<u>Smallsat Connected Optical</u> <u>Positioning Entity</u>

Spring Final Report

Customer: Steve Thilker, Raytheon **Faculty Advisor:** Zoltan Sternovsky

Group Members: Mattia Astarita, Nick Cenedella, Connor Kerry, Greg Kondor, Nolan Lee, Guy Margalit, Mason Markle, Jakob Mitchell, Zach Schira, Pepe Feu Vidal, Alec Viets

Presentation Outline

Sections	Presenter(s)	
Project Purpose and Objectives	Connor Kerry	
Design Description	Greg, Guy and Zach	
Test Overview	Jake Mitchell	
Test Results	Guy and Zach	
Systems Engineering	Mason Markle	
Project Management	Nick Cenedella	

Motivation

 \rightarrow Need relative motion and orientation of nearby spacecraft in proximity operations \rightarrow Find inexpensive, autonomous, and accurate solution

Docking, Resupply, and Repair Missions Soyuz docking with the ISS

	Purpose and Objectives	\rangle	Design	Test Overview	Test Re	sults	Systems Engineering	\geq	Project Management		
--	---------------------------	-----------	--------	------------------	---------	-------	------------------------	--------	-----------------------	--	--

Project Objectives

Design, build, and test a proof-of-concept sensor package that collects **relative motion** and **orientation** data of a TARGET satellite for output to the CHASE satellite on-board attitude control system.

Levels of Success

Purpose and

Objectives

<u>Level 1</u>: Detect and return data outputs for a target satellite with known markers up to 100m.

<u>Level 2</u>: Detect and return data outputs of a target satellite with no markers, but with a known 3-D model up to 100m.

<u>Level 3</u>: Detect and return data outputs of an unknown target satellite up to 1 km.

Design

Test

Overview

Acronyms and Definitions

CHASE - Satellite housing design sensor package (SCOPE)

FLOOD - Flash Lidar Object Orientation Determination

FOV - Field Of View

ICP - Iterative Closest Point

IR - InfraRed light

Purpose and

Objectives

LiDAR - Light Detection And Ranging

LRF - Laser Range Finder

SCOPE - Designed sensor package, housed on CHASE

Design

TARGET - Target satellite to sense with design sensor package (SCOPE)

Test

Overview

Test Results

Management

Engineering

Levels of Success

Level 1

Detect and return data outputs for a target satellite with known markers up to 100m.

Level 2

Detect and return data outputs of a target satellite with no markers, but with a known 3-D model up to 100m.

Design Description

Critical Project Elements

Centroid Determination

 Use Background Subtraction to Detect TARGET.
Return Location in FOV for determining ADCS turning angles. Position and Velocity Determination

 Gather and smooth distance of TARGET data from laser rangefinder.
Return position and velocity of TARGET satellite.

Four main CPE's define

SCOPES largest challenges

Orientation and Roll rate Determination

 Return orientation of TARGET within 1 deg of actual.
Return angular rates of TARGET within

T within

1% of actual.

-U Satellite Constraints

Mass is less than 1.33[kg]
Dimensions fit within 10x10x10[cm]
Data is written at a rate faster than 2[Hz]
Average power remains below 20W

Purp	ose	anc
Ob	jectiv	/es

Test Overview

Test Results

Functional Block Diagram

Design Description

Overall Software Flow Chart

Acquire Sensor Capabilities

Driving Requirement	Design Parameter defined by Requirement	Sensor Capability	Requirement Fulfilled
DR 1.1	TARGET's volume between 20x20x30[cm] and 1x1x1[m].	A total of 420 pixels are illuminated by TARGET at maximum distance	Yes
DR 1.2.1	Detect TARGET at a distance of 100[m]	and minimum volume	
DR 1.4.1	Detect TARGET under favorable lighting conditions	Visual camera → operates best under well-lit conditions	Yes

DFK Autofocus Camera

- Resolution: 5MP (2560x1920[px])
- Frame rate: 15 fps

Aico 25mm Lens

• FOV: 10.50°V x 14.68°H

Purpose and Obiectives	Design	Test Overview	Test Results	Systems Engineering	Project Management	16
00,000,000		Overview		Lingineering	management	

Background Subtraction

Assumptions

1. Only one moving object in frame

2. TARGET is always sun-facing

Results

1. Centroid of object is found for Acquire/Track

2. Return initial centroid within 60s of boot

Purpose and Objectives

Design

Test Overview

Test Results

Background Subtraction in Action

Modelling from blender simulation

Real time acquisition on SCOPE

Purpose and Objectives Design Test Overview Test Results Systems Engineering Project Management

Laser Range Finder Capabilities

SF30-C Laser Rangefinder 100m

Driving Design Parameter defined by Requirement Requirement		Sensor Capability	Requirement Fulfilled	
DR 1.2.1	Detect TARGET 's at a range of 100 m	Measurement range +100[m]	Yes	
DR 2.1	Output TARGET 's satellite relative position with an error of less than 1%	Frame rate of 400 [Hz]	Yes	
DR 3.1	Output TARGET 's satellite relative velocity with an error of less than 1%	Std position 0.0388 [m]	Νο	

