

SKADI Critical Design Review

12/7/2021, AERO 111

ASEN 4018-012 Team 9

Sponsor: USA Nordic Team Faculty Advisor: Dr. Melvin Rafi

Team Members: Maya Greenstein, Landon Nurge, Max Page, Joaquin Ramirez, Michael Schlittenhart, Julia Sheeran, Mary Sobernheim, Hunter Daboll,

Outline

- Project Purpose & Objectives
- Design Solution
- Critical Project Elements
- Design Requirements & their Satisfaction
- Project Risks
- Verification & Validation
- Project Planning

Project Purpose & Objectives

Section Outline

- Project Motivation
- Mission Statement
- ConOps

Project Motivation

USA Nordic Ski needs a better way \bullet to train their ski-jump athletes off the slopes

Current training methods lack visual \bullet aids, cause the athlete to experience unrealistic external forces, and do not provide a way to collect foot force distribution

USA Nordic's Current Training Methods:

Videos courtesy of USA Nordic

Project Purpose &

Objectives

Critical Proiect **Design Solution** Flements

Design Regs. & Satisfaction

Project Risks

Verification & Validation

Mission Statement

SKi jump Athletic Development Interface (**SKADI**) will provide the **USA Nordic** team with a training device that will **visually** and **physically** model the G-Forces of a ski jump takeoff while **measuring the foot force** applied by the athlete.

Project Purpose & Design Solution Objectives

Design Solution

Section Outline

- Overall Design Solution
- Subsystem Designs
- Functional Block Diagram

Design Solution (Human)

Design Solution (Platform to Scale)

Design Solution (Pneumatic System)

Double Acting Cylinder

Design Solution (Belay System)

& Objectives

Design Solution (Full)

Functional Block Diagram

Power Supply

Project Purpose

& Objectives

Critical Project Elements

Section Outline

• Critical Project Elements

Critical Project Elements

Func. Req.	CPE	Description
FR1, FR2, FR5	SYNC	The synchronization of the visual, foot force, and mechanical subsystems via software
FR2	GFORCE	The production of similar forces to those experienced by an athlete during ski jump takeoff
FR3, FR6	SAFE	The ability of SKADI to structurally withstand the maximum expected loads during simulation and keep the user safe
FR1, FR5	CUES	The ability of SKADI to provide visual cues and capture the force profile during simulation

Project Purpose & Objectives Design Solution C

Critical Project D Elements

Design Reqs. & Project Risks

Verification & Validation

Design Requirements & their Satisfaction

Section Outline

- Driving Requirements
- Acceleration Profile
- Synchronization of Subsystems
- Structural Integrity

Driving Requirements

Driving Requirement(s)	Description	CPE(s)
FR2	Acceleration Profile	GFORCE, CUES
FR1	Synchronization of Subsystems	SYNC, CUES
FR3, FR6	Structural Integrity	SAFE

Project Purpose & Objectives Design Solution Critic

Critical Project Design Reqs. & Satisfaction

Project Risks

Verification & Validation

Acceleration Profile (FR2)

DR2.1: Across the curved in run phase, the slope of force with respect to time that SKADI exerts will be within 20% of the slope of force with respect to time of a true ski jump ramp.

Empirical Data

Project Purpose & Objectives

Design Solution

Elements

Validation

Acceleration Profile

Project Purpose & Objectives **Critical Project Design Solution** Elements

Design Reqs. & Project Risks Satisfaction

Verification & Validation

Acceleration Profile

Project Purpose & Objectives Design Solution Critical Project Elements Design Reqs. & Project Risks

Verification & Validation

User Experience

- Max accel of user: 0.098 Gs
 - Required 0.06 Gs
- Max velocity of user: 0.90 m/s
- Max displacement of user: 0.74 m
- Initial State
 - Velocity:
 - 0 m/s
 - Position:
 - 1.75 m

Project Purpose & Objectives Design Solution Critical Project Elements

Design Reqs. & Project Risks

Verification & Validation

Actuation

• Max accel of actuator: 0.074 Gs

Critical Project

Elements

- Max velocity of actuator: 0.80 m/s
- Max displacement: 0.75 m
- Max force needed: 920 N
- Initial State

Project Purpose

& Objectives

- Velocity:
 - 0 m/s
- Position:

Design Solution

■ 0.2 m

Project Risks

Design Regs. &

Satisfaction

Pneumatic Actuation

Pro	ject	Pur	pose
ጲ.	Ohi	ecti	VAS

Design Solution Critical Project Elements

ct Design Reqs. & Satisfaction

Project Risks

Verification & Validation

Round Body Air Cylinder- McMASTER-CARR

- Double-Acting, Universal Mount, 2" Bore
- Vendor: McMASTER-CARR
- Price: \$234 Length 36" Stroke: 36" Stroke \cap

• Force @ 100 psi: 310 lbs

Project Purpose & Objectives

Critical Project Design Solution Elements

Design Regs. & Project Risks Satisfaction

Verification & Validation

Synchronization of Subsystems (FR1)

DR1.1: The visual cue shall be synced to within ±300 milliseconds of the physical cue.

