

RiBBIT River Bathymetry Based Integrated Technology

Manufacturing Status Review

Abdullah Almugairin, Paul Andler, Andy Benham, Daniel Crook, Mikaela Dobbin, Courtney Gilliam, Megan Jones, Jessica Knoblock, Phil Miceli, Sam Razumovskiy

Project Overview

Mission Motivation

Problem

Rivers are a critical resource to monitor due to contributions to agriculture, urban development, hazard monitoring, and environmental monitoring.

There is a lack of updated and accurate global data for river discharge, especially in hard to access rivers.

A hard to access river is one which presents a physical risk for humans to access on foot.

Existing Solutions

Earth Orbiting Satellites

Boat tagline system with acoustic instrument and velocity tracker

Helicopters towing radar systems

ASTRALite EDGE

Market Gaps

Data Resolution

Safety

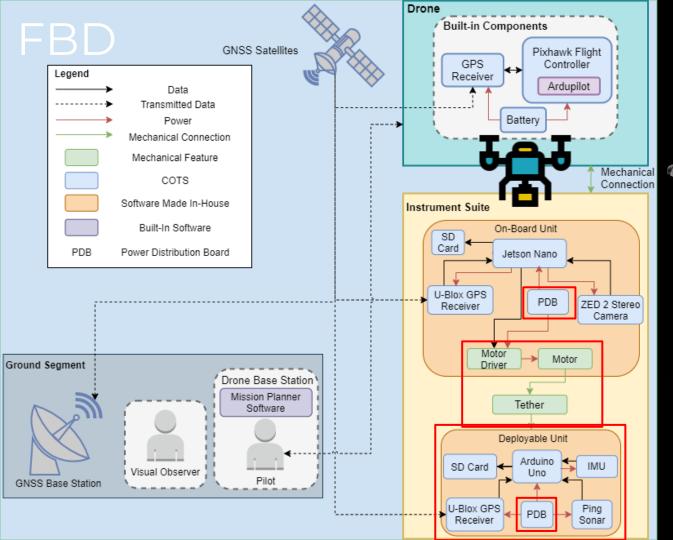
Low-Cost

Ease of use

Quick set-up and data collection

Mission Statement

"The long term goal of this project is to design, manufacture, and test a drone-mounted sensor system to gather river depth profile and velocity data in hard-to-access areas for the purpose of monitoring river discharge."