LiDAR Sensor Requirement Satisfaction

IFM Electronics O3D301

Driving Requirement	Design Parameter defined by Requirement	Sensor Capability	Requirement Fulfilled
DR 4.1	Output TARGET 's relative orientation between 1[m] and 10[m] .	Measurement range up to 10[m] , and background up to 30[m] .	Yes
DR 4.2	Output TARGET 's relative orientation with an error off less than 1[deg]	Individual point accuracy is +/- 2[cm]	Yes
DR 4.3	Determine orientation of TARGET through comparison with known 3D model.	.pcd (point cloud) file output	Yes

Iterative Closest Point ~ FLOOD

Assumptions

- 1. 3D model of TARGET is known
- 2. Initial position is known to within 1% of actual
- 3. Model is within frame of Flash Lidar sensor

Results

1. Outputs quaternion and translation vectors

FLOOD in Action

Visualization of FLOOD algorithm aligning point with 3D model of TARGET to find relative orientation and position

Purpose and

Objectives

Design

Testing Overview

Purpose and
ObjectivesDesignTest
OverviewSystems
Test ResultsProject
Management23

Test Overview

Acquire/Track Test Setup

		Requirements Verified
	FR 1	The sensor package shall be capable of detecting a target satellite.
	FR 2	The sensor package shall output the target satellite's relative position upon detection.
105[m]	FR 3	The sensor package shall output the target satellite's relative velocity upon detection.
	FR 6	The sensor package shall output target satellite data at a set frequency.
Overview Schedule Test Overview System	ns s	Final Tests Budget 25

Acquire/Track Test Logistics

Data Collected	Method of Collection
Turning Angles for SCOPE to point at center of TARGET	SCOPE Cam w/ BGSUB through HDMI
Position and velocity of TARGET with respect to SCOPE body frame.	Acuity LRF vs. SCOPE sensor package

Purpose and Objectives

Design

Test Overview

Test Results

Systems Engineering > Project Management

Track/Orientation Test Setup

		Requirements Verified
	FR 2	The sensor package shall output the target satellite's relative position upon detection.
	FR 3	The sensor package shall output the target satellite's relative velocity upon detection.
	FR 4	The sensor package shall output the target satellite's relative orientation upon detection.
15[m]	FR 5	The sensor package shall output the target satellite's relative rotation rate upon detection.
	FR 6	The sensor package shall output target satellite data at a set frequency.
Purpose and Design Test Test Re	esults	Systems Engineering Management 27

Track/Orientation Test Logistics

Data Collected	Method of Collection		
Position and velocity of TARGET with respect to SCOPE body frame.	Acuity LRF vs. SCOPE sensor package		
Orientation and rotation rates about TARGET 's Z axis.	Rotary Encoder placed on TARGET 's rotational motor		

Purpose and Objectives

Design

Test Overview

Test Results

Systems Engineering Project Management

Testing Results

Purpose and
ObjectivesDesignTest
OverviewSystems
Test ResultsProject
EngineeringProject
Management29

TARGET Model

Driving Requirements for Physical Characteristics

DR 1.1: The sensor shall be able to detect a target satellite with volumetric dimensions between 20x20x30 [cm] and 1x1x1 [m].

DR 1.4: The sensor shall be able to detect a target satellite under favorable lighting conditions.*

Objectives

Management

Engineering

Overview

Simulated Centroid Determination

Driving Requirements

- **DR 1.2:** The sensor shall be able to detect a target satellite at a range of **100** [m].
- **DR 1.3:** The sensor shall detect the target satellite within 60(s) of turn-on.

DR 1.4: The sensor shall be able to detect a target satellite under favorable lighting conditions.

All points fed into the Background algorithm were in the target area for both the large and the small target

Purpose and

Objectives

Design

Centroid Determination (Large)

Driving Requirements

- **DR 1.2:** The sensor shall be able to detect a target satellite at a range of **100** [m].
- **DR 1.3:** The sensor shall detect the target satellite within 60(s) of turn-on.

DR 1.4: The sensor shall be able to detect a target satellite under favorable lighting conditions.

Instantaneous Centroid Determination

Design

Success Rate = 100%

Centroid Determination Success Rate = 5/5 trails

Level of Success = Level 2

Purpose and

Objectives

Centroid Determination (Small)

Driving Requirements

DR 1.2: The sensor shall be able to detect a target satellite at a range of **100** [m].

DR 1.3: The sensor shall detect the target satellite within 60(s) of turn-on.

DR 1.4: The sensor shall be able to detect a target satellite under favorable lighting conditions.

Instantaneous Centroid Determination

Design

Success Rate = 47.68%

Centroid Determination

Success Rate = 3/5 trails

Level of Success = Level 2

Purpose and

Objectives

Acquire Conclusions

Centroid determination is **heavily dependent** on **lighting conditions**, as seen from small TARGET data. Calibration of camera's FOV was difficult with autofocus feature. Solution to move towards **fixed lens**.

Purpose and Objectives	Design	Test Overview	Test Results	Systems Engineering	Project Management	34
---------------------------	--------	------------------	--------------	------------------------	-----------------------	----

Position Determination Results

Driving Requirements

DR 2.1:The sensor package shall output the target satellite's relative position with an error of less than 1% up until a relative position of 1[m].

