SNOW DEPTH INFORMATION AND MITIGATION BEFORE AVALANCHES

Manufacturing Status Review

Presenters

Max Fidler, Travis Griffin, Brett Papenfuss, Aidan Sesnic, Saad Syed, Kevin Yevak, Sean Yoo

<u>**Customer</u>** Copper Mountain Resort: Hagen Lyle</u>

<u>Advisor</u> Professor Zachary Sunberg

Additional Team Members

Lucas Dickinson, Adam Gourmos, Stephen Peng, Devon Ricken, Jordan Walters

SPONSORS

Smead Aerospace

Overview

Overview

Manufacturing

Project Purpose

The Problem: Avalanche Mitigation

- Currently
 - Deep pits in avalanche prone areas
 - Dangerous, laborious, and time consuming
- Our system provides data that minimizes
 - Number of snow pits required
 - \circ $\,$ Time and effort in avalanche prone areas
- This makes avalanche mitigation safer and more efficient

Mission Statement

• Team SIMBA shall provide a mobile snow depth measuring system to help Copper Mountain Ski Patrol mitigate the risk of avalanches.

Overview

Main Objectives

- Measure snow depth to within ±10 cm at 400 m with 1 m spatial resolution
- Produce heat map displaying snow depth
- Operate at minimum temperature of -20°C

CONOPS

Overview

Manufacturing

FBD

3

Baseline Design

Overview

Schedule

Manufacturing

Overview

Project Levels of Success

	Sensor Package	Software	Pointing Accuracy and Control	Output	
1	Snow depth accurately measured within ±50 cm at 1 location at 400 m	Data of one distance measurement by sensor is saved	Laser pointing is able to be determined to 0.01 degrees. No feedback present. Motors ±1° of desired position	Compile data to form a plane to serve as origin for height measurements	
2		Distance and attitude of each measurement is recorded for attitude control	Feedback is present allowing the motors to readjust as needed	Display snow depth calculated for one location	
3	Snow depth accurately measured within ±15 cm at 400m	Distance, attitude, time & temperature of each measurement is recorded	Motor initial move ±0.1° of desired position. Feedback allows for ±0.01°	Produce map displaying snow depth	
4	Snow depth accurately measured within ±10 cm at 400 m with 1 m spatial resolution		Motor initial move ±0.01° of desired position. Feedback allows for ±0.001°	Produce topographical snow depth map to within ±10 cm	

Overview

Major Changes Since FFR

- 1. Raspberry **Pi is now mounted on the roof** instead of with the laser range finder
- 2. Sensor **enclosure is enlarged** to accommodate Raspberry Pi in order **to maintain full degrees of motion** in pitch
- 3. Sensor package will use **one battery for both wet and dry scans** instead of two separate batteries
- 4. Ceramic **resistors selected for conductive heating** around potentiometers
- 5. Physical buttons provides user friendly interface for functional system

Critical Project Elements

Schedule

Overview

Schedule

Manufacturing

Overview	Schedule	Manufacturing	Budget	Backups	3
----------	----------	---------------	--------	---------	---

Overview	Schedule	Manufacturing	Budget	Backups	3
----------	----------	---------------	--------	---------	---

Sensor Team Work Plan Status Key: = To-do = In progress = Completed

Overview

Manufacturing

 VARU 25262728293031 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22232425262728 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 1 Integration and Testing Stepper Motor Testing Laser Range Finder Testing Potentiometer Testing Full system Integrated Full system Testing without Data Visualization Testing 		25 JAN - 31 JAN 01 FEB - 07 FEB 08 FEB - 14 FEB 15 FEB - 21 FEB 22 FEB - 28 FEB 01 MAR - 07 MAR 08 MAR - 14 MAR 15 MAR - 21 MAR 22 MAR - 28 MAR 29 MAR - 04 APR 05 APR - 11 APR
 Integration and Testing Stepper Motor Testing Laser Range Finder Testing Potentiometer Testing Full system Integration System Integrated Full System Testing without Data Visualization Testing 	- NAPLE	25262728293031 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 425 26 27 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 425 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11
Stepper Motor Testing Laser Range Finder Testing Potentiometer Testing Potentiometer Testing Full system Integration System Integrated Full System Testing without Data Visualization Testing	 Integration and Testing 	Today
Laser Range Finder Testing Potentiometer Testing Full system Integration System Integrated Full System Testing without Data Visualization Testing	Stepper Motor Testing	Stepper Motor Test Integration and Testing - 0.00%
Potentiometer Testing Full system Integration System Integrated Full System Testing without Data Visualization Testing Potentiometer Test Potentiometer Test Full System Integrated Full System Testing without	Laser Range Finder Testing	Laser Range Finder
Full system Integration System Integrated Full System Testing without Data Visualization Testing Full System Testing without Data Visualization Testing	Potentiometer Testing	Potentiometer Test
System Integrated System Integrated Full System Testing without Full System Testing without Data Visualization Data Visualization Testing Data Visualization Testing	Full system Integration	Full system Integrati
Full System Testing without Full System Testing without Data Visualization Data Visualization Testing Data Visualization Testing	System Integrated	System Integrated
Data Visualization Testing	Full System Testing without	Full System Testing without Data Visualization
	Data Visualization Testing	Data Visualization Testing