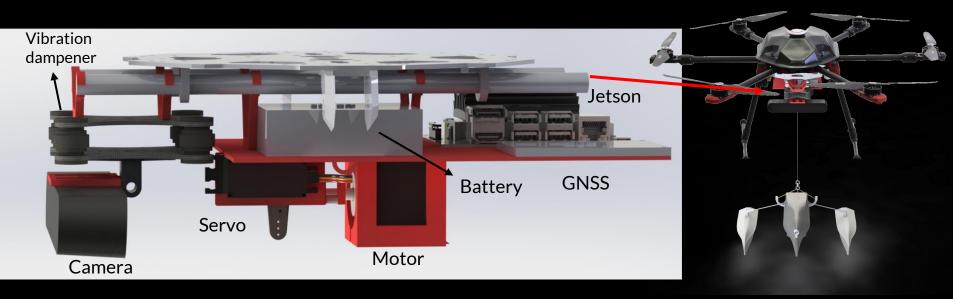


CONOPS

5. The drone is safely landed and the captured data is off-loaded for post processing.

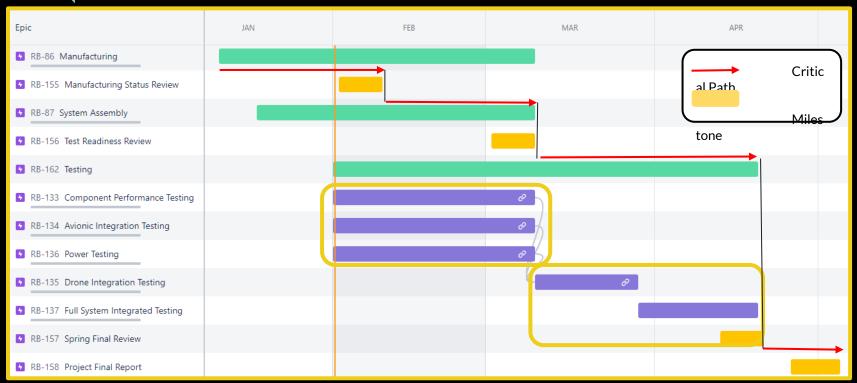
4. The float is dragged across the water surface to profile the entire river cross section (this happens in 2 passes).

1. Vehicle and equipment arrive at the field site, and the equipment is prepared for river survey.



Deployment Mechanism

Sonar Float Design Total est. weight: 894 grams



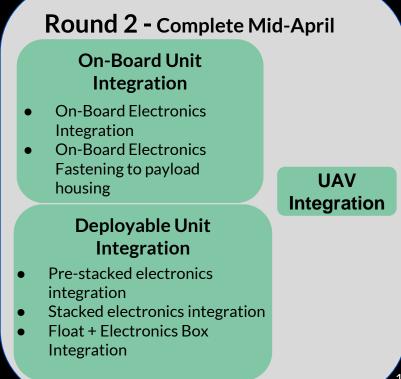
Schedule

Gantt Chart

Testing Schedule

Round 1 - Complete by Early March

Component Testing

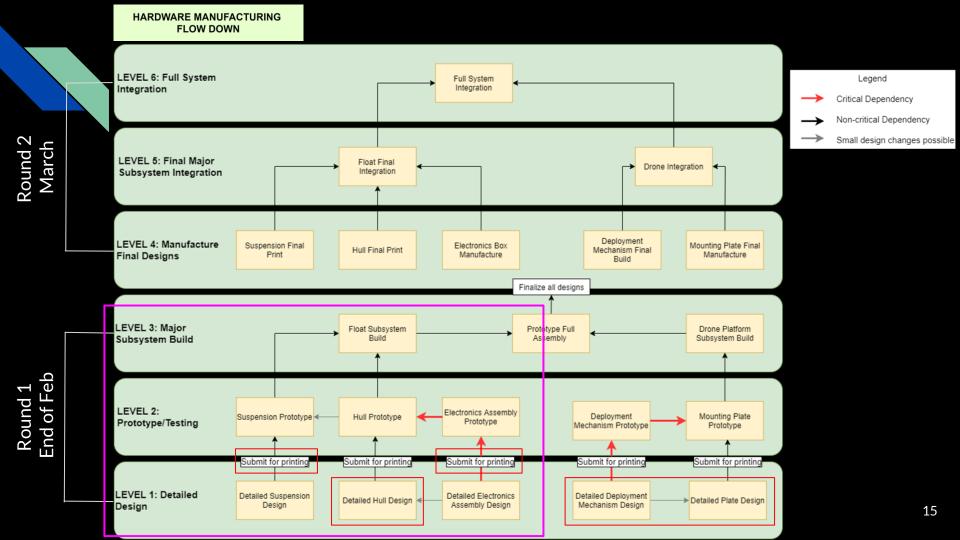

- Zed 2 Camera
- Ping Sonar
- UAV + Pixhawk Controller
- Deployment
 Mechanism/Motor
- Float & Electronics Box

