

# **S**now Depth Information and **Mitigation Before Avalanche**

<u>Presenters:</u> Luke Dickinson, Adam Gourmous, Travis Griffin, Brett Papenfuss, Stephen Peng, Aidan Sesnic, Kevin Yevak

Customer: Hagen Lyle

Advisor: Zachary Sunberg

<u>Team Members:</u> Luke Dickinson, Adam Gourmous, Travis Griffin, Max Fidler, Brett Papenfuss, Stephen Peng, Devon Ricken, Aidan Sesnic, Saad Syed, Jordan Walters, Kevin Yevak, Sean Yoo





Smead Aerospace UNIVERSITY OF COLORADO BOULDER

### Agenda

### **1. PROJECT OVERVIEW**

- Motivation & Objectives
- Project Description
- CONOPS
- Functional Requirements
- Functional Block Diagram

### 2. BASELINE DESIGN

- Sensor Package
- UAV
- Software

### **3.** FEASIBILITY

- Sensor Package
- Aircraft Sizing
- Power Budget/ Battery Performance
- $\circ$  Software
- GNSS

### 4. END ITEMS

- Budget
- Gantt Chart
- Status Summary & Remaining Strategy
- Acknowledgments





Project Overview Baseline Feasibility Summary

### **Mission Statement**

The SIMBA team will <u>design a UAV</u> to provide the ability to <u>remotely access</u> and <u>monitor snow</u> <u>depth</u> to within  $\pm 10$  cm in avalanche prone areas of the Copper Mountain ski resort.

Motivation:

- Time consuming (3-4 hours per pit)
- Multiple pits for accurate representation
- Safety Risks
- Locations of snow pit is variable
- Help decide safer snow pit dig sites
- Provide information for explosives planning, boot packing, and ski cutting



Photo Courtesy of commons.wikimedia.org

### Definitions

**<u>GNSS</u>**: Global Navigation Satellite System

**<u>GPS</u>**: Global Positioning System

IMU: Inertial Measuring Unit

**<u>PPK:</u>** Post-Processed Kinematic

**UAV:** Unmanned Aerial Vehicle



### Functional Block Diagram





Baseline Design Feasibility Analysis

Summary

### Functional Requirements

| FR 1 | The system shall implement a snow depth detection system to assist Copper Mountain ski patrol in avalanche mitigation.                                                 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FR 2 | The system shall be able to operate with acceptable endurance such that data collection occurs in a reasonable amount of time.                                         |
| FR 3 | The system shall be able to operate in typical weather conditions found on the top of Copper Mountain.                                                                 |
| FR 4 | Data must be stored onboard for the flight duration and transferred to an existing computer system after the flight.                                                   |
| FR 5 | The system shall process the data collected and present snow depth data to Copper Mountain ski patrol in the software found at their facilities.                       |
| FR 6 | The system shall collect location data accurately in order to navigate and assist with snow depth mapping.                                                             |
| FR 7 | The system shall be compliant with the stipulations of Federal Aviation Regulation (FAR) 107, which includes avoiding flying over populated regions of the ski resort. |

### **Baseline Design**





**Critical Project Elements** 

Project Overview Baseline Design

Baseline Design

Summary

## <u>All Critical Project Elements</u>

Sensor Package

Aircraft Design

FR2 FR3 FR7

Georeferencing FR5

Software FR3 FR6

### Focus for PDR

Feasibility

Analysis

Sensor Package: To be Purchased

> Software: Available / To be Purchased

Aircraft Design: To be Designed/Manufactured

## Sensor Package

- Radar altimeter for snow depth sensing
- PPK receiver for position data

### Software

• ArcGIS for mapping snow depth data

**Project Overview** 

• PPK correction of position data

UAV

**Baseline** 

Design

- Fixed-wing
- Electric twin tractor propellor configuration

Feasibility

Analysis

Summary

Summary

### Sensor Package: Snow Depth Sensor

**Options Considered:** Radar, LiDAR, Photogrammetry, Ultrasonic **Key Criteria:** Operating Temperature, Range, Accuracy, Power Budget, Weight, Cost **Design Choice:** US-D1 Radar Altimeter

| Frequency               | 24-4.25 GHz            |
|-------------------------|------------------------|
| Maximum Detection Range | 50 meters              |
| Detection Accuracy      | 5 centimeters          |
| Size                    | 108 mm x 79 mm x 20 mm |
| Weight                  | 110 grams              |
| Temperature Range       | -20°C to 65°C          |
| Power Required          | 2 Watts                |