Both simulation and test results followed the following model:

Design

 $f(x) = \frac{error}{distance}$

Result			
Success Rate	72.63%		
Level of Success	Level 3		

Purpose and

Objectives

Velocity Determination Results

Both simulation and test results followed the following model:

Design

Overview

Engineering

 $f(x) = \frac{\sqrt{2}error}{distance}$

Result				
Success Rate	9.57%			
Level of Success	Level 3			

Purpose and

Objectives

36

Management
Track Conclusions

Error Contribution	Solution
Difference in ranging heights (shown on the left)	Change truth LRF ranging position.
Beam divergence was about four times larger than expected.	Acquire a better LRF, yet size is a constraint.
Jerk in translation affecting velocity over time.	Drive train on test stand rather than winch.

 Purpose and Objectives
 Design
 Test Overview
 Test Results
 Systems Engineering
 Project Management

Orientation Results

38

Rotation Rate Results

Orientation Conclusions

Error Contribution	Solution
Test Stand in field of view of LiDAR	Change testing to use a drop test, or work more on filtering
Noise in LiDAR data limits ability of orientation	Tune sensor parameters/Increasing size or budget could allow for purchase of more accurate sensor
Low resolution of LiDAR	Combine high resolution visual camera data with accurate depth sensing of LiDAR
Low data rate at close distances	Optimize algorithm at these distances so there is less model movement between frames

Overall Power Consumption Fulfilled

Overall power consumption reaches no higher than 11[W].

Design

Purpose and

Objectives

Power Over Startup Sequence

41

Output Frequency Validated

42

Mass and Volume Requirements Fulfilled

Driving Requirements

DR 7.3: The sensor shall not have a mass exceeding 1.33[kg].

DR 7.1: The dimensions of the sensor package shall not exceed 10[cm]×10[cm]×10[cm] upon launch.

Mass requirement met with a 28% margin.

Volume requirement met, designed within specifications of SolidWorks model.

Purpose and Objectives

Design

Test Overview

Test Results

Systems Engineering Project Management

Requirements Overview

FR 1	Capable of detecting a target satellite.		Had trouble with small TARGET .
FR 2	Output the target satellite's relative position upon detection.		Difficulties inside 10[m] .
FR 3	Output the target satellite's relative velocity upon detection.		Difficulties under 0.8[m/s].
FR 4	Output the target satellite's relative orientation upon detection.		Affected heavily by test setup.
FR 5	Output the target satellite's relative rotation rate upon detection.	\checkmark	
FR 6	Output target satellite data at a set frequency.		Met Requirements
FR 7	Formatted to fit within a 1U platform upon launch.		

Overall, many of the requirements were not fully met due to the minimum sized target being too small.

Purpose and Objectives	Design	Test Overview	Test Results	Systems Engineering	Project Management	>
		,				/

44

Systems Engineering

Purpose and
ObjectivesDesignTest
OverviewSystems
Test ResultsProject
Engineering45

Systems Engineering Approach

Functional Objectives

Demand in Industry

Need for rendezvous missions that are autonomous and inexpensive. Cube Satellites are perfect solution.

Mission Statement

Design, build, and test a proof-of-concept sensor package that collects **relative motion** and **orientation** data of a TARGET satellite for output to the CHASE satellite on-board attitude control system. Functional Requirements written based on customer desires.

Concept of Operations drove **FR** declaration.

Functional Requirement Formation

Purpose and Objectives	Design	Test Overview	Test Results	Systems Engineering	Project Management	47

Requirements Decomposition

Design Requirement Examples:

- SCOPE Physical:
 - Mass < 1.33[kg]
 - Volume < (10[cm] x 10[cm] x 10[cm])
 - Power consumption < 20[W]
 - Data Frequency: 2[Hz]
- TARGET Detection:
 - Volume between 20x20x30[cm] & 1x1x1[m]
 - Detection Range: 100[m]
 - Detection of target within 60[s] of turn-on
 - Detection under favorable lighting conditions
- Position:
 - Error < 1% up until 1[m]
- Velocity
 - Error < 1% up until 0.1[m/s]
- Orientation
 - Orientation Range: 10[m]
 - Error < 1[deg]
- Rotation Rate:
 - Error < 1[deg/s]
 - Rotation Rates between 1[deg/s] & 5[deg/s]

Testable Design Requirements (**DR**'s) were based on physical implementation of **FR**'s

DR's were negotiated with the customer based on initial requests, and are decomposed based on levels of success.

Key Trade Studies

Trade studies were conducted for the three major stages of our mission: **Acquire, Track, Orientation.**

Based on physical parameters, software, implementation difficulty, and cost.