Pneumatics Control

Project Purpose

& Objectives

Visual Software FBD

Proof of Concept

Android Device (Samsung Galaxy S4)

Arduino with Bluetooth Connection

Program to Write File

PS C:\Users\mgree\Documents\Current\ASEN4018\ArduinoBTCpp> g++ main.cpp SerialPort.cpp
PS C:\Users\mgree\Documents\Current\ASEN4018\ArduinoBTCpp> ./a
Enter Filename
Test
Connection is Established
File Created
PS C:\Users\mgree\Documents\Current\ASEN4018\ArduinoBTCpp> []

Project Purpose & Objectives Design Solution Critical Project Elements

itical Project Design Reqs. & Satisfaction

& Project Risks

Verification & Validation

Synchronization

VR System

 Pre-defined timing* -> user presses start -> some delay -> straight in-run phase begins -> continues to curved in-run and takeoff phases

Mech System

• Pre-defined timing -> movement begins when user starts descending ski jump in VR simulation

Synchronization

• VR system will create a file on PC when the user presses start, mechanical will read the newly created file, both will have the same delay before beginning simulation

*The pre-defined timing of the VR system will be modified by the programmed timing of the platform stages of movement

Structural Integrity (FR3, FR6)

DR3.1: SKADI shall be able to support up to 600 lbs including user and equipment. DR6.1: The user will not have to adjust their takeoff or flight positions to accommodate for landing. DR6.2: The user will be caught and brought to rest by a harness upon jumping

Structures Solution: COTS Scissor Lift

ApolloLift 1760 lb Capacity Lift

Cost: \$1239.74 after shipping and tax

Specifications:

- 1760 lb Load Capacity (Manufacturer FOS of 1.25)
 - Gives us a FOS of 2.9 (600 lb Load)
- Platform Dim: 48 in x 24 in
- Max Height Displacement: 59.1 in

FEA simulation was used to verify specs

Project Purpose & Objectives

Design Solution

Critical Project Elements

Design Reqs. & Project Risks

Verification & Validation

Structural Analysis - von Mises Stress

Assumptions:

- Lift made of 1023 low-carbon steel
- Maximum platform load: 2669 N (600 lbs)
- Maximum dynamic load: 1000 N

Results:

Design Solution

Max Yield Strength: 28.27e+07 [N/m²]

Max von Mises Stress: 5.487e+07 [N/m²]

FOS: 5.15

Project Purpose

& Objectives

Project Risks

Verification & Validation

Structural Analysis - Horizontal Displacement

Assumptions:

- Acceptable displacement up to 2"
- Max Lateral Load: 1708 N (384 lbs)
 - Coefficient of friction: 0.64
 - Force: 384 lbs
 - Moment arm:
- No "play" in platform connections

Results:

Max Displacement: 4.108 [mm] (0.16")

Project Purpose & Objectives Design Solution Critical Project Elements Design Reqs. & Project Risks

Verification & Validation

COTS Lift Modifications for SKADI

Project Purpose & Objectives Design Solution Critical Project Elements Design Reqs. & Satisfaction

Project Risks

Verification & Validation

Lift Base Modifications- Drill Hole in Base

- Drill one 2" hole through center
- Drill six 0.16" holes for mounting brackets
- Remove COTS hydraulic pin mechanism (Red Highlight)

Mounting Bracket for Cylinder Case

Project Purpose & Objectives Design Solution Critical Project Elements Design Reqs. & Pr Satisfaction

Project Risks V

Verification & Validation

Lift Base Modifications - Force Analysis

URES (mm) 3.289-02 2.960-02 2.302-02 1.973

Yield Strength: 28.27e+07 [N/m²] Max von Mises Stress: 1.487e+07 [N/m²]

Max Displacement: 3.289e-02 [mm]

Conclusion: This modification does not impact the structural integrity of the lift.

Project Purpose & Objectives

Design Solution Critical Project Elements Design Reqs. & Pro

Project Risks

Verification & Validation

Air Cylinder Case

Front Back 2.4" — 1" — 2.75"

- Case to secure air cylinder to scissor lift base
- Made out of 0.25" cold rolled lowcarbon steel sheet

Air Cylinder Case - Force Analysis

- Fixed at center hole
- Force: 1000 N (Air Cylinder Pushing on Connection)

Results:

Yield Strength: 2.827e+08 [N/m²] Max von Mises Stress: 6.195e+06 [N/m²]

Conclusion: The custom cylinder case can withstand the actuation loads

Design Reqs. & Project Risks

Verification & Validation

Actuator Attachment Rod

- McMASTER-CARR High Load Bearing (2950 N)
- Rod will be welded laterally to bottom front strut
- High load bearings allow sleeve rotation
- Rod is made of 1018 cold-rolled • steel

Project Purpose & Objectives

Critical Project Design Solution Elements

Design Regs. & Satisfaction

Verification & Project Risks Validation

Project Planning

Custom 1020 Steel Sleeve

Actuator Attachment Rod - Force Analysis

• **1020 Steel Specs**: Yield Strength: 3.5e+08 [N/m²]

- 1018 Steel Specs: Yield Strength: 5.51e+08 [N/m²]
- Max von Mises Stress: 4.365e+07 [N/m²]

Conclusion: The max stress falls under the Y.S of both 1018 and 1020 steel

Project Purpose & Objectives Design Solution Criti

Critical Project Design Reqs. & Satisfaction

. & Project Risks

Verification & Validation

Wooden Support Platform

Critical Project

Elements

7.25

Schematic

Design Solution

Project Purpose

& Objectives

Design Regs. &

Satisfaction

Project Risks

10.75

Project Planning

Verification &

Validation

Project Risks

Section Outline

- Risk Definitions
- Risk Identification
- Pre-Mitigation Risk Matrix
- Mitigation Strategies
- Post-Mitigation Risk Matrix

