: 02/07

Status: Complete

Budget

Test Readiness

Schedule

Camera Rotation (FR. 1)

DR. 1.3: Camera captures video up to 10 rad/s

Rationale/Requirements for V&V:

• Characterize spin compensation capabilities of the camera about different axes

Equipment/Facilities:

• Spin module, mounting apparatus, level, LabView, Insta360 One X2

Procedure:

 Rotate camera on spin module, increasing rate up to 12 rad/s (~115 rpm) in multiple orientations

Risk Reduction:

 Increasing likelihood of quality media capture

Deadline: 02/19

Status: In Review

https://www.youtube.com/watch?v=I37Cf1QT92A

Budget

Project Overview Project Updates

Schedule

Camera Rotation (FR. 1)

DR. 1.3: Camera captures video up to 10 rad/s

Deadline: 02/19

Preliminary Test Results

Status: In Review

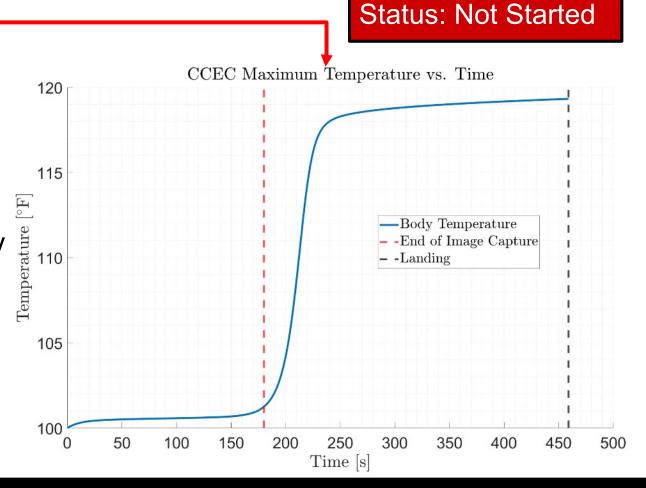
~1.6 rev/s = 10.4 rad/s 🔗

Budget

Reentry Heating (FR. 6)

DR. 6.1: Camera maintains a temperature less than 185°F

Primary Thermal Model


- Worst case $T_o = 100^{\circ}$ F
- $T_{max} = 120^{\circ} F$
- Difficult to simulate reentry conditions

Secondary Thermal Model

- Aluminum has a high thermal conductivity
- Assume: $T_{body} = T_{wall}$ [1]

Reentry Heating Test

- Validate Secondary Thermal Model
- Assume Primary Thermal Model is correct

Project Overview Project Updates

Schedule

Budget

Deadline: 03/15

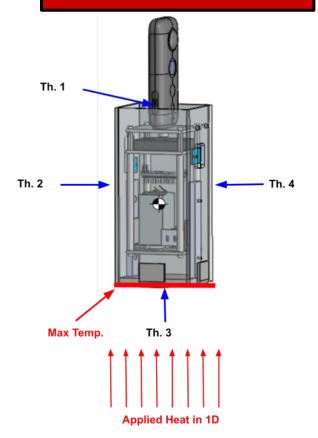
Reentry Heating (FR. 6)

DR. 6.1: Camera maintains a temperature less than 185°F

Rationale/Requirements for V&V:

• Validate the temperature of the body remains nearly constant, despite 1D heating

Equipment/Facilities:


- Machine shop oven, thermocouples (type K, x4), CCEC, LabView **Procedure:**
- Set machine shop oven to 120°F
- Insert one side of CCEC into oven to simulate 1D heating and measure temperature in four locations

Risk Reduction:

• Increases the likelihood of SD card surviving reentry

Deadline: 03/15

Status: Not Started

Project Overview Project Updates

Schedule

Bluetooth Range

Pre-Launch Ops: Ensure power-on from Blue Origin launch tower

Rationale/Requirements for V&V:

• Ensure Bluetooth remote range reaches Blue launch tower through aluminum fin box