### Sensor Package: Georeferencing

**Options Considered:** PPK GNSS, GPS, Pressure Altimeter **Key Criteria:** Accuracy, cost, operating temp. **Design Choice:** PPK GNSS

- SparkFun ZED-F9P receiver board
- Accurate to within 1 cm horizontally and vertically
- Sizing
  - $\circ \quad 43 \ x \ 43 \ mm$
  - $\circ$  6.8 grams
- Power consumption  $< 1 \, \mathrm{W}$
- Operating temperature range =  $-40^{\circ}$ C to  $85^{\circ}$ C



### UAV: Baseline Design

**Options Considered:** Fixed-wing, multirotor, ground-effect vehicle, airship, stationary ground-based platform **Key Criteria:** Payload weight fraction, battery weight fraction, endurance **Design Choice:** Fixed Wing

- 12 m/s cruise speed
- Optimized for endurance
- 1 hour flight time
- 2 kg payload
- Blended wing-body
- Twin tractor propeller
- More detail follows in feasibility section



Project Overview Baseline Feasibility Summary

### Software: ArcGIS

ArcGIS supports a large number of file types Data input through USB from Data input through USB from **Options Considered:** ArcGIS, including rasters, textfiles, shapefiles, and excel PPK base station Vehicle files Google Earth Engine, Matlab, Python 3 Apply PPK corrections to GNSS data Key Criteria: Cost, 3D Visualization Capability, Ease corrected GNSS data - radar LAS Dataset Toolset: contains tools for creating of Use altimeter data = altitude of and managing LIDAR datasets **Design Choice:** ArcGIS Interpolation Toolset: allows for the creation of a altitude of snow - baseline altitude of terrain = snow continiuous surface from a set of sampled point values Snow Depth mapped on to Attachment Toolset: provides a way to associate topagraphy of Copper non geographic data with geographic information Mountain

### Project Overview Baseline Feasibility Summary

### Software: PPK

- A software correction method for GNSS data
- Typical GNSS data is only accurate to about 1 meter
- With PPK, accuracy becomes about 1 cm
- PPK works by combining the receiver's data with data from a nearby base station.



### **Feasibility Analysis**





Project Overview Baseline Feasibility Design Analysis

### Baseline Feasibility: Sensor

- Provides measurements every 12 cm
  - In direction of travel
- $-20^{\circ}$ C to  $65^{\circ}$ C Operational Range
  - Feasible: Meets FR3 and can collect data in Copper conditions
- 50 meter detection range
- Sensor error is 5cm and GPS error is 1 cm horizontally and vertically
  - Error: 6.5cm



Baseline Design

### Baseline Feasibility: Sensor



- IMU data will provide UAV attitude
- UAV can roll 1.8 deg and maintain total error < 10cm
- Assumes error of 1 deg in IMU and 40 deg maximum slope angle
- Feasible: Meets FR1 and collects snow depth data ±10cm requirement

Project Overview Baseline Feasibility Design Summary

### Baseline Feasibility: Georeferencing

FR 6: Accurate location data to assist in snow depth measurements

- Need to measure snow depth to within 10 cm with a horizontal resolution of 6m x 6m.
- ZED-F9P has claimed accuracy of 1 cm after PPK corrections
- Studies on similar receivers reported an accuracy of 2-5 cm
- May have less accurate results at Copper due to mountainous terrain

Needs on-site testing before feasibility can be determined

Project Overview Baseline Feasibility Summary

### Baseline Feasibility: Georeferencing

- Design requirement is to operate at -23°C, listed operating temperature for receiver is -40°C, so plenty of room for error
   Feasible: Meets FR 3 requirement for operating temp.
- Receiver only weighs 7 grams, so not much added weight to aircraft Feasible: Allows for FR 2 requirement for flight endurance
- Receiver only draws about 1 W of power, which is less than 1% of the total power budget
   Feasible: Well within power budget

Baseline Feasibility Design Analysis

Summary

### Baseline Feasibility: Aircraft Sizing

- Takeoff weight: 7.4 kg
- Empty weight: 3.3 kg
- Battery weight: 2.1 kg
- Payload weight: 2 kg
- $S = 0.85 m^2$
- For AR = 12, b = 3.1 m
- Empty weight-takeoff weight relation based on similar aircraft operated by IRISS
- Takeoff weight well below legal maximum of 25 kg:

Feasible: meets FR7 for legal operation in NAS

Summary

### Baseline Feasibility: Aircraft Sizing



23

### Baseline Feasibility: Aircraft Sizing

- Key parameters chosen: T/W = 0.75,  $W/S = 85.8 \text{ N/m}^2$
- Parameters are within constraints of performance sizing plot: Feasible: meets
   FR2 and FR3 for
   operations in Copper
   Mountain weather



### Design Feasibility: UAV Power Budget

| Component       | Quantity | Current (per<br>device at<br>cruise) | Supply<br>Voltage | Supply<br>Power | Efficiency |
|-----------------|----------|--------------------------------------|-------------------|-----------------|------------|
| DC motors       | 2        | 1.75A                                | 22.2V             | 38.9W per       | 0.85       |
| ESCs            | 2        | 2.1A                                 | 22.2V             | 46.9W per       | 0.83       |
| Servo<br>Motors | 8        | 100mA                                | 5V                | 0.5W            | 0.8        |
| Receiver        | 1        | 100mA                                | 5V                | 0.5W            | 0.8        |

Total minimum Amps: 5.1 Amps

Total minimum Voltage: 22.2V

Total Power: 98 Watts, Propulsion power: 94 watts. Approximately equal.

Baseline Design

26

### Baseline Feasibility: Batteries in Cold Environments $\dot{Q}_{convection} = KA_s \frac{(T_{Batt} - T_s)}{\Lambda}$ $\dot{Q}_{conduction} = hA_s(T_s - T_\infty)$





Baseline Design Feasibility Analysis

Summary

### Baseline Feasibility: Software

- Case Study: KyFromAbove, Kentucky's elevation data & Aerial photography program
  - A common basemap for the state of Kentucky created using photography and elevation data in ArcGIS
  - Includes altitude based topography maps created from LIDAR data, similar to the maps that we plan to construct for snow depth

## Feasible: ArcGIS is capable of mapping depth data, meets FR5



### Summary



28

Project Overview Baseline Feasibility Summary

## Budget

| Sub-team Expenses    | Overall Cost |
|----------------------|--------------|
| Sensor Package       | \$1500       |
| Aircraft             | \$2000       |
| Data Visualization   | \$O          |
| Georeferencing       | \$220        |
| ClickUp              | \$60         |
| Senior Project Funds | \$5000       |
| Estimated Budget     | \$3780       |
| Remaining Budget     | \$1220       |



Baseline Design Feasibility

Analysis

## Status Summary

| Baseline Design | Aspects Shown to be Feasible                                                                                                                             | Continued Studies                                                                                                           |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Sensor Package  | <ol> <li>Snow depth can be measured to within ±10cm.</li> <li>The sensor is operable in temperatures from -20°C to 65°C.</li> </ol>                      | <ol> <li>Calibration between Sensor Package,<br/>georeferencing, and IMU</li> <li>Research into sources of error</li> </ol> |
| Georeferencing  | <ol> <li>Can operate at -40°C</li> <li>Will fit on aircraft</li> <li>Easily within power budget</li> </ol>                                               | 1. Vertical accuracy needs to be tested on-<br>site if possible or done via simulation                                      |
| Aircraft Design | <ol> <li>Required aircraft weight</li> <li>Aircraft wing loading and thrust-to-<br/>weight ratio</li> <li>Battery efficiency in cold climates</li> </ol> | 1. Detailed design including airfoil selection,<br>dynamics analysis, structural analysis                                   |
| Software        | 1. Capable snow depth mapping software                                                                                                                   | 1. Software familiarization amongst the group is needed for proficient use                                                  |

Feasibility

Analysis

### Strategies for Conducting Remaining Studies

A sensor package focused around a radar altimeter on a fixed-wing UAV is a feasible design for snow-depth sensing on Copper Mountain. Our position data will be calculated using PPK GPS and presented using ArcGIS software already used by the customer.

- Further inquiry into the sensor in this application
  - Communication with manufacturers currently
  - Reaching out to experts and professors
- Site Investigation: Copper Mountain
- Continue research on possible problems and solutions of similar applications

## Project Overview Baseline Feasibility Summary

### Acknowledgements

- Thanks to Chris Choate of IRISS for providing empty weight and takeoff weight data for IRISS aircraft which was used in sizing the SIMBA aircraft.
- Thank you to Professor Sunberg for his guidance through this project so far.
- Thank you to Lara Buri and other TAs for great feedback on how to improve our presentation.

