Preliminary Design Review

Advisor: Dr. Neogi

Members: Jordan Abell, Peter Amorese, Bruce Barnstable, Lindsay Cobb, Alex Ferguson, Marin Grgas, Kyle Li, Nick Miller, Jett Moore, James Tiver, Brandon Torczynski, Logan Vangyia

10.21.2020

Outline

- 1. Project Description
 - a. Definition, objectives, ConOps, and FBD
- 2. Baseline Design
 - a. Critical Project Elements
- 3. Evidence of Baseline Feasibility
 - a. First-level Feasibility Analysis
 - b. Additional Evidence
- 4. Summary

Section 1

Project Description

Presenters: Kyle Li and Lindsay Cobb

10.21.2020

Problem Definition

Ŷ₿|X ₽ ₿

Mission Context

SNC's inflatable LIFE[™] Habitat is designed as a solution for deep space habitation. Cargo will arrive prior to the crew and will need to be unloaded from supply vehicles.

Mission Goal

Demonstrate the feasibility of using robotics to manage and store cargo throughout the LIFE module.

SB | X e B

LIFE[™] Habitat Mission

10.21.2020

Mission Statement

RIVeR will demonstrate the feasibility of utilizing Intra-vehicular Robotics (IVR) to identify, sort, and distribute cargo bags within Sierra Nevada's LIFE[™] Habitat. RIVeR will adapt a robotic arm translation system to pick up and move bags to a designated location.

10.21.2020

FBD

10.21.2020

Section 2

Baseline Design

Presenters: Kyle Li, James Tiver, Marin Grgas, Brandon Torczynski, Lindsay Cobb

10.21.2020

10.21.2020

10.21.2020

Sensor Suite

- Determine the position and orientation of the cargo and key core locations
- Baseline sensor selection: Pixy2 (at least 2+ for triangulation)
 - RGB camera with a prepackaged processor and image recognition algorithms
- Camera can learn to recognize any object
- Returns 2D location of learned object as well as object bounds

2. The End Effector

<u>B</u> | X e B

10.21.2020

SNC - RIVeR - CU Boulder

63 mm

End Effector

SMC MHM-32 Magnetic Gripper

- Magnet attached to a piston
- Uses compressed air to actuate

∑₿ | X e B

Bag Attachment

- Dummy cargo transport bag (CTB) to be used:
 - Mass: 5 kg
 - O Dimensions: 41 cm x 23 cm x 24 cm
- Softshell case with steel plate attachment
 - O Dimensions: 59 mm diameter x 6mm W
 - o 5 mm margin

Steel Plate

NASA's CTB	Internal Dimensions [cm]	Mass of Bag [kg]	Max Cargo Mass [kg]
Full Size	41.27 x 24.13 x 49.66	1.68 kg	25.54 kg
Half Size	41.27 x 22.86 x 24.13	0.84 kg	12.63 kg

<u>B</u> | <u>X</u> e B 3. The Robotic Arm 3. Robotic Arm UR10e 1. Sensor Suite Pixy2 Camera Acquired by SNC Purchased from Pixy 2. End Effector SMC MHM-32 4. Translator Magnetic Gripper Threaded Rail and Motor Purchased from SMC Designed/Manufactured by RIVeR

10.21.2020

Robotic Arm

- UR10e
 - O Maker: Universal Robots
- High payload (10 kg) lift and long reach (1.30m)
- Six degrees of freedom and ± .05 mm pose repeatability
- SNC is in process of acquiring
 - Not guaranteed yet
 - Back up options included in appendix

10.21.2020

Translator

- Purpose: access between cargo hatch and core midpoint
- Stepper motor is attached to a threaded rod
 - Moves the Blue platform back and forth
- Green rails add support/stability

10.21.2020

Parts Purchased vs Manufactured

Ŷ₿ | X e B

Key:

Red: Purchased Blue: Manufactured

Challenges of assembly:

- In house manufacturing
- Alignment of parts
- Wire management
- Stability control
- Accuracy control

10.21.2020

Translator Operation

10.21.2020

- Stepper motor will be calibrated and controlled via arduino
- The Motor has a built in encoder so we can actively track where the arm is on the track

SNC - RIVeR - CU Boulder

21

B | X e B

Ŷ₿ | X e B

Translator Operation

- Push Sensors (located at track ends)
 - Prevent unwanted motion
 - o Calibrate system

- Wire Management
 - Cable Track will hold power cables/pressure hose for the robotic arm and end effector
 - Prevents tangling and increases durability

Software FBD

Integration Summary

Ŷ₿ | X e B

Testing Plan

- Sensor Testing
 - Identify a cargo bag and relay the necessary information through the system.
- Stationary Test
 - Robotic Arm and end effector testing using developed controls and sensors to pick up and release a bag.
- Dynamic Test
 - Integrate the robotic arm and translator to test the power and communication to both systems.
- Full System Test
 - Entire system integrated and functioning together