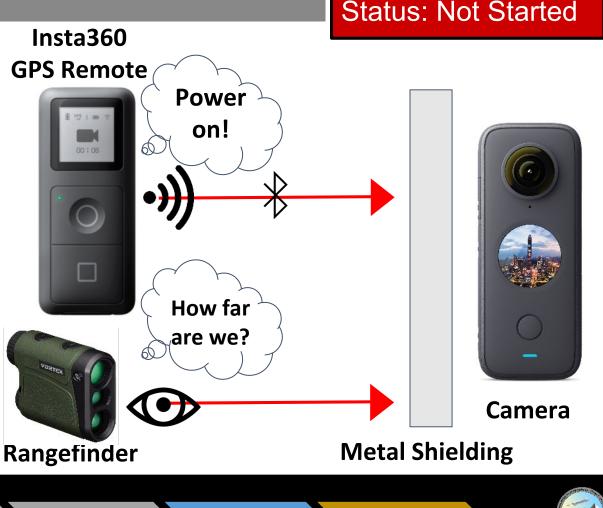
Equipment/Facilities:

• CCEC, Insta360 GPS Bluetooth remote, aluminum sheet, laser rangefinder

Risk Reduction:

• Ensure that camera turns on prior to launch so that media can be captured during flight

Deadline: 03/04



Bluetooth Range

Pre-Launch Ops: Ensure power-on from Blue Origin launch tower

Procedure:

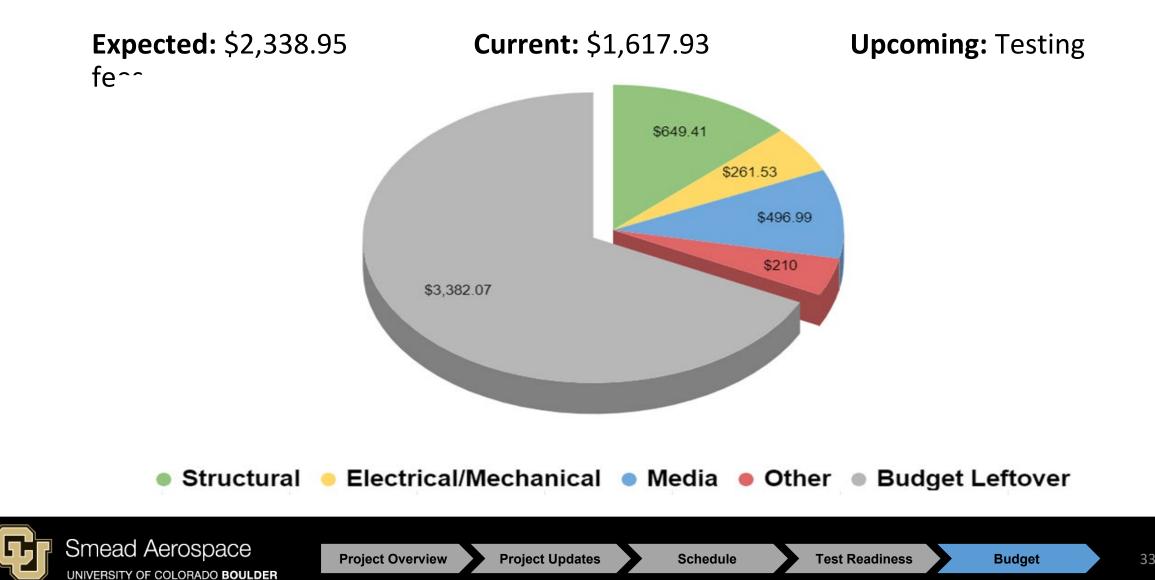
- Put CCEC behind aluminum sheet to simulate fin box installation
- Walk backwards in increments of 1 yd and attempt to power on
- Use rangefinder to note exact distance where power on fails

Budget

Deadline: 03/04

Spring Loading	Not Started
Ejection Validation	Not Started
Camera Resolution	Complete
Camera Rotation	In Review
Reentry Heating	Not Started
Bluetooth Range	Not Started

Budget


Budget

Jasmin Chadha

.

Parts Ordering

Waiting On										
ltem	Expected Arrival	Applicable Test	Test Date							
Bluetooth Remote	02/15	Bluetooth Range	02/20							
Vibe Table Parts	unknown	Launch Vibration	04/06							

Budget

Questions?