### References

- Gebre-Egziabher, Demoz. Evaluation of Low-Cost, Centimeter-Level Accuracy OEM GNSS Receivers. Minnesota Department of Transportation, Feb. 2018, www.dot.state.mn.us/research/reports/2018/201810.pdf.
- Stöcker, C., et al. QUALITY ASSESSMENT OF COMBINED IMU/GNSS DATA FOR DIRECT GEOREFERENCING IN THE CONTEXT OF UAV-BASED MAPPING. Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, The Netherlands, 4 Sept. 2017, its4land.com/wp-content/uploads/2017/10/QUALITY\_ASSESSMENT\_OF\_COMBINED\_IMUGNSS\_DATA\_FOR\_DI.pdf.
- Zhang, He, et al. "Evaluating the Potential of Post-Processing Kinematic (PPK) Georeferencing for UAV-Based Structure- from-Motion (SfM) Photogrammetry and Surface Change Detection." *Earth Surface Dynamics*, Copernicus GmbH, 2 Sept. 2019, esurf.copernicus.org/articles/7/807/2019/.

"Thermal Insulation." 5. Thermal Insulation Materials, Technical Characteristics and Selection Criteria, www.fao.org/3/Y5013E/y5013e08.htm.

Engineers Edge, LLC. "Viscosity of Air, Dynamic and Kinematic." *Engineers Edge - Engineering, Design and Manufacturing Solutions*, 11 June 2018, www.engineersedge.com/physics/viscosity\_of\_air\_dynamic\_and\_kinematic\_14483.htm.

"Story Map Series," Kentucky Geography Network Available: https://kygeonet.ky.gov/StoryMaps/KyFromAboveElevation/.

DRONE PRODUCT LINEUP. (2020, September 21). Retrieved October 12, 2020, from https://ainstein.ai/downloads-drone-product-lineup/

## **Backup Slides**

### Levels of Success

| Level | Snow Data                                        | Position Data and Navigation                                                                                                                                                       | Data<br>Processing                                               | Aircraft Design                                                                                                                                               |
|-------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Snow depth is<br>measured to<br>within<br>±30cm  | The aircraft must be able to measure<br>its position and altitude precisely<br>enough to avoid terrain collision.<br>Must collect positional data with an<br>accuracy within ±15cm | Produce a 2D<br>heat map of<br>snow depths                       | Aircraft maintains steady,<br>level flight at density and<br>altitude conditions found on<br>the peak of Copper<br>Mountain with wind gusts<br>up to 10 knots |
| 2     | Snow depth is<br>measured to<br>within<br>±15cm. | Positional data is collected with an accuracy within ±10cm                                                                                                                         | A heat map is<br>overlaid onto<br>a map of<br>Copper<br>Mountain | Aircraft maintains steady,<br>level flight at the peak of<br>Copper Mountain with wind<br>gusts up to 20 knots                                                |
| 3     | Snow depth is<br>measured to<br>within<br>±10cm  | Positional data is collected with an accuracy within ±5cm                                                                                                                          |                                                                  | Aircraft maintains steady,<br>level flight at the peak of<br>Copper Mountain with wind<br>gusts up to 25 knots                                                |

### Electric vs Fuel Engine

- LiPo energy density is 525.6 kJ/kg vs Glow Fuel energy density is 42.6 MJ/kg
- Thrust-to-weight ratio of 1
  - $\circ$  ~ Total thrust required is 73.6 N, or 36.8 N per motor
- Weight comparison
  - $\circ$  Electric motor: 110 g (x2) for 40 N motor
  - $\circ$  Gas motor: 680 g for 153 N engine (turbocharger not included)
- Operational ceiling
  - Electric motor: defined by the propeller
  - Gas motor: power drop proportional to air density. At 4267.2m, power drop to 65%. Turbo charger is therefore needed.
- Maintenance/Reliability
  - Electric motor: Minimal maintenance
  - Gas motor: Carburetor may require constant maintenance in winter conditions. Engine may not start in cold weather.

