

10/12/2021, AERO 120

ASEN 4018-012 Team 9

Sponsor: USA Nordic Team

Faculty Advisor: Dr.

Melvin Rafi

 Presenters: Hunter Daboll, Landon Nurge, Max Page, Joaquin Ramirez, Michael Schlittenhart, Julia Sheeran, Mary Sobernheim
 Additional Team Members: Maya Greenstein, Max Page

Outline

- Project Description
- Evidence of Baseline Feasibility
 - Critical Elements
 - Feasibility Analyses
 - Visual
 - Mechanical
 - Force Data Collection
- Status Summary & Future Work

Presenters: Mary Sobernheim, Joaquin Ramirez, Hunter Daboll

Section Outline

- What is Nordic Ski Jumping?
- Project Motivation
- Mission Statement
- Functional Requirements
- ConOps (Static)
- Baseline Design
- ConOps (Animated)
- Functional Block Diagram

What is Nordic Ski Jumping?

Video Credit: FIS Ski Jumping

Project Description

Critical Feasibility Elements Analyses

Project Motivation

• USA Nordic Ski needs a better way to train their ski-jump athletes off the slopes

 Current training methods lack visual aids, cause the athlete to experience unrealistic external forces, and do not provide a way to collect foot force distribution

USA Nordic's Current Training Methods:

Videos courtesy of USA Nordic

Mission Statement

SKi jump Athletic Development Interface (SKADI) will provide the USA Nordic team with a modern training device that will visually and physically model the effects of a ski jump while measuring the force applied by the athlete.

Project
DescriptionCritical
ElementsFeasibility
AnalysesStatus Summary
& Future Work

Functional Requirements

ID	Functional Requirement		
FR1	SKADI shall provide visual cues correlating to the phase in jump.		
FR2	SKADI shall provide force and motion cues correlating to the phase in jump.		
FR3	SKADI shall be able to support the forces generated when used by the full range of USA Nordic athletes.		
FR4	SKADI shall be able to be disassembled, transported, and reassembled with standard tools and equipment.		
FR5	SKADI shall capture the data of the athlete's force profile.		
FR6	SKADI shall safely bring the user to rest following the jump.		
FR7	Each use of the SKADI simulation shall require less than 5 minutes.		
FR8	SKADI shall be operable within a gymnasium while other athletes are adjacently training.		

Project	Critical	Feasibility	Status Summar	
Description	Elements	Analyses	& Future Work	

Critical Feasibility Elements Analyses Status Summary & Future Work SHADI

9

Baseline Design: Visual

VR Headset: Oculus Quest 2 User

Project Description

Feasibility Elements Analyses

Critical

Baseline Design: Force Data Collection

User

Project Description

Feasibility Elements Analyses

Critical

Critical Elements Feasibility

Analyses

22

Description

Elements

Analyses

& Future Work

Event Number: 8.1

Event:

Lifting Platform, moving downward, begins upward acceleration (causing upward normal force on user, creating sensation of compression)

VR Simulation mimics motion on ski jump ramp

Force data is continuously collected

Project Description

Critical Elements FeasibilityStatus SummaryAnalyses& Future Work

Event Number: 8.2

Event:

Lifting Platform, having become motionless, now has upward velocity - continuing upward acceleration (User continues to experience compressive force)

VR Simulation approaches end of ski jump ramp

Force data is continuously collected

24

Project **Description**

Critical Feasibility Elements

Analyses

Critical Feasibility Elements Analyses

Critical Feasibility Elements Analyses

28

Project Description

Critical Elements Feasibility

Analyses

Critical Elements

Analyses

Functional Block Diagram

(Evidence of Baseline Feasibility) Critical Elements

Presenters: Mary Sobernheim, Joaquin Ramirez

Section Outline

- Identification of CPEs
- Key Feasibility Elements

Identification of Critical Project Elements (CPEs)

Func. Req.	CPE	Description		
FR1	E1	The synchronization of the visual and mechanical subsystems		
FR2	E2	The production of similar forces to those experienced by an athlete during ski jump takeoff while supporting at least 200 kg		
FR3	E3	The ability of SKADI's users to participate in multiple simulations		
FR5	E4	The capturing of user's foot force profile throughout the takeoff phase		

Key Feasibility Elements

Label	Functional Requirement	CPE	Description
VIS	FR1	E1	Headset that is able to display visual cues and be synced with physical cues
MECH	FR2	E2,E3	Linear actuators that provide analogous physical cues to that of an Olympic ski jump Supports weight of athlete with FOS of (#)
FOOT	FR2, FR5	E4	Pressure mapping system that successfully records necessary data throughout the simulation Supports weight of athlete with a FOS of 1.1
COST	Budget	Budget	The total monetary cost of SKADI must be <\$5k.