Backup Slides

Supporting Materials

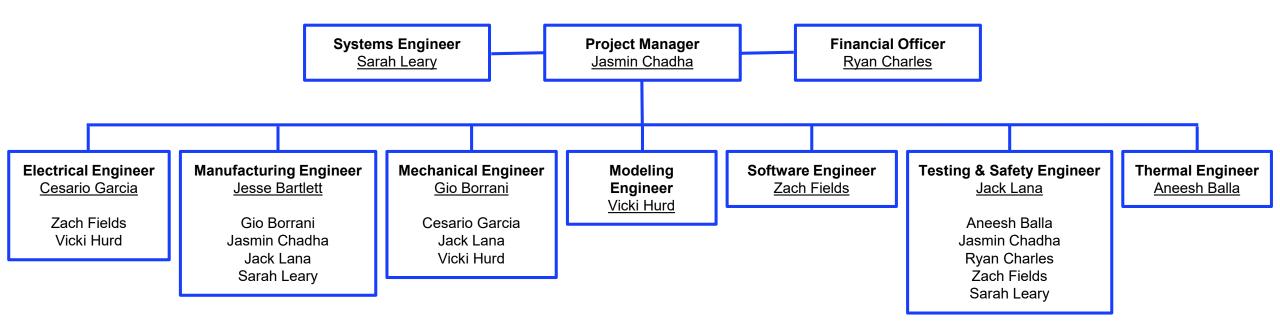
- 1. Acknowledgement & References
- 2. Administrative
- 3. Additional Tests
- 4. Diagrams

Acknowledgements & References

Acknowledgements

- Blue Origin POCs: Dean Misterek, Gary Lai
- Faculty Advisor: Dr. Yu Takahashi
- Teaching Fellows: Emma Markovich, Colin Claytor
- ASEN 4018 Professors: Dr. Kathryn Wingate, Dr. Jelliffe Jackson
- Additional Professors: Bobby Hodgkinson, Trudy Schwartz, Matt Rhode
- TRR Reviewer: GRASS

References


1. <u>https://ocw.mit.edu/courses/mathematics/18-303-linear-partial-differential-equations-fall-2006/lecture-notes/heateqni.pdf</u>

Administrative

Spring Organizational Chart

Functional Requirements

FR 1	The CCEC shall capture video of the entire Crew Capsule with the Earth's horizon in the background including features (e.g. clouds) and astronauts' faces in windows during the period of Crew Capsule microgravity.
FR 2	The CCEC shall be ejected from the Booster by the CED at or after Booster/Crew Capsule separation.
FR 3	The CCEC shall maintain a neutral or positive separation rate from the Crew Capsule following ejection through Crew Capsule apogee.
FR 4	The CCEC shall take videos of the CC starting no later than 10 seconds following Booster/CC separation with video taken for at least the next 180 seconds.
FR 5	The CCEC shall have a ballistic coefficient less than the Crew Capsule (0.5 lbm/in ²) to ensure no in- flight contact during reentry.
FR 6	The CCEC shall survive reentry.
FR 7	The SP4CE module should have a loaded weight of less than 50 lbm.

Design

Solution

Acronyms

Acronym	Definition
AOV	Angle Of View
CC	Crew Capsule
CCEC	Crew Capsule Experience Camera
CED	Camera Ejection Device
CONOPS	Concept of Operations
COTS	Commercial, Off-The-Shelf
DR	Design Requirement
fps	frames per second
FR	Functional Requirement
FOV	Field Of View
ICD	Interface Control Drawing
IR	Infrared
LEO	Low Earth Orbit
SP4CE	Suborbital Photography For Crew Experience
TPS	Thermal Protection System
V&V	Verification and Validation

Notable Term Definitions

Term	Definition
CCEC	The module being ejected from the Booster.
COLO	Houses the camera and recovery system.
CED	The physical mechanism that triggers ejection
CED	and ejects the CCEC. Remains in the Booster.
Fin Box	The location on the Booster inside which
F III DOX	the SP4CE module is mounted.
ICD	Volumetric constraint for SP4CE provided by
ICD	Blue Origin.
PM4	Synonymous with the Booster
SP4CE	The collective CCEC and CED assembly.
Wet mass	Total mass including propellant.

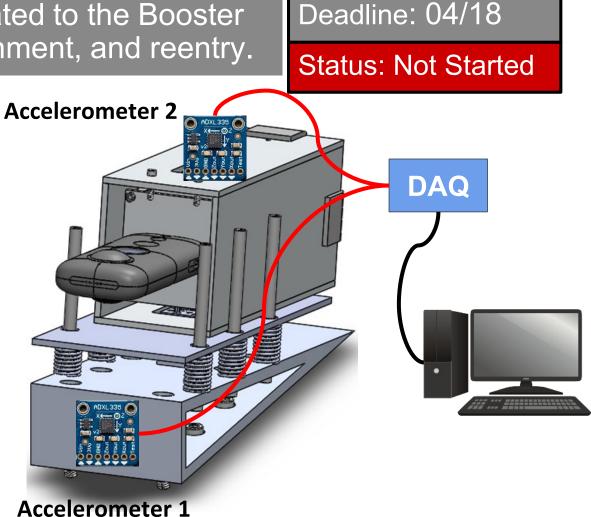
Additional Tests

Launch Vibration	Not Started
Ejection Trigger	Complete
Cold Temperature	In Review
Camera Activation	Not Started
Drop Test	Not Started

Launch Vibration

E1: The SP4CE module must be easily integrated to the Booster and survive ascent, ejection, the space environment, and reentry.