Risk Definitions

Risk Factor Range	Qualitative	Quantitative
<5	Minimal	Minimal
>5, ≤12	Minor to major reduction in technical performance	More work required, can still meet deadlines
>12	Catastrophic	Milestone is unable to be achieved or over budget

Level	Likelihood	Severity
1	Extremely Improbable	Minimal
2	Low Likelihood	Minor
3	Likely	Major
4	Highly Likely	Serious
5	Near Certainty	Catastrophic

Project Purpose & Objectives

Design Solution

olution Critical Project Elements Design Reqs. & Satisfaction

Project Risks

Verification & Validation

Risk Tables (Pre-Mitigation)

Risk I	D	Category				Description						
ASYNC 1	>	Asyno	ynchronous Subsystems The VR, Foot Force, and Mechanical subsystems are not functioning simultan						systems are not functioning simultaneously.			
XTRA 2		Unrealistic Forces The platform is not able to achieve the desired magnitude of G-Force to cue athlete to jump and/or introduces extraneous forces.					sired magnitude of G-Force to cue the ous forces.					
STRUC 3	Т	Platform Structural Failure The platform fails (e.g. tipping, shear or bending, slipping, motor stall, total c					ending, slipping, motor stall, total collapse).					
CATCH 4	ł	Huma	an Error (Harne	ss) The belayer fails to to perform the necessary belay actions to catch the athlete.					ary belay actions to catch the athlete.			
ATHLT 5	-	Human Error (Athlete on Platform)				The athlete fails to mount and jump the platform according to the proper use case						
VIS 6	VIS 6		Visual Cue			The VR simulation runs out of battery and is not able to provide a visual for the athlete.						
FOOT 7		Foot Force Collection				The foot force insoles fail due to excessive forces or interference in connection.						
Project Purpose & Objectives	Design S	olution	Critical Project Elements	Design Reqs. & Satisfaction	Project Risk	s	Verification & Validation	Project Planning	(F) ((19) 48			

Likelihood and Severity (Pre-Mitigation)

Risk ID	Original Severity	Original Likelihood	Original Risk Level				
ASYNC 1	Serious	Highly Likely	Catastrophic				
XTRA 2	XTRA 2 Catastrophic		Catastrophic				
STRUCT 3	Catastrophic	Low Likelihood	Catastrophic				
CATCH 4	Major	Likely	Hazardous				
ATHLT 5	Serious	Low Likelihood	Hazardous				
VIS 6	Serious	Low Likelihood	Hazardous				
FOOT 7	Major	Low Likelihood	Hazardous				
ect Purpose Desig	Solution Critical Project	Design Reqs. & Pr	roject Risks				

Satisfaction

Elements

Validation

Pro

& Objectives

Level	Likelihood	Severity
1	Extremely Improbable	Minimal
2	Low Likelihood	Minor
3	Likely	Major
4	Highly Likely	Serious
5	Near Certainty	Catastrophic

Pre-Mitigation Risk Matrix

Level	Likelihood	Severity
1	Extremely Improbable	Minimal
2	Low Likelihood	Minor
3	Likely	Major
4	Highly Likely	Serious
5	Near Certainty	Catastrophic

Consequence:

Acceptable	Tolerable	Intolerable
------------	-----------	-------------

Project Purpose & Objectives

Design Solution

Critical Project Elements Design Reqs. & Project Risks

Verification & Validation

Mitigation Strategies

Risk ID	Category	Mitigation							
ASYNC 1	Asynchronous Subsystems	Redundant, modular software so that if one system fails, the others will not be triggered.							
XTRA 2	Unrealistic Forces	Adding more powerful pneumatics, testing with reduced loading, structural reinforcements, careful redesign if verification fails.							
STRUCT 3	Platform Structural Failure High quality components, rigorous testing procedures, belay system.								
CATCH 4	Human Error (Harness)	Familiar technology and redundancy in system. Knotted ropes will catch athlete if they fall past a certain point.							
ATHLT 5	Human Error (Athlete on Platform)	User manual detailing safe user procedure, as well as additional safety measures like the harness.							
VIS 6	Visual Cue	Headset will be charged in between uses.							
FOOT 7	Foot Force Collection High quality components and testing to verify loads from product specification sheet.								
Project Purpose & Objectives	Design Solution Critical Project	Design Reqs. & Satisfaction Project Risks Verification & Validation Project Planning							

St and a start of the start of

Severity and Likelihood (Post-Mitigation)

Risk ID	Post-Mitigation Severity	Post-Mitigation Likelihood	Post-Mitigation Risk Level
ASYNC 1	Minor	Low Likelihood	Minimal
XTRA 2	Major	Extremely Improbable	Minimal
STRUCT 3	Major	Extremely Improbable	Minimal
CATCH 4	Minor	Extremely Improbable	Minimal
ATHLT 5	Minor	Extremely Improbable	Minimal
VIS 6	Minor	Extremely Improbable	Minimal
FOOT 7	Minor	Extremely Improbable	Minimal

