Cetacean **E**cholocation **T**ranslation Initiative

Critical Design Review

Team

Ian Barrett Grant Dunbar George Duong Jesse Holton Sam Kelly Lauren McIntire Benjamin Mellinkoff Justin Norman Severyn Polakiewicz Michael Shannon Brandon Sundahl

Customers

Jean Koster James Nestor David Gruber

Advisor

Donna Gerren

Purpose/Objectives

Critical Project Elements

Requirements Satisfaction

Project Risks

Verification and

Validation

Project Planning

Project Description Search and Help Aquatic Mammals UAS

will design an **unmanned aerial system** to carry a <u>future</u> instrument payload capable of **locating sperm whales in the ocean.** The future unmanned aerial vehicle will be **launched and recovered from a research vessel's helipad.**

Verification and

Multi-Year User CONOPS

1.	Transport/ Arrival	2. Assembly/ Setup	3. Pre-f <mark>lig</mark> ht Check	4. Launch	5. Cruise/Search	6. Whale Located	7. Landing	8. Turnaround	9. Disassemble
1			Radius: 1	L2 km		Pitgbit Pati	4 <u>100</u> 1		id Tiadd)
3	<u>8</u>			7		4 6	PS Locatif	n A	
N. Call	Legend	l ght Path		8 9					
-	→ - Lo	iter Path			A <i>lucia</i> Research (Helipad; Statio	Vessel onary)			

Purpose/Objectives Design Solution Critical Project Requirements Elements Satisfaction Project Risks Verification and Project Planning

SHAMU Test CONOPS

Requirements Satisfaction

Functional Requirements

1.	Operate in manually piloted mode throughout all phases of flight with autonomous mode capability at cruise altitude.
2.	Takeoff and land from/to a stationary 9.1 m x 9.1 m platform obstructed fore (represents ship superstructure) and aft (represents ship crane).
3.	12 km communication range for telemetry, images, and RC control from ground control station .

Verification and

Functional Requirements

- 4. Aircraft shall support downward-facing 2.0 kg simulated instrument payload with 15 cm x 15 cm x 23 cm dimensions.
- 5. Aircraft shall be operable and recoverable onto stationary platform in winds up to 10 m/s.
- 6. Aircraft shall have 100 km ground track range endurance.

Design Solutions

Aircraft	Takeoff	Recovery	Autopilot	Flight Computer	RF Comm.	Electronics
Design and Validate Airframe	Bungee Launch with Rail	Net with Extending Lines	PX4 Pro with Pixhawk 2.1	Raspberry Pi 3 Model B	RFD900+ Datalink OpenLRS RC	Component List

Verification and

Functional Block Diagram

9

Design Solution

Aircraft	Takeoff	Recovery	Autopilot	Flight Computer	RF Comm.	Electronics
Design and Validate Airframe	Bungee Launch with Rail	Net with Extending Lines	PX4 Pro with Pixhawk 2.1	Raspberry Pi 3 Model B	RFD900+ Datalink OpenLRS RC	Component List

Verification and

Aircraft Design: Specifications

Wing Span	3.0 m (10 ft)
Length	1.4 m (4.5 ft)
Height	0.53 m (1.8 ft)
Wing Area	0.93 m ² (10 ft ²)
Wing Aspect Ratio	10
Empty Weight	4.5 kg (10 lbs)
Payload Weight	2.0 kg (4.4 lbs)
Gross Weight	8.45 kg (19 lbs)
Motor Power	1300 W (1.74 hp)

Purpose/Objectives

Critical Project Elements

Project Risks

Requirements

Satisfaction

Risks >

Verification and Validation Project Planning

11

Aircraft Design: Performance

Cruise Speed	20 m/s (38 kts)
Stall Speed	11 m/s (20 kts)
Range	100 km (62 mi)
Climb Rate	>5.1 m/s (>1000 ft/min)
Cruise L/D	12 - 16.2
Wing Loading	9.8 kg/m ² (2.0 lbs/ft ²)

Aircraft Design

Material Selection

- Expanded polypropylene wing/fuselage core
- G10 fiberglass bulkheads
- S-fiberglass/epoxy fuselage covering
- 5 mm CP film wing covering
- Carbon fiber spar in each wing half, aluminum 7075 carry-through spar
- Winglets attached with N52 neodymium magnets, reinforced with carbon strip
- Folding pusher prop to accommodate dolly configuration

SolidWorks Rendering of SHAMU Aircraft

Validation

Critical Project Elements

Requirements Satisfaction

Design Solution

Aircraft	Takeoff	Recovery	Autopilot	Flight Computer	RF Comm.	Electronics
Design and Validate Airframe	Bungee Launch with Rail	Net with Extending Lines	PX4 Pro with Pixhawk 2.1	Raspberry Pi 3 Model B	RFD900+ Datalink OpenLRS RC	Component List

Verification and

Takeoff Design Overview

Bungees	5	
Initial length of Bungee	1.99 m	
Spring Constant	86 N/m	
Tension Force	343.33 N	
Final Velocity	13.2 m/s	
Rail Length	5.25 m	
PVC Diameter	2"	
Takeoff Angle	5 degrees	
Max Deflection of Rails	3.86 mm	
Time	0.69 s	
Purpose/Objectives Design	Solutions Critical Pr	oject nts

Validation

Satisfaction

Design Solution

Aircraft	Takeoff	Recovery	Autopilot	Flight Computer	RF Comm.	Electronics
Design and Validate Airframe	Bungee Launch with Rail	Net with Extending Lines	PX4 Pro with Pixhawk 2.1	Raspberry Pi 3 Model B	RFD900+ Datalink OpenLRS RC	Component List

Verification and

Recovery System

- Net suspended between two poles
- Pulley connections to extend upon impact
- Extension of net reduces forces upon landing and closes the net to capture aircraft
- Impact forces are damped by a bungee attached to the pulley line
- Sailing Cleat prevents line from rebounding
- Hook on nose of aircraft will catch the net to prevent impact with ground

17

Design Solution

Aircraft	Takeoff	Recovery	Autopilot	Flight Computer	RF Comm.	Electronics
Design and Validate Airframe	Bungee Launch with Rail	Net with Extending Lines	Pixhawk 2.1 with PX4- Pro	Raspberry Pi 3 Model B	RFD900+ Datalink OpenLRS RC	Component List

Verification and

Navigation Hardware/Software Design

19

Design Solution

Aircraft	Takeoff	Recovery	Autopilot	Flight Computer	RF Comm.	Electronics
Design and Validate Airframe	Bungee Launch with Rail	Net with Extending Lines	PX4 Pro with Pixhawk 2.1	Raspberry Pi 3 Model B	RFD900+ Datalink OpenLRS RC	Component List

Verification and

Electronic Components

Battery*	Tattu 22000mah 6S Li-po Battery	Camera*	Raspberry Pi Camera Module				
Motor*	Propdrive 5060 v2 380kV Brushless Motor	Flight Controller	Pixhawk 2.1 Autopilot				
Speed Controller	Turnigy Plush 100A Speed Controller w/ 5V UBEC	Plane Radio Receiver	OrangeRx Open LRS 433MHz 9Ch Receiver				
Servos	HK15298B High Voltage Coreless Digital MG/BB Servo	Ground Station Transmitter	OrangeRx Open LRS 433MHz Transmitter 1W				
GPS	Here+ GNSS GPS for Pixhawk 2.1	Telemetry Radio	RFD 900+				
Airspeed Sensor	PX4 Airspeed Sensor w/ Pitot Tube	R/C Controller	Turnigy 9XR PRO Radio Transmitter Mode 2 w/o Module				
Sensor Board and BEC	MAUCH PL-100A Sensor Board and PL 2-6S BEC w/ 2 5V Outputs						
Purpose/Objectives Design Solutions Critical Project Requirements Project Risks Verification and Project Planning 21							

Critical Project Elements

22

Critical Project Elements

Requirement Considerations

Aerial Vehicle Design	 Stability and control Future sensor payload Tradeoff between maximizing lift-to-drag ratio and structural/manufacturing complexity
Takeoff and Recovery	 Accelerate/decelerate aircraft under maximum structural load Capability to transport and setup on 9.1m x 9.1m helipad