Rationale:


• Demonstrate the SP4CE module's ability to withstand single axis launch vibrations

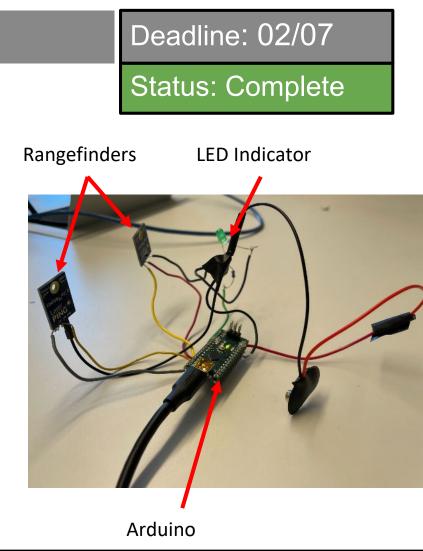
Equipment/Facilities:

- SP4CE module, mounting plate adaptor, twoaxis accelerometers (x2), Vibe Table, DAQ
- PILOT Lab testing room

Procedure:

- Mount adaptor plate and SP4CE on Vibe Table
- Secure accelerometers in specified locations
- Run system through launch vibration profile

Ejection Trigger (FR. 2)


DR. 2.1: Ejection occurs 2 ± 1 seconds after separation

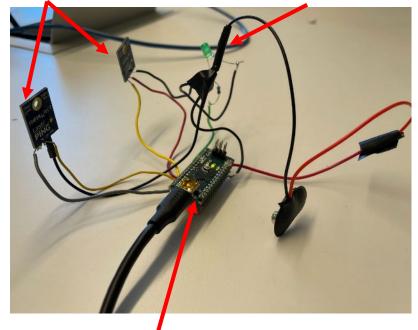
Rationale:

 Demonstrate capability of rangefinders and Arduino to trigger ejection with simulated CC separation

Equipment/Facilities:

- Arduino, rangefinders (x2), 3"x3" opaque object, LED **Procedure:**
- Run Arduino with object in front of CC facing rangefinder
- Remove object and ensure Arduino sends eject signal (LED indicator)
- Repeat, checking functionality of ejection confirmation rangefinder

Ejection Trigger (FR. 2)


DR. 2.1: Ejection occurs 2 ± 1 seconds after separation

Deadline: 02/07

Status: Complete

Rangefinders LED Indicator

Arduino

Camera Activation (FR. 4)

DR. 4.1: The CCEC camera shall turn on no later than **1 second** after ejection

Rationale:

- Demonstrate the electronic capability to remotely turn on the camera and begin recording
- Simulate interference booster will create
- **Equipment/Facilities:**
 - Insta360 One X2, Arduino Nano, USB-C connector, Bluetooth remote

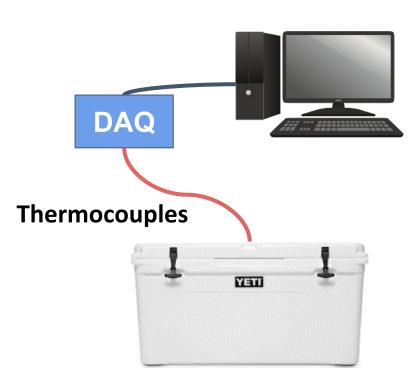
Procedure:

- Power on the camera with the bluetooth remote
- Begin media capture using the Arduino
- Introduce a barrier simulating the booster, and repeat

Deadline: 02/19

Status: Not Started

Cold Temperature (FR. 4)


DR. 4.2.1: Camera battery is between -4 and 104°F during media capture

Rationale:

- Demonstrate that the camera battery stays within operating temperature while exposed to flight-like temperatures
- Investigate lens capability under extreme temperatures **Equipment/Facilities:**
- Insta360 One X2, cooler, dry ice, stopwatch, thermocouples (type K, x3), DAQ

Procedure:

- Place camera in dry ice cooler
- Monitor temperature at different locations for **180 seconds**

