

SKADI Test Readiness Review

2/21/2021, AERO N240

ASEN 4028-309 Team 9

Sponsor: USA Nordic Team

Faculty Advisor: Dr. Melvin Rafi

Team Members: Hunter Daboll, Maya Greenstein, Landon Nurge, Max Page, Joaquin Ramirez, Michael Schlittenhart, Julia Sheeran, Mary Sobernheim

Outline

- Overview
- Schedule
- Test Readiness
 - Synchronicity Test Campaign
 - Mechanical Tests
- Budget

Overview

Section Outline

- ConOps
- FBD
- Full Design Solution
- CPEs

Repeat Steps 2-7 until SKADI is moved to a different training facility

Schedule

Budget

ConOps - Simulation

Overview

Schedule

Test Readiness

Budget

Functional Block Diagram

Power Supply

Overview

Full Design Solution

Schedule

Budget

Critical Project Elements

Func. Req.	CPE	Description
FR1, FR2, FR5	SYNC	The synchronization of the visual, foot force, and mechanical subsystems via software
FR2	GFORCE	The production of similar forces to those experienced by an athlete during ski jump takeoff
FR3, FR6	SAFE	The ability of SKADI to structurally withstand the maximum expected loads during simulation and keep the user safe
FR1, FR5	CUES	The ability of SKADI to provide visual cues and capture the force profile during simulation

Schedule

Section Outline

• Gantt Chart

Gantt Chart

Overview

Schedule

Taak		February			March			April				Мау	
	Task	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15	S16
Order Supplies													
AIAA Paper Abstract													
Manufacturing & Assembly													
Ass	Force Data Collection Development												
م ک	Mechanical Manufacturing & Assembly												
Juring	Visual Cues Development												
actu	Software Development												
Validation & Verification Testing													
	Test Readiness Review												
	Mechanical Tests												
	Pneumatic Model Verification												
b	Harness Testing												
estii	Structural Stability Test Synchronicity: Actuation FDC Tests												
N N													
<8													
	Synchronicity: VR						_						
	Write User's Manual									Symp	osiun	٦	
	SKADI Full Demonstration									SPR			PFR
Final Report													\diamond

Budget

Test Readiness

- Schedule pushed back since CDR due to remote start and procurement delays
- All tests planned to be completed by Spring Break
- Full system demonstration by end of March
- April will be spent working on final project deliverables

Test Readiness

Section Outline

- Comprehensive Test List
- Mechanical Tests
- Force Data Collection Tests
- Synchronicity Test Campaign

Comprehensive Test List

- Mechanical Tests
 - Dynamic Pneumatic Actuation
 System Verification
 - 2. Belay System Validation
 - 3. Structural Stability Test
 - 4. Structural Load Test
- Force Data Collection Tests
 - 5. Kitronyx Calibration
- Synchronicity Test Campaign
 - 6. SKADI Simulated Acceleration
 - 7: SKADI Simulated Position

Test

- Pneumatic Actuator Tests
 - 8. Arduino Output
 - 9. Power Supply Component
 - 10. Distance Sensor Component
 - 11. Pressure Regulator Component
 - 12. Static Bore Position System
- Software Tests
 - 13. Oculus Application Success
 - 14. Oculus to PC Communication
 - 15. GUI Start Button Behavior
 - 16. GUI Status Updates
 - 17. Actuators Triggered

Mechanical Tests

Section Outline

- Dynamic Pneumatic Actuation System Verification
- Belay System Validation
- Structural Stability

Test 1 - Dynamic Pneumatic Actuation System Verification

FR 2: The simulator shall provide force and motion cues correlating to the phase in jump.

Objective:

Test pneumatic system's ability to enact the actuation profile

Pass Criteria:

Actual lift position is within 1 cm of Ο desired throughout test

Required Hardware:

- Pressure regulator o Ο
- Pneumatic cylinder o Lidar sensor Ο
- Air compressor Ο Ο
- Pneumatic piping Ο \cap
- Power supply Ο

- Arduino Due
- Laptop
- Lift

Test 1 - Dynamic Pneumatic Actuation System Verification

FR 2: The simulator shall provide force and motion cues correlating to the phase in jump.