Critical Project Elements

Requirement Considerations

Communication with Ground Station	 Communication range of 12 km from ground station Transmit images at one per minute Piloted manual control Transmit updated flight waypoints Transmit telemetry to ground station
Flight Computer / Autopilot	 Collects sensor data for virtual cockpit Autopilot keeps aircraft in steady, level flight Accepts flight waypoints and executes

Design Requirements Satisfaction

Purpose/Objectives

Design Solution

Critical Project Elements Requirements Satisfaction

Project Risks

Verification and Validation

Airframe & Powerplant

Purpose/Objectives

Design Solution

Critical Project

Elements

Requirements Satisfaction

Project Risks

Verification and Validation 26

FR 1	The aircraft shall operate in remotely piloted and fully autonomous modes throughout all phases of flight.	
DR 1.1	The aircraft shall have static longitudinal stability.	
DR 1.2	The control system shall provide required control surface deflections for aircraft longitudinal and lateral stability throughout all phases of flight.	
FR 2	Takeoff and land from/to a stationary 9.1 m x 9.1 m platform obstructed fore (represents ship superstructure) and aft (represents ship crane).	
DR 2.1	The aircraft shall have a nose hook that sustains 5 g net recovery forces.	
DR 2.2	The aircraft wings shall sustain 5 g forces for maneuvers and net recovery.	
FR 4	Aircraft supports downward-facing 2.0 kg simulated instrument payload with 15 cm x 15 cm x 23 cm dimensions.	

Verification and

FR 6	The aircraft shall have a 100 km ground track range.
DR 6.1	The aircraft shall have a lift-to-drag ratio of 12.
DR 6.2	Battery shall have 1.4 hr endurance

FR 4 Aircraft supports downward-facing 2.0 kg simulated instrument payload with 15 cm x 15 cm x 23 cm dimensions.

DR 1.1 The aircraft shall have static longitudinal stability.

- Aerodynamic center: 71.75 cm behind the nose
 - Including wing and fuselage effects
- Center of gravity w/ 2 kg payload: 64.93 cm behind the nose
- Static Margin: 22.4% (6.82 cm)

Verification and

Validation

Requirements Satisfaction

DR 6.1 The aircraft shall have a lift-to-drag ratio of 12.

Design choices to maximize L/D

- Wing covering to create smooth surface
- Fuselage covering to create smooth surface
- AVL, XFLR5, OpenVSP, X-Plane models all predict an L/D > 12*

* To be verified by L/D tests in half-scale

Verification and

Validation

Project Risks

Project Planning

DR 6.2 Battery shall have 1.4 hr endurance

Component	Power Needed	Selected Battery Pack		
Motor (Steady Flight)	277 Wh	Tattu 22000mAh 6S 25C 22.2V Lipo Battery Pack		
Motor (Climb)	39.6 Wh	Capacity: 22000 mAh Voltage: 22.V		
Pixhawk	1.75 Wh	Watt-hours: 488 Wh Available Energy: 390 Wh Weight: 2.65 kg		
RFD 900+	5.6 Wh			
OrangeRX Open LRS	0.28 Wh			
Raspberry π w/ Camera	2.45 Wh	390 Wh > 375 Wh		
Servo	14 Wh	∴ DR 6.2 is satisfied		
Total Required Energy:	375 Wh			
Purpose/Objectives Design Solution Critical Project Requirements Project Risks Verification and Project Planning Verification				

DR 2.1 The aircraft shall have a nose hook that sustains 5 g landing forces.

SolidWorks Rendering: Nose Hook and Threaded Rod Through Nose Cone Initial proof-of-concept tests show 88% success rate (29 of 33) with potential for improvement <u>One hook prong under 5 g</u> <u>must sustain</u> Bending Moment : 37 Nm

For a (32mm x 96mm rectangular prong)

Internal Stress : 766 MPa

SolutionTitanium Grade S Tensile Strength :880 MPa > 766 MPa

1.2 Safety Factor .. DR 2.1 Satisfied >

Requirements Satisfaction

DR 2.2 The aircraft wings shall sustain 5 g forces for maneuvers and net recovery.

103.5 N 103.5 N

<u>These rods connect the wings to the fuselage</u> <u>and must sustain</u>

Shear Force: 103.5 N

For a 3/16" diameter rod

Shear Stress: 5.65 MPa

Solution

Aluminum (6061) rod: Shear Strength is 204 MPa

204 MPa > 5.65 MPa

Verification and

DR 2.2 The aircraft wings shall sustain 5 g forces for maneuvers and net recovery.

DR 1.2 The control system shall provide required control surface deflections for aircraft longitudinal and lateral stability throughout all phases of autonomous flight.

Controllability:

Purpose/Objectives

- A & B state space matrices calculated
- Longitudinal & Lateral Controllability matrix
 Full rank

$$C_{long} = \begin{bmatrix} B_{long} & A_{long}B_{long} & A_{long}^2B_{long} & A_{long}^3B_{long} \end{bmatrix}$$
$$C_{lat} = \begin{bmatrix} B_{lat} & A_{lat}B_{lat} & A_{lat}^2B_{lat} & A_{lat}^3B_{lat} \end{bmatrix}$$

36

 System is controllable:

 Elevons (deflection) allows for

 modification of poles (eigenvalues)

 for desired stability

 Design Solution

 Critical Project
 Requirements

 Project Risks
 Verification and

 Project Planning
CPE: Aerial Vehicle Design Key Requirements Recap

FR 1	The aircraft shall operate in remotely piloted and fully autonomous modes throughout all phases of flight.
DR 1.1	The control system shall provide required control surface deflections for aircraft longitudinal and lateral stability throughout all phases of flight.
DR 1.2	The control system shall provide required control surface deflections for aircraft longitudinal and lateral stability throughout all phases of flight.
FR 2	Takeoff and land from/to a stationary 9.1 m x 9.1 m platform obstructed fore (represents ship superstructure) and aft (represents ship crane).
DR 2.1	The aircraft shall have a nose hook that sustains 5 g landing forces.
DR 2.2	The aircraft wings shall sustain 5g landing forces.
FR 4	Aircraft supports downward-facing 2.0 kg simulated instrument payload with 15 cm x 15 cm x 23 cm dimensions.

Design Solution

Critical Project Elements Requirements Satisfaction Verification and

CPE: Aerial Vehicle Design Key Requirements Recap

FR 6	The aircraft shall have a 100 km ground track range.	\checkmark
DR 6.1	The aircraft shall have a lift-to-drag ratio of 12.	\checkmark
DR 6.2	Battery shall have a 1.4 hr endurance	\checkmark

Elements

CPE: Launch Design Key Requirements

FR 2	Takeoff and land from/to a stationary 9.1 m x 9.1 m platform obstructed fore (represents ship superstructure) and aft (represents ship crane).
DR 2.1	The launch system shall accelerate the UAV to 13.2 m/s by the end of ramp.
DR 2.2	The launch system shall launch the UAV under 5 g.

CPE: Launch Design Key Requirements

FR 2 Takeoff and land from/to a stationary 9.1 m x 9.1 m platform obstructed fore (represents ship superstructure) and aft (represents ship crane).

- Rail system length: 5.8 m
- Rail system width: 2.4 m

Total length < 9.1m

FR 2 Satisfied

Bungee anchor position forward of rail system: 1.0 m

Design Solution

Elements

CPE: Launch Design Key Requirements

- **DR 2.1** The launch system shall accelerate the UAV to 13.2 m/s by the end of ramp.
- **DR 2.2** The launch system shall launch the UAV under 5 g.