Orientation Trade Study

Purpose and
ObjectivesDesignTest
OverviewSystems
Test ResultsProject
Management49

Unit Testing & Subsystem Verification

Phase of Mission	Acquir	e	Track	Orientation
Test Conducted	Determine centroid within 60[s] of boot.		Determine position and velocity.	Determine orientation and roll rate.
Results	Satisfied for large TARGET (5 out of 5 trials). Somewhat Satisfied for small TARGET (3 out of 5 Trials).		Somewhat Satisfied for position DR. (73% fall within 1% accuracy)	Somewhat Satisfied for orientation. (~20% fall within 1[deg])
			Not Satisfied for velocity DR (9.57% fall within 1% accuracy)	Satisfied for rotation rate. (~91% fall within 1[deg/s])
Unit tests were co each subsystem, at satisfying Desi Requirements (D Based on physica software, implem difficulty, and cos	onducted on and were aimed gn R's). al parameters, entation st.			
Purpose and	Design	Test	Test Results Syst	ems Project 50

Engineering

Management

Overview

Objectives

System Verification & Validation

Test	Acquire/Tra	ck	Track/Orientation	Physical Constraints
Test Conducted	Correctly predict centroid , move LRF to centroid position, begin tracking LRF params.		Output LRF Params from 15[m], begin outputting orientation params. At 10[m].	Volume measured, mass taken, and power consumption profiled.
Results	Partially Successf not keep LRF lock target.)	ul (could on small	Successful Transition conducted.	
System verification was conducted through transition testing, where the phases of the mission were combined. Physical parameters were tested for the complete package.		- - -		

Purpose and Objectives	Design	Test Overview	Test Results	Systems Engineering	Project Management	ک 5
---------------------------	--------	------------------	--------------	------------------------	-----------------------	--------

Integration and Risk (as of CDR)

Initial Risk Determination

Frequency/	1-Very Unlikely	2-Remote	3-Occasional	4-Probable	5-Frequent
Consequence					
4-Catastrophic	Failure to Detect				
	Target Satellite				
3-Critical			Over Budget	Data Accuracy	
				Failure	
2-Major		Board Overheat			
1-Minor			Power Overload		

Adjusted Risk With Mitigation Methods

Frequency/	1-Very Unlikely	2-Remote	3-Occasional	4-Probable	5-Frequent
Consequence					
4-Catastrophic	Failure to Detect				
-	Target Satellite				
3-Critical		Over Budget	Over Budget	Data Accuracy	
			Over Budget	Failure	
2-Major		Board Overheat	Data Accuracy 🎽		
-			Failure		
1-Minor			Power Overload		

Risk was assessed with an ALARP risk matrix

Corrections were proposed to handle high-risk areas (if and when they arose in subsystem integration)

Risk mitigation strategies proved helpful (from testing results), but requirements were still not met completely.

Purpose and Objectives	Design	Test Overview	Test Results	Systems Engineering	Project Management	52
---------------------------	--------	------------------	--------------	------------------------	-----------------------	----

Main Setbacks and Risk Assessment

Unforeseen Setback	How it was handled	Successfully Overcome?
Unusually high noise in LiDAR and Camera data.	Tested on open field at night.	Yes
Trouble with encoders (constantly breaking)	Buying new ones and assigning responsibility.	Yes

Unfortunately, the group wasn't able to mitigate the **data accuracy failure** risk, and most measurements were above their requirements.

This risk was constrained by the ability to acquire sensors within the team's size constraints.

Purpose and
ObjectivesDesignTest
OverviewSystems
Test ResultsProject
Management53

Risk was assessed with an ALARP risk matrix

Corrections were proposed to handle high-risk areas (if and when they arose in subsystem integration)

Risk mitigation strategies proved helpful (from testing results), but requirements were still not met completely.

Challenges and Lessons Learned

Initial customer design desires are often infeasible

The shorter a project's duration, the harder it is to satisfy all requirements.

Cost of necessary components can be exuberant.

Communication with the customer is key in early project development.

Subsystem integration will not go as smoothly as planned

Underlying hardware/software issues <u>will</u> arise in preliminary testing. Working out operational bugs takes valuable time, and should be carefully documented.

Early risk assessment is key for future prevention of requirement failure(s)

There will be issues in testing that could have been avoided with risk mitigation strategies. Risk identification is <u>tricky</u> - experience is necessary to identify potential risks.

"The customer has <u>no idea</u> what they want, it is up to you [the Systems Engineer] to tell them..."

-Cody Humbargar (Senior SE, Raytheon)

Purpose and Design Test	Test Results	Systems	Project
Objectives Design		Engineering	Management 54

Project Management

Purpose and
ObjectivesDesignTest
OverviewSystems
Test ResultsProject
Management55

Project Management Approach

- 1. Develop list of short term and long terms tasks using finish to start approach.
- 1. Generate group discussion to center focus on common goals.
- 1. Assign responsibilities based upon group member strengths and interests.
- 1. Focus on own responsibilities.
- 1. Continuously assess progress as deadlines approach.

Purpose and Objectives

Design

Test Overview

Test Results

Systems Engineering Project Management

Project Management Approach

Difficulties	Successes
Group member developed unique niches so aspects of the project became dependant on them.	Understood project as a whole so was able to access the quality and completeness of subsystem tasks as well as get team members up to speed
Tasks to be completed always took more time than expected.	Took lessons learned from one deliverable and applied them to the next
Wasn't Involved enough in the manufacturing process and software architecture.	Assigned responsibilities and organized meeting times while also developing new technical skills.

Project Management Lessons Learned

Make a "Depth Chart"

(Like in baseball, football... really any sport) detailing the associated group members that are lead/understudy for every key project element for design and testing is essential so unnecessary dependencies are avoided.

Aesthetics are everything

While the project itself consists mainly of real engineering work, if it can't be properly advertised and sold then it's just as useless as the Tucker 48, Tivo, Laser Discs...