• Plan:

- Set up full pneumatic system and attach to lift
- Input dynamic position profile to Arduino
- Record lift position using lidar sensor
- Compare desired to actual lift position throughout the test

Test 2 - Belay System Validation

FR 6: The user will safely be brought to rest following the jump.

- **Objective**:
 - Test the belay system in order to verify the safety of the simulator
- Plan:
 - Attach I-beam clamps in Aero-140 0
 - Re-create belay system that will be delivered to customer 0 (detailed in "Belay Test Plan" document)
 - One user and one "belayer" will simulate the jump and 0 catching system

Required Hardware:

- I-beam clamps x2 0
- 40m static 10mm rope 0
- 12" 7mm cordelette 0
- 16" 6mm cordelette 0
- Climbing harness 0 Stopwatch 0 Crash Pads 0

0

Locking carabiner x3

- Pass Criteria:
 - User is caught by belay system following their jump Belayer is able to pull in 11.8ft of slack within 2.5s Ο
 - 0
 - The user is able to report that they did not feel tension on the rope until 0 after they jumped

Budget

Test 3 - Structural Stability Test (Before and After)

FR 3: The simulator shall be able to support the forces generated when used by the full range of Nordic USA athletes.

• Objective:

• Ensure sideways platform movement isn't large enough to interfere with ski jump immersion

• Pass Criteria:

• Maximum displacement does not exceed 5 cm either longitudinally or laterally

Test 3 - Structural Stability Test (Before and After)

FR 3: The simulator shall be able to support the forces generated when used by the full range of Nordic USA athletes.

Test

Readiness

Budget

Plan:

- Set up meter stick behind platform surface
- Stand on lift at set height
- Aggressively shift weight back and forth laterally and longitudinally
 - Main lateral displacement originates from loose platform attachment, not strut assembly
- Record video and measure maximum displacement using meter stick
- Repeat for at least three different platform heights
- Perform full test before and after modifications

• Required Hardware:

- Lift
- Meter stick
- Video camera

Force Data Collection Tests

• Kitronyx Calibration

Test 5 - Kitronyx Calibration

DR5.4: The sensors shall accurately measure the forces exerted within 1% of bodyweight.

• Objective:

 Obtain physical pressure values that correspond to the applied pressure by establishing a curve between a known applied force and the raw digital value

• Plan:

- Apply known force to sensor
- Measure ADC sum
- Identify multiplier for the linear equation force = m*ADCsum

• Required Hardware:

- **PC**
- Kitronyx Sensor Suite
- Weights

• Pass Criteria:

• Multiplier is accurate within 1% of known applied force

ADC SUM:

View of ADC Sum in Snowforce

Ensure the pressure distribution of the force is equal

Synchronicity Test Campaign

Section Outline

- Review of Campaign
- Setup
 - Data Capture
 - EOM Model Validation
- SKADI Simulated Acceleration
- SKADI Simulated Position

Synchronicity Test Campaign

Test

Readiness

Budget

FR1: The simulator shall provide visual cues correlating to the phase in jump. FR2: The simulator shall provide force and motion cues correlating to the phase in jump.

• Objective:

- Prove that visual cues and physical cues are in sync, and that both accurately correspond to motion on a real ski jump ramp
- Plan:

Component 1: Empirical Data on Real Ski Jump Slope

Component 2: Simulated Data in VR Experience

Upcoming

Component 3: Empirical Data on SKADI Training Simulator Platform

Setup - Data Capture

Setup - EOM Model Validation

Schedule

Readiness

Overview

Budget

Test 6 - SKADI Simulated Acceleration

Overview

Test

Test 6 - SKADI Simulated Acceleration

DR2.1: Across the curved in run phase, the slope of force with respect to time that SKADI exerts will be within 20% of the slope of force with respect to time of a true ski jump ramp.

