SNOW DEPTH INFORMATION AND MITIGATION BEFORE AVALANCHES

Spring Final Review (SFR)

Presenters

Lucas Dickinson, Adam Gourmos, Stephen Peng, Devon Ricken, Aidan Sesnic, Jordan Walters

<u>**Customer</u>** Copper Mountain Resort: Hagen Lyle</u>

<u>Advisor</u> Professor Zachary Sunberg

Additional Team Members

Max Fidler, Travis Griffin, Brett Papenfuss, Saad Syed, Kevin Yevak, Sean Yoo

SPONSORS

Smead Aerospace

Project Purpose and Objectives

Testing

Results

> Systems

2

Project Purpose

The Problem: Avalanche Mitigation

- Currently,
 - Ski patrol dig snow pits in avalanche prone areas to determine risk
 - Measure snow depth
 - Examine snow layers
 - Lack of snow depth data results in many pits needed to be dug
 - Dangerous, laborious, and time consuming
- Our system remotely measures snow depth
 - Snow pit locations will be more targeted
 - Reduces number of snow pits required
 - Reduces time and effort spent in avalanche prone areas
 - Reduces ski patrol risk exposure

CONOPS

Objectives

Testing

Results

Management

4

CONOPS

Objectives

Testing

Systems

SIMB

Functional Requirements

FR 1	The system shall implement a snow depth detection system to assist Copper Mountain ski patrol in avalanche mitigation					
FR 2	The system shall be able to operate with acceptable endurance such that data collection will occur in a reasonable amount of time					
FR 3	The system shall be able to operate in the typical weather conditions found on the top of Copper Mountain					
FR 4	The system shall be able to collect the required data, store the data, and transfer the data to Copper Mountain ski patrol through available interfaces (Data Storage)					
FR 5	The system shall process the data collected and present snow depth data to Copper Mountain ski patrol in the software found at their facilities					
FR 6	The system shall collect pointing data accurately and then use that data to control the sensor's pointing					
C	bjectives Design Testing Results Systems Management					

Objectives

Design

Levels of Success

	Sensor Package	Software	Pointing Accuracy and Control	Output
1	Snow depth accurately measured within ±50 cm at 1 location at 400 m	Data of one distance measurement by sensor is saved	Laser pointing is able to be determined to 0.01 degrees. No feedback present. Motors ±1° of desired position	Compile data to form a plane to serve as origin for height measurements
2		Distance and attitude of each measurement is recorded for attitude control	Feedback is present allowing the motors to readjust as needed	Display snow depth calculated for one location
3	Snow depth accurately measured within ±15 cm at 400m	Distance, attitude, time & temperature of each measurement is recorded	Motor initial move ±0.1° of desired position. Feedback allows for ±0.01°	Produce map displaying snow depth
4	Snow depth accurately measured within ±10 cm at 400 m with 1 m spatial resolution		Motor initial move ±0.01° of desired position. Feedback allows for ±0.001°	Produce topographical snow depth map to within ±10 cm

Results

Testing

Management

Systems

Design Description

Testing

Results

SIMBA

Functional Block Diagram

Final Design

12

Test Overview

Testing

Results

Systems

> Management

>13

SIMBA

Completed Tests

- Laser Rangefinder Test
 - Range Test
 - Beamwidth Test
- ADC Noise Test

Objectives

- Potentiometer Supply Voltage Stability Test
- Potentiometer Performance Test
- Whole System Test

Significant Tests

Significance	Test
Characterization	 Laser Rangefinder Test ADC Noise Test Potentiometer Supply Voltage Stability Test
Model Validation	 Potentiometer Performance Test Whole System Test

Test Design

- Conducted at Manhattan Middle School track on the 100 meter straight
- A 2'x2' piece of wood was used as a target

ADC Noise Test

Test Purpose

• ADC noise decreases pointing accuracy. Determination of pointing error is required

Test Design

- Steady voltage supply via batteries connected to ADC
- Oscilloscope measuring power supply and potentiometer output (2-channel)
- Code script:
 - Python Control ADC and record voltage measurements
 - MATLAB Determine ADC error and impact

Design

Testing

Results

Systems

17

Potentiometer Supply Voltage

Test Purpose

- ADC channel measurements are asynchronous
- Fluctuations in voltage supply can therefore result in potentiometer pointing noise

Test Design

- Examine voltage supply transient behavior with oscilloscope
 - Tune the 3 channel regulator with 6 low pass filters, 3 capacitor banks and regulator bypass to produce the cleanest signal
 - Determine average noise introduction from regulator
- Calculate power supply, regulator, potentiometer and ADC in static system