Critical Feasibility Elements Analyses

(Evidence of Baseline Feasibility) Feasibility Analyses

Presenters: Michael Schlittenhart, Landon Nurge, Julia Sheeran

Section Outline

- Visual Feasibility (VIS)
- Mechanical Feasibility (MECH)
- Force Data Collection Feasibility (FOOT)
- Financial Feasibility (COST)

Visual Feasibility (VIS)

Visual Feasibility Analysis Justification

1)

"FR1: SKADI shall provide visual cues correlating to the phase in jump."

2)

1) **Display visual cues** - use Oculus Quest 2

2) **Synchronize visual cues with physical stimuli** - synchronize VR presentation with physical platform motion

Visual Feasibility Analysis - Display Format

Display Format Options:

1) Animated Video Game

[1] Ski Jump VR Game Trailer, 2017

2) 180° or 360° Video

[2] NRK Sport, 2017

Visual Feasibility Analysis - Display Format

Display Format	Animated Video Game	180° or 360° Video
Fulfills Requirement?	Yes	Yes
Functional with Oculus Quest 2?	Yes (via Unity [3])	Yes (via apps from Oculus App Store [4])
Demonstration of Functionality	[5] Demonstrates integrating Unity project into Oculus Quest 2	[6] Describes how to export video into Oculus Quest 2.[7] Demonstrates uploading and viewing video on Oculus Quest 2
Feasible?	Yes	Yes

Project Description	Critical Elements	Feasibility Analyses	VIS	MECH	FOOT	COST	Status Summary & Future Work	

Visual Feasibility Analysis - Timing

Timing with Physical Cues Options:

- 1) Manual Start
 - Manually begin VR Simulation from Goggles
 - Less precisely synchronized with physical system
 - Less development work required
- 1) Software Integration
 - Integrate VR start with start of physical system using software
 - Unsure if VR can be started with external software
 - Awaiting reply from Oculus
 - Better synchronized with physical system

Project Description	Critical Elements	Feasibility Analyses	VIS	MECH	FOOT	COST	Status Summary & Future Work	
Decemption	Elemente							

Visual Feasibility Analysis - Timing

Timing	Manual Start	Software Integration
Fulfills Requirement?	Yes	Yes
Description of Functionality	User would manually begin visual simulation on VR headset. SKADI would have timing worked out with instructions on how to align that with physical cues	SKADI would connect the software to start the physical and visual simulations simultaneously
Feasible?	Yes	TBD*

*Will pursue if feasible

VIS Feasibility Analysis Results

Requirement	Design that Fulfills Requirement	Feasible?
Display Visual Cues	Animated video game/ recorded video	Yes
Synchronize visual cues with physical stimuli	Manual Timing	Yes

Visual Feasibility: Yes	•

		Feasibility					04.4	
Project	Critical Elements	Analyses	VIS	MECH	FOOT	COST	& Future Work	
Description	Liements							

Mechanical Feasibility (MECH)

Driving Requirements

"FR2: SKADI shall provide force and motion cues correlating to the phase in jump"

- SKADI will cue the beginning of the transition to flight phase by enacting analogous forces on the ski jumper.
 - The platform must exert a compressive force of at least +0.06 Gs on the athlete
 - The total displacement shall be minimized for the sake of volume constraints
- The mechanical system will minimize forces that are not felt during an actual jump to preserve immersion

"FR3: SKADI shall be able to support the forces generated when used by the full range of USA Nordic athletes"

• The velocity shall be minimized for the sake of user safety

Project Description	Critical Elements	Analyses	VIS	MECH	FOOT	COST	Status Summary & Future Work	