Concerns:

G-force on launch needs to be < 5 g UAV/Cradle speed ≥13.2 m/s by end of ramp (5.25 m)

Solution:

Acceleration spread out across a long ramp

Assumptions:

Newton's 1st law Mass of UAV/Cradle is 14.0 kg

Results:

UAV/Cradle speed of 13.2 m/s at 4 m < 5.25 m UAV/Cradle experiences 1.90 g $\,$

∴ DR2.1, DR 2.2 Satisfied

Requirements Satisfaction

CPE: Launch Design Key Requirements Recap

FR 2	Takeoff and land from/to a stationary 9.1 m x 9.1 m platform obstructed fore (represents ship superstructure) and aft (represents ship crane).	\checkmark
DR 2.1	The launch system shall accelerate the UAV to 13.2 m/s by the end of ramp.	\checkmark
DR 2.2	The launch system shall launch the UAV under 5 g.	\checkmark

Recovery System

Purpose/Objectives

Design Solution

Critical Project

Elements

Requirements Satisfaction

Project Risks

Verification and Validation

FR 2	Takeoff and land from/to a stationary 9.1 m x 9.1 m platform obstructed fore (represents ship superstructure) and aft (represents ship crane).			
DR 2.1	The recovery system shall exert forces on the aircraft under 5 g.			
DR 2.2	Capture system shall sustain 5 g aircraft recovery forces.			

Details:

- Initial recovery KE 572 J (9.1 kg, 12 m/s)
- 2 bungees hold 1/2 of PE each
- Spring constant 118 N/m at 2.2 m stretch
- Selected bungee has 260 N force at 100%

extension

2.2 m extension results in 4.8m recovery distance < 9.1m helipad

FR 2	Takeoff and land from/to a stationary 9.1 m x 9.1 m platform obstructed fore (represents ship superstructure) and aft (represents ship crane).
DR 2.1	The recovery system shall exert forces on the aircraft under 5 g.

Satisfaction

Recovery System Dimensions: • 7.6 m x 3.0 m < 9.1 m x 9.1 m

∴ FR 2 Satisfied

- Maximum Line Tension 130 N
- Maximum force on aircraft 395 N = 4.4 g < 5 g

Design Solution

Purpose/Objectives

DR 2.1 Satisfied

Critical Project

Elements

DR 2.2 Capture system shall sustain 5 g aircraft recovery forces.

- Primary Failure Mode: Bending at uppermost support
- 130 N in each net line, results in 555 N*m moment
- 9 cm outer, 7.6 cm inner diameter pipe
- Gives 17.5 MPa bending stress

17.5 MPa < 34 MPa PVC Tensile Strength

```
: DR 2.2 Satisfied
```


FR 2	Takeoff and land from/to a stationary 9.1 m x 9.1 m platform obstructed fore (represents ship superstructure) and aft (represents ship crane).	\checkmark
DR 2.1	The recovery system shall exert forces on the aircraft under 5 g.	\checkmark
DR 2.2	Capture system shall sustain 5 g aircraft recovery forces.	\checkmark

Purpose/Objectives

Design Solution

Critical Project Elements Requirements Satisfaction

Project Risks

Verification and Validation

CPE: Nav/Comm Design Key Requirements

FR 1	Operate in manually piloted mode throughout all phases of flight with autonomous mode capability at cruise altitude.			
DR 1.1	Aircraft shall transmit telemetry to ground station.			
DR 1.2	Ground control station shall provide virtual cockpit.			
DR 1.3	Aircraft shall fly autonomous missions based on waypoints and loiter points.			
DR 1.4	Mission shall be reprogrammable during flight.			

FR 3	12 km communication range for telemetry, images, and RC control from ground control station.		
DR 3.1	Telemetry radio shall have a range of 12 km at 90+ kbps.		
DR 3.2	Aircraft shall capture and transmit images to ground station at 1/60 Hz.		

Critical Project Elements Requirements Satisfaction

CPE: Nav/Comm Requirements

DR 1.1	Aircraft shall transmit telemetry to ground station.
DR 1.2	Ground control station shall provide virtual cockpit.
DR 3.2	Aircraft shall capture and transmit images to ground station at 1/60 Hz.

- Telemetry captured by:
 - Attitude @ 20 Hz Pixhawk 2.1 running PX 4 Pro 0
 - Position @ 5 Hz Here+ GPS Ο
 - System Status (including battery) @ 1 Hz Ο
- Telemetry sent over MAVLink connection to the ground station.
 - Requires 17.5 kbps (112.5 kbps of download available) 0
- Virtual cockpit provided by QGroundControl.
 - Digital six pack Ο
 - Moving map display Ο
 - Battery monitoring Ο
- Image transmission accomplished with mavimage

QGroundControl digital six pack

Verification and

Validation

Requirements Satisfaction

Project Risks

CPE: Nav/Comm Requirements

DR 1.3 Aircraft shall fly autonomous missions based on waypoints and loiter points.

DR 1.4 Mission shall be reprogrammable during flight.

- Pixhawk 2.1 autopilot running PX4 Pro
 - Flies autonomous missions based on a flight plan consisting of waypoints.
 - Reprogrammable during flight while in loiter mode.
- QGroundControl (GCS)
 - Flight plan creation and upload.
 - 330 waypoint uploads per second.
 - Given 12.5 kbps upload rate (the amount remaining assuming full rate download)

QGroundControl flight plan editor

Critical Project Elements Requirements Satisfaction

CPE: Nav/Comm Requirements

DR 3.1 Telemetry radio shall have a range of 12 km at 90+ kbps.

			2	e
		2	2	
-	2	2		
Υ.		1		
	L			

Datalink Link Budget Contributors	Gain/Loss	Associated Component
TX Power	30 dBm	RFD900+ specification
TX Antenna Gain	2.1 dBi	UAV ¼ wave monopole
Free Space Path Loss	-113.1 dB	900 Mhz @ 12 km
RX Antenna Gain	25 dBi	Yagi Ground Station Antenna
SNR	-30 dB	Rayleigh Fading Model for 99.9% time availability
RX Sensitivity (for 125 kbps)	90 dB	RFD900+ Specification
Link Budget	3.59 dB	DR 3.1 satisfied.

Verification and

CPE: Nav/Comm Design Key Requirements Recap

FR 1	Operate in manually piloted mode throughout all phases of flight with autonomous mode capabilic cruise altitude.	ty at
DR 1.1	Aircraft shall transmit telemetry to ground station.	\checkmark
DR 1.2	Ground control station shall provide virtual cockpit.	\checkmark
DR 1.3	Aircraft shall fly autonomous missions based on waypoints and loiter points.	\checkmark
DR 1.4	Mission shall be reprogrammable during flight.	\checkmark

FR 3	12 km communication range for telemetry, images, and RC control from ground control station.	\checkmark
DR 3.1	Telemetry radio shall have a range of 12 km at 90+ kbps.	\checkmark
DR 3.2	Aircraft shall capture and transmit images to ground station at 1/60 Hz.	\checkmark

Critical Project Elements Requirements Satisfaction

Risk	Pre mitigation likelihood/ impact	Mitigation Plan	Post mitigation likelihood/ impact	Project Risks
1) Software delay	3/3	Extra manpower	2/3	Legend
2) Comm system	5 / 5	Extensive testing,	2/2	= High Risk
flight		mode		= Mitigated Risk
3) Manufacturing time delay	3 / 4	Detailed plan, add manpower	2 / 4	1 = lowest
4) Crash during testing	4 / 4	Pilot preparation, shock absorbent airplane, half-scale	3/3	(desired)
5) Shipping delays	2 / 4	Order parts with long lead times before break	1 / 4	5 = highest likelihood/impact (undesired)
Purpose/Objectives	Design Solution	Critical Project Requirements Satisfaction	Project Risks	Verification and Project Planning 57

Risk	Pre mitigation likelihood/ impact	Mitigation	Post mitigation likelihood/ impact	Project Risks
6) Wing failure during sandbag test	2/3	Buy 2 sets of wings, Produce extra	2/2	Legend
7) Battery overheating	3 / 5	Test components and circuit	1 / 5	= High Risk
8) Injury during testing	2/5	Safety plan	1 / 5	= Mitigated Risk
9) Over-budget	4 / 4	Budget plan, half- scale testing	2 / 4	1 = lowest likelihood/impact
10) Insufficient battery duration during flight	3 / 4	Battery testing, autopilot safeguard	2/3	(desired) 5 = highest
11) Bad weather	3/2	Plan ahead, have multiple options	3 / 1	(undesired)
Purpose/Objectives	Design Solution	Critical Project Requirements Elements Satisfaction	Project Risks	Verification and Project Planning 58

Pre Mitigation Risk Matrix

Post Mitigation Risk Matrix

Verification and Validation

Purpose/Objectives

Elements

Satisfaction

DR 1.1- Half Scale Stability Test

Anticipated Date: On or before the week of January 15th

Motivation	Expected Result According to Models	Off-Ramp
Validate stability model	Use accelerometers to confirm predicted behavior	Iteration of model

Test set-up: Half scale UAV Accelerometer

DR 1.1 The control system shall provide required control surface deflections for aircraft longitudinal and lateral stability throughout all phases of flight.