### Electric vs Fuel Engine Models

- UAV configuration requires 559 kJ for the entire flight with 40% margin
- Electric Motor
  - $\circ$  Total power plant efficiency is 0.493
  - Power source weight: 2.153 kg batteries
  - Powerplant weight: 220g ignoring wires
  - Cost: ~\$140 with recharge negligible
  - $\circ$  Ease of use: Install system, minimal maintenance
- Gas Motor (gasoline)
  - $\circ$  Total power plant efficiency is 0.25
  - $\circ$  Power source weight: 400g
  - Powerplant weight: 771g including supercharger, not including plumbing
  - $\circ$  Cost: ~320, fuel costs 0.68 per refuel. Snowmobile/snowcats run off gasoline
  - $\circ$  Ease of use: Supercharger and engine need to be mated. Continuous maintenance required

### Aircraft Powerplant

- Thrust-to-weight ratio design point  $\sim 1$
- Required aircraft thrust is 73.6 N
- Two Engine configuration
  - $\circ \quad \text{Increase total actuator disk area}$
  - Redundancy. Aircraft can still fly in One Engine Operative (OEI)
  - $\circ$  ~ Opens up room in fuselage for sensor package and electronics
- Initial design:



### **Propeller Efficiency Sensitivity**

- Propeller efficiency is dependent on the difference between free stream velocity  $\bullet$ and propeller wake velocity
- Derived Equation:  $\eta_p = \frac{V_{\infty}}{\frac{V_{\infty}}{2} + \sqrt{\left(\frac{V}{2}\right)^2 + \frac{T}{2\rho(n\pi r^2)}}}$  $\bullet$







### Airplane Sizing Methodology

- Regression model yields relation between takeoff and empty weight
- Estimate battery mass in terms of takeoff mass (next slide)
- Express empty mass in terms of takeoff mass, battery mass, payload mass
- Find intersection



### Estimation of Battery Mass Required

Level flight: express thrust in terms of weight, L/D ratio:  $T = \frac{m_{TO}g}{(L/D)}$ 

Multiply by velocity, time to get power and energy respectively:  $E = \frac{m_{TO}gvt}{(L/D)}$ 

Divide by propulsion system efficiency and battery specific energy to get mass:  $m_{batt} = \frac{m_{TO}gvt}{(L/D)\eta c}$ 

### Airplane Sizing Parameters Used

| Payload mass: 2kg<br>3600 s                                  | Cruise speed: 12 m/s               | Endurance:                    |
|--------------------------------------------------------------|------------------------------------|-------------------------------|
| L/D max: 10                                                  | Battery specific energy: 420 kJ/kg | Propeller efficiency: 0.7     |
| Maximum speed: 30 m/s<br>12 m                                | Air density: 0.8 kg/m^3            | Takeoff ground roll distance: |
| Max lift coefficient, takeoff: 1.8                           | Max lift coefficient, landing: 2.0 | Required climb rate: 5 m/s    |
| Maneuvering load factor: 2                                   | Wing aspect ratio: 12              | Oswald efficiency: 0.7        |
| Parasite drag coefficient: 0.028<br>combined efficiency: 0.7 | Battery margin: 1.4                | ESC/motor                     |

### Notes:

- Battery specific energy reduced by 20% to account for cold temperatures.
- Parasite drag coefficient is expected to overestimate vehicle drag.

### Airplane Sizing Sensitivity to Payload Mass



### Airplane Sizing Sensitivity to Cruise Speed



### Airplane Sizing Sensitivity to Propeller Efficiency



### Airplane Sizing Sensitivity to Specific Energy



### Wing Loading Calculation

Desire to ensure that specified cruise speed is cruise speed for maximum endurance: specified cruise speed must be point of minimum power required.

$$\left(\frac{W}{S}\right)\Big|_{desired} = \sqrt{0.75v_{crs}^4\rho^2 C_{D0}\pi eAR}$$

Subject to constraints of performance sizing plot.

### Performance Constraints: Stall Speed

Chosen stall speed of 11 m/s to make manual piloting easier.

Performance constraint equation:

$$\left(\frac{W}{S}\right)_{TO} = \frac{1}{2}\rho v_{S_L}^2 C_{L_{max_L}}$$

### Performance Constraints: Takeoff Distance

Takeoff distance are from design requirements. Assuming thrust is significantly greater than drag and friction.