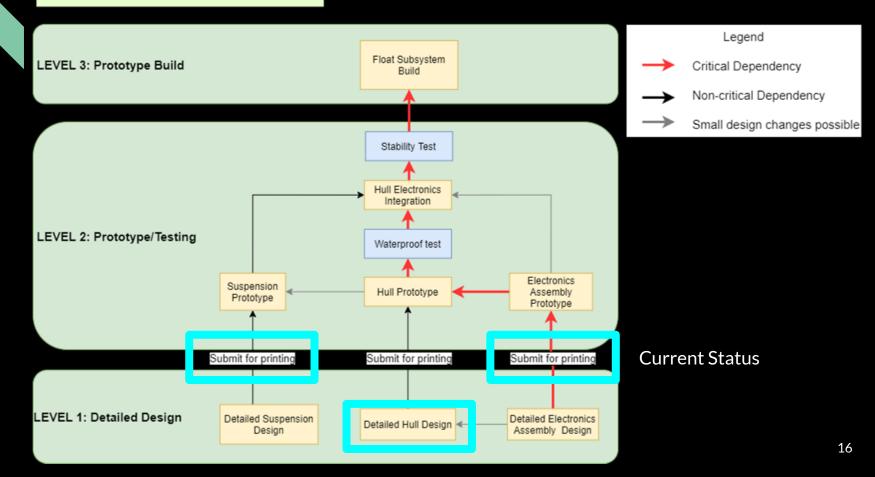
On-Board Unit Interface Testing

- Zed Camera + Jetson
- U-blox receiver + Jetson
- Remote Controller + Pixhawk + Jetson

Deployable Unit Interface Testing

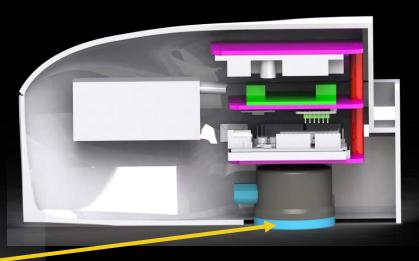
- Ping + Arduino
- IMU + Arduino
- U-blox receiver + Arduino


Manufacturing


Manufacturing

• Hardware

- Sonar Deployment Mechanism
- Payload Housing and Drone Mount
- o Sonar Float & Electronics Housing
- Off-the-Shelf UAV Assembly
- Avionics
 - Electronics Wiring and Power Onboard and Deployable Unit
- Software
 - Flight Software
 - Data Post-Processing



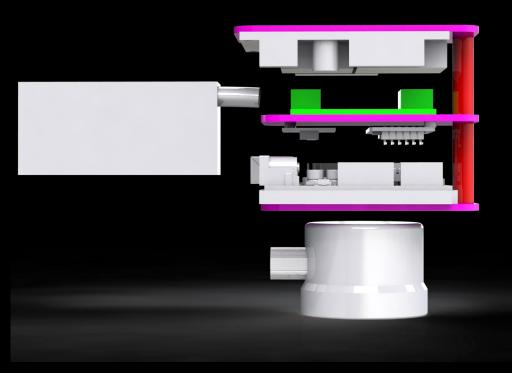
DETAILED FLOAT MANUFACTURING FLOW DOWN

Float Electronics Box Manufacturing

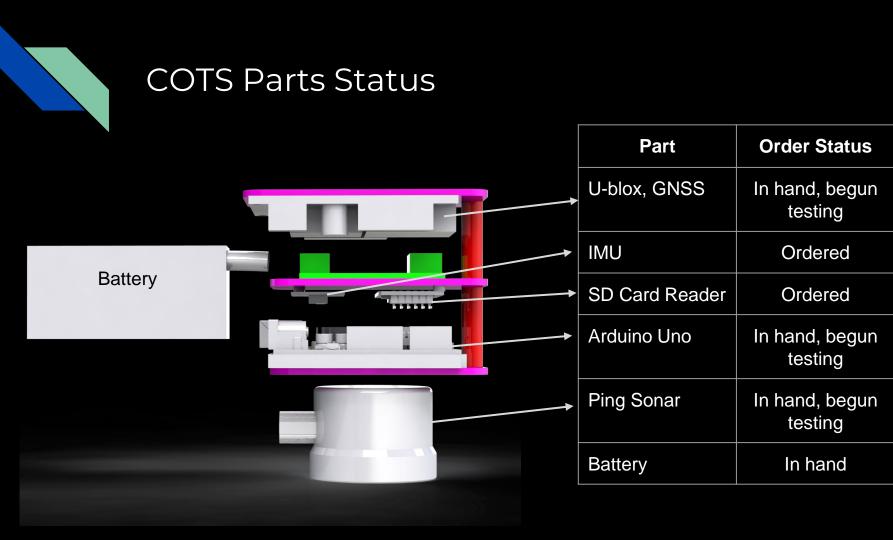
Current focus:

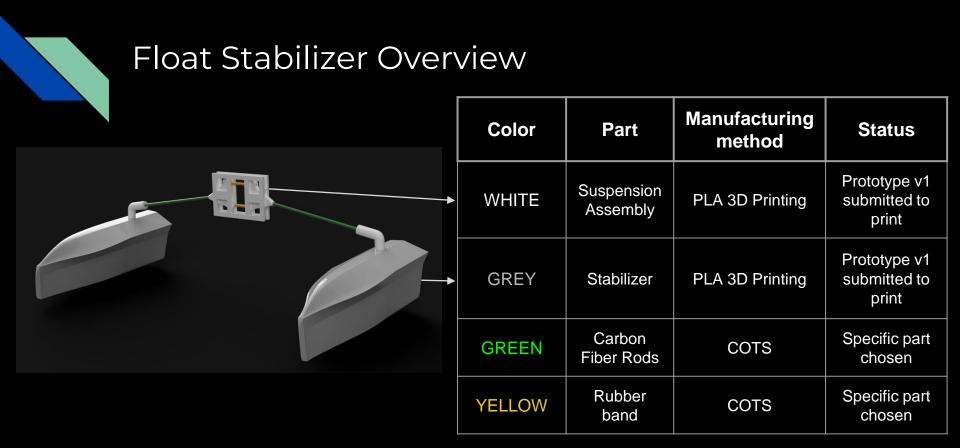
- Designing for manufacturability
 - > Creating features easy for 3D printers
 - Minimizing post-printing altercations
 - Printing in multiple sections

Float Waterproofing


Rubber seal where red lines are

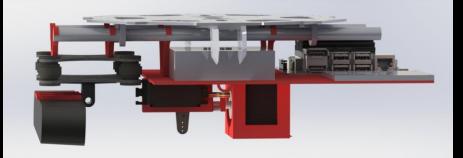
Planning to have 4-5 brackets. Mounting holes are 2.5mm for ref




Float Electronics Box Assembly Overview

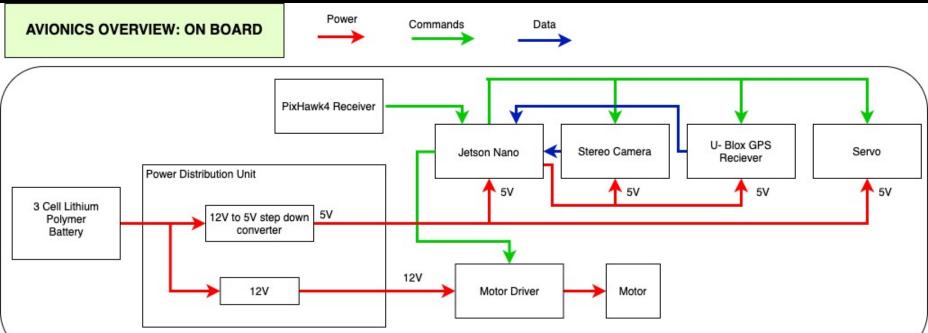
On Schedule

Color	Manufacturing Method	Status
WHITE	COTS	Next Slide
GREEN	Custom PDB	Under design
PINK	Laser cut Acrylic	Design Finished Prototype v1
RED	PLA 3D Printing	Design Finished Prototype v1