Purpose/Objectives

Requirements Satisfaction

DR 1.1- Half Scale Stability Test Expected Location: South Campus

Equipment	Availability	Capabilities	Requirements	Satisfied?
Half scale model	Acquired through funds	Provide reliable test data for validation	Validate stability model	Stability model verified
Accelerometer	COTS	Range: 0-14.2g Resolution: 16 bit	Continuously track the UAV's roll pitch and yaw	COTS accelerometer capable with resolution

Key Measurements Issues: Accelerometer resolution

Verification and

DR 2.1 - Launch Speed Test Anticipated Date: After TRR

Motivation	Expected Result According to Models	Off-Ramp
Validate Speed Model	Dolly speed is 13.2 m/s	Add or remove bungees, vary pull back distance on ramp.

DR 2.1 - Launch Speed Test Expected Location: Open Field

Equipment	Availability	Capabilities	Requirements	Satisfied?
Camera	ITLL	60 fps camera Launch time: 0.766 s	> 20 frames for track time	45 frames in launch time
Tripod/Stand	ITLL	Any height is achievable	0.25 m height	Any Height
Logger Pro Software	ITLL	Frame by frame tracking of dolly to find position and speed	Calculate the speed of the dolly	Access to software

Key Measurements Issues: Error in height of camera leading to issues in software

Critical Project Elements

DR 2.1 - Recovery System Force Test Anticipated Date: After TRR

DR 2.1 The recovery system shall exert forces on the aircraft under 5 g.

Critical Project Elements Requirements Satisfaction Capture System

DR 2.1 - Recovery System Force Test Expected Location: Open Field

Equipment	Availability	Capabilities	Requirements	Satisfied?
Accelerometer	COTS	Range: 0-14.2 g Resolution: 16 bit	5 g	Available
High Speed Camera	ITLL	120 fps	Record dummy mass to find net extension	Available
Dummy Mass	ITLL	N/A	8.45 kg	Available

Key Measurements Issues: Consistent throw speeds, error in measurements from accelerometer.

Requirements Satisfaction

DR 3.1 - Datalink Range Test Anticipated Date: February 1, 2018

Motivation	Expected Result According to Models	Off-Ramp	RFD900+	900 MHz 1/4 vave monopole
Verify 12 km communication range	Successful image transfer Uplink rate of 8 kbps Datalink rate of 88 kbps.	Implementation of ground station tracking system	FTDI Cable 8 kbps Battery Powered USB Hub 88 kbps	FTDI Cable Battery Powered USB Hub
Test set-up:			Laptop	Laptop

Ground station setup will be 12 km away from transmitter

DR 3.1 Telemetry radio shall have a range of 12 km at 90+ kbps.

Critical Project Elements Requirements Satisfaction

DR 3.1 - Datalink Range Test

Expected Location: Flatiron summit to Boulder/Lafayette City limit at Baseline Rd

Equipment	Availability	Capabilities	Requirements	Satisfied?
2 FTDI Cables	Acquired through funds	Communicate between radio and laptop	5V capacity	Can be purchased with budget
2 Battery Powered USB Hubs	Acquired through funds	Provide extra power to radio	At least 88 kbps transfer rate	Can be purchased with budget

Key Measurements Issues: Ground station pointing angle of antenna.

DR 6.2 - Battery Endurance Test

Verify the battery can reach the mission time requirement Anticipated Date: Before TRR

Ground test of battery connected to load and voltmeter

DR 6.2 - Battery Endurance Test Expected Location: ITLL

Equipment	Availability	Capabilities	Requirements	Satisfied?
Motor, Autopilot, Flight Computer	Acquired through funds	Simulate mission load on battery	Components chosen for project	Components to be ordered
Compact DAQ	ITLL	Verify the battery voltage over time and measure the cutoff voltage	84 min measurement time	Can measure values over time

Key Measurements Issues: Error in DAQ measurements.

Critical Project Elements

Verification & Validation Summary

Models Validated	Requirements verified
Stability model	Aircraft stability during flight
Launch system speed model	Capability of launch system to deliver necessary energy to UAV
Recovery system force model	Capability of landing system to capture UAV with forces in under 5g
Battery depletion model	Battery shall have 1.4 hour endurance between climb and cruise
Link Budget	Capability of ground system to communicate with UAV at range

Critical Project Elements

Requirements Project Risks Satisfaction

Organizational Chart

SHAMU

Work Breakdown Structure

Test Plan

Work Plan (Gantt Chart)

Work Plan (Gantt Chart Continued)

Budget Estimations

Airframe w/ motor:	\$1230
Communications:	\$530
Electronics:	\$800
Launch system:	\$295
Recovery system:	\$510
Software	\$320

Total: \$3,685 < \$5,000

Leaves the SHAMU team with a 26% margin

Verification and

Acknowledgements

Thank you to Dr. Gerren, Dr. Koster, Dr. Lawrence, Trudy Schwartz, Bobby Hodgkinson, Matt Rhode, PAB, Tim Kiley, Lee Huynh, James Nestor, and David Gruber.

References

- Cooper-Harper scale: <u>https://skybrary.aero/bookshelf/books/1962.pdf</u> (retrieved 12/3/17)
- Pixhawk 2.1 Assembly Guide: <u>http://www.hex.aero/wp-content/uploads/2016/09/PIXHAWK2-Assembly-Guide.pdf</u> (retrieved 12/3/17)
- Pixhawk 2.1 Feature Overview: <u>http://www.proficnc.com/index.php?controller=attachment&id_attachment=5</u> (retrieved 12/3/17)
- PX4 Pro: <u>http://px4.io/</u> (retrieved 12/3/17)
- QGroundControl: <u>http://qgroundcontrol.com/</u> (retrieved 12/3/17)
- Model Aircraft Propellers:

Purpose/Objectives

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&cad=rja&uact=8&ved=0ahUKEwjO8MLoh-_XAhVD6oMKHduWDCsQFghrMAU&url=http%3A%2F%2Fdc-

<u>rc.org%2Fpdf%2FModel%2520Propellers%2520Article.pdf&usg=AOvVaw1CxfDyyhN4K5DIHAanXPPt</u> (retrieved 12/3/17)

- OrangeRx Open LRS Transmitter: <u>https://hobbyking.com/en_us/orangerx-open-lrs-433mhz-transmitter-1w-jr-turnigy-compatible.html</u> (retrieved 12/3/17)
- OrangeRx Open LRS Receiver: <u>https://hobbyking.com/en_us/orangerx-open-Irs-433mhz-9ch-receiver.html</u> (retrieved 12/13/17)
- UIAA climbing rope: <u>http://www.theuiaa.org/safety-standards/</u>
- Solidworks: <u>http://www.solidworks.com/</u>
- PVC porperties: https://www.engineeringtoolbox.com/physical-properties-thermoplastics-d_808.html
- PVC pressure ratings: <u>https://www.engineeringtoolbox.com/pvc-cpvc-pipes-pressures-d_796.html</u>

Verification and

Backup Slides Directory

Airframe & Powerplant: Propeller Winglet Magnets Modularity Half Scale Model X-Plane Model Climb Rate **Cooper-Harper** Servo Selection C.G. Range Longitudinal Stability C.G. Range Lateral Stability **Uncontrolled Eigenvalues** Launch System: Launch Flow Chart Forces and Displacements (Dolly) **Restraining Rope** Anchors (Bungee and Rope)