Assumptions

- Maximum 200 kg needs to be supported by the mechanical system
 - According to the 2014 Sochi Olympics database, winter athlete weights vary from 53kg (lightest female) to 98kg (heaviest male skier).
 - Account for up to 220 kg under maximum Gs
 - Account for up to 50 kg lifting platform
 - \circ Design for 540 kg to ensure FOS of 2
- +0.02 Gs = minimum deviation in vertical acceleration that a human can detect [10]
- Kinematic calculations (assuming constant acceleration) can be used to break into the design loop
 - End states calculated numerically using the acceleration profile closely resemble ends states calculated kinematically using the average acceleration across the profile

44

• Must still model numerically to ensure constraints are met

								-	
Project Description	Critical Elements	Feasibility Analyses	VIS	MECH	FOOT	COST	Status Summary & Future Work		N SHADI Shi Jup Shi Lator

Physical Cue

- Transition from in-line to takeoff phase will be simulated mechanically
 - Compressive forces are high during takeoff phase
 - In-line phase does have significant compressive force
- A compressive force will be applied to cue the beginning of the takeoff phase
 - +.02 Gs is the minimum a human can detect
 - +.06 Gs is enough to be felt by the athlete (FOS = 3.0)

Model: Governing Equations

- Compression Profile
 - Using kinematics, assuming constant acceleration
 - Conditions
 - Simulation Time = 2.5s
 - Displacement = 1m
 - Minimize velocity
 - Maximize acceleration
 - \circ Yield
 - Avg: 0.033 Gs
 - Max: 0.8 m/s

Governing Equation	This Case	Result
$d = \frac{v + v_0}{2}t$	$(1m) = \frac{(0m/s) + v_0}{2} (2.5s)$	$v_0 = 0.8m/s$
$v = v_0 + at$	0 = (0.8m/s) + a(2.5s)	a = 0.033Gs
$\sigma^2 = \sum \frac{(a-\mu)^2}{N}$	$\mu = 0.033G$ $N = 1000$	Model
$a(t) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^2}$	$\mu = 0.033G$ $\sigma = STDEV$	Model

Enacting a Compressive Force

- Forces cannot be enacted immediately
 - Need a gradual application of acceleration
- This Gaussian curve describes how the compression will be enacted
- Driving Constraints:
 - (Time of simulation) Time = 2.5s
 - (Volume) Vertical displacement is to be < 1m
 - (Safety) Velocity is to be minimized
 - (Gs) User is to experience at least +0.06 Gs

Gaussian profile to apply Gs to athlete

Enacting a Compressive Force

- Start with free fall to generate velocity
- Accelerate upward to generate compression
- Bring athlete to rest
- User states
 - ode45 integration
 - Acceleration = 0 until necessary speed is reached
 - Acceleration follows Gaussian curve

Project Description	Critical Elements	Feasibility Analyses	VIS	MECH	FOOT	COST	Status Summary & Future Work

				-				
Project Description	Critical Elements	Feasibility Analyses	VIS	MECH	FOOT	COST	Status Summary & Future Work	

Enacting a Compressive Force

- For this to work we need:
 - Maximum force of 1075.41 N
 - Maximum acceleration of 1.10 Gs
 - Maximum displacement of 0.78 m
 - Maximum Impulse of 928.77 N/s

Normal acceleration on user throughout simulation

Project Description	Critical Elements	Feasibility Analyses	VIS	MECH	FOOT	COST	Status Summary & Future Work	SHADI Shi Ave Shi Lator	50

Mechanical Feasibility Analysis

Hardware: Belt Driven Linear Actuator

Cost: ~\$3300 per unit

Models Options: Misumi MSA-SBH Series,

Macron Dynamics MSA-14S, Parker OSPE BHD Belt Actuator

Misumi MSA-SBH Series

Important Specs:

Speed	Actuation	Maximum	Maximum	Maximum
	Length	Load	Acceleration	Vertical Moment
1-10 m/s	0.8-1.2m	50-567 kg each	~1-4 Gs	~180Nm

FOS Feasibility Analysis/Results

• Analysis

- Max g-force = 1.1 g
- Max user mass = 100 kg (1000 N)
- Max platform mass = 50 kg (500 N)
- Estimated max load = 270 kg (1600 N)
- Linear actuator max vertical load = 567 kg
- FOS = Up to 2.1 (depending on chosen actuator)
- **Result:** FOS of linear actuator = 2.1 > 2.0