Manufacturing

Schedule

Manufacturing

Pointing Accuracy

Summary: The pointing accuracy consists of *COTS laser range finder, 2x potentiometers*, and *2x stepper motors*. It is dependent on interaction between COTS sensors, manufactured enclosure components, and code based controls **Current Status:**

• COTS hardware components have been purchased

Remaining Work:

- COTS sensor assembly between sensor enclosure and microcontroller "stack"
- Sensors need to be individually tested to validate manufacturer spec sheets before TRR

Main Concerns:

• Meeting Pointing Accuracy Requirements

Mitigation:

• Detailed Error budget to predict accuracy based on component performance

Pointing Error

 $dy = (AC + dAC) * (sin(\phi + d\phi) - [sin(\phi) * sin(\theta - \phi - d\phi)/sin(180 - \theta + \phi)])$

Manufacturing

- Θ angle of the slope
- $d\phi$ potentiometer error + tripod tip deflection S2 Surface of the slope without snow
- ϕ angle of the sensor platform above horizontal
- dy snow depth error

Overview

- A location of the sensor platform
- B where we believe the sensor is pointing
- C where the sensor is actually pointing

А

Φ

Schedule

- S1 Surface of the slope after snowfall

S2

S1

d١

в

Backups

Pointing Accuracy

Error Value Calculating using the previous equation with Θ = 30°, ϕ = 0°, d ϕ = 7.58 °, AC = 400m, and dAC = 4cm

Snow Depth Error, dy = 52.8 m, which will not allow for useful data collection

Change in Snow Depth Error vs Range

Change in Snow Depth Error vs Potentiometer Error

3

Error **Snow Depth Error** dAC dΦ **Snow Depth Error** $0.10 \, \text{m}$ 0.01808 cm .001° 0.698 cm $0.20\,m$.01° 6.98 cm 0.018090 cm .1° $0.30\,m$ 0.018095 cm 69.8 cm Schedule Overview Manufacturing Budget Backups

Sensor Environment

Overview

Manufacturing

Sensor Environment

Summary: The housing of the sensor package shields sensor components from a winter environment

Current Status:

- Aluminum and HDPE sheets: Delivered
- Structure height increased 3" for layout change
- Ceramic Resistors for conductive heating

Remaining Work:

- Width of opening for laser
- Machining & Assembly
- Power Regulation

Main Concerns:

• Snow accumulation

Mitigation:

- Component IP rating
- Drainage for melting snow

Schedule

Manufacturing

Microcontroller

Summary: The microcontroller "stack" is made up of COTS products.

Current Status:

- All parts have been received
- Modelling and layout complete

Remaining Work:

• Testing and final assembly

Main Concerns:

Connecting 3 "hats" to Pi

Mitigation:

Early testing in case problems arise

Schedule

Manufacturing

Control System

Summary: Software to control the sensor's pointing on the microcontroller.

Current Status:

- Currently in pseudocode stage
- Github for version control

Remaining Work:

- Final Programming
- Testing

Main Concerns:

• Deciding what scan pattern to use

Mitigation:

• Not difficult to change scan pattern in software to run multiple tests

Detailed pseudocode in backup slides

Overview

Data Visualization

Summary: Data visualization is how the team will output the collected data onto an intuitive heat map.