Performance constraint equation:  $\left(\frac{T}{W}\right)_{TO} = \frac{1.44}{(S_{FL}/1.66)\rho g C_{L_{max_{TO}}}} \left(\frac{W}{S}\right)_{TO}$ 

### Performance Constraint: Climb

Climb requirements come from design requirements.

Climb gradient is defined as:  $CGR = \frac{V_{climb}}{V_{\infty}}$ 

Performance constraint equation:  $\left(\frac{T}{W}\right)_{TO} = CGR + \frac{1}{L/D}$ 

### Performance Constraint: Maneuvering

Use load factor of 2 for maneuvering constraints.

Performance constraint equation:

$$\left(\frac{T}{W}\right)_{TO} = \frac{qC_{D_0}(T_{TO}/T_{man})}{(W/S)_{TO}} + \frac{n^2}{q\pi ARe} \frac{T_{TO}}{T_{cr}} \left(\frac{W}{S}\right)_{TO}$$

### Performance Constraint: Speed

Use speed constraints for nominal cruise speed and dash speed.

Performance constraint equation:  $\left(\frac{T}{W}\right)_{TO} = \frac{qC_{D_0}(T_{TO}/T_{cr})}{(W/S)_{TO}} + \frac{1}{q\pi ARe} \frac{T_{TO}}{T_{cr}} \left(\frac{W}{S}\right)_{TO}$ 

### Actual Takeoff, Ground Roll Performance

Chosen thrust-to-weight ratio: 0.75. Chosen wing loading: 85.8 N/m<sup>2</sup>. Actual takeoff, climb performance:

Takeoff distance: 11.66 m; 12 m required

Climb performance, all engines operative: 42.4 deg, 8.1 m/s; 5 m/s required

Climb performance, one engine INOP: 17.4 deg, 3.6 m/s

### Baseline Feasibility: UAV Training

- Copper Mountain staff already possesses needed FAR107 credentials
- Due to legal concerns with CU teaching a third party, it will likely be the responsibility of Copper Mountain to train their pilot for operating the UAV
- The Academy of Model Aeronautics (AMA) quotes beginner to advanced RC aircraft training programs take 10-16 hours
- The Aircraft Owners and Pilots Association (AOPA) state an average of 16 flight hours for first solo for a private pilot's license

Project Overview Baseline Feasibility Summary

### Sensor Package: Radar Altimeter

Operating frequency = 24GHz = 417nm wavelength





Project Overview Baseline Feasibility Design Summary

### Baseline Feasibility: Sensor Package

- Range equation:
  - $\circ \quad R = (F_r t_{swp} c)/(2\Delta F n)$ 
    - $F_r$  = return signal after low-pass filtering is applied
    - $t_{swp} =$  the period of the signal over the bandwidth
    - $\Delta F = bandwidth$
    - c =the speed of light in a vacuum
    - $\bullet \quad n \ is \ the \ refractive \ index \ of \ the \ medium. \ Assuming \ dry \ snow, \ n \ can \ be \ found \ by \ relating \ the \ average \ snowpack \ density, \ \rho_s, \ of \ an \ area \ to \ the \ permittivity \ relation$ 
      - $n = (1 + 0.51 \rho_s / 1000)^{\frac{1}{2}}$

### **GNSS** Acquisition times

It takes less than a minute for the receiver to acquire a fix on a satellite network

It is possible (even likely) that the receiver may occasionally lose its fix on the satellite network. According to the manufacturer, the average reacquisition time is 1 second. Given this, and the UAV's cruise speed, the aircraft may occasionally lose about 12 meters of GNSS data.

### GNSS Manufacturer Data Sheet



Manufacturer: SparkFun

### Features Receiver type 184-channel u-blox F9 engine GPS L1C/A L2C, GLO L10F L2OF. GAL E1B/C E5b, BDS B1I B2I, QZSS L1C/A L2C Nav. update rate RTK up to 20 Hz1 Position accuracy<sup>2</sup> RTK 0.01 m + 1 ppm CEP Convergence time<sup>2</sup> RTK < 10 sec Acquisition Cold starts 24 s Aided starts 2 s Reacquisition 2 s Tracking & Nav. -167 dBm Cold starts -148 dBm Hot starts -157 dBm Reacquisition -160 dBm AssistNow Online Assistance OMA SUPL & 3GPP compliant Oscillator TCXO RTC crystal Built-In