MECH Feasibility Analysis Results

Requirement	Fulfillment	Feasibility
FR2: SKADI shall provide force and motion cues correlating to the phase in jump	1 Misumi linear actuator can support the needed weight throughout maximum states of simulation	YES
FR2: SKADI shall provide force and motion cues correlating to the phase in jump	Expected +0.10 <i>Gs</i> at peak compression	YES
FR3: SKADI shall be able to support the forces generated when used by the full range of USA Nordic athletes	Expected maximum velocity of 0.64 <i>m/s</i>	YES
FR8: SKADI shall be operable within a gymnasium while other athletes are adjacently training	Expected maximum necessary displacement of 0.78 <i>m</i>	YES

Mechanical Feasibility:

Yes

Project Description	Critical Elements	Feasibility Analyses	VIS	MECH	FOOT	COST	Status Summary & Future Work	

Force Data Collection Feasibility (FOOT)

Force Data Feasibility Analysis Justification

FR5: SKADI shall capture the data of the athlete's force profile.

- 1) Data Collection Kitronyx Insole Sensor Kit, Snowboard 2, Snowforce Software
- 2) Display Data Real time pressure distribution mapping
- 3) Force Profile Calibration of CSV file to calculate the force values from the pressure distribution

All images courtesy of Kitronyx [8]

Force data from CSV file

Kitronyx Insole Kit

Kitronyx Insole Kit in motion

Status Summary & Future Work

Force Data Feasibility Analysis

Hardware: Foot Pressure Mapping System

Cost: \$1,280

Model: Kitronyx Insole Sensor Kit

Important Specs:

User Equipped with Insole Kit^[8]

Number of Sensing Pixels Pressure Range		Frame Rate	Number of Display Pixels	
118	180 kg	40 Hz	160	

Project Description	Critical Elements	Feasibility Analyses	VIS	MECH	FOOT	COST	Status Summary & Future Work	

Force Data Feasibility Analysis

E4: The insoles will have a FOS of greater than 1.1 against structural failure

Maximum Force Supported by Sensors: 1765.8 N [8]

Expected Maximum Mass (m_{max}): 100 kg

Expected Maximum Acceleration (a_{max}): 1.6 G = 15.696 m/s²

 $F_{max} = m_{max} \times a_{max} = (100 \text{ kg}) \times (15.696 \text{ m/s}^2) = 1569.6 \text{ N}$

Expected Maximum Force Generated: 1569.6 N

FOS = **1.13** > 1.1

FOOT Feasibility Analysis Results

Requirement	Fulfillment	Feasibility
FR5: SKADI shall capture the data of the athlete's force profile.	Kitronyx Snowboard 2 and Insole Sensor Suite	YES
FR2: The insoles will have a FOS of greater than 1.1 against structural failure.	A 100 kg athlete can undergo 1.6 Gs without device breaking	YES
E3: The pressure distribution data shall be mapped visually.	Kitronyx Snowforce software provides real time mapping and data logging	YES

Financial Feasibility (COST)

Visual & Force Data Collection Costs

- Visual: ~\$450
 - Oculus Quest 2: \$300
 - Oculus accessories: \$130
- Force Data Collection: ~\$1300
 - Kitronyx Insole Sensor Kit: \$1280

Mechanical Design Cost (1 Linear Actuator)

- Cost: ~\$4000
- Meets minimum load requirements for the lowest cost
- Concerns:
 - High torques will be applied to actuator, could exceed limit
 - Max applied moment during simulation ~1000 Nm

Project Description	Critical Elements	Feasibility Analyses	VIS	MECH	FOOT	COST	Status Summary & Future Work	

Initial Financial Feasibility Analysis

- Initial cost estimate
- One linear actuator
 - Capable of supporting max load
 - High max torque

Subsystem	Estimated Cost
Mechanical	\$4000
Visual Cues	\$450
Force Data Collection	\$1300
TOTAL	\$5750

62

Financial Feasibility:					No	D		
Project escription	Critical Elements	Feasibility Analyses	VIS	MECH	FOOT	COST	Status Summary & Future Work	

Final Financial Feasibility Analysis

- Additional \$5k from USA Nordic to address safety, time cost, and simplicity
 - Added an additional linear actuator
 - Reduces moments applied to each linear actuator