Testing Roadmap

Timeline

Key:

SNC - RIVeR - CU Boulder

26

Section 3

Feasibility Analysis

Presenters: Jordan Abell, Nick Miller, Logan Vangyia, Brandon Torczynski, Marin Grgas

Robotic Arm Performance

The UR10e supports a max load of 10 kg

Expected operating load with margin is 80 N (~8 kg)

Material composition: Plastic (end caps), Aluminum (arm), Steel (joints, base plate)

Supports six degrees of freedom across the arm

Pose repeatability: ± .05 mm

Physical

Footprint	Ø 190 mm
Materials	Aluminium, Plastic, Steel
Tool (end-effector) connector type	M8 M8 8-pin
Cable length robot arm	6 m (236 in)
Weight including cable	33.5 kg (73.9 lbs)

Axis movement	Working range	Maximum speed	
Base	± 360°	± 120°/s	
Shoulder	± 360°	± 120°/s	
Elbow	± 360°	± 180°/s	
Wrist 1	± 360°	± 180°/s	
Wrist 2	± 360°	± 180°/s	
Wrist 3	± 360°	± 180°/s	

SNC - RIVeR - CU Boulder

10.21.2020

Joint Force Analysis

Joint torque analysis with fully extended arm and 80 N load

Yield strength: 41.7 MPa Max stress across all components: 6.3 MPa

Manufacturer defined max torque per joint size

Size 2	56 Nm	
Size 3	150 Nm	
Size 4	330 Nm	

FR.1	FR.2	FR.4	\checkmark
------	------	------	--------------

10.21.2020

Robotic Arm Software (UR-10e)

- UR10 configuration package within ROS Movelt for simulation
- Universal Robots software suite
 - Two levels of control: Polyscope(GUI) or script (URScript language)
 - Built-in variables and functions that monitor and control I/O, robot trajectories, and joint position
 - Commands sent to on-board low-level controller (URControl) through TCP/IP socket
- Documentation on:
 - Environment clearance shapes
 - Pick training
 - Place training

End Effector

UR-10e Interface

- Transition Plate
- Pressurized air
- Power connection
 - Solid State Sensors
 - M12 Connector
 - o Directional Control Valve
 - D-Sub Connector

Figure 1: (1) Transition Plate (4) M6x10L SHCS

FR.5

The end-effector shall be interchangeable for modified use in future tasks.

10.21.2020

End Effector

Ŷ₿|X e ₿

10.21.2020

Translator-Deflection Analysis

10.21.2020

Translator-Deflection Analysis

10.21.2020

Translator - Motor Velocity Analysis

- Assume constant angular velocity and full step size for the motor
- Assume the motor and rod are synchronous and have the same rotation

$$v_{max} = \frac{1}{n * t_{rot}} = \frac{1}{n} * \frac{v_s * s}{360^\circ} = 0.131 \frac{m}{s}$$

o Where:

- n = 7 threads/in = 275.6 threads/m
- v_s = 7200 steps/s
- s = full step size = 1.8°

- Time to Traverse Entire Translator:
 - 0 L = v*t

■ L = 2.272m

Time (s)	Velocity (m/s)
17.3	0.131
34.8	0.065
87.0	0.026

10.21.2020

SNC - RIVeR - CU Boulder

XeR

SB | X e B

Translator - Motor Force Analysis

• Force on Motor:

0

- Constraint: maximum radial load = F_{max} = 66.72 N $F_{move} = F_s + F_{screw} = \mu * N + \frac{N}{2\pi(\frac{R}{p})S_e} = 51.81 N$
 - Where:
 - N = arm-bag load = 147.15N , S_e = screw efficiency = 20% (assumption)
 - **R** = radius of screw = 14.29 mm, μ_s = static friction coefficient = 0.15
 - **p** = screw pitch = 3.628 mm
 - $F_{move} < F_{max} \rightarrow FR.8$ satisfied \rightarrow Motor is Feasible

FR.1	All systems shall be operational in a 1G testing environment.	\checkmark
FR.8	The linear translator shall be able to maintain structural integrity under the torques and forces applied to it when moving cargo.	\checkmark

10.21.2020

Sensor Suite: Object Recognition

- Sensor can be calibrated to learn objects and barcodes
- Objects can be given a label
- Once the label is learned, the sensor will forever recognize it in varying orientations.