Level	Likelihood	Severity
1	Extremely Improbable	Minimal
2	Low Likelihood	Minor
3	Likely	Major
4	Highly Likely	Serious
5	Near Certainty	Catastrophic

Project Purpose
& ObjectivesDesign SolutionCritical Project
ElementsDesign Reqs. &
SatisfactionProject RisksVerification &
ValidationProject Planning

Post-Mitigation Risk Matrix

	5							Level	Likelihood	s	everity
	4				ASYNC			1	Extremely Improbable	N	linimal
L	3			САТСН		XTRA		2	Low Likelihood		Minor
k								3	Likely		Major
e I	2		ASYNC	FOOT	VIS	STRUCT		4	Highly Likely	S	Serious
h o			CATCH, ATHLT.	XTRA.				5	Near Certainty	Cat	astrophic
o d	1		VIS, FOOT	STRUCT							
		1	2	3	4	5			Consec	quence:	
			Ş	Severity	Acceptable Tolerable Intolera						

Design Solution Critica

Critical Project Design Reqs. & Elements Satisfaction

& Project Risks

Verification & Validation

Verification & Validation

Section Outline

- Verification
 - Structural Integrity
 - Harness Belay Testing
- Validation
 - Synchronicity Test

Subsystem Verification: Structural Integrity

FR3: The simulator shall be able to support the forces generated when used by the full range of Nordic USA athletes DR3.1: SKADI shall be able to support up to 600lbs.

• Objective:

- Verify structure can statically support up to 600 lbs for all possible loading locations
- Plan:
 - Incrementally load up to 300 lbs (using weight)

Design Regs. &

Satisfaction

- Validate/modify SolidWorks FEA model
- Predict FOS for 600 lb loads

Critical Project

Elements

Required Hardware:

• Strain Gauges

• Test Location:

• AERO Machine Shop

• Pass Criteria:

• No yielding

Project Risks

Validation

Project Purpose & Objectives Design Solution

Subsystem Verification: Harness Belay Testing

FR 6: The user will safely be brought to rest following the jump.

- **Objective**:
 - Prove that belay system can sufficiently rise in height to safely catch jumping user Ο
- Plan:
 - Operate belay with secondary safety mechanisms in place Ο
- **Required Hardware**:
 - Belay system Ο
 - Crash Pads \cap
- **Required Measurements:**
 - 0 Length of rope pulled through belay system
- Test Location:
 - In discussion with M. Rhode and N. Coyle 0

Critical Project

Elements

Potentially AERO 152, Wood & Composites Shop Ο

Desian Reas. &

Satisfaction

Pass Criteria:

Design Solution

Project Purpose

& Objectives

Belayer can easily pull $2 \times (0.8 \text{ m} + 1 \text{ m}) = 3.6 \text{ m} = 11.8 \text{ ft within } 2.5 \text{ seconds}$ Ο

Project Risks

Validation

System Validation: Synchronicity Test Campaign

FR1: The simulator shall provide visual cues correlating to the phase in jump. FR2: The simulator shall provide force and motion cues correlating to the phase in jump.

• Objective:

- Prove that visual cues and physical cues are in sync, and that both accurately correspond to motion on a real ski jump ramp
- Plan:

Project Purpose

& Objectives

Component 1: Empirical Data on Real Ski Jump Slope

Component 2: Simulated Data in VR Experience

Component 3: Empirical Data on SKADI Training Simulator Platform

- **FT** 🋞 🥓

Design Solution Critical Project Elements Design Reqs. & Pro

Project Risks

Verification & Validation

Synchronicity Test Campaign: Real Ski Jump Ramp

FR1: The simulator shall provide visual cues correlating to the phase in jump.

FR2: The simulator shall provide force and motion cues correlating to the phase in jump.

Objective:

 Obtain empirical position and acceleration data on real ski jump

Required Hardware:

- Ski & Boot
- Camera capturing at least one frame per 300 milliseconds
- Accelerometer & Data Logger

Required Measurements:

 Position (via camera) & Acceleration (via accelerometer) on ramp vs time

Test Location:

• Steamboat Springs training facility

Synchronicity Test Campaign: Real Ski Jump Ramp

Project Purpose & Objectives

Design Solution Critical Project Elements

ect Design Reqs. & Satisfaction

Project Risks

Verification & Validation

Synchronicity Test Campaign: VR Experience

FR1: The simulator shall provide visual cues correlating to the phase in jump.

DR1.1: The visual cue shall be synced to within ±300 milliseconds of the physical cue.

Objective:

 Prove VR simulated position over time matches that of ski jump

Plan:

- Output VR simulated position with timestamps at 3-4 points
- Compare timestamp of simulated positions to timestamp of true position from camera data

Required Hardware:

VR Simulation

Required Measurements:

• VR simulated position with timestamps

Pass Criteria:

• At a given position, difference in timestamps is less than 300 milliseconds

Project Purpose & Objectives

Design Solution Cri

Critical Project Design Reqs. & Elements Satisfaction

& Project Risks

Verification & Validation

Synchronicity Test Campaign: SKADI Training Simulator

FR2: The simulator shall provide force and motion cues correlating to the phase in jump. DR2.1: Across the curved in run phase, the slope of force with respect to time that SKADI exerts will be within 20% of the slope of force with respect to time of a true ski jump ramp.