PVC Cement

Dolly pictures

Beam Bending

Modularity and dimensions

Capture System:

Modularity and Dimensions Pullev/Cleat System CAD **Connection Details** Tipping and Sliding

Electronics:

Electronics Lavout Climb Power Cruise Power **Component Current Draw Electronics Diagram** From Electronics Diagram Motor Requirement

Nav/Comm:

Software Overview mavimage Overview mavimage UML Class Diagram

mavimage UML Class Diagram mavtables Overview mavtables UML Class Diagram

(overview)

(overview)

mavtables UML Class Diagram maylogger overview mavlogger UML Class Diagram **Image Resolution** Image Transfer Rate **Datalink Budget** Slide 132: CPE: Nav/Comm Requirements

Verification and

Validation

Testing: **Testing Backup**

Critical Project Elements

Requirements Satisfaction

Airframe & Powerplant Backup

Purpose/Objectives

Design Solution

Critical Project Elements Requirements Satisfaction

Project Risks

Verification and Validation

Project Planning

0/

Propeller backup slide

Propeller configuration

- 16 x 10 inch 2-blade propeller
- Carbon fiber
- Folding design
- Up to 6.4 kg thrust
- Pitch speed: 31 m/s (cruise speed: 20 m/s)

Magnet backup slide

- Neodymium N52 magnets with 25.1 N pull force
- Two magnet sets per wing to prevent rotation: 2*25.1 = 50.2 N pull force per winglet
- Simulation at 30.5 m/s (never exceed speed) and beta angle of 10 degrees produced side force of 17.4 N lbs per winglet
- Winglets will not depart during worst case scenario flight loads (50.2 N > 17.4 N) safety factor = 2.9
- Winglet will depart under non-nominal landing load (> 50.2 N)

Requirements

Satisfaction

50% Scale Model:

- Useful for static stability and handling characteristics
 - Statically stable ($C_{M\alpha} < 0$) except at stall
 - Poor stall behavior
- 3° wing twist requirement developed for design as a result

Launching the half-scale model.

X-Plane 10 Model:

- Useful for modeling stability and handling characteristics from a pilot's perspective
 - Max roll rate: 70°/s
 - Max pitch rate: 45°/s
 - Statically stable ($C_{M\alpha} < 0$) in all flight conditions with 3° wing twist
 - Dynamically stable
- Will be used for hardware in the loop simulations with autopilot.

X-Plane Rendering of SHAMU UAV

Requirements Satisfaction

DR 7.1 Aircraft and associated systems shall break down to fit in a 168 x 122 x 46 cm container for transportation.

Design Decisions for modularity

- Winglet magnets detach
- Remove 2 nuts to detach wings
- 4 bolts removed to detach payload bay

Packs into a 152 cm x 97 cm x 31 cm volume.

Servo selection:

- AVL used to calculate worst-case control surface hinge moment
 - $V_{ne} = 1.5^* V_{cruise}$ 0
 - Max elevon deflection \cap
- Hinge moment = 14 kg*cm
- HK15298B servo
 - Stall torque: 18.0 kg*cm @ 6.0V Ο
 - Stall torque: 20.0 kg*cm @ 7.4V 0
 - Dimension: 18.0 x 121.0 x 80.0 \cap mm
 - Mass: 0.09 kg Ο

https://hobbyking.com/en_us/hobbykingtm-coreless-digitalhv-mg-bb-servo-20kg-0-16sec-66g.html

Critical Project

Elements

Requirements Satisfaction

Cooper-Harper Scale 3: "Satisfactory without improvement. Fair; some mildly unpleasant deficiencies - minimum pilot compensation required for desired performance."

Quantitatively:

- Maximum pitch and roll rates: 30 360°/s at minimum controllable airspeed.
- $C_{M\alpha} < 0$ through flight regime (angles of attack from zero to stall) \rightarrow **statically stable**.
- Real component of phugoid/short period/dutch roll/rolling modes must be less than zero → dynamically stable.

- Flying wing configuration
- Elevon control (pitch and roll)
- Outer 50% span, 25% chord elevons.
- Elevon maximum deflections: +/- 30°
- Trim conditions for steady-level flight:
 - Elevon: -10 deg deflection (AVL)
- Mass: 8.45 kg
- Aerodynamic center: 71.75 cm
 - Including wing and fuselage effects
- Center of gravity w/2 kg payload: 64.93 cm
- Static Margin: 22.4% (6.82 cm)

Aircraft side view

AVL Model Eigenvalues:

- **λ**_i < 0 ∀ i
 - Stable in the sense of Lyapunov
 - System is BIBS & BIBO stable

Aircraft Stability- AVL/Matlab

Aircraft Stability- AVL/Matlab

- Lateral eigenvalue locus plot
 - Range of C.G. : Ο approx. 62.9 +/- 15 cm

Roll mode - very stable

Dutch roll; Spiral modes - slightly stable for C.G. range of 50.7 cm - 76.3 cm

∴ Feasible

Launch System Backup

Purpose/Objectives

Launch Flow Chart

Purpose/Objectives

Maximum Allowable Loading

- Factor of Safety = 2
- Maximum allowable force = 1700N
- 4 bungees used produce 2.6 in² of contact on front dolly bar
- Actual force on dolly bar from bungees = 343.33 N
- PVC tensile strength = 40.7 MPa
- PVC type Schedule 40

von Mises (N/m^2) 2.011e+007 1.845e+0071.678e+007 1.511e+0071.345e+0071.178e+007 1.011e+0078.448e+006 6.781e+006

- 5.114e+006
- 3.448e+006
- 1.7<mark>81</mark>e+006

1.141e+005

Critical Project Elements

Requirements Satisfaction

Verification and

PVC Displacement

Max displacement = 1.5 mm

Force on Dolly From Restraining Rope

Dolly mass: 5.91 kg Vf = 13.2 m/sMax allowable force on dolly: 1700N

Stopping impulse force, $F_{avg} = m^* a_{avg}^* (\Delta V / \Delta t)$

• At max force $\Lambda t = 0.046s$

Stopping distance, $x = V_0^*t + 0.5^*(-a)^*t^2$

• At max force x = 0.310m

Force safety increase stopping distance to 0.5m

- Time to stop, t = 0.076s
- Force on dolly, F = 1026.5 N

Restraining Rope

Material used: low stretch polyester rope

- Rated for 6% to 10% dynamic elongation
- 1556 N load capable
- FoS = 1.5

Recall stopping distance = 0.5 m

• Length of rope required for this stopping distance = 8.3 m to 5 m

Bungee and Restraining Rope Ground Anchors

Forces

- Bungee: 343.3 N
- Restraining rope: 1026.5 N

Anchors

- Bungee
 - 20 cm anchor \cap
 - Holds 556 N \cap
- Restraining rope
 - 41 cm anchor 0
 - Holds 1890 N \cap

PVC Cement and Its Strength

Known: Same PVC cement is used for Schedule 40 and Schedule 80.

Assumption based off capped pipes. Since the area is the same for a 1 in diameter pipe for Sch 40 and Sch 80, the operating pressure of sch 80 pipe is used. Know that PVC cement should hold operating pressures of pipes.

Area of cap: 5.42 cm² Operating pressure Sch 80: 2.61 MPa Bursting pressure Sch 80: 13.93 MPa Operating force of Sch 80, Area * pressure = 1412.5 N Force that will burst Sch 80, F = 7548.4 N

Max force dolly experiences = 1026.5 N < 1412.5 N < 7548.4 N

Verification and

Pictures of Dolly

Purpose/Objectives

Design Solution

Critical Project Elements

Requirements Satisfaction Project Risks

Verification and Validation

Project Planning

Pictures of Dolly

Dolly Dimensions

Purpose/Objectives

CPE: Launch Design Key Requirements

Launch and associated systems shall break down to fit in a 168 x 122 x 46 cm container for transportation. DR 7.1

Primary Concern: Ramp rails are 5.8 meters (580 cm)

Solution:

Rail segments (<168cm) connected by a threaded, aluminum rod inside the pipe

Result:

4 rail segments at 1.47 meters each 3 threaded internal pipe connectors

Rail Segments 147 cm < 168 cm

Validation

Finding the Spring Constant required for TO

Assumptions:

5 Hi-start Bungees Max weight: 5 kg Max elongation: 3 times original length K found by hanging mass off ceiling (Mg = Kx)

Applied to **Conservation of Energy** for different bungee lengths,

Intersecting point will give K value for needed TO speed

Results:

Total Mass: 13.9657 kg Force: 343.3333 N (5 Bungees) Spring Constant: 86.0011 N/m Initial Bungee length: 1.9961 m Bungee-stretch: 3.9922 m

Critical Project Elements
Effective Bungee Force

Assumptions:

Bungee Force will decrease as dolly moves Bungees tied to ground in front of ramp

Accounted for change in bungee force and the change in direction.