### Package

54-pin LGA (Land Grid Array) 17 x 22 x 2.4 mm

| Environmental data, quality & reliability |                                                         |  |
|-------------------------------------------|---------------------------------------------------------|--|
| Operating temp.                           | -40 °C to +85 °C                                        |  |
| Storage temp.                             | -40 °C to +85 °C                                        |  |
| RoHS compliant (2                         | 015/863/EU)                                             |  |
| Green (halogen-fre                        | e)                                                      |  |
| ETSI-RED complia                          | nt                                                      |  |
| Qualification accor                       | rding to ISO 16750                                      |  |
| Manufactured and f                        | fully tested in ISO/TS 16949 certified production sites |  |
| High vibration and                        | shock resistance                                        |  |
|                                           |                                                         |  |

### Support products

u-blox support products provide reference design, and allow efficient integration and evaluation of u-blox positioning technology. C099-F9P u-blox ZED-F9P application board, with ODIN-W2 for connectivity. Includes Multi-band antenna (ANN-MB). One board per package.

1 The highest navigation rate can limit the number of supported constellations 2 Depends on atmospheric conditions, baseline length, GNSS antenna, multipath conditions, satellite visibility, and geometry

Onboard band pass filter

Flash

Active

Active CW detection and removal

Advanced anti-spoofing algorithms

| Interfaces        |                                             |
|-------------------|---------------------------------------------|
| Serial interfaces | 2 UART<br>1 SPI                             |
|                   | 1 USB<br>1 DDC (I <sup>2</sup> C compliant) |
| Digital I/O       | Configurable timepulse                      |
| Timepulse         | Configurable: 0.25 Hz to 10 MHz             |
| Protocols         | NMEA, UBX binary, RTCM version 3.3          |

### Product variants

| ZED-F9P | u-blox F9 high precision GNSS module with |
|---------|-------------------------------------------|
|         | rover and base functionality              |

### Electrical data

Anti-jamming

Anti-spoofing

Memory

Supported

antennas

| Supply voltage    | 2.7 V to 3.6 V             |
|-------------------|----------------------------|
| Power consumption | 68 mA @ 3.0 V (continuous) |
| Backup supply     | 1.65 V to 3.6 V            |

### More info on GNSS RTK/PPK

- RTK GNSS is a correction method for getting more accurate data points
- It uses a live link with a base station as a reference point
- This live link can be lost, especially in rough terrain
- However, PPK does not need a live link to the base station, as the correction is done after the data is collected (hence the name Post-Processed)
- Data from the receiver and base station are combined via a software program to create highly accurate and precise data



### **GNSS PPK Software**

Some options still need to be explored here. The receiver manufacturer sells PPK software that can be investigated. There is also free software called RTKLIB that might work.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RIKNAVI ver.2.4.3 b33 ; RIKPLOI —                                                | X     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | File Edit View Windows Help                                                      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + 1 2 12 Gnd Trk ∨ ALL ∨ 🕂 ▼ İ 💿 🔶 # + K 🖪 🗞 🗎 × 🛙                               | 8     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |       |
| RTKNAVI ver.2.4.3 b33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  | 書     |
| THIRD AT TELEVIS DSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |       |
| 2009/05/15 05:18:14.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |       |
| 📖 Lat/Lon/Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rover:Base SNR (dBHz)                                                            | 1     |
| Solution: FI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  | A.    |
| N: 35° 42' 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |       |
| E: 138° 26' 53.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 793" 09 12 14 18 22 30                                                           | and a |
| He: 405.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 mG <sub>50</sub>                                                               | X     |
| N: 0.029 E: 0.035 U: 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 m 40 30 30 40 40 40 40 40 40 40 40 40 40 40 40 40                              |       |
| Age-0.4 s Ratio-999.9 #S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 1     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | E     |
| ▶ <u>S</u> tart ⊙ <u>M</u> ark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Plot Options Exit                                                                |       |
| and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |       |
| A CONTRACTOR OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |       |
| and the second s | 100m g                                                                           | T     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 1     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [R]2009/05/15 05:18:14.60 GPST: 35.715279180⁰N 138.448299813⁰E 405.2064m Q=1:FIX |       |

Screenshot from RTKLIB

### **GNSS** Antenna

Will also need to buy an antenna for the receiver for probably around \$100, although needs to be looked into further.



### **GNSS CORS Base Station**

CORS base station required for PPK referencing located in Breckinridge, CO within 10 miles of Copper