Objective:

• Prove SKADI lift simulated position over time matches those of ski jump and VR simulation

Plan:

Project Purpose

& Objectives

- Compare timestamp of lift simulated positions to timestamp of true position from camera data and of VR simulated position
- Compare accelerometer data vs time on lift to real ski jump **Required Hardware**:
 - Accelerometer & Data Logger

Test Location:

AERO Machine Shop

Design Solution

Pass Criteria:

At a given position, difference in timestamps is less than 300 milliseconds

Design Reqs. &

Satisfaction

Project Risks

• At any time, slope of lift is within 20% of slope of jump

Critical Project

Elements

Project Planning

Section Outline

- Work Plan (WBS, Gantt)
- Cost Plan
- Testing Plan

Work Plan - WBS

Pr

SKADI

Visual C	Cues F	orce Data C	Collection	Mechanica	al	Soft	ware	Testing	Delive	rables
Compon Selectio	nent on	Component S	election	Component Selection		Synchr C	onization ode	Structural	Fall	Spring
Creatio	on	Sensor-Boot Int Assemb	egration &	Force Profile Comparison)	Pneı Contre	umatic ol Code	Belay	PDD	AIAA Paper
Synchroniz	zation	Calibrati	on	Structural Analy	/sis	Headse C	et Control ode	User Force	CDD	TRR
		Belay System Design	ı			Sensor Accuracy	PDR	SPR		
				Manufacturing & Assembly			User's Manual	CDR	SPP	
								Synchronicity	FFR	PFR
SKADI Demonstration										
Project Purpose & Objectives	Design Solution	Critical Project Elements	Design Reqs. & Satisfaction	Project Risks	Verif Val	ication &	Project Plann	ing)	63

Work Plan - Gantt Chart

Cost Plan

Subsystem	Expected Cost	Budgeted	Margin
Visual	\$459.22	\$500.00	8%
Mechanical	\$4247.18	\$5000.00	15%
FDC	\$1430.00	\$1500.00	5%
Software	\$19.00	\$500.00	96%
Testing	\$20.99	\$1000.00	98%
Misc.	\$142.94	\$1500.00	90%
TOTAL	\$6319.33	\$10,000.00	37%

Total Costs

Project Purpose & Objectives

Design Solution

Critical Project Elements

Design Reqs. & Project Risks

Verification & Validation

Testing Plan

Tost Namo	Description	Logistics		
rest Name	Description	Location	Anticipated Date	Safety Risks
Structure	Validate FEA models by loading to use case weight	Machine Shop	March 2022	Heavy loads (300 lbs)
Harness/Belay	Validate use case by demonstration	(In Discussion) Wood & Composites Shop	February/March 2022	Mechanism Failure (crash pads in place)
Synchronicity: Empirical on Real Ramp	Gather empirical acceleration and position data	USA Nordic Training Facility, Steamboat Springs	December 2021/ January 2022	Equipment damage
Synchronicity: Simulated in VR	Generate simulated position data	AERO 140	February 2022	N/A
Synchronicity: Empirical from SKADI	Gather empirical acceleration and position data, compare to real ramp and VR	Machine Shop	March 2022	Heavy Loads (300 lbs)

Acknowledgments

USA Nordic Team: Tim Tetreault, Jed Hinkley

Faculty Advisor: Dr. Melvin Rafi

PDR Reviewers: Emma Markovich

Additional Help: Dr. Jean Koster, Prof. Bobby Hodgkinson, Kathryn Wingate, Matthew Rhode, Nathan Coyle, Donna Gerren

Project Purpose & Objectives Design Solution Critical Project Elements

Questions?

Supporting Materials

Acceleration Data Collection

Zero Velocity Solution
Final Velocity Justification

Max velocity: 0.9 *m*/s

$$\frac{1}{2}mv^2 = KE = PE = mgh$$

 $h = \frac{v^2}{2g}$

Resultant height: 0.04 *m* 1.5 *in*

9 77

F 🛞 😿 ⁷⁸

Vertical Verification

Vertical Focus Verification

Pneumatics

Erom Engineering Tool DOX V = 28,8 4

Pneumatic Cylinder Specs

Flow Rate

Feedback Control: Backup Distance Sensor

Cost: ~\$1000 (800 more)

Accuracy: ±1 mm

Range: 0-5000 mm

Structural Calculations

Bolt Analysis

- Each bolt takes 100 lbs in tension
- Each bolt takes 50 lbs in shear
- We need to support 220 lbs
- 6 bolts gives a FOS of 2.7 in tension and 1.36 in shear

Structural Analysis - Vertical Load Strain

Assumptions:

- Lift made of 1023 low-carbon steel
- Maximum platform load: 2669 N (600 lbs)
- Maximum dynamic load: 1000 N

Results:

Max Strain: 1.815e-04

Horizontal Force From User

- Designed max weight: 600 lbs
- Coefficient of friction: 0.64
 - <u>https://www.engineersedge.com/coeffients_of_friction.htm</u>
- F = μN

Rubber (60 A Belt) Stainless Steel 316 .64			
	Rubber (60 A Belt)	Stainless Steel 316	.64

Belay System Demonstration

Mech risks

- Tipping
 - Base design
- Failure in shear
 - FEA
- Failure in bending
 - FEA
- Total collapse
 - Belay system and shocks