Potentiometer Performance Test

Test Purpose

- Largest component of system error
- This test characterizes potentiometer signal

Test Design

- Motor turns a step
- Triangle is physically measured to find turning angle
- Compare $\Delta V_{\text{potentiometer}}$ to θ

Testing

Results

Whole System Test

Test Purpose

- Assess the accuracy of the whole system
- Use range and angle measurements along with location data to create a map

Test Design

- Conducted on roof of an apartment building and balcony of Aero building
- System scanned and collected 100 and 900 data points of grassy area

Design

Testing

Results

Systems

Test Results

Testing

Systems

Management

21

Laser Rangefinder Test Results & Conclusion

Expected Results

1. A reading of 100m ± 4cm is expected by manufacturer specs at 100m range

Testing

2. Beamwidth is proprietary and is unknown

Test Results

- Track length is measured to be 100.07m with uncertainty of 0.5cm
- Laser Rangefinder measured 100.09m
- Laser Rangefinder error of 2cm with around 0.5cm uncertainty

Conclusion

- ± 2cm distance measurement validation **exceeded the expected** ± 4cm stated by the manufacturer
- Enclosure widened to 3.5in from 2.5in
- Satisfies FR 1 & FR 3

ADC Noise Results

Expected Results

- ~1mV and some attenuation
- 3uV bin sizes

Objectives

Test Results: Battery Voltage

- Power supply AC noise: 29.5mV
- Oscilloscope limit reached (yellow)!
 - Noise threshold: 375mV
 - Lengthening probe writes add Ο noise

Testing

Measured battery AC noise (green)

Design

105 mV? 56 mV? \bigcirc

Systems

Results

ADC Noise Results Continued

Test Results: ADC

- Assuming battery supply is constant
- Noise threshold ~710uV

ADC Noise Test Conclusion

Results

Design Requirement Validation

- At least 0.34° of noise, 58 cm error
- Possibly ~0.054° of noise, 9.24 cm error

Testing Conclusion

Objectives

- ADC noise is 61.6% of total error budget
- Hardware exceeds subsystem accuracy budget

Testing

Possible improvements explored later

Design

Systems

Voltage Supply Test Results

OV1004C_CNE0047E40_C+ 0--- 17 17 E3.00 000

Expected Results

- 10 mV> pk. pk spikes from testing with first iteration
- 0.72°> of noise or 123 cm

Test Results

Objectives

- Oscilloscope limit reached!
- Noise threshold: ~3.75mV
- Battery line (yellow):
 5.6mV
- 5V supply (green): 4.8mV

03	UA 12046, C	100904	47049.	Sat Abri	7 17:02:03	2021									
B₩	5.0%/	B₩	5.0♥	/ 3		4			12.94≦	1.00)Oš/	Stop	£	1	17.00
													1		KEYSIGH TECHNOLOGIE
														Sa	we/Recall
T															
															+
															Recall
															+
2₽	in the second	÷,	μų.			Walaya ya								Defa	ault/Erase
															+
Ţ			. (n).	Ш	er i	Land a						1.a			
	beliefen beliefen.		1.114	a standar a da	When here	ddin a sini a		All of the L	a distant a serie de la constant	L. B. B. B.	ann bhí cá st	A. M. M.			
	A	, in the	1.1.1	a li a li and				1.11.10		and distant					
	Save to file = scope 1 Press to						ress to								
				Freq(1):		Pk-Pk	(1):		Freq(2):		Pk-Pk(2):				Save
					631.7kH	Iz		5.6mV	7	67.5kHz		4.8mV			

Testing

Systems

Voltage Supply Test Results Continued

ADC Results

- Battery line: ~710uV, 5V supply: ~750uV
- Instrument limited results

Voltage Supply Test Conclusion

Design Requirement Validation

- Oscilloscope limit: At least 0.34° of noise, 58 cm error
- ADC limit: Possibly ~0.054° of noise, 9.24 cm error
- True limit unknown

Testing Conclusion

- Results inconclusive
- ADC is the bottleneck. PCB noise is within ADC noise.

Testing

ADC-Regulator Potential Fix and Result

New ADC

- Same noise characteristic, 17.25 V max: 2.5cm error
- Worse noise characteristic, op-amp pot. amplifier circuit where G=f(Vmax, pk. pk)

Software Solution

- Averaging multiple samples
- ~150 samples
 - o 200uV pk.pk
 - 2.5cm error
- No way to validate this method!