Current Status:

- Pseudocode developed for basic flow and function required by our code
- ArcGIS downloaded on personal computers **Remaining Work:**
- Start code development in ArcGIS

Main Concerns:

• Making data processing program intuitive to use by inexperienced personnel

Mitigation:

Create easy to follow user manual

Budget

Backups

Budget

Manufacturing

Financial Budget Overview

Manufacturing Package Total	\$870.51
Sensor Package Total	\$2,455.61
Shipping Total	\$340.23
Software Package Total	\$193.01
Calibration Materials	\$90.83
Testing/ Verification Equipment	\$265.46
Administrative	\$60
Total w/ Margin	\$4,275.66
Remaining Budget	\$724.34

* 5% Margin applied to total to account for any costs not considered (i.e. extras of sensitive components, incorrect parts, missing components)

Overview

Manufacturing

Financial Budget Status

		Date Ordered/			
Order/ Subscription Name	Order Description	Processed	Date Received	Total Cost	
Click-Up October - December					
Subscription		12/27/2020	12/27/2020 (Done)	\$45.87	
	All parts for manufacturing the enclosure for				
McMaster Order	the sensor package.	12/22/2020	1/4/2021 (Done)	\$799.79	
Forestry Supplier	TruPulse x200	1/14/2021	1/21/2021 (Done)	\$1,822.20	
Adafruit	Raspberry Pi 4 Model B	1/12/2021	1/19/2021 (Done)	\$45.50	
Adafruit	Stepper motor hat	1/13/2021	1/14/2021 (Done)	\$28.32	
PiShop US	Pi power cable, HDMI, and SD card	1/19/2021	02/01/2021 (Done)	\$31.55	
Amazon	RS-232 cable	1/20/2021	01/26/2021 (Done)	\$6.15	
Amazon	Resistors, serial hat, 100-ft tape measure	1/21/2021	01/26/2021 (Done)	\$50.13	
Amazon	AWG22 Wires	1/22/2021	01/27/2021 (Done)	\$15.99	
Digikey	Stepper motors, potentiometers, ADCs	1/27/2021	02/01/2021 (Est.)	\$184.50	
			Total:	\$3,030.00	
Remaining Budget:					

Overview

Manufacturing

Components Procurement Status

Backup Slides

Overview

Manufacturing

Detailed Thermal Model

- -20C ambient
- 60 W/m² convection coef.
- 60 W input per potentiometer
 - 2 power resistors
 - 30 W each
- Thermal controller
 - Closed loop
 - LM35 temp sensor
 - On/off for two seperate channels (one channel for each potentiometer)
 - Threshold temp TBD
- Model results
 - Potentiometers <5C
 - Continuous aluminum piece

Overview

Pinout for GPIO pins on Pi

Overview

> Manufacturing

Backups

Changed Pin Locations

- ADC SPI pins 35, 36, 38, 40 moved to alternate SPI pins
- General purpose pin moved from pin 35 to pin 29 to allow for use of alternate SPI channels

Microcontroller Pseudocode

ido nano /boot/config.txt udo apt-get install wiringpi d /tmp udo dpkg -i wiringpi-latest.deb udo apt-get update udo apt-get install python3-pip udo pip3 install RPi.GPIO

sudo apt-get install python3-serial

waveshare provides a test program as well, see https://www.waveshare.com/wiki/2-CH_RS232_HAT

Schedule

Stuff for stepper motor hat via <u>Adafruit</u>
 Begin by enabling I2C on Pi (look up a tutorial)
 Install <u>adafruit</u> stepper motor library
 udo pip3 install adafruit-circuitpython-motorkit

rom adafruit motor import stepper as SIEPPER rom adafruit motorkit import MotorKit

other recommended libraries <u>POIL time</u> ROIL atEXIL ROIL threading

Overview

Manufacturing

tuff to receive data from serial hat

mport serial mport os mport sys mport logging mport time

logging.basicConfig(level=logging.INFO) libdir = os.path.join(os.path.dirname(os.path.dirname(os.path.realpath(__file__))), 'lib') if os.path.exists(libdir): sys.path.append(libdir)

from waveshare 2 CH R5232 HAT import config

erl = config.config(Baudrate=xxxxxxx, dev = "/dev/ttySCO") # retrieve location and <u>baudrate</u> of serial inp

try

while(1): # infinite loop, we want to listen all the time for serial input ourrentDistance = ser2.Uart_ReceiveString(stringLength) # update <u>current</u> distance print currentDistance # not sure the format that we will receive distances in, so that may take some work

except # some exception to stop listening like a keyboard interrupt or stop scan

Begin search pattern to find GCP motorsObject = MotorKit(12c=board.12C()) # create object for motor input # for now, motor l is the horizontal plane and motor 2 is vertical plane

ef stepper_function(motornum, direction, step_type): # function to step motor once print('step') # debug purposes motornum.onestep(direction=direction, style = step_type)

currentDistance =_ searchRangeSize =_ # yet to be determined, probably about 1 degree minimumStepSize = 0.0056 # degrees, needs to be confirmed

numsteps = searchRangeSize/minimumStepSize
while 399 < currentDistance < 401 # again, may need to process data from rangefinder to put in useful format
ifor i in range(numsteps): # vertical steps
for i in range(numsteps):
 stepper function(motorsObject.stepper), STEPPER.FORWARD, STEPPER.MICROSTEP) # horizontal</pre>

stepper function (motorsObject.stepper2, STEPPER.FORWARD, STEPPER.MICROSTEP) # vertical