Subsystem	Estimated Cost
Mechanical	\$7300
Visual Cues	\$450
Force Data Collection	\$1300
TOTAL	\$9050

 Financial Feasibility:
 Yes

 Project Description
 Critical Elements
 Feasibility Analyses
 VIS
 MECH
 FOOT
 Cost
 Status Summary & Future Work

Mechanical Design Cost (2 Linear Actuators)

- Cost: ~\$7300
- Improvements
 - Much less torgue related concerns Ο
 - User cannot swing into structural poles 0
 - Lower height Ο
 - Improved user safety

Feasibility

Analyses

- Eliminates need for stairs
- Concerns

Critical

Elements

Project

Description

Will cost close to twice as much as single actuator Ο

VIS

MECH

FOOT

& Future Work

Status Summary & Future Work

Presenter: Michael Schlittenhart

Section Outline

- Baseline Design Summary
- Feasibility Conclusion
- Future Work
- Plan of Action

Baseline Design Summary

- Oculus Quest 2
- Kitronyx piezoelectric sensors
- Moving platform
- Catching mechanism

Feasibility Conclusion

Label	Func. Req.	CPE	Description	Feasible?	
VIS	FR1	E1	Headset will be able to display visual cues and be synchronized with physical cues.	Yes	
MECH	FR2	E2	Provide analog force and motion cues to that of a standard ski jump to simulate proper jump timing. Sufficient load-bearing capabilities.	Yes	
FOOT	FR5	E4	The pressure distribution data will be collected and mapped visually.	Yes	
COST	Budget	Budget	The total monetary cost of SKADI is <\$10k*	Yes	*Adjusted from initial \$5k
	Yes				

Future Work

• Visual

- Select visual cue presentation format
- Check if VR software can be integrated with mechanical software
- Mechanical
 - Further define mechanical design
 - Select linear actuator
 - Load analysis on connection between platform and linear actuator
 - FBD comparison of platform and real ski jump
- Force Data Collection
 - Bluetooth communication and range
 - Force data processing and Calibration of the force output
 - Battery supply

Plan of Action

WORK BEFORE CDR Task	Duration [weeks]	Planned Start Date	Actual Start Date	Planned End Date	Deadline Date	Actual End Date	Week of:	October				November			
								10/11	10/17	10/24	10/31	11/7	11/14	11/21	11/28
Mechanical															
Redesign of PDR Baseline	1	10/13		10/17	10/20										
Selection of Linear Actuator	1	10/13		10/17	10/20										
Manufacturing Plan	3	10/17		11/7	11/10										
Manufacturing Diagrams	3	10/17		11/7	11/10										
Design Component Selection (nuts & bolts)	3	10/17		11/7	11/10										
Visuəl															
Visual Cue Format Selection	1	10/13		10/17	10/20										
Visual to Mechanical Software Integration	2.5	10/27		11/14	11/20										
Power Source Selection	2.5	10/27		11/14	11/20										
Foot Force															
Bluetooth Communication	1	10/13		10/20	10/25										
Force Data Processing	3	10/20		11/11	11/20										
Power Supply Method	2	10/15		10/29	11/1										
Force Data Callibration	2	11/1		11/11	11/20										
Systems															
Updating Requirements	3	10/13		11/7	11/10										
Verification & Validation Plans	2	10/24		11/7	11/10										
Risk Analysis	3	10/24		11/14	11/20										
														CD	R Due
Deliverables		A CONTRACT													
CDR Powerpoint Slides		11/7		11/15	11/29										×

Project Critical Feasibility Description Elements Analyses **Status Summary** & Future Work

Acknowledgments

USA Nordic Team: Tim Tetreault, Jed Hinkley

Faculty Advisor: Dr. Melvin Rafi

PDR Reviewers: Blue Origin Team (SP4CE), Colin Claytor

Additional Help: Penina Axelrad

References

[1] Ski Jump VR - Early Access Trailer, vrgamecritic, 2017.

[2] Ski jumping 360°, NRK Sport, 2017.