Testing

Potentiometer Performance Test Results

- * All potentiometer data was analyzed using MATLAB
 - Code structure:

Potentiometer Performance Test Results

Potentiometer Performance Test Results

Potentiometer Performance Test Conclusion

Model Values - Test Values

Whole System Test Results

Results

Expected Results

- Capture range and angle data
- Combine with known location to create contour of depths

Testing

Test Results

Objectives

- Obstacles were able to be identified from data and map
- No snow accumulation to validate accuracy requirements

Design

Systems

Error Budget

Contributing Factor	Expected Error	Actual Error
Pointing Accuracy* (depth error of single scan)	 .001° 0.35 cm depth error 	.26°89cm depth error
Laser Rangefinder (depth error of single scan)	4cm0.75 cm depth error	2cm0.36 cm depth error
TOTAL (depth error of combined wet and dry scan)	• 1.5 cm depth error	• 90-127 cm depth error+

*Potentiometer accuracy is dependent on ADC readings. The test was done with power supply that outputs variable voltages, leading to inaccurate readings.

Testing

Objectives

Design

[†]Total error was calculated assuming a slope angle of 10° and sensor platform angle of 3.3°-7.0°. The more perpendicular these two angles are to each other, the better the accuracy.

Results

Systems

Objectives

Verification & Validation Summary

	Sensor Package	Software	Pointing Accuracy and Control	Output
1	Snow depth accurately measured within ±50 cm at 1 location at 400 m	Data of one distance measurement by sensor is saved	Laser pointing is able to be determined to 0.01 degrees. No feedback present. Motors ±1° of desired position	Compile data to form a plane to serve as origin for height measurements
2		Distance and attitude of each measurement is recorded for attitude control	Feedback is present allowing the motors to readjust as needed	Display snow depth calculated for one location
3	Snow depth accurately measured within ±15 cm at 400m	Distance, attitude, time & temperature of each measurement is recorded	Motor initial move ±0.1° of desired position. Feedback allows for ±0.01°	Produce map displaying snow depth
4	Snow depth accurately measured within ±10 cm at 400 m with 1 m spatial resolution		Motor initial move ±0.01° of desired position. Feedback allows for ±0.001°	Produce topographical snow depth map to within ±10 cm

Results

Systems

Testing

Design

37

Systems Engineering

Objectives

Design

Testing

Results

Systems

Management

38

Concept Development

Customer emphasis

- Safety
- Accuracy
- Resolution
- Mobility

Functional Objectives

- Snow depth detection
- In Alpine Environment

• Data:

- \circ Collection
- Storage
- \circ Presentation

Trades

- Sensors
- Actuators
- Georeferencing method
- Processing software

Concepts Considered

- Mobile platform
- Stationary Platform
- Photogrammetry
- Ultrasonic Sensing
- Lidar

Testing

Results

SIMBA

Functional Requirements

FR 1	The system shall implement a snow depth detection system to assist Copper Mountain ski patrol in avalanche mitigation						
FR 2	The system shall be able to operate with acceptable endurance such that data collection will occur in a reasonable amount of time						
FR 3	The system shall be able to operate in the typical weather conditions found on the top of Copper Mountain						
FR 4	The system shall be able to collect the required data, store the data, and transfer the data to Copper Mountain ski patrol through available interfaces (Data Storage)						
FR 5	The system shall process the data collected and present snow depth data to Copper Mountain ski patrol in the software found at their facilities						
FR 6	The system shall collect pointing data accurately and then use that data to control the sensor's pointing						
С	bjectives Design Testing Results Systems Management						

Driving Requirements

1. FR 1

 The sensor package shall be able to measure snow depth of the snowpack with an accuracy of ±10 cm

2. Fr 2

- 1. System shall have sufficient endurance to survey a dry area in up to 22 hours
- 2. System shall have sufficient endurance to survey a wet area in up to 2 hours
- 3. FR 3
- 4. FR 4
- 5. FR 5
 - 1. A heat map shall be created and overlaid onto a geophysical map with snow depth data
 - 2. The heat map shall have a dry scan spatial resolution of 2 m²
 - 3. The heat map shall have a wet scan spatial resolution of 6 m²

6. FR 6

- 1. The system needs to be able to **sweep out 60° about its pitching axis**
- 2. The system needs to be able to sweep out 135° about its azimuth axis
- 3. The system shall have a pointing accuracy on the order of 0.01°

Testing

Interfaces

Results

Power Regulation PCB filters and regulates power

<u>System Operation</u> Raspberry Pi controlled using ground computer

Attitude Determination & Control Motors and rangefinder commanded Angles and distance recorded