Success is not relative

Don't determine your own project's success based on the success of others. No two projects are created equal and the fact that other projects are struggling or succeeding should in no way be a reflection of project success. Always gauge success by requirements and levels of success.

Purpose and	Docian	Test	Tost Posults	Systems	Project	58
Objectives	Design	Overview	Test Results	Engineering	Management	/ 50

Budget Overview

Acknowledgments

We would like to thank **Trudy Schwartz, Bobby Hodgkinson**, and **Matt Rhode** for their guidance with the testing design.

We would also like to thank **Zoltan Sternovsky** for general project guidance.

Thank you to Lee and Tim for presentation practice help and feedback.

And last but certainly not least a special thank you to **Steve Thilker**, **Collin Baukol**, and **Cody Humbargar** from our sponsor **Raytheon**.

Thank you for your support!

Questions?

References

Users.auth.gr. N. p., 2017. Web. 15 Oct. 2017. "DFK AFUJ003-M12." The Imaging Source,

www.theimagingsource.com/products/autofocus-cameras/usb-3.0-color/dfkafuj003m12/.

Brown, Gary. "How Autofocus Cameras Work." HowStuffWorks, 1 Apr. 2000, electronics howstuffworks com/autofocus3 htm

"Depth of Field, Angle & Field of View, & Equivalent Lens Calculator." Points in Focus Photography, 31 Aug. 2017, <a href="http://www.pointsinfocus.com/tools/depth-of-field-and-equivalent-lens-calculator/#{"c":[{"av":"8","fl":16,"d":100000}],"m":1}.

"Infrastructure," *Research and Engineering Center for Unmanned Vehicles* Available: <u>http://www.colorado.edu/recuv/facilities/infrastructure</u>

"OpenCV: Open Source Computer Vision." <u>https://docs.opencv.org/3.3.0</u>

"Advanced Scientific Concepts Inc." Advancedscientificconcepts.com. N. p., 2017. Web. 16 Oct. 2017.

SF11/C. "SF11/C (120 M) - Lightware Optoelectronics (Pty) Ltd." *LightWare Optoelectronics (Pty) Ltd.* N. p., 2017. Web. 16 Oct. 2017.

References

Rusinkiewicz, Szymon; Marc Levoy (2001). Efficient Variants of the ICP Algorithm. Proceedings Third International Conference on 3-D Digital Imaging and Modeling. Quebec City, Quebec, Canada. pp. 145–152.

M. Attia Y. Slama M. A. Kamoun "On performance evaluation of registration algorithms for 3d point clouds" Computer Graphics Imaging and Visualization (CGiV) 2016 13th International Conference pp. 45-50 2016.

Libretexts. "Propagation of Error." *Chemistry LibreTexts*, Libretexts, 14 Mar. 2017, chem.libretexts.org/Core/Analytical_Chemistry/Quantifying_Nature/Significant_Digits/Propagation_of_Error.

"Normal Distributions: Definition, Word Problems." Statistics How To, <u>www.statisticshowto.com/probability-and-</u> <u>statistics/normal-distributions/</u>

Corcoran, Jem. "Intro the Mathematical Statistics." APPM Lecture. 2017, Boulder, CU Boulder.

Jackson, Jelliffe. "Uncertainty Analysis." ASEN Lecture. 2015, Boulder, CU Boulder.

"Monte Carlo Simulation." Monte Carlo Simulation: What Is It and How Does It Work? - Palisade, www.palisade.com/risk/monte_carlo_simulation.asp

"O3D301 - 3D Camera - Eclass: 27310205 / 27-31-02-05." *Ifm.com*. N. p., 2017. Web. 16 Oct. 2017.

References

http://1.bp.blogspot.com/_SjnNZeKhheo/TTWSPzsI1nI/AAAAAAAAAAAI/SpCXSVeDfFU/s1600/Cygnus+approac hing+the+ISS.jpg

https://imgur.com/gallery/WNG2Iqq - Soyuz docking with ISS GIF

https://www.theimagingsource.com/products/autofocus-cameras/usb-3.0-color/dfkafuj003m12/

https://www.aico-lens.com/product/f-25mm-f-2-10mp-4k-m12-far-field-board-lens-achf2520fm/

http://robotsforroboticists.com/kalman-filtering/

Dynapar, "Quadrature Encoder Overview," *Quadrature Encoder - Dynapar*Available: http://www.dynapar.com/Technology/Encoder_Basics/Quadrature_Encoder/.

Sensors and Rock64 Diagrams

Laser Rangefinder

Visual Camera

Sensors and Rock64 Diagrams

Fulfilling Functional Requirements

Functional Requirements	Test
FR 1	Transition Test 1
FR 2	Transition Test 1
FR 3	Transition Test 1
FR 4	Transition Test 2
FR 5	Transition Test 2
FR 6	Inspection
FR 7	Inspection

Acquire/Track Procedure

1	Offset the pointing of SCOPE sensor package to align TARGET in the visual camera's FOV.
2	Target Rotates about Z axis at 1-5[deg/s] .
3	Adjust Pointing of SCOPE based on angles outputted from the sensor package and LRF laser in scope FOV on target.
4	Save data and sync test equipment with SCOPE's microcontroller.
5	Translate TARGET along Z axis at 0.1-1[m/s] .
6	Save position and velocity data from LRF and sync with test equipment.
7	Post-process and analyze data collected.