Deadline: 03/15

Status: In Review

Drop Test (FR. 5)

FR. 5: Ballistic coefficient is less than 0.5 lbm/in²

Rationale:

- Verifying the drag coefficient of the CCEC
- Observing aerodynamic stability

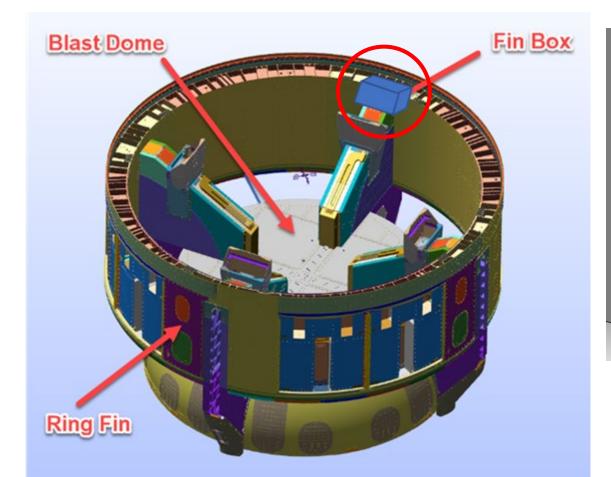
Equipment/Facilities:

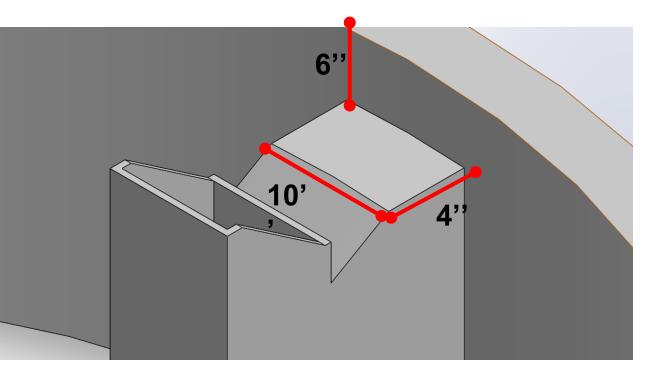
• Helicopter/Building, CCEC, altimeter, Logger Pro, phone camera

Procedure:

- Set up cell phone camera on a tripod with a reference object for Logger Pro
- Begin recording, drop the CCEC from at least 300 meters, and record time-to-fall **Post-Processing:**
- Qualitatively determine aerodynamic stability
- Use height and time-to-fall as a means to calculate drag coefficient