Sensor Suite: Object Recognition

- Pixy 2 can detect multiple objects
- Outputs: orientation, bounds, distance
- Restricted by FOV of 60° horizontal, 40° vertical, and resolution of 1296x796

10.21.2020

SNC - RIVeR - CU Boulder

<u>B</u> | X e B

FOV Feasibility

Pixy 2 Lense FOV

- 60 degrees horizontal
 - Top View (Y-Z) 0
- 40 degrees vertical
 - Side View(X-Y) 0

Simplifying Assumptions:

- Cylinder
 - 0 L = 6 meters
 - D = 2.5 meter 0
- Sensors at each end

10.21.2020

FR.1

FR.4

Top and Side Views Feasibility

Side view (X-Y plane)

Top view (Y-Z plane)

SNC - RIVeR - CU Boulder

10.21.2020

 \checkmark

Resolution Feasibility

Ŷ₿|X ∈ B

Core is 5.6m long cylinder with 2.5m diameter Place camera as far as possible from hatch (6.3m) Needs 4x1 pixel size of learned object 0.0133 image projection ratio 0 Minimum bag dimension for detection: 8.4 cm x 8.4 cm 0 CTB Exceeds this dimension on all sides Mage projection vetio = 0.0133 For L=6.3m and locate carg cm

10.21.2020

Determining Bag Position

10.21.2020

SNC - RIVeR - CU Boulder

44

Section 4

Summary

Presenters: Kyle Li

10.21.2020

Preliminary Design

Ŷ₿|X ₽₿

10.21.2020

Conclusion

🕅 X e	R
---------	---

#	Requirement	Slide Ref.	Feasibility
FR.1	All systems shall be operational in a 1G testing environment.	29, 33, 36, 40	\checkmark
FR.2	The system shall be capable of translating a 5kg cargo bag the length of the track.	29, 33	\checkmark
FR.3	The system shall provide a method for verifying that a given cargo transportation task has been completed or the given task has failed beyond recovery.	38, 40	\checkmark
FR.4	The system shall operate within the volume of the core.	19, 29, 40	\checkmark
FR.5	The end-effector shall be interchangeable for modified use in future tasks.	32	\checkmark
FR.6	The end-effector shall be able to control cargo during translation and rotation.	33	\checkmark
FR.7	The translation system shall be able to navigate from one end of the track to the other.	21, 22	\checkmark
FR.8	The linear translator shall be able to maintain structural integrity under the torques and forces applied to it when moving cargo.	36	\checkmark

10.21.2020

Loren McDaniel and Sierra Nevada Corporation

Dr. Neogi

Matt Rhode

Bobby Hodgkinson

Dr. Jackson

Josh Mellin

Ŷ₿ | X e B

Any Questions?

Backup

SNC - RIVeR - CU Boulder

50

Backup Arms

SNC IRAD Test Arm

SNC's in-house arm with proprietary SNC software

Franka Emika Panda

On-campus arm used by the HIRO Lab

MEGACLAW

Previous senior project arm based on crustcrawler model.

WidowX 200

Purchasable robotic arm for small-scale demonstration

10.21.2020

Robotic Arm Software (UR-10)

Polyscope Interface

URScript Function

stopj(a) Stop (linear in joint space) Decelerate joint speeds to zero Parameters a: joint acceleration (rad/s^2) (of leading axis) Example command: stopj(2) Example Parameters: - a = 2 rad/s^2 → rate of deceleration of the leading axis.

10.21.2020

Functional Requirements

		FR.1	All systems shall be operational in a 1G testing environment.
System		FR.2	The system shall be capable of translating a 5kg cargo bag the length of the track.
Wide		FR.3	The system shall provide a method for verifying that a given cargo transportation task has been completed or the given task has failed beyond recovery.
		FR.4	The system shall operate within the volume of the core.
End	ſ	FR.5	The end-effector shall be interchangeable for modified use in future tasks.
Effector		FR.6	The end-effector shall be able to control cargo during translation and rotation.
		FR.7	The translation system shall be able to navigate from one end of the track to the other.
Translator ≺		FR.8	The linear translator shall be able to maintain structural integrity under the torques and forces applied to it when moving cargo.

Ŷ₿ | X e B

End Effector

Parts List for Operation:

- Manual Dump Valve
- Filter/Regulator Combo
- Electronic Dump Valve
- Coupler w/ wall mount bracket
- 0-160 psi gauge
- Single Solenoid Valve
- Solenoid Valve Silencers
- Speed Controller Valve
- ¼" Tubing

End Effector

Magnetic Field Model Calculations

$$\frac{F_1}{F_2} = \frac{\frac{k}{r_1^2}}{\frac{k}{r_2^2}}$$
$$\frac{F_1}{F_2} = \frac{r_2^2}{r_1^2} = \frac{(r_1 + \Delta r)^2}{r_1^2}$$
$$\frac{\Delta r^2}{r_1^2} + \frac{2\Delta r}{r_1} + 1 - \frac{F_1}{F_2} = 0$$