Purpose and Objectives

Design

Test Overview

Test Results

Systems Engineering Project Management

68

Track/Orientation Procedure

1	Align the axes of SCOPE and TARGET
2	Target Rotates about Z axis at 1-5[deg/s] .
3	Adjust Pointing of SCOPE based on angles outputted from the sensor package.
4	Save position and velocity data from LRF and sync with test equipment.
5	Translate TARGET along Z axis at 0.1[m/s] .
6	Output orientation data from SCOPE and sync with rotational encoder truth measurement.
7	Post-process and analyze data collected.

Purpose and
ObjectivesDesignTest
OverviewSystems
Test ResultsProject
Management69

Testing Hardware Flow Chart

FEA Mesh and Parameters (thermal)

All bodies have constant material properties:

Component(s): Shell Material: 6061 Aluminum Alloy Thermal Conductivity: 170 W/(m*K)

Component(s): Laser Rangefinder Material: ABS PC Thermal Conductivity: 0.2618 W/(m*K)

Component(s): Rock64 Board Material: Non-conductive PCB Substrate Thermal Conductivity: 0.2256 W/(m*K)

Component(s): Visual Camera, 03D301 LiDAR Material: ABS PC/6061 Aluminum Thermal Conductivity: 85 W/(m*K)

Contact Resistance: 2.5x10^-4 W*m^2/K

Triangular based mesh

FEA Mesh and Parameters (thermal)

Model uses the following conditions:

Ambient Temperature: 290K

Thermal Emissivity: 0.12

Contact Resistance: 2.5x10^-4 W*m^2/K

Triangular based mesh
Various Power Outputs

Component	Low Power	Peak Power	Mean Power
Rock64 Media Board	1.25W	10W	2.5W
IFM 03D301 Flash LiDAR	5W	48W	10W
DFK AFUJ003-M12	n/a	5W	1.25W
SC30-C Laser Rangefinder	n/a	5W	1.25W

Sources

Rock64: <u>https://forum.pine64.org/showthread.php?tid=1220</u>

AFUJ003: <u>https://www.theimagingsource.com/products/autofocus-cameras/usb</u>

-3.0-color/dfkafuj003m12/

SC30-C: https://www.parallax.com/product/28058

03D301: https://www.ifm.com/hu/en/product/O3D301

Various Operational Temperatures

Component	Peak Operational Temperature	Maximum Predicted Temperature	
Rock64 Media Board	65°C	42°C	
IFM 03D301 Flash LiDAR	50°C	30°C	
DFK AFUJ003-M12	45°C	27°C	
SC30-C Laser Rangefinder	40°C	26°C	

Sources

Rock64: <u>https://forum.pine64.org/showthread.php?tid=1220</u>

AFUJ003: <u>https://www.theimagingsource.com/products/autofocus-cameras/usb</u>

-3.0-color/dfkafuj003m12/

SC30-C: https://www.parallax.com/product/28058

03D301: https://www.ifm.com/hu/en/product/O3D301

Sensor Calibration

- If \bigcirc , then the origin of the image frame can be moved to that point.
- If ullet, then mechanical techniques can adjust camera pointing.

- 1. Localize offset point with cardboard, decreasing in size.
- 2. Measure the distance offset and apply correction.

u

Minimum Pointing Accuracy

The minimum sized model defines the pointing accuracy to be required as a **20[cm]** vertical and horizontal resolution.

This means that the sensor package must be able to rotate at **0.115[deg]** per step.

The resolution of our **sensor test stand encoders and digital level** give a resolution of **0.01[deg]**.

20[cm]

Therefore, we can measure up to 1.7[cm] per step

Sensor Face Offset

All offsets are accounted for in software

R_{lev} = <0,38,0> [mm]

R_{Irf} = <0,-31,0> [mm]

R_{fl} = <-49,-35,0> [mm]

Error Due to Face Offset

This offset causes error in pointing as the object gets closer.

At **10[m]**, the closest position in which the laser rangefinder is used, this error (vertical offset) is **2.79[cm]**.

Track Motor math

Givens:

 $r = 5 \ cm$ $F_1 = 20 \ N$ $\sigma = 1.5$

Analysis:

$a = 1.5 \ m/s^2$
$m = F_1/a = 2.040 \ kg$
$F_2 = ma = 3.06 N$
$F_T = F_1 + F_2 = 23.06 N$
$\underline{T = F_T r = 1.153 \ Nm}$
$T_F = T\sigma = 1.7295 \ Nm$
$P_F = F v_{max} \sigma = 34.59 \ W$
$\omega_{max} = v_{max}/r = 12.5 \ rad/s = 190.98 \ RPM$
$\omega_{min} = v_{max}/r = 12.5 \ rad/s = 19.09 \ RPM$

Conclusions:

Need pullout torque at least 2 Nm between ~19 RPM and 190 RPM Need 34.59 W for power

Test Stand Simulated Load

Velocity control - FBDs

Torque calculations

r = 0.0762m $F_s = 12.34N$ ma = 12.5 * 0.2 = 2.5N $D = 1/2 * \rho V^2 C_d A = 0.7989N$