Visual

Visual Software Creation Steps

 Arduino to PC: Can read and write arduino data to C++ program Data can be transferred at desired intervals 	 Arduino to Bluetooth: Arduino can successfully connect to Oculus via bluetooth Successfully send data from other android device to arduino via bt
 Arduino+Unity to Oculus: Purchase and explore <u>Unity arduino</u> <u>bluetooth plugin</u> Can successfully send data from unity application on oculus to arduino 	

Visual Software Next Steps

- Create VR graphics in Unity
- Add backend to unity program using unity asset 'Arduino Bluetooth Plugin'
- Export unity to app lab (done before)
- Use file created as command to trigger pneumatic subsystem

Visual Cues Hardware

Hardware: Oculus Quest 2

Cost: \$500 for goggles + accessories

Important Specs:

RAM: 6GB

Storage: 128GB

Maximum Render Resolution: 5408 x 2736

Mechanical

Links to Slides

Structural Analysis - Vertical Displacement

Assumptions:

- Lift made of 1023 low-carbon steel
- Maximum platform load: 2669 N (600 lbs)
- Maximum dynamic load: 1000 N

Results:

Max Displacement: 1.359 [mm]

Belay System Strength Analysis

• Knowns:

- Rope strength: With an 80 kg mass, the impact force is 5.6kN with a fall factor of 0.3 (Length of fall/length of rope), max is 25kN
- Carabiner strength: 25kN
- Anchor attachment strength: 22kN
- Cordelette/Klemheist strength: 7.5kN
- Harness Strength: 21kN

Assumptions:

- Rope length at shortest point is about 12m assuming a ceiling gym height of 20 feet
- The maximum slack/fall is 1 meter
- Shock loading is most extreme case

- Conclusion/Results:
 - At maximum, the fall factor would be 0.083 which is much lower than 0.3
 - The weakest point is the cordelette which can still support 7.5kN which is an FOS of 1.33 for the rope tested at factor fall of 0.3
 - The cordelette provides a redundant system and is not the primary hardware absorbing the force

Wooden Base With Scissor Base

Wooden Base: Drawing

CAD Drawings and Dimensions: All in Inches

Wood Orientation as referenced in Calculations

Figure 4–6. Direction of load in relation to direction of annual growth rings: 90° or perpendicular (*R*), 45° , 0° or parallel (*T*).

Figure 4–1. Three principal axes of wood with respect to grain direction and growth rings.

Figures from Wood Handbook, pg 4-2 and 4-31

Deck Design: Douglas Fir Specs

	Imperial Units
Tension Parallel to Grain	575 psi
Shear Parallel to Grain	180 psi
Compression Perpendicular to Grain	625 psi
Compression Parallel to Grain	1350 psi
Modulus of Elasticity	1.6 Mpa
Modulus of Elasticity (min)	580 kPa

National Design Specification Design Values for Wood Construction

Stress Analysis: Wooden Base

Assume a 21,234.8 lbf force is evenly distributed (F = 600 lbs * $1.1(32.174 \text{ in/s}^2)$)

Douglas Fir Compression Perpendicular to Grain = 625 psi

Minimum Area = 21234.8/625 = 33.9757 in^2

Surface Contact Area = (2.5*1.5*4)+(1.75-1.3)*44*2 = 54.6 in^2

Surface contact area is highlighted

S2 High- Flow Cylinder Positioning system

- Features
 - "The S2 servo pneumatic positioning system combines together a proportional valve, sensors and embedded control electronics to linearly position cylinders and actuators, creating an air servo actuator that can be controlled from the PLC"
 - Controls pressure differences between two-air cylinder
 - Uses custom software for PID control and tuning
- Specifications
 - Speeds up to 2m/s
 - Position accuracy of 0.1-1%
 - 1/4" NPTF Mounts
 - Command voltage input and output: 0-10VDC

Adafruit VL53LOX Micro-LIDAR Distance Sensor

• Features

- Measures how long the light takes to bounce back
- Accurate for small, single point targets
- Specifications
 - Range: 50-1200mm
 - Powered with 3-5V
 - SCL-12C clock pin
 - SDA-12C data pin
 - 3-12% accuracy, dependent on lighting

Sensor-Ready Round Body Air Cylinder

• Features

- Implements two cylinders and pistons in order to produce the linear actuation
- Is compatible to mount sensors which will allow for pressure feedback

• Specifications

- Bore size: 2"
- Stroke: 36"
- Rod diameter: 0.63"
- Double acting
- 1/4" NPT threads
- Max pressure: 250 PSI

Mcgraw Compressor

• Features

- Is portable and can be easily operated
- Can store enough compressed air in order to pressurize the pneumatic system
- Specifications
 - Volume: 8 gallons
 - Max Pressure: 150 PSI
 - Flow Rate: 4.1 SCFM
 - Power: 1.5 HP

Pressure Sensor

• Features

- Measures the pressure from the pneumatics and converts to a voltage
- Prices range from \$30-\$300 (depends on accuracy)
- Specifications
 - Measures 0-145 PSI
 - Signals 0-10VDC
 - 1⁄4" NPT

DC Regulator Power Supply

- Features
 - Produces power in order to operate pressure regulator
- Specifications
 - 120 VAC Input
 - 24 VDC output
 - **31.2W**

Pneumatic Controls Alternative

 Replace current ultrasonic distance sensor with inclinometer (Spectrotilt single axis actuator) mounted on scissor lift bracket

 Replace current ultrasonic distance sensor with more accurate and more expensive lidar/ultrasonic sensor (wenglor sensoric laser sensor)

Force Data Collection

Links to Slides

<u>Next Steps</u> <u>Kitronyx Insoles Specifications</u> <u>Calibration</u> <u>Factor of Safety</u> Force Trade Study

Force Data Collection FR5

DR5.1: Sensors under the users feet shall be used to collect data. DR5.2: The sensors shall be integrated into the user's footwear DR5.3: The

sensors collecting data shall be comfortable.