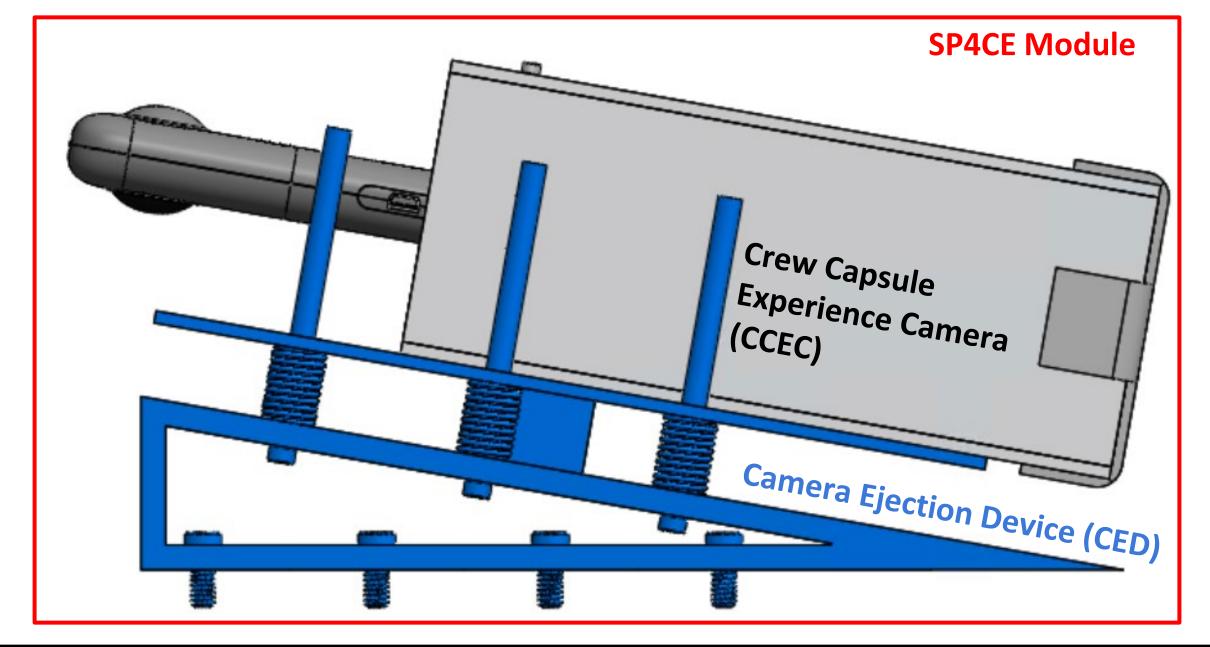
Deadline: 03/18


Status: Not Started

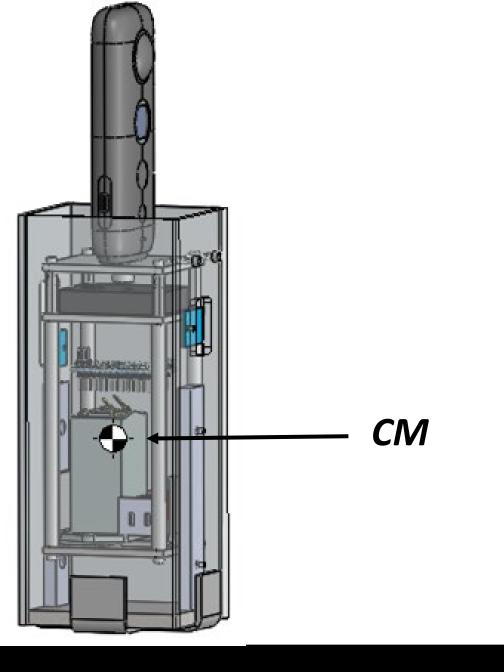

Note: Not critical path

Diagrams

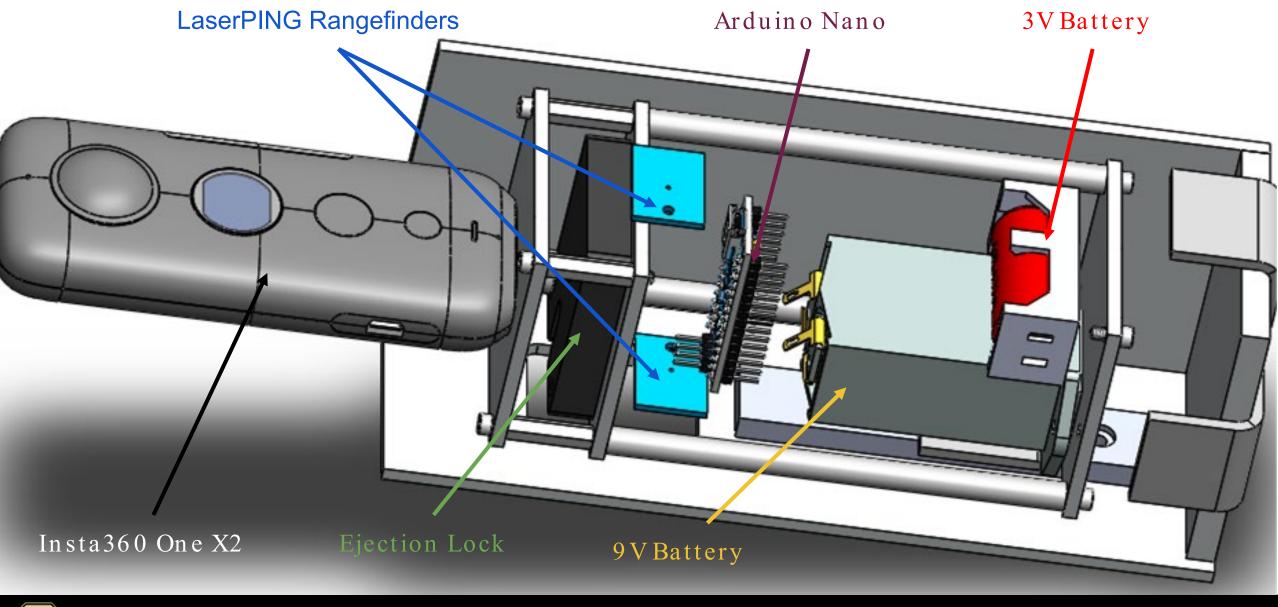
Location & Volumetric Reference



Magnified Fin Box



55


Center of Mass

57