Objective:

 Prove SKADI lift simulated position over time matches those of ski jump

Plan:

- Compare accelerometer data vs time on lift to real ski jump **Required Hardware**:
 - Accelerometer & Data Logger

Test Location:

AERO Machine Shop

Pass Criteria:

• At any time, slope of lift is within 20% of slope of jump

Test 7 - SKADI Simulated Position

Visual 360° Footage Capture/Testing

- Enables comparison of Empirical Footage to Unity Model
- Provides redundant visual display option

Schedule

Test 7 - SKADI Simulated Position

FR1: The simulator shall provide visual cues correlating to the phase in jump.

DR1.1: The visual cue shall be synced to within ±300 milliseconds of the physical cue.

Objective:

 Prove VR simulated position over time matches that of ski jump

Plan:

- Output VR simulated position with timestamps at 3-4 points
- Compare timestamp of simulated positions to timestamp of true position from camera data
 - Camera footage from both
 - 360° 1st Person POV and
 - External camera footage

Required Hardware:

VR Simulation

Required Measurements:

- VR simulated position with timestamps
- Pass Criteria:
 - At a given position, difference in timestamps is less

Recap of System Validation: Synchronicity Test Campaign

FR1: The simulator shall provide visual cues correlating to the phase in jump. FR2: The simulator shall provide force and motion cues correlating to the phase in jump.

• Objective:

- Prove that visual cues and physical cues are in sync, and that both accurately correspond to motion on a real ski jump ramp
- Plan:

Component 1: Empirical Data on Real Ski Jump Slope

Test

Readiness

Budget

Component 2: Simulated Data in VR Experience

Upcoming

Component 3: Empirical Data on SKADI Training Simulator Platform

Budget

Section Outline

- Budget Breakdown
- Planned Costs
 - Steamboat Trip
- Completed Purchases
- Planned Purchases

Budget Breakdown

0

Planned Costs

\$354.76 x 2 = \$709.52

\$994.00 x 2 = \$1988

\$428.00

2

\$1239.74

\$1430.00

Budget

0

At Risk Items

- Pneumatic Cylinder damage during testing
 - Have 2, system can work with one
- Pressure Regulator damage during testing
 - Have 2, system can work with one
- Distance Sensors fry during testing
 - Triple bought
- MOSFET
 - Double bought
- Power Supply fry during testing
 - Double bought
- Custom Metal Pieces miscut during fabrication
 - Bought extra length for margin of error

Remaining Budget

Estimated Cost and Margin

Steamboat Trip

	Overestimate	Source	Expected	Source	
Number of Days	2		2		
Number of Attendees	3		3		
Steamboat Springs Meals and Incidentals	\$79	https://ww	\$50	https://wv	
Steamboat Springs Lodging	\$129	https://ww	\$69	https://wv	
Gas Price Per Gallon	\$3.30	https://ga	\$3.30	https://ga	
Avg. MPG	24.9	https://ww	24.9	https://wv	
Miles to Travel	280		280		
Total Per Diem	\$208.00		\$118.82		
Total Gas	\$37.06		\$37.06		
Gross Cost	\$1,285.06		\$749.98		
1					

Completed Purchases

Direct Costs	October	November	December	December Janurary		TOTAL
HiLetgo		\$ 8.39			\$	8.39
Arduino			\$26.28		\$	26.28
Unity			\$19.00		\$	19.00
Oculus			\$435.63		\$	435.63
Mcmaster-Carr			\$ 910.89	\$ 212.86	\$	1,123.75
Amazon			\$ 56.92		\$	56.92
Apollo				\$ 1,165.80	\$	1,165.80
Enfield				\$ 2,119.49	\$	2,119.49
Adfruit					\$	-
Vendor					\$	-
MonthlyTotal Expenses	\$ -	\$ 8.39	\$ 1,448.72	\$ 3,498.15	\$	4,955.26