Analysis:

$$F_{tot} = -F_s - D + F_p = ma$$

$$F_p = F_s + D + ma = 15.6289N$$

$$T = F_p * r = 1.19Nm$$
at $v_{max} = 1m/s$: $\omega = v/r = 125RPM$

Conclusions:

Givens:

The needed Torque at 125 RPM is 1.19Nm. Looking at the Pullout torque curve one the next slide, it is possible to conclude that the motor will provide sufficient torque for the test stand to move as needed

Torque vs RPM

Velocity Changes of Target Test Stand

assume that it takes 2 rotations before the cable start piling on top of each other

If we had to maintain a constant velocity when $v_0 = 0.7$ m/s, this is how we should decrease the angular velocity for the winch

If instead we maintained a constant angular rotation throughout the whole experiment, starting with our velocity would increase if we started at $v_0 = 0.7$ m/s,

Track Encoder math

Analysis:

$$ppr = 2\pi/\theta = 314.159$$

$$f_{max} = \omega_{max}/\theta = 1000Hz$$

$$f_{min} = \omega_{min}/\theta = 100Hz$$

Givens:

Choose s = 1 mm (accuracy at 1 m) one order of magnitude greater than Functional requirement

$$r = 5 \ cm$$

$$\theta = s/r = 0.02 \ rad$$

$$\omega_{max} = 190.98 \ RPM$$

$$\omega_{min} = 19.09 \ RPM$$

Conclusions:

- Need at least 314 pulses per rev
- Need a min frequency of 1000 Hz

Orientation Encoder math

Analysis:

Choose detection angle to be 0.1 deg (one order of magnitude greater than functional requirement)

$$\theta = 0.1 \ deg$$

$$ppr = 360 \ deg/\theta = 3600$$

$$f_{max} = \omega_{max}/\theta = 50 \ Hz$$

$$f_{min} = \omega_{min}/\theta = 10 \ Hz$$

<u>Givens:</u>

$$r = 5 \ cm$$

$$\omega_{max} = 5 \ deg/s$$

$$\omega_{min} = 1 \ deg/s$$

Conclusions:

- Need at least 3600 pulses per rev
- Need a min frequency of 50 Hz

1km Infeasibility

Allowable pixel error for background subtraction: 7px

Autofocus capabilities

Two types: Passive and Active

- 1. Active uses SONAR or IR
- 2. Passive uses pixel comparison and computer analysis

Passive: Determines blurriness of image \rightarrow adjusts to find min. Blurriness

- Determines blurriness by contrast of edge pixels

Flash LiDAR Resolution

IFM 03D301	FOV:40X30	RES:176X132	20 x 20 cm	1 x 1 m
Distance (m)	total (px/m ²)	(cm²/pixel)	Pixel per object	Pixel per object
11	492	20.32	20	492
10	596	16.79	24	596
9	735	13.60	29	735
8	931	10.75	37	931
7	1215	8.23	49	1215
6	1654	6.04	66	1654
5	2382	4.20	95	2382
4	3722	2.69	149	3722
3	6617	1.51	265	6617
2	14888	0.67	596	14888
1	59554	0.17	2382	59554

 $\frac{TotalPixelRes}{m^2} = horizontalpix/m * verticalpix/m$

FLOOD Explained

FLOOD Explained- K-D Search

- 1. Faces from 3D model are stored in bins in a k-d tree data structure
 - a. Each bin represents a 3D box
- 2. For each point from our Lidar scan traverse down to bin containing that point
- Check the distance from point to each face contained in bin 3.
- 4. Repeat step 3 for neighboring bins if the distance to the edge of that bin is less than the current minimum found distance

FLOOD Explained

Given the two point cloud sets M and D, where D is the set produced by the LiDAR scan, and M is the set derived from the model. For each point $d_i \in \mathbb{R}^3$ in D, and a rotation Rand translation t, there is a point c_i such that.

$$c_i = \arg\min_{c_k \in M} \| (Rd_i + t) - c_k \|, \quad \forall i = 1...m$$
 (1)

t and R are then calculated using the following error function.

$$\epsilon = \frac{1}{m} \min_{t,R} \sum_{i=1}^{m} \| Rd_i + t - c_i \|^2$$
(2)

FLOOD Timing

- Almost always above 2 Hz minimum
- Add in maximum number of points so algorithm does not have to process 10's of thousands of points