Results:

Look at plots Force the Dolly feels fades to zero Gives effect of consistent pull by bungee

Purpose/Objectives

Elements

Requirements Satisfaction

Speed model

Assumptions:

Total Mass: 13.9657 kg Force: 343.3333 N (5 Bungees) Spring Constant: 86.0011 N/m Initial Bungee length: 1.9961 m Bungee-stretch: 3.9922 m Effective Bungee Force Data

Applied Newton's first law and integrated to get equations of motion

Results:

Aircraft gets to speed 0.0405 after end of ramp, this is adjusted for, shown in plot New ramp length: 5.2480 m Time: 0.6851 s Velocity at exit: 13.208 m/s

Verification and

Critical Project Elements

Beam Bending

Assume:

- Two fixed supports
- Each point on ramp has load F shown by the blue line
- Load F is the effective Bungee Force plus the weight of UAV
- Material Properties of PVC schedule 40
- 5.25 m long 2" PVC pipe

Beam Bending (Continued)

Results:

Max Deflection of Beam: 3,857901 mm At a Distance of: 2,4564 meters Model stops when UAV is at speed~4 meters, the rest of the rail is there for stopping distance

Verification and

Validation

Max Bending Stress =153.0242 KPa

 σ bend.max = 99.63 MPa Safety Factor = 651.1

Elements

Reaction Forces

Assumptions:

- Two fixed supports
- Sum of the moments
- Effective Bungee Force data

Results:

First Support: Max compressive force of: 90.3230 N Second Support: Max compressive force of: 52.1098 N Compressive Stress: 155.3157 KPa Max Compressive Force (PVC 40): 66.2 MPa Safety Factor: 426.2

Requirements Satisfaction

Recovery System Backup

Purpose/Objectives

Critical Project Elements Requirements Satisfaction

Project Risks

lisks >

CPE: Recovery System Requirements

FR 7	Aircraft and associated systems shall be modular to support future modifications, repairs, and to fit in a truck bed for transportation.
DR 7.1	Each capture system component fits within 168 x 122 x 46 cm container.

- Recovery System Structure made from 9cm outer diameter PVC pipe .
- Max section length 168 cm
- Total sections required 34
- Smaller sections can be stored end-to-end
- 39+ sections will fit 22 lengthwise rows
- Stored 13 across, 2 up

fits 165x117x18 cm space < 168 x 122 x 46 cm space

∴ FR 7, DR 7.1 Satisfied

Critical Project Elements

Pulley/Cleat System CAD

Bungee Attachment, Cleat, And Double Pulley View

Swivel Pulley and Net attachment View

Purpose/Objectives

Critical Project Elements Requirements Satisfaction

Connection Details

- Bungee/Pulleys are connected and rope is guided through ¹/₄" eyebolts, 2200lb working load
- Connections between eyebolts/pulleys and between lines are made with ¼" quick links
- Rope and Bungee both have 3/16" diameter
- Rope has 400 N working load
- Cam Cleat has 850 N working load, accepts up to 1/4" rope
- All pulleys and quick links have at least 1870 N working load

Cam Cleat

Purpose/Objectives

Quick Link

Eyebolt

Verification and

Tipping and Sliding Calculation

- CG location of net structure is 2.6 meters in front of and 0.61 meters above pivot
- If CG is tipped above pivot, CG will be raised to 2.3 meters
- Structure mass 69 kg
- 1135.5 J required to fully tip structure, > 572 J Capture force
- Tipping risk further mitigated with sandbags on foreward supports

- 69 kg structure has 676 N normal force
- Expected coefficient of friction at least 1 (Helipad nonskid)
- $F_k = 676 \text{ N} > Maximum capture force of 395 N, Will not slide$

Electronics Backup

Purpose/Objectives

Aerial Vehicle Design Requirement

DR 2.3 The aircraft shall have a climb rate of 5 m/s

5 m/s climb rate requires a motor with:

- 812 W Power
- 30.3 N Thrust

Selected Electric Motor Model: PROPDRIVE v2 5060 380KV Specifications KV: 380 KV Continuous Power: 1500 W

$$T = C_t \rho n^2 D^4 \checkmark$$

Electronics Layout


```
Given: Velocity = 20 m/s, Climb Rate = 5 m/s
Weight = 111.12 N, L/D = 12, t = 0.05
hr
Need: Power [W] = Thrust [N] * Velocity [m/s]
Thrust
```

Climb Angle Equation: sin(y) = (Thrust - Drag)/ (Weight)

Aim for climb rate of 5 m/s and maintain speed at 20 m/s

From a): $\gamma = \sin^{-1}(5 / 20) = 14.5^{\circ}$

Solve Climb Angle Equation for Thrust Thrust = Weight*sin(γ) + D = 30.43N Power = 30.43 N * 20 m/s = 608.62 W Assuming 0.75 efficiency Power = 792 W

Energy Required = 792 * 0.05 = 39.6 Whr Project Risks Validation Project P

Power in Flight: Power [W] = Thrust [N] * Velocity [m/s]

Given L/D = 12 Assuming Steady Level Flight Lift = Weight = 89 N ⇒Thrust = 7.4 N

Using Computed Thrust and Velocity Power = 7.4 * 20 m/s = 1748 W

Assuming propulsion efficiency of 0.75 Power = 198 W

100 km range with 20 m/s speed ⇒time = 1.4 hrs Energy Required = Power [W] * time

[hr]

Project Risks

= 198 * 1.4 = 277 Wh

Verification and

FR 6- Component Current Draw Tests

Verify advertised current draw in each component (Radio, GPS, Pixhawk, Servo etc.)

Motivation	Exp	Expected Result		lamp	
Confirm Component Current Draw	Actual o s' current 10% err current	component draw is within or of advertised draw	Reduce required of missi	e d range sion.	
Equipment	Location	Requireme	nts		Satisfied?
Power Supply	ITLL	Able to Supply 5V to component		Access	to Power Supp
Ammeter ITLL		Able to measure 65A of current	e up to	Access	s to Ammeter

Electronics Diagram

From Electronic Layout

Needed Wire Gauge:

- Copper Size 4 between battery, sensor board, ESC, and motor.
- Copper Size 18 for everything else

Heat Generation:

- 6S Batteries typically have internal resistance of 6 milliohms. (Will verify during battery endurance test). At 15A → 1.35 W of heat generation.
- ESC internal resistance .0022 Ohms. At 15A \rightarrow .495 W of heat generation.
- Motor is assumed to have 75% efficiency → 25% of energy supplied is heat. Supplied power is 22.2V at 15A is 333W → 83.25 W of heat generation.
- Total BOTE heat generation: 85W

$Q = IV = I^2 R$

Q: heat generation I: Current V: Voltage R: Resistance

Critical Project Elements

Nav/Comm Backup

CPE: Nav/Comm Requirements

DR 3.2 Aircraft shall capture and transmit images to ground station at 1/60 Hz.

- Image capture and transmission accomplished with mavimage.
 - Written in Python (to lower development time).
 - UML class diagram complete.
 - 22 classes in design.
- Ground station receiving of images and saving to disk also accomplished with mavimage.
- Images sent over telemetry link. mavtables used to mix image and telemetry packets.
 - Written in C++17 (to increase runtime speed).
 - UML class diagram complete.
 - 32 classes in design.
- Requires 70.0 kbps (95.0 kbps of download available)

UML diagrams in ackup slides and can be provided at full resolution upon request.