 $r_1 = 8.036[mm]$ Root-Finding (Bisection) --> $r_2 = 13.036[mm]$

$$F = \frac{k}{r^2}$$

 $k = 32287.183[Nmm^2]$

10.21.2020

Ŷ₿|X ₽ ₿

End Effector

Magnetic Force vs Workpiece Thickness (from Datasheet)

 Mu soor
 Basic type, Adjustable holding force type (Max. value)

 400
 400

 300
 Adjustable holding force type (Min. value)

 100
 200

 100
 2

 0
 2

 4
 6

 8
 10

MHM-32

Translator-Deflection Calculations

- Assuming evenly distributed load.
- Only force on threaded rod will be its own weight
- Arm weight is supported by side rails.

$$\rho = 7.8 \frac{kg}{m^3}$$

$$Radius = r = .0143m$$

$$I = \frac{1}{2}\pi r^4$$

$$E = 210GPa$$

$$L = 2.3622m$$

$$w = \rho\pi r^2 Lg = 115.8N$$

$$\delta = -\frac{wx^2}{24EI}(L-x)^2$$

SNC - RIVeR - CU Boulder

XeB

Ŷ₿ | X e B

Translator Full Size CAD

Sensor Suite: Pixy 2 Specs

- Processor: NXP LPC4330, 204 MHz, dual core
- Image sensor: Aptina MT9M114, 1296×976 resolution with integrated image flow processor
- Lens field-of-view: 60 degrees horizontal, 40 degrees vertical
- Power consumption: 140 mA typical
- Power input: USB input (5V) or unregulated input (6V to 10V)
- RAM: 264K bytes
- Flash: 2M bytes
- Available data outputs: UART serial, SPI, I2C, USB, digital, analog
- Dimensions:1.5" x 1.65" x 0.6"
- Mass: 10 grams
- Integrated light source, approximately 20 lumens

LIFE Module Dimensions I

Length of Core: 5.562 m **Core Internal Diameter:** 2.391 m

2.391 m

Distance from hatch to center of accessway: 2.272 m

LIFE Module Dimensions II

1.643 m

0.822 m

0.894 m

0.644 m

UR10e Technical Specifications

Performance

Power consumption	Approx. 350 W using a typical program
Safety System	All 17 advanced adjustable safety function incl. elbow monitoring certified to Cat.3, PL Remote Control according to ISO 10218
Certifications by TUV Nord	EN ISO 13849-1, Cat.3, PL d, and full EN ISO 10218-1
F/T Sensor - Force, x-y-z	
Range	100 N
Resolution	2.0 N
Accuracy	5.5 N
F/T Sensor - Torque, x-y-z	
Range	10 Nm
Resolution	0.02 Nm
Accuracy	0.60 Nm
Specification	
Payload	10 kg / 22 lbs
Beach	1300 mm / 51 2 in

Reach	1300 mm / 51.2 in	
Degrees of freedom	6 rotating joints DOF	
Programming	Polyscope graphical user interface on 12 inch touchscreen with mounting	
Movement		
Pose Repeatability	+/+ 0.05 mm, with payload, per ISO 9283	

Axis movement robot arm	Working range	Maximum speed
Base	± 360*	± 120*/s
Shoulder	± 360*	± 120*/s

Control box

Features

IP classification	IP44	
ISO Class Cleanroom	6	
Ambient temperature range	0-50*	
V0 ports	Digital in Digital out Analog in Analog out 500 Hz control, 4 s high speed quadra	16 16 2 2 eparated ture digital inputs
I/O power supply	24V 2A	

10.21.2020

Sources

- https://www.universal-robots.com/products/ur10-robot/
- https://www.nasa.gov/pdf/506174main_HRP_Flight_Experiment_Information_Package508.pdf
- <u>https://matmatch.com/materials/minfm67216-astm-a193-grade-b7-m64-and-under</u>
- <u>https://mechanicalc.com/reference/beam-deflection-tables</u>
- <u>https://www.universal-robots.com/articles/ur/max-joint-torques/</u>
- https://www.universal-robots.com/media/1802779/ur10e-32528_ur_technical_details_.pdf
- <u>https://www.grainger.com/product/FABORY-Fully-Threaded-Rod-4FHT2</u>
- <u>http://content2.smcetech.com/pdf/manuals/MHx-OMX0012-A.pdf</u>
- https://spacecraft.ssl.umd.edu/academics/697S19/697S19L06-7-8.habitabilityx.pdf
- <u>https://www.anaheimautomation.com/products/linearcomponents/linear-guides-item.php?sID=557&serID=40&pt=i&tID=1162&cID=543&dsID=569</u>
- https://docs.pixycam.com/wiki/doku.php?id=wiki:v2:using_color_codes

Alternative Robotic Arms

<u>http://www.crustcrawler.com/</u> and <u>https://www.trossenrobotics.com/widowx-200-robot-arm.aspx</u>