Blender

🛈 🛊 File Render Window Help 🗊 🛊 Default 🕂 🕄 💕 🛊 Scene 🕂 🛞 Blen	nder Render 🕴 救 v2.79 Verts:3,682 Faces:7,356 Tris:7,356 Objects:1/3 Lamps:1/1 Mem:10.87M Camera
ug ▼ Rigid Body Tools *** Camera Persp	E View Search All Scenes 🗘 🔎
Add/Remove:	t ⊖ 🖉 Scene
B Add Acti Add Pass	• 🕘 RenderLayers 🕘
Remove	World
Object Tools:	
Change Shape	
Copy from Active	
Apply Transformat	X O Scelle
Bake To Keyframes	▼ Render
E Constraints:	Render 🖆 Animation 🖤 Audio
	Display: Image Editor 🗘 🛅
ysics	▼ Dimensions
	Render Presets 💠 🖶 📼
	Resolution: Frame Ranoe:
	2 import bpy extras
	3 import csv
	5 import random
	import numpy as np
V Operator	<pre>bpy.context.scene.render.resolution_x = 2560</pre>
	<pre>9 bpy.context.scene.render.resolution_y = 1920 10</pre>
	11# Set Camera Properties
	12 oc = bpy.data.objects.get("Camera")
	14 oc. rotation_euler = $(1.5708, 0, -1.5708)$
	15 16# load obj
	18 # Set Object Properties 19 InitialPosX = 100
(1865) Camera	20 InitialPosY = random.uniform(-12.8813, 12.8813)
View Select Add Object 🕡 Object Mode 🕴 💽 🛊 🚱 🛊 🐺 🛴 📈 📿 💻 Global 🔅 😫	21 InitialPosZ = random.uniform(-9.18871, 9.18871)
	22 ob = bpy.data.objects.get("TargetSatellite")
	24 ob.location = (InitialPosX, InitialPosY, InitialPosZ) 25
Ø + View Marker Frame Playback ♥ ● Start: 1 + End: 1866 + ● 1865 + Start: 1 + End: 1866 + ● 1865 + Start: 1 + End: 1866 + ● 1865 + Start: 1 + End: 1866 + ● 1865 + Start: 1 + End: 1866 + ● 1865 + Start: 1 + End: 1866 + ● Start: 1 + Start: 1 + Start: 1 + Start: 1 +	🕼 🔿 🕽 💽 View Text Edit Format Templates 🗐 🛊 Acquire_MonteCa 🔶 📇 💥 🔛 🖪 👪 Run Script 🔵 Register

Distribution of LRF Mean

n= number of LRF returns per every system data output

 σ = standard deviation of normal distribution for single LRF data output

 \bar{X} = the mean of all LRF data over the coarse of half a second. It should be noted the the expected value of the mean is the actual distance.

CI = Confidence Interval

 $Z_{\alpha/2}$ = Normal Distribution Critical value

Important to note that the standard deviation of the mean is $\frac{\sigma}{\sqrt{n}}$

Normal distribution of mean of LRF data:

$$CI: \bar{X} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \to Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le 0.01 \bar{X}$$

For a 99% confidence interval that the LRF is returning data with in one percent of actual distance, $Z_{\alpha/2} = 2.575$.

$$(2.575)\frac{\sigma}{\sqrt{n}} \le 0.01\bar{X} \to \sigma \le 0.003883d$$

Use of Kalman Filtering

Means to use data from multiple sources in order to create a joint probability distribution that can then be used to more accurately predict the correct data parameters.

Our Date Sources:

- Laser Range Finder
- Optical Camera
- LiDar

Our goal using a Kalman filter: to optimize estimation of the state of the TARGET satellite in the Orientation Phase.

Position Error Propagation

Using the standard deviation of the position the standard deviation of the velocity can be calculated with the following equation:

$$x = a + b - c \quad \sigma_x = \sqrt{\sigma_a^2 + \sigma_b^2 + \sigma_c^2}$$

For velocity error propagation ($\sigma_{pos1} = \sigma_{pos}$):

$$vel = pos2 - pos1 \quad \sigma_{vel} = \sqrt{\sigma_{pos1}^2 + \sigma_{pos2}^2} = \sqrt{2\sigma_{pos1}^2} = \sqrt{2}\sigma_{pos1}$$

Based on the velocity error propagation, the standard deviation of the laser range finder needs to be the following to satisfy 1% accuracy. The worst case is at 10m with 10 data returns per half second.

$$\sqrt{2}\sigma_{pos} \le \sqrt{n}(0.003883)d \to \sigma_{pos} \le \sqrt{n/2}(0.003883)d = \sqrt{5}(0.03883) = 0.08683$$

Therefore the 99% confidence interval can be calculated.

$$Z_{\alpha/2}\frac{\sigma}{\sqrt{n}} = (2.575)(0.0868/\sqrt{1}) = \pm 0.224m$$

Behavior of STD of Sample Mean-Central Limit Thm

Important to note that the standard deviation of the mean is $\frac{\sigma}{\sqrt{n}}$

OpC w/ Background subtraction

 σ_n = standard deviation of vertical pointing off center in number of pixels

 $\sigma_{\psi} = \text{standard deviation of horizontal pointing off center in meters}$

 σ_{θ} = standard deviation of vertical pointing off center in meters

d = distance away from camera

 α = horizontal full angle β = vertical full angle m = number of pixels in horizontal direction n = number of pixels in vertical direction σ_m = standard deviation of horizontal pointing off center in number of pixels

To calculate the standard deviation in terms of meters.

$$\sigma_{\psi} = \frac{2dtan(\frac{\alpha}{2})}{m}(\sigma_m) \quad \sigma_{\theta} = \frac{2dtan(\frac{\beta}{2})}{n}(\sigma_n)$$

A smaller field of view is beneficial, the alpha and beta of the hard found that is the smallest but can still fit the larger possible target in the FOV at the minimum distance of 10 m with a 25mm focal length is $\alpha = 14.68$ and $\beta = 10.5 deg$

The expected value for the distance returned from the center of the object is zero so in order to construct the normal distributions for horizontal and vertical pointing.

$$\theta = \sigma_{\theta} Z \quad \psi = \sigma_{\psi} Z$$