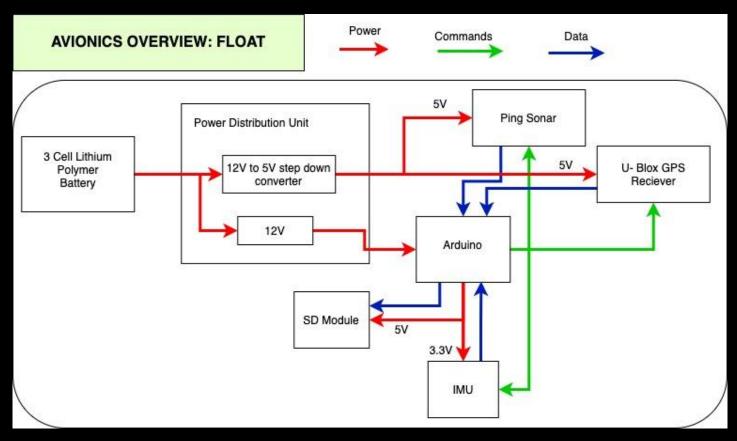


On Schedule

On-Board Payload Housing

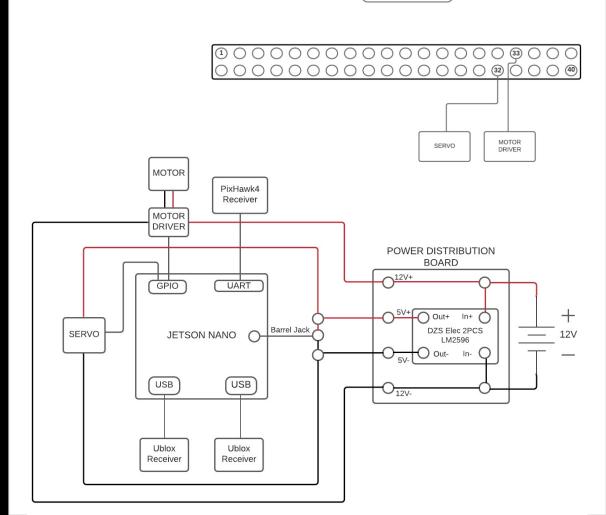

Color	Manufacturing Method	Status
WHITE/ BLACK	COTS	Next Slide
RED	PLA 3D Printing	Waiting for drone for exact dimensions

On Schedule


COTS Parts Status		
	Part	Order Status
	Jetson	In Hand
	GNSS Receiver	In Hand
Battery	Battery	In Hand
ZED2	Servo	Type chosen
Camera	Motor	Under design
	Vibration Dampener	In hand
	Camera	In Hand

Avionics Overview: On Board Unit

Avionics Overview: Float Unit



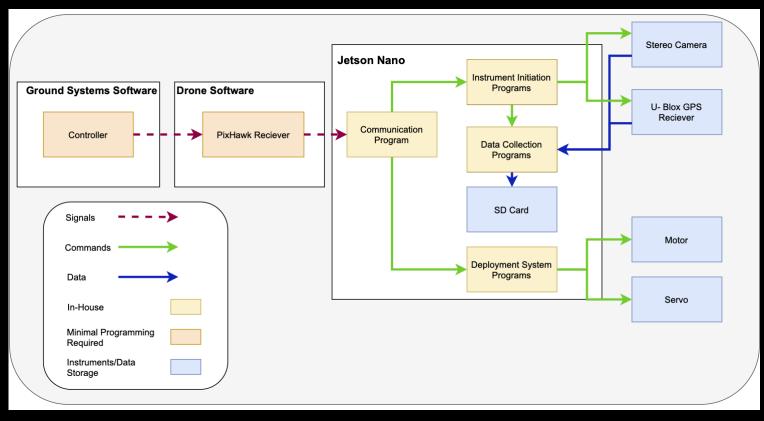
Avionics Overview

Avionics Component	Complexity	Priority	Progress	On Schedule?
Power Distribution Board	Medium	High	Schematic design