DD5 4. The sense is shall accurately measure the forese averted within 40/ of heat musicht

DR5.1, DR5.2, DR5.3

• Kitronyx Insole Sensor will inserted into the athletes footwear and collect data throughout the simulation

DR5.4

- If a user weights 100 kg, the maximum error in the measurement will be 9.81 N
- Achieved through calibration

Requirement Satisfaction

- Kitronyx Insole Sensor will inserted into the athletes footwear and collect data throughout the simulation
- Sensors are <1 mm thick
- If a user weights 100 kg, the maximum error in the measurement will be 9.81 N
 - Achieved through calibration

Force Data Collection FBD

Kitronyx Insoles Specifications^[8]

Electronics

Specifications	Value		
Dimensions (mm)	109x71x29		
Number of Sensing Pixels	160 (16x10)	C	
Frame Rate (Hz)	40	5	
Computer Interface	USB		
On existing Sustan	Windows 7.10		
Operating System			
Power Supply	USB Powered		

Sensors

Specifications	Value
Sensor Size (mm)	235, 270, 280
Thickness (mm)	<1
Cable Length (mm)	150
Pressure Range (kg)	180

How to Save Data CSV File

- Data is saved under My Documents snowforce3 in two folders, log and snapshot
 - Log: Log data contains real time measurements in CSV format. There will be two CSV files, one as a column vector and one as a matrix.

Example data from Snowforce3 User Manual

Pressure Distribution Generated from Logged Data

MATLAB generated map of pressure distribution from CSV file.

Example Data from Snowforce3 user manual: <u>Snowforce3 User Manual</u>

1	0	1	1	1	1	1	1	1	0	0	180
2	0	1	1	2	2	2	1	1	0	0	100
3	0	1	2	1	2	1	1	0	0	0	160
4	0	2	2	4	116	111	61	20	85	88	140
5	0	1	68	1	2	1	1	0	0	0	
6	0	2	2	65	88	98	77	89	92	103	120
7	1	119	131	143	94	96	111	116	147	1	- 100
8	134	186	151	111	97	72	57	57	2	0	100
9	0	121	136	106	79	3	3	2	1	0	- 80
10	0	55	124	91	35	1	2	1	1	0	
11	0	2	76	118	96	63	4	2	1	0	- 60
12	0	2	3	97	104	103	89	4	1	0	- 40
13	0	3	3	99	114	122	131	143	2	1	
14	0	2	3	84	146	134	138	129	2	0	- 20
15	0	2	3	4	145	132	141	6	1	1	
	1	2	3	4	5	6	7	8	9	10	- 0

Calibration

Calibration is necessary to get physical pressure values from the pressure distribution

- Put an object of know mass on the sensor
- Record force and measure the ADC sum
- Using A and F you can get a linear relationship

Physical pressure not an accurate result

- Sensor ADC curve nonlinear
- Each pixel has a different response

Relationship between force and ADC output [10]

Calibration Test Plan

- Open the Snowforce software and select proper port
- Place a target object over the entirety of the sensor. This object is used to load the sensor in actual measurement process
- Press the object with a known total force, f
- Mesaue ADC Sum, A, using the Snowforce software
- Export the CSV file of the ADC Sum
- Calculate the total force using f = 0.01A
- Iterate the equation until the computed force best represents the applied force
- Loop through each sensel and apply the equation

f total = ADCsum.*.01;

FOS is 1.1 because the customer would like the ability of collect force data from a real ski jump.

An athlete (100 kg) pulls a maximum of 1.6 G will generate a maximum force of 1569.6.

From data sheet, sensor can accommodate up to 180 kg of mass or 1765.8 N.

1765.8 N / 1569.6 N = 1.125

Therefore FOS > 1.1

DR5.2 and DR5.3 Comfortably integrated into the users footwear

Sensor insole size ordered: 235 mm

The ensures that the insole is accessible to as many athletes possible without risking deforming the sensor. This size will accommodate most adult women and men. The insole is designed to be laid inside of the ski boot or users shoes as it collects dynamic data. Size 235 is the most comfortable size for most users because it will lay flat within the boots.