All items listed have been procured

Planned Purchases

Direct Costs	November	December	Janurary	February	March	April	May	TOTAL
Lowes					\$ 48.98			\$ 48.98
Arduino				\$ 42.38				\$ 42.38
GetMetals				\$ 75.27				\$ 75.27
Sparkfun				\$ 0.95				\$ 0.95
Amazon					\$ 70.99			\$ 70.99
REI					\$ 263.26			\$ 263.26
McGraw				\$ 149.99				\$ 149.99
Adafruit				\$44.85				\$ 44.85
Kitronyx	\$ 1,430.00							\$ 1,430.00
CU Boulder							\$ 200.00	\$ 200.00
MonthlyTotal Expenses	\$ 1,430.00	\$ -	\$ -	\$ 313.44	\$ 383.23	\$ -	\$ 200.00	\$ 2,326.67

Kitronyx sensors have been procured

Spring.....(\$2326.67)

Steamboat..... (\$749.98)

Remaining......\$1968.09

Overview Schedule Test Readiness Budget

Acknowledgments

USA Nordic Team: Tim Tetreault, Jed Hinkley

SSWC: Karl Denney and the U18/U16 Ski Jumpers

Faculty Advisor: Dr. Melvin Rafi

Additional Help: Trudy Schwartz, Matt Rhode, Bobby Hodgkinson, Jacqui Stang

Backup Slides

Supplier	Part Number	Part Name	Justification	items per Order	Orders	LINK	Unit Cost	Snipping	Iotal Cost
HiLetgo	HC-06 RS232	Wireless Bluetooth Serial RF Transceiver Module Bi-E	For Oculus control communication	1		https://www.ama	\$8.39	\$0.00	\$8.39
Oculus		Oculus Quest 2 128 GB	Visual Cues Display Method	1		https://www.ocul	\$299.00	\$0.00	\$299.00
Oculus		Quest 2 Elite Strap with Battery and Carrying Case	Increases comfort, portability, battery life	1		1 https://www.ocul	\$129.00	\$0.00	\$129.00
Kiwi Design		Upgraded Elite Strap for Oculus Quest 2	Increases comfort, portability	1		1 https://www.kiwic	\$51.00	\$0.00	\$51.00
Kitronyx	MP2513PLUS	Insole Sensor Kit	Force Data Collection method	1		https://www.kitro	\$1,280.00	\$150.00	\$1,430.00
Arduino	A000066	Arduino Uno Rev3	Need arduino to interface with oculus	1		https://store-usa.	\$19.55	\$3.28	\$22.83
McMaster-Carr	6498K586	Round Body Air Cylinder, Double Acting, Universal Mount, 2	Actuation of platform motion	4	á	https://www.mcm	\$234.00		\$0.00
McMaster-Carr	4952K743	Sensor-Ready Round Body Air Cylinder, Double Acting, 2"	Same as 6498K586 but faster shipping,	1	:	2 https://www.mcm	\$354.76		\$709.52
Unity		Arduino Bluetooth Plugin	Connect oculus to arduino	1		1 https://assetstore	\$19.00	\$0.00	\$19.00
McGraw		8 Gallon 1.5 HP 150 PSI Oil-Free Portable Air Compr	Necessary for compressing and storing a	1		1 https://www.harb	\$149.99	\$0.00	\$149.99
Adafruit	1528-1814-ND	Adafruit VL53L0X Time of Flight Micro-LIDAR Distance	Used for feedback control loop of platform	1	:	3 https://www.digik	\$14.95		\$44.85
Apollo	A-2010	Double Scissors Lift Table 1760lbs. 59" lifting height	COTS lifting platform, structure of mecha	1		1 https://www.apol	\$949.00	\$290.74	\$1,239.74
Enfield	S2-025-U-04	S2 - HIGH-FLOW CYLINDER POSITIONING SYSTE	Control system for pneumatic actuation	1	:	2 https://www.enfie	\$994.00	\$15.94	\$2,003.94
Petzl	R39AO 040	Petzl Club 10mm 40m	Rope for belay	1		1 https://www.petz	\$139.95	\$10.00	\$149.95
Trango		Trango Regulock HMS Screwlock	Carabiners for belay system	1		5 https://www.rei.c	\$11.95		\$59.75
REI		Accessory cord	Locking system	1		4 https://www.rei.c	\$0.40	\$0.00	\$1.60
Black Diamond		Momentum Harness (Mens Medium)	Belay	1		1 https://www.blac	\$51.96		\$51.96
Lowes		2"x10"x8' Douglas Fir	Wooden Base	1		https://www.lowe	\$14.17	\$0.00	\$28.34