Accept
+ will_accept(packet:Packet&,
address:MAVAddress&): bool {redefines} + to string(): string {redefines}
to stranger and there west

From UML class diagrams.

Software Overview

Satisfaction

Purpose/Objectives De

Design Solution

Elements

Project Risk

mavimage Overview

Requirements

Satisfaction

Purpose/Objectives

Critical Project Elements

Project Risks

Verification and

Validation

Project Planning

mavimage UML Class Diagram

CPE: Nav/Comm Requirements

DR 3.2 Aircraft shall capture and transmit images to ground station at 1/60 Hz.

- Image capture and transmission accomplished with mavimage.
 - Written in Python (to lower development time).
 - UML class diagram complete.
 - 22 classes in design.
- Ground station receiving of images and saving to disk also accomplished with mavimage.
- Images sent over telemetry link. mavtables used to mix image and telemetry packets.
 - Written in C++17 (to increase runtime speed).
 - UML class diagram complete.
 - 32 classes in design.
- Requires 70.0 kbps (95.0 kbps of download available)

UML diagrams in backup slides and can be provided at full resolution upon request.

Accept						
+ will_accept(packet:Packet&,						
address:MAVAddress&): bool {redefines} + to_string(): string {redefines}						

From UML class diagrams.

Verification and

Mavtables Overview

Purpose/Objectives

Elements

mavlogger Overview

mavlogger UML Class Diagram

<<Global>>

send_heartbeat(mavlink:MAVLinkConnection)
parse_args(): App

Image Resolution

- 1920x1080 (2MP) downsampled
- 62^o FOV (field of view)
- 0.6m x 0.6m pixel size
- Adult sperm whale: ~16m x 3m
- 1920x1080 is sufficient to see a whale sized object.

Modified from:

Verification and

Validation

http://a.abcnews.com/images/US/ap_ca_wha les_3_141007_4x3_992.jpg

Critical Project Elements Requirements Satisfaction

Image Transfer Rate

• 1920x1080 resolution.

- Compress images using WebP.
- 2 x the compression of JPEG.
- <70 kbps at 1/60 Hz frame rate.

Required Transmission Rate Statistics

895 (1920x1080) frames from <u>https://youtu.be/0J3ctN-u2h4</u> used for compression analysis.

Datalink Budget

Group	Up (kbps)	Down (kbps)
Virtual Cockpit (telemetry)	0	10.5
Status Information	0	6.9
Image Transfer	0	70.0
Waypoints/Mission Editing	infrequent	0
Needed	N/A	87.2
Available	12.5	112.5
Remaining	N/A	25.3

Can upload ~330 mission items (waypoints) per second with 12.5 kbps.

Requirements Satisfaction Verification and

Testing Backup

Aircraft Tests

Test	Test set- up	Facilities/ equipment	Off ramps	So What?	Safety	Date
Wing Loading test	Wing Spar experiences loading similar to flight/ Whiffle tree configuration	ITLL/ Weights	Rethink wing materials	Validate the wing loading model during flight, wings won't snap off	Unpredictable behavior of wing snap	Pre TRR
Half scale flight test	Launch half scale	Open space, camera	Adjust model	Validate stability models and L/D	Crashing	Week of 1/15/18
Magnet Pull Test	Apply different load to winglets	ITLL, Force gauge	Rethink solution	Validate the wing tips will stay secure during flight but may fall off in recovery	Strong magnets	Pre TRR

Verification and

Launch Tests

Test	Test set- up	Facilities/ equipment	Off ramps	So What?	Safety	Date
Bungee/Rope Test	Tensile machine	Tensile machine/ ITLL	Can add more or less bungees	The Bungee will provide enough force for the aircraft to get into the air and fly without LOV	Talk to Dan about testing specimens such as this	Week of 1/15/18
Dolly speed test	Set dummy weight and launch	Open space, camera,tripod	Can add more or less bungees	Prove the speed is sufficient after all launch components are integrated	Dummy weight launched	Post TRR
Dolly rope test	Drop weight from height to simulate jerking force	ITLL, weights, camera	Stronger material for Dolly	Validates the dolly force model	Dropping weights can be unpredictable	Week of 1/15/18
Rails bending test	Apply expected loads to rails	ITLL, potentiometers, camera (First iteration)	Stronger material for Dolly	Validate deflection model	Rail can snap, but highly unlikely	Week of 1/15/18

Recovery Tests

Test	Test set- up	Facilities/ equipment	Off ramps	So What?	Safety	Date
Hook Test	Hook thrown into net with dummy payload	ITLL	Rethink hook design	Critical for hook to grab on to the net	Sharp hook	Week of 1/15/18
PVC Tensile Test	Tensile machine	Tensile machine/ ITLL	Rethink material	The PVC will provide enough structure for recovery	Talk to Dan about testing specimens such as this	Week of 1/15/18
Bungee Test	Bungee tied to fish scale	ITLL, weights, camera	Can add more or less bungees	Validates the elastic bungee model for recovery	High bungee tension can snap	Week of 1/15/18
Net Test (First iteration)	Set up net system	ITLL, accelerometers, camera (First iteration), Dummy weight	Stronger net, New configuration	Validate recovery g force model	Net can throw back dummy weight	Post TRR

Purpose/Objectives	Design Solutions	Critical Project Elements	Requirements Satisfaction	Project Risks	Verification and Validation	Project Planning
		Elemento			- Fanadation	

145

Communication Tests

Test	Test set-up	Facilities/ equipment	Off ramps	So What?	Safety	Date
Data-Link Range Test	radios 12 km apart, ground station config involving rfd900+, Yagi, and PC. UAV config involving rfd900+ and power supply. Radios configured to day-in-the-life settings	Laptop, 2 rfd900+ 900 Mhz 10 element yagi antenna 2 900Mhz 1/4 wave monopole antennas 5V power supply FTDI cable	If the required data rates fail to function at 12 km, the range of the mission shall be decreased to achievable levels	By successfully transferring an image at the required data rates qualifies the comm system for being able to operate successfully abiding by mission requirements.	Travel locations could be hazardous	Week of 2/1/18

Verification and

Electronics Tests

Test	Test set- up	Facilities/ equipment	Off ramps	So What?	Safety	Date
Component Testing	Circuit board laid out	Multimeter Banana clips Oscilloscope Power supply	Power budget can adjust	Must confirm power budget, range of aircraft could be reduced	Can fry a component, blow up	Post TRR
Motor Test	Motor hooked up to power source	Oscilloscope Multimeter Power supply	Change motor, decrease range	Need to validate the thrust output	Can blow up	Pre TRR
Battery Endurance Test	Battery hooked up to resistor load and voltmeter	Oscilloscope Multimeter Power Supply Resistors	Decrease range	Need to validate battery endurance	Can blow up	Pre TRR

Verification and

Software Tests

Test	Test set-up	Facilities/ equipment	Off ramps	So What?	Safety	Date
Autopilot HIL Test	Connect Pixhawk to computer with FTDI cable. Connect Pixhawk with XPlane. Connect QGroundControl to Pixhawk.	Pixhawk 2.1, USB cable, XPlane, QGroundControl	Adjust software	Validate the autopilot can control the aircraft	Eye strain	Post TRR
Full Software Integration Test	Requires all electronics and communications to be fully integrated and setup.	All electronics and a laptop	Remove image capture	Software works as expected	Eye strain	Post TRR
mavtables/image Unit Tests	Built in unit testing of classes	N/A	Fix it	Testing every interface of every class	Eye strain	On going

Verification and

OLD SLIDES

149

Baseline Design Selection

Aircraft	Takeoff	Landing	Autopilot	Flight Computer	RF Comm.	Power / Electronics
Design and Validate Airframe	Bungee Launch with Rail	Net with Extending Posts	PX4 Pro with Pixhawk 2.1	Raspberry Pi 3 Model B	RFD900+ Datalink OpenLRS RC	Batteries (Electric)

Verification and

Landing System

- **Net** suspended between two poles
- **Pulley connections**
- Extension of net reduces forces upon landing and closes the net to capture aircraft
- Hook on nose of aircraft will catch the net to prevent impact with ground

Requirements Satisfaction

Landing System - Continued

- Tension is required in net to slow the aircraft to a stop
- Tension is provided to lines by **friction** from a weight being dragged along the deck
- Weight will be **guided by rails** placed behind the net
- Weight will be **provided by seawater** to provide easier transportation

Nav/Comm Requirements

- NCR.1: Autonomous mission (follow waypoints).
- NCR.2: Stream captured (1920x1080) images to the ground station at a rate of at least 1/60 Hz.
- NCR.3: Virtual cockpit (for beyond line of sight operations).