Budget

Backups

Scan Patterns

- Testing required to determine most effective scan pattern
- Need to achieve 6m x 6m horizontal resolution
- Options include...
 - Perspective based scan like the top image
 - A orthogonal grid like the bottom one
 - Some combination of the two

Overview

Manufacturing

Calibration Search

- Will use a Ground Control Point (GCP) to help achieve desired accuracy
- Ensures the scan starts in the same location each time
- Size GCP s.t. it is within desired angular size
- Then need a software search pattern to find the GCP

Schedule

Calibration Search cont.

- The software will move the rangefinder to the last known location of the GCP
- Since the GCP is fixed, this should get close to hitting it
- Then the search pattern begins
- Continues searching until known distance of GCP is acquired

٠	٠	٠	٠	•	•	٠	٠
•	•	•	•		•	•	•
•	٠	٠	•	•	•	٠	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	٠	٠	•	•
	• • •	• • • • • • • • • •				GCP GCP GCP GCP GCP GCP GCP GCP	GCP GCP GCP GCP GCP GCP GCP GCP

Total size of search grid needs to be determined with testing

Pointing Error Backup

 $dy = (AC + dAC) * (sin(\phi + d\phi) - [sin(\phi) * sin(\theta - \phi - d\phi)/sin(180 - \theta + \phi)])$

Manufacturing

dφ

- Θ angle of the slope
- $d\varphi$ potentiometer error
- $\boldsymbol{\varphi}$ angle of the sensor platform above horizontal

Φ

Schedule

dy - snow depth error

Overview

A - location of the sensor platform

А

- B where we believe the sensor is pointing
- C where the sensor is actually pointing

Backups

S2

S1

d٧

R

(-)

SIMBA

Potentiometer Independent Linearity

Independent Linearity Visualized

L2 - Expected potentiometer behavior L1/L3 - Possible potentiometer output due

to independent linearity

A - Upper bound on potentiometer output at 15° displacement

B - Expected potentiometer output at 15° displacement

C - Lower bound on potentiometer output at 15° displacement

D - Upper bound on potentiometer output at 30° displacement

E - Expected potentiometer output at 30° displacement

Budget

F - Lower bound on potentiometer output at 30° displacement

Backups

Potentiometer Independent Linearity

At **30°** displacement, the resistance of the potentiometer will be $30^{\circ} * (0.003636^{\circ} \text{per Ohm}) + 1000$ Ohms because that is the resistance of the potentiometer with no displacement, which equals 9250 Ohms

Using Ohm's Law V = IR, V = (0.00012A) * 9250 Ohms = **1.11V** across the potentiometer

But the voltage read may actually be 1.11 V \pm 0.12V

Upper resistance bound : R = V/I = 1.23V / 0.00012A = 10250 Ohms

Lower resistance bound : R = V/I = 0.98V / 0.00012A = 8166.67 Ohms

```
Upper - Lower = 10250 Ohms - 8166.67 Ohms = 2083.33
Ohms of variation
```

- The potentiometer acts as a 1K Ohm resistor at 0° displacement and changes 1 Ohm of resistance per 0.003636° of displacement
- The independent linearity is 1%, which is applied to the input voltage. So if we supply the potentiometer 12V, then our output voltage may deviate ∓0.12V from the expected value
- If we feed the potentiometer 12V, it will have a maximum resistance of 100K Ohms. Using Ohm's Law, V = IR, the current of the circuit is 0.00012 Amps
- Current will be constant in the circuit, so as the resistance changes with displacement, the voltage output will vary

Budget

2083.33 Ohms * (0.003636° per Ohm) = **7.58° of error**

Overview

Schedule

Manufacturing

Detailed Structural Model

- Dimensions according to manufacturer specifications and CAD model
- Using stainless steel variant of • tripod
- Loading: estimated based on drag • on vertical square plate and flow over cylinder
 - 11.4N point load at top of 0 tripod
 - 4.43N total load on tripod 0 mast; load is linearly distributed
- Constraints: guy wire bottom, tripod bottom completely fixed in 3 dimensions
- Guy wire in compression omitted

Schedule

3