Lowes		2"x8"x8' Douglas Fir	Wooden Base	1		2 https://www.lowe	\$10.32	ç0.00	\$20.64
Amazon		#8.2" Wood Screws	Wooden Base	100		https://www.ama	\$12.99		\$12.04
Mcmaster-Carr	1503N4	EPDM Air Hose with 1/4 x 1/4 NPTE Brass Male Fittin	Pneumatic hose	1		https://www.mcm	\$18.97		\$37.94
Mcmaster-Carr	1593N4	EPDM Air Hose with 1/4 x 1/4 NPTE Brass Male Fittin	Pneumatic hose	1		1 https://www.mcm	\$20.41		\$20.41
Mcmaster-Carr	70106117	Power Supply Single Phase 100-240VAC Input 24V	Pegulator power supply	1		https://www.mon	\$34.67		\$60.34
Amazon	7010К117	12 Dack11/SR 3.0 Cable LISR to LISR Cable LISR A M	Data transfer for all systems	2		https://www.mcn	\$0.00	\$0.00	\$20.07
CotMotola		[2 Fack] 03B 5.0 Cable, 03B to 03B Cable, 03B A in	Advator red at bottom of lift	2		https://www.ama	\$9.99	\$0.00	\$29.97
Getwietais	041570	24 is a 26 is Cold Dollad Sharl Solid Shark Matel	Actuator rod at bottom or lint			https://geunetais	\$10.07	\$0.00	\$30.14
Lowes	2/10/2	24-In X 36-In Cold Rolled Steel Solid Sheet Metal	Connect lift to actuator cylinder	+	1	thttps://www.iowe	\$27.14	00.00	\$0.00
GetWetals		1018 2-1/2" steel rod - length: custom cut 1.2"	Sieeve to allow rolling of actuator rod	1		nttps://getmetals	\$29.15	\$0.00	\$29.15
Getivietais		1018 .75" diameter 5" length	Perpendicular tube for thread	1		nttps://getmetals	\$5.64		\$5.64
Mcmaster-Carr	1641	1" load bearing	Allow sleeve to rotate freely	1		2 <u>nttps://www.mcm</u>	\$24.98		\$49.96
Mcmaster-Carr	91310A128	High-Strength Class 10.9 Steel Hex Head Screw	Connect cylinder holder to lift	10		2 <u>nttps://www.mcm</u>	\$9.55		\$19.10
Amazon		RIGERS Training Sandbags Heavy Duty	Secure belay system to gym floor	1		https://www.ama	\$70.99	\$0.00	\$70.99
Amazon		Culler Strain Gauge Used in Mechanics Experiment for	Testing sensors	4	-	https://www.ama	\$20.99	\$0.00	\$0.00
Amazon		Loctite Threadlocker Red 271,0.20 fl. oz(209741)	Thread lock for joints	1		2 https://www.ama	\$6.98		\$13.96
Mcmaster-Carr	17715A44	Corner Bracket	Mounting Bracket for cylinder case	1		2 https://www.mcm	\$6.24		\$12.48
Sparkfun		100 Gain Opamp	Need 10 volts from arduino	1		https://www.spar	\$0.95		\$0.95
Mcmaster-Carr	6527K414	Steel Rectangular Tube (6ft)	Mount cylinder to lift	1		2 https://www.mcm	\$53.69		\$107.38
Balluff		Magnetic distance sensors	Used for feedback control loop of platform	n motion		https://www.ballu			\$0.00
		Resistor	Step circuits for arduino						\$0.00
Enfield		M8 5 pole cable	data cable for pneumatic control	1		2 https://www.enfie	\$39.00	\$17.25	\$95.25
		Edison to free wire adapter	adapter for wall to power supply	1		https://www.parts	\$3.98	\$0.00	\$3.98
Target		Iphone 11 protective case	empirical data collection for synchronicity	1		1	\$39.99	\$0.00	\$39.99
Home Depot		dual camjam tie down system	secure phone to boot for empirical data of	1		1	\$19.98	\$0.00	\$19.98
Home Depot		Velcro strap	secure phone to boot for empirical data of	1		1	\$18.54	\$0.00	\$18.54
Home Depot		multipurose foam	secure phone to boot for empirical data of	1		1	\$8.98	\$0.00	\$8.98
Amazon		I-beam clamp	Belay testing	1		2 https://www.ama	\$19.99		\$39.98
Sparkfun		mosfet switch kit	Voltage regulator for arduino	1	1	2 https://www.spar	\$5.25		\$10.50
Dell		Inspiron 15 3000 Laptop	Computer for simulation control	1		https://www.dell.e	\$279.99	\$0.00	\$279.99