54

Antennas - Ground Station

- 900 Mhz 15 element Yagi directional antenna (datalink)
 - Long range
 - o 25 dbi gain
 - 30 degree horizontal beamwidth
 - Manually pointed
- 900 Mhz Omnidirectional Antenna (datalink)
 - Short Range
 - Vertical linear polarization
- 433 Mhz ¼ wave monopole (RC)
 Plug and play with Open LRS

Omnidirectional

Requirements

Satisfaction

Antennas - UAV

- 900 Mhz ¹/₄ wave monopole (x2)
 - Vertical and horizontal linear polarization
 - RP-SMA connectors
 - \circ 2.1 dBi gain
- 433 Mhz ¼ wave monopole
 Plug and play with OpenLRS

Verification and

GNC comm

- How is each element communicating?
- ** Data rates

Aircraft Sizing Known: battery mass (2.65 kg), payload weight (2.27 kg), mass fraction of structure, motor, small electronics

Subsystem	Mass Fraction	Mass (kg)
Structure	.35	
Electric Motor	.05	
Autopilot, Flight Computer, RC electronics, Communication System	.05	
Batteries		2.65 kg
Payload		2.00 kg

Remaining Mass Fraction: 0.55 Current Mass: 4.65 kg

Elements

Verification and

Aircraft Sizing

Requirement: The aircraft shall have a maximum takeoff weight at or under 22.7 kg.

Subsystem	Mass Fraction	Mass (kg)
Structure	0.35	2.96 kg
Electric Motor	0.05	0.42 kg
Autopilot, Flight Computer, RC electronics, Communication System	0.05	0.42 kg
Batteries	0.31	2.65 kg
Payload	0.24	2.00 kg

$$mass = \frac{4.65kg}{.55} = 8.45kg$$

The aircraft mass 8.45 kg < 22.7 kg maximum \therefore Feasible

Critical Project Elements

Verification and

Center of Gravity & Fuselage Layout Requirement: Aircraft supports downward-facing 2.0 kg simulated instrument payload with 15 cm x 15 cm x 23 cm dimensions.

Center of Gravity & Fuselage Layout

Top Down Neutral Point: 72.8 cm from nose (25% Mean aerodynamic chord) Need CG in front of neutral point 22.9 cm **RC** Receiver Components can be moved into tailcone, Radio Modem giving a CG range of 9 cm (61.6 cm -**Flight Computer** 70.6 cm) 2x 900 MHz 433 MHz Autopilot Antenna Antenna $CG = \frac{\Sigma(weight_{component} * distance_{fromnose})}{weight_{total}}$ Electronic Speed Controller 15.2 cm 61 **Critical Project** Requirements Verification and Purpose/Objectives **Design Solution Project Planning Project Risks**

Satisfaction

Validation

Elements

Center of Gravity & Fuselage Layout

Wing Area and Aspect Ratio

- Wing area S = 0.93 m²
 - \circ W = 84.9 N (Total aircraft mass = 8.45 kg)
 - \circ Stall speed V_s = 11.0 m/s
 - $\circ \quad (C_L)_{max}\cong 1.2$
 - Reynolds number
- Aspect ratio based on span limit of $3 \text{ m} \rightarrow \text{AR} = 10.0$

Wing area and coefficient of lift satisfy stall requirement of 11 m/s

$$L = \frac{1}{2}\rho V^2 C_L S$$
$$S = \frac{W}{\frac{1}{2}\rho V_S^2 C_{Lmax}}$$
$$AR = \frac{b^2}{S}$$

Verification and

Wing Sweep

- Helps satisfy stability and controllability requirements
- Similar aircraft with similar flight missions

Requirement: The aircraft shall have an L/D of at least 12.

- Historical data (RECUV aircraft and AAA)
- OpenVSP model: L/D_{cruise} = 16.2 (Hoerner estimation)
- C₁ at cruise speed: • $C_L = \frac{W}{0.5\rho V^2 S} = 0.38$
- L/D at cruise:

$$L/D = \frac{C_L}{C_{D0} + \frac{C_L^2}{\pi eAR}} = 16.2$$

∴ Feasible

Critical Project Elements

Project Risks

Verification and **Project Planning**

Validation

66

Modular Design

Requirement: The aircraft shall be designed to disassemble into a 46 cm x 122 cm x 168 cm shipping container.

Design will be transported in 5 pieces: Fuselage, 2 separate wings, 2 separate winglets.

Part	Dimensions
Fuselage	15 cm x 15 cm x 92 cm
Half-Wing	5 cm x 41 cm x 152 cm
Winglet	0.5 cm x 29 cm x 38 cm

Fit together, dimensions are 25.5 cm x 41 cm x 152 cm (less than 46 cm x 122 cm x 168 cm) ∴ Feasible

Durnoca	Objectives	
i uipose/	Objectives	

Aircraft Stability (half scale)- AVL/Matlab

- Longitudinal eigenvalue locus plot (half scale model)
 - Range of C.G. : Ο approx. 31.5 +/- 7 cm

Short period mode - very stable

Phugoid mode - slightly stable for C.G. range of 25.3 cm - 38.2 cm.

: Half-scale has similar longitudinal stability as full scale, Feasible

Aircraft Stability (half scale)- AVL/Matlab

- Lateral eigenvalue locus \bullet plot (half scale model)
 - Range of C.G. : approx. 31.5 +/- 7 cm

Roll mode - very stable

Dutch roll; Spiral modes - slightly stable for C.G. range of 25.3 cm - 38.2 cm.

> : Half-scale has similar lateral stability as full scale, Feasible

Airfoil

- Thickness
 - Need to get a spar through the wing
 - C_{Lmax} required
 - \circ ⇒ ≥12% thick airfoil
- Reflexed camber
 - Alternative: large wing twist (difficult to get right, little available data)
- Examined most well-known reflexed and low-moment airfoils.
- Examined some custom airfoil modifications
 - Small number of available reflexed airfoils
 - "Does this airfoil perform well with reflex?"

Verification and

Validation

Purpose/Objectives

Critical Project Elements Requirements Satisfaction

Airfoil

• Joukowski with Horten camber line (12% thickness, 2% camber)

Aircraft Stability- XFLR5

Longitudinal eigenvalue lacksquareplot

Purpose/Objectives

Design Solution

Critical Project Elements

Requirements Satisfaction

Project Risks

Aircraft Stability- XFLR5

Lateral eigenvalue plot \bullet

Design Solution

Requirements Satisfaction

$$M_{BF} Equation$$

$$Drag$$

$$Glide ratio = L/D$$

$$E = mg\Delta h$$

$$m_{bat} = \frac{mgr}{\eta_p d_{bat} L/D}$$

$$\eta_p E = \frac{mgr}{L/D}$$

$$\frac{m_{bat}}{m} = \frac{rg}{\eta_p d_{bat} L/D}$$

$$\eta_p d_{bat} m_{bat} = \frac{mgr}{L/D}$$

$$M_{BF} = \frac{rg}{\eta_p d_{bat} L/D}$$

$$M_{BF} = \frac{rg}{\eta_p d_{bat} L/D}$$

Requirement in G_{ai} Stifu Gtuke a Modelin glimit of 5 g.

- Wing load distribution at 5 g (Prandtl Lifting Line Theory) → 4th order method.
- Looking at carbon spar, EPP foam core, plastic skin.
 - Considering composite skin.

Spring Constant Calculation model