Bluetooth

Pro:

- 1. Cleaner: no lingering cable connections
- 2. Safer: less likely for cables to get caught in the mechanical mechanisms
- Less risk to equipment: computer collecting data not directly attached to athlete

Con:

- More bulky: battery pack, arduino, bluetooth shield, snowboard 2 attached to athletes calves
- 2. More complex user interface
- 3. Greater points of failure
- 4. ~\$200 cost: 2 x arduino uno, 2 x battery packs, 2 x bluetooth shield and cables

Conclusion Bluetooth is out of the scope of this project

Logistics

Links to Slides Organization Chart

Budget

Supplier	Part Number	Part Name	Justification	Items per Order	Orders	Link	Unit Cost	Shipping	Total Cost
HiLetgo	HC-06 RS232	Wireless Bluetooth Serial RF Transceiver Module Bi-D	For Oculus control communication	1	1	https://www.ama	\$8.39	\$0.00	\$8.39
Oculus		Oculus Quest 2 128 GB	Visual Cues Display Method	1	1	https://www.ocul	\$299.00	\$0.00	\$299.00
Oculus		Quest 2 Elite Strap with Battery and Carrying Case	Increases comfort, portability, battery life	1	1	https://www.ocul	\$129.00	\$0.00	\$129.00
Kiwi Design		Upgraded Elite Strap for Oculus Quest 2	Increases comfort, portability	1	1	https://www.kiwid	\$51.00	\$0.00	\$51.00
Kitronyx	MP2513PLUS	Insole Sensor Kit	Force Data Collection method	1	1	https://www.kitro	\$1,280.00	\$150.00	\$1,430.00
Arduino	A000066	Arduino Uno Rev3	Need arduino to interface with oculus	1	1	https://store-usa	\$19.55	\$3.28	\$22.83
McMaster-Carr	6498K586	Round Body Air Cylinder, Double-Acting, Universal Mount, 2	Actuation of platform motion	1	2	https://www.mcm	\$234.00		\$468.00
McMaster-Carr	4952K743	Sensor-Ready Round Body Air Cylinder, Double Acting, 2" E	Same as 6498K586 but faster shipping,	1	2	https://www.mcm	\$354.76		\$709.52
Unity		Arduino Bluetooth Plugin	Connect oculus to arduino	1	1	https://assetstore	\$19.00	\$0.00	\$19.00
McGraw		8 Gallon 1.5 HP 150 PSI Oil-Free Portable Air Compre	Necessary for compressing and storing a	1	1	https://www.harb	\$149.99	\$0.00	\$149.99
Adafruit	1528-1814-ND	Adafruit VL53L0X Time of Flight Micro-LIDAR Distanc	Used for feedback control loop of platform	1	3	https://www.digik	\$14.95		\$44.85
Apollo	A-2010	Double Scissors Lift Table 1760lbs. 59" lifting height	COTS lifting platform, structure of mecha	1	1	https://www.apol	\$1,239.74	\$300.00	\$1,539.74
Enfield	S2-025-U-04	S2 - HIGH-FLOW CYLINDER POSITIONING SYSTEM	Control system for pneumatic actuation	1	1	https://www.enfie	\$994.00	\$15.94	\$1,009.94
Petzl	R39AO 040	Petzl Club 10mm 40m	Rope for belay	1	1	https://www.petz	\$139.95		\$139.95
Trango		Trango Regulock HMS Screwlock	Carabiners for belay system	1	5	https://www.rei.c	\$11.95		\$59.75
REI		Accessory cord	Locking system	1	4	https://www.rei.c	\$0.40	\$0.00	\$1.60
Black Diamond		Momentum Harness (Mens Medium)	Belay	1	1	https://www.blac	\$51.96		\$51.96
Lowes		2x10x8 Douglas Fir	Wooden Base	1	2	https://www.lowe	\$14.17	\$0.00	\$28.34
Lowes		2x8x8 Douglas Fir	Wooden Base	1	2	https://www.lowe	\$10.32		\$20.64
Amazon		#8 2" Wood Screws	Wooden Base	100	1	https://www.ama	\$12.99		\$12.99
Mcmaster-Carr	<u>1593N4</u>	EPDM Air Hose with 1/4 x 1/4 NPTF Brass Male Fittin	Pneumatic hose	1	2	https://www.mcm	\$18.97		\$37.94
Mcmaster-Carr	1593N4	EPDM Air Hose with 1/4 x 1/4 NPTF Brass Male Fittin	Pneumatic hose	1	1	https://www.mcm	\$20.41		\$20.41
	7010K117	Power Supply, Single Phase, 100-240VAC Input, 24VI	Regulator power supply	1	1	https://www.mcn	\$34.67		\$34.67
Amazon		[2 Pack] USB 3.0 Cable, USB to USB Cable, USB A N	Date transfer for all systems	2	3	https://www.ama	\$9.99	\$0.00	\$29.97
GetMetals		1018 Steel Round Bar	Actuator rod at bottom of lift	1	2	https://getmetals	\$18.07	\$0.00	\$36.14
Lowes	241572	24-in x 36-in Cold Rolled Steel Solid Sheet Metal	Connect lift to actuator cylinder	1	2	https://www.lowe	\$27.14	\$0.00	\$54.28
GetMetals		1020 2.25" diameter .25" thickness tube	Sleeve to allow rolling of actuator rod	1	1	https://getmetals	\$32.89	\$0.00	\$32.89
GetMetals		1020 .75" diameter 4" length	Perpendicular tube for thread	1	1	https://getmetals	\$6.24		\$6.24
Mcmaster-Carr	1641	1" load bearing	Allow sleeve to rotate freely	1	2	https://www.mcm	\$24.98		\$49.96
Mcmaster-Carr	91310A128	High-Strength Class 10.9 Steel Hex Head Screw	Connect cylinder holder to lift	10	2	https://www.mcm	\$9.55		\$19.10
Amazon		RIGERS Training Sandbags Heavy Duty	Secure belay system to gym floor	1	1	https://www.ama	\$70.99	\$0.00	\$70.99