user1 = athlete
performing the simulation

user2 = coach/person controlling simulation and attached to harness

arduino1 = arduino attached to bluetooth receiving signal from Oculus

arduino2 = arduino sending voltages to pneumatics

Mechanical Tests

• Structural Load Test

Test 4 - Structural Load Test (Before and After Modification)

FR 3: The simulator shall be able to support the forces generated when used by the full range of Nordic USA athletes.

• Objective:

• Verify lifting structure can support full expected load

• Plan:

- Raise lift to a specified height
- Place a weight on the platform
- Incrementally increase weight until 600 lbs or plastic deformation occurs
- Perform test at lowest and highest heights, as well as height corresponding to struts angled at 45 degrees

Required Hardware:

- o Lift
- 600 lbs of weights

• Pass Criteria:

• Lift does not plastically deform at any point during testing process

Pneumatic Tests

Section Outline

- Arduino Output
- Power Supply Component
- Distance Sensor Component
- Pressure Regulator Component
- Static Bore Position System

Test 8 - Arduino Output

FR 2: The simulator shall provide force and motion cues correlating to the phase in jump.

• Objective:

 Ensure the Arduino can output the correct analogue signal from a DAC port

• Plan:

- Connect the Arduino to a computer via USB
- Upload an analogue voltage profile to the Arduino
- Execute the program and record the voltages from pin DAC1 using pin A1
- Compare desired and measured voltages

• Required Hardware:

- Arduino Due
- \circ Jumper wire
- Laptop
- USB cord
- Pass Criteria:
 - The Arduino is measured to output the correct analogue voltage profile, ok if amplitude is scaled down

Test 9 - Power Supply Component

FR 2: The simulator shall provide force and motion cues correlating to the phase in jump.

• Objective:

- Verify the power supply can generate the necessary voltage for our system
- Plan:
 - Connect power supply to wall outlet using edison to bare wire adapter
 - Measure output voltage using electronics lab multimeter

• Required Hardware:

- Power supply
- Edison to bare wire adapter
- Multimeter

• Pass Criteria:

The output maintains a DC voltage above 12V

Test 10 - Distance Sensor Component

FR2: The simulator shall provide force and motion cues correlating to the phase in jump.

- Objective:
 - Verify the lidar sensor can accurately measure distance in the intended environment
- Plan:
 - Connect lidar sensor to arduino
 - Place lidar sensor under lift
 - Simultaneously start reading lidar measurements and start timer on laptop
 - Move a reflector to 3 set positions at set times
 - Analyze lidar output accuracy and latency

• Required Hardware:

- Lidar sensor
- Arduino Due
- Laptop
- Meter stick
- 1 piece of white printer paper
- Lift
- Pass Criteria:
 - Lidar sensor measures distance to within 1 cm

Test 11 - Pressure Regulator Component

FR 2: The simulator shall provide force and motion cues correlating to the phase in jump.

• Objective:

- Ensure pressure regulator can move the cylinder rod
- Plan:
 - Set up pneumatic system excluding load and analogue input
 - Vary input voltage between 0-10V
 - Record change in rod position between each voltage application

• Required Hardware:

- Pressure regulator
- Pneumatic cylinder
- Air compressor
- Pneumatic piping
- Power supply
- Arduino Due/ Voltage Boost Equipment
- Laptop
- Meter stick

• Pass Criteria:

• Pneumatic rod position moves according to applied voltage level

Test 12 - Static Bore Position System (Unloaded/Loaded)

FR 2: The simulator shall provide force and motion cues correlating to the phase in jump.

• Objective:

- Test pneumatic system's ability to maintain a static position.
- Plan:
 - Set up full pneumatic system (not connected to lift)
 - Input constant voltage to pressure regulator
 - Use meter stick to record position of pneumatic rod before and after voltage application

• Required Hardware:

- Pressure regulator
- Pneumatic cylinder
- Air compressor
- Pneumatic piping

Pass Criteria:

 Desired position of pneumatic rod is accurate within 1 cm after voltage application

- Reset pneumatic system and connect to lift
- Input constant voltage to pressure regulator
- Use meter stick to record position of pneumatic rod before and after voltage application
- Power supply
- Arduino Due
- Lidar sensor
- Laptop
- Meter stick
- Lift

Software Tests

Section Outline

- Oculus Application Success
- Oculus to PC Communication
- GUI Start Button Behavior
- GUI Status Updates
- Actuators Triggered

Test 13 - Oculus Application Success

FR 1: The simulator shall provide visual cues correlating to the phase in jump.

• Objective:

- Oculus Quest 2 app internally behaves as expected
- Plan:
 - Upload app to Oculus using Oculus Developer Hub
 - Open app, should show a start menu
 - Press start on menu

Required Hardware:

• Oculus Quest 2

• Pass Criteria:

When start is pressed the view should transition to a sixing jump

Test 14 - Oculus to PC Communication

FR 1: The simulator shall provide visual cues correlating to the phase in jump.

• Objective:

- Oculus Quest 2 can successfully send command to a PC via bluetooth + arduino
- Plan:
 - Have C++ program output signal when it receives bluetooth cue
 - 2 people one on Oculus and one by PC
 - Have person on Oculus open app and press button to connect

• Required Hardware:

- **PC**
- Oculus Quest 2
- Pass Criteria:
 - The PC will receive the signal and send an output right after the button is pressed

Test 15 - GUI Start Button Behavior

FR 1: The simulator shall provide visual cues correlating to the phase in jump.

• Objective:

- Start in GUI triggers C++ executable
- Plan:
 - Have C++ program output signal when it receives start cue
 - Open GUI and terminal simultaneously
 - Press button on GUI

Required Hardware:

- **PC**
- Pass Criteria:
 - C++ program outputs as expected when GUI is triggered

Test 16 - GUI Status Updates

FR 1: The simulator shall provide visual cues correlating to the phase in jump.

• Objective:

- GUI status updated appear at the right times
- Plan:
 - Run through all steps of GUI (actuators need not be connected)
 - Check status updates as different aspects are being executed

• Required Hardware:

- **PC**
- o OQ2
- Pass Criteria:
 - The status updates match up with the correct stage of the simulation

Test 17 - Actuators Triggered

FR 1: The simulator shall provide visual cues correlating to the phase in jump.

• Objective:

- Actuators begin motion when arduino controlling receives command
- Plan:
 - Set up actuator to arduino connection
 - Run C++ code that should start actuators with a specified signal

Required Hardware:

- **PC**
- Pass Criteria:
 - Actuators start moving