[3] "Developing for VR with Quest 2 & Unity for the First Time – A Step-by-Step Guide," XRTERRA, October 2020.

https://www.xrterra.com/developing-for-vr-with-quest-2-unity-for-the-first-time-a-step-by-step-guide/

[4] SKYBOX VR Video Player, Oculus App Store, 2021.

https://www.oculus.com/deeplink/?action=view&path=app/2063931653705427&ref=oculus_desktop

[5] Oculus Quest 2 Development Setup With Unity (Oculus Integration), Dilmer Valecillos, 2020

[6] "How to view 360 files on Oculus quest2 ?," GoPro Support Hub Available:

https://community.gopro.com/t5/Cameras/How-to-view-360-files-on-oculus-quest2/td-p/907131.

[7] How to View Your 360/VR Photos and Videos on Your Oculus Quest 2, Virtual Tours & Events, 2021

[8] MP2513PLUS Insole Sensor Kit, Kitronyx, 2019.

 [9] Ekman L, Lindholm E, Brogren E, Dahlin LB (2021) Normative values of the vibration perception thresholds at finger pulps and metatarsal heads in healthy adults. PLoS ONE 16(4): e0249461. https://doi.org/10.1371/journal.pone.0249461
 [10] Kitronyx Wiki, Kitronyx 2019.

Questions?

Supporting Materials

Links to Sections

<u>Visual</u> <u>Mechanical</u> <u>Force Data Collection</u> <u>Logistics</u> <u>Budget</u>

Visual

Links to Slides

Visual Feasibility Analysis - Hardware Standalone VR Headset Trade Study

Visual Feasibility Analysis - Hardware

Hardware: Oculus Quest 2

Cost: \$500 for goggles + accessories

Important Specs:

RAM: 6GB

Storage: 128GB

Maximum Render Resolution: 5408 x 2736

Standalone VR Headset Trade Study

Standalone VR Headset Trade Study							
Criteria	Weight (%)	Oculus Quest 2	HTC Vive Focus 3	Pico Neo 3 Pro	Pico G2 4K	DPVR P1	DPVR P1 Pro 4k
Cost	40	3.5	1	2	3	5	3
Memory	25	4	5	4	3	1	1
Resolution per Eye	25	2	5	2	4	1	1
Passthrough	5	5	5	1	1	1	1
Battery Life	5	3	2	3	3	5	5
Weighted Score 3.30 3.25 2.50 3.15 2.80 2.0						2.00	

Mechanical

Links to Slides

Baseline Design Mechanical Feasibility Analysis Linear Motion Trade Study

Mechanical Feasibility Analysis

Hardware: Screw Driven Linear Actuator

Cost: \$3000-\$6000 per unit

Models Options: Mcmaster-Carr 4106N61,

Sure Motion LAHP 33 Series, Oriental THK LM KR33 Linear Actuator

Important Specs:

Speed	Actuation Length	Maximum Load	Maximum Acceleration
400-1000mm/s	500-1000mm	~8-20kg each (depends on speed)	0.3-1g's

Mechanical Feasibility Analysis

Hardware: Roller Bearing

Cost: \$26 per unit

Models Options: 010-2RS Bearing 50x80x16 Sealed Ball Bearings

Diameter: 50 mm

Mechanical Feasibility Analysis Results

Actuator	Belt Driven	Screw Driven
Fulfills Requirement?	Yes	Yes
Description of Functionality	Can produce desired forces and speed within a reasonable distance	Higher speeds but deform while under predicted loads
Feasible?	Yes	No