<u>Post-Processing</u> Data uploaded to ArcGIS Online

Design

Testing

Objectives

Systems

CDR Predicted Risk	Mitigation	Encountered and Effect	
Thermal Drift in Potentiometer	Thermal subsystem	Not encountered	
Water Damage	Enclosure and raised components	Not encountered	
Pi crash due to bugs	Alternate Pi, quickly replaceable	Testing delay & reconfiguration	
Tripod Deflection	Additional guy wire available	Not encountered	
Sensor error due to reflectivity	Rangefinder made for outdoor use	Not encountered	
Potentiometer Backlash	Realign voltage every change of elevation in scan	Not encountered	
Objectives Design	Testing Results Systems	s 🔰 Management	

Challenges and Lessons Learned

Challenges	Lessons Learned
Delays of Shipping Orders	 Increase lead times for ordered items Local suppliers as off-ramps
Minimal In-Person Interaction	 CAD & MBSE for virtual coordination Clear communication of manufacturing needs Increase time required for testing
Difficulty verifying/calibrating components	 Calibration proved difficult System uncertainty compounds

Testing

Project Management

Testing

Results

Systems

🛛 🔰 Management

245

Approaches and Results

	Fall	Spring
Approach	 Group divided into subsystems Tasks assigned to subsystems Subsystems divided into sub-teams Agendas made for the week 	 Agendas made for the week including internal deadlines Biweekly subsystem updates from team leads Clickup used more to meet manufacturing and testing deadlines
Results	 Subsystems and sub-teams reassigned after project descoping Existing subsystems tasks completed given time frame after descoping Team project understanding not where it should have been 	 Biweekly updates led to better understanding of project progress Manufacturing completed 2 weeks ahead of schedule

Testing

Challenges and Lessons Learned

Challenges	Lessons Learned
Testing Challenges due to COVIDTeam availability	 Assign specific testing days a week ahead Gather team availability via When2meet
Leadership structure	• Effective communication between sub-team leads and PM
Team meetings and project progress updates over Zoom	 Setting agenda for every meeting Having team leads summarize testing results every meeting

Planned vs. Actual Budget

Budget at CDR

\$1,201.25

\$2,423.94

\$286.73

\$145.66

\$90.83

\$288.74

\$4,497.14

\$502.86

\$60

SIMBA

Planned vs. Actual Budget

Final Budget

Manufacturing Package Total:	\$1,795.56
Sensor Package Total:	\$1,93594
Software Package Total:	\$846.72
Administrative	\$99.87
Total w/ Margin:	\$4,677.90
Remaining Budget:	\$322.10

Objectives

Design

Testing

Results

Systems

Planned vs. Actual Budget

Comparison and major differences:

Budget at CDR

Manufacturing Package Total:	\$1,201.25
Sensor Package Total:	\$2,423.94
Shipping Total:	\$286.73
Software Package Total:	\$145.66
Calibration Materials	\$90.83
Testing/ Verification Equipment	\$288.74
Administrative	\$60
<mark>Total w/ Margin:</mark>	<mark>\$4,497.14</mark>
Remaining Budget:	\$502.86

Final Budget

Manufacturing Package Total:	\$1,795.56
Sensor Package Total:	\$1,935.94
Software Package Total:	\$846.72
Administrative	\$99.87
Total w/ Margin:	<mark>\$4,677.90</mark>
Remaining Budget:	\$322.10

- Software package increase
- Manufacturing increase
- Sensor package decrease

Objectives

Design

Testing

Results

Based off the Timesheets, approximately 1009 hours were completed in the spring and 655.5 hours were completed in the fall . Since October 25th, a **total of 1704.5 hours** were logged across 12 team members.

Assuming an entry level salary of \$65,000 for 2080 hours labor per person results in \$31.25/hour. The **total direct labor cost would be \$53,265.63** for this project with an additional **\$4,677.90 for materials.**

With an **overhead rate of 200%** the cost for labor would come out to **\$106,531.26**.

The **total industry cost** would come out to **\$164,474.79**.

Backup Slides

ADC Noise Results: Bench Top Supply

Expected Results

• Realistically, no noise from batteries, ADC ~1mV

Testing

Test Results: Bench Power Supply

Design

• Power supply

Objectives

- o 33.26 kHz
- o 70.0 mV peaks

Static Potentiometer Tests

Azimuth pk. pk: 38mV

Pitch pk. pk: 5.5mV

Testing