Mechanical Feasibility: Yes

Mechanical Hardware Considerations: Linear Motion Trade Study

Criteria	Weight (%)	Screw Driven Actuator	Grade	Belt Driven Actuator	Grade	DIY Linear Actuator	Grade	Hydraulics	Grade	Pneumatics	Grade
Length	20%	Difficult to find stroke length larger than 1000mm (screw bends)	2	Can be as long as 3 meters	5	Based off screw driven actuator, difficiult to achiever more than 1000mm	2	Can be more than 1000mm long	5	Difficult to find over 2000mm	3
Speed	20%	Range from <1m/s To 3m/s	4	Up to 10m/s	5	Range from <1m/s to 3m/s	4	Very Slow, (in/min)	1	Speed is dependent on load, but can achieve >1m/s	3
Force	20%	Can quickly switch directions, loses torque with longer ball screw	4	Belt can slip, cannot apply excessive force	3	Can quickly switch direction, loses torque with longer ball screw	4	Can supply lots of force, but has difficulty changing direction	3	Force applied is variable with position	2
Load Bearing	20%	Can support several hundred kg	5	Can hold ~100kg (ideally we have 4), belt can slip	3	Would need to conduct stress tess, likely capable of supporting athlete	4	Can Support any load	5	Can support several hundred pounds	5
Cost	10%	~\$3000+ each	2	~\$2000+ each	3	<\$1000 each	5	~\$1000 each	4	~\$1000 each	4
Integration Complexity	10%	Easy to program, and easy to integrate with platform	5	Easy to program, and easy to integrate with platform	5	Would needed to be designed, easy to integrate after	3	Very difficult to program, requires fluid	1	Difficult to program, force applied changes with mass	1
	100%										
Average Score		Screw Driven Actuator	3.666666667	Belt Driven Actuator	4	DIY Linear Actuator	3.666666667	Hydraulics	3.166666667	Pneumatics	3
Weighted Score			3.7		4		3.6		3.3		3.1

Force Data Collection

Links to Slides

<u>Next Steps</u> <u>Kitronyx Insoles Specifications</u> <u>Calibration</u> <u>Factor of Safety</u> <u>Force Trade Study</u>

Next Steps

- Bluetooth communication with Snowforce software and computer
- Bluetooth communication distance
 - If customer is using Kitronyx kit on the real slope, we want to ensure that the Snowboard 2 can maintain communication with the computer
- Data processing
 - Create a program to display the force data from the CSV file
 - Test using simulated data
 - Simple interface so that coaches can use
- Test plans for calibration
 - Calibration feasibility

Kitronyx Insoles Specifications^[8]

Electronics

Specifications	Value	
Dimensions (mm)	109x71x29	
Number of Sensing Pixels	160 (16x10)	S
Frame Rate (Hz)	40	Se
Computer Interface	USB	Tł
Operating System	Windows 7-10	Са
Power Supply	USB Powered	Pr

Sensors

Specifications	Value
Sensor Size (mm)	235, 270, 280
Thickness (mm)	<1
Cable Length (mm)	150
Pressure Range (kg)	180

Calibration

Calibration is necessary to get physical pressure values from the pressure distribution

- Put an object of know mass on the sensor
- Record force and measure the ADC sum
- Using A and F you can get a linear relationship

Physical pressure not an accurate result

- Sensor ADC curve nonlinear
- Each pixel has a different response

Relationship between force and ADC output [10]

FOS is 1.1 because the customer would like the ability of collect force data from a real ski jump.

An athlete (100 kg) pulls a maximum of 1.6 G will generate a maximum force of 1569.6.

From data sheet, sensor can accommodate up to 180 kg of mass or 1765.8 N.

1765.8 N / 1569.6 N = 1.125

Therefore FOS > 1.1

Force Trade Study

Foot Force Profile Trade Study						
Criteria	Weight (%)	Kitronyx	NURVV	PPS TactArray	Piezoelectric	
Cost	20	2	4	3	5	
User Complexity	13	5	4	4	3	
Integrability	15	4	3	3	1	
Fidelity	5	3	1	5	4	
Accuracy	20	4	2	5	3	
Comfort	12	5	5	3	4	
Battery Life	5	5	5	5	5	
Data Aquisition	10	5	4	4	2	
Weighted	Score	3.95	3.47	3.83	3.27	

Trade study of the options investigated to collect the foot force data

Logistics

Links to Slides Organization Chart

Budget

Links to Slides

<u>Budget Breakdown - Visual</u> <u>Budget Breakdown - Mechanical</u> <u>Budget Breakdown - Force Data</u> Collection

Budget Breakdown - Visual

Oculus Quest 2 Base Headset (128 GB Storage)	\$300
Elite Strap, Battery pack, Carrying Case	\$130
TOTAL	\$430

Budget Breakdown - Mechanical: Baseline

Linear Actuator	\$3300
Structural Elements	\$600
Bearings	\$100
TOTAL	\$4000

Budget Breakdown - Mechanical: New Budget

Linear Actuator (x2)	\$6600
Structural Elements	\$600
Bearings	\$100
TOTAL	\$7300

Budget Breakdown - Force Data Collection

Kitronyx MP2513PLUS Insole Sensor Kit	\$1300
TOTAL	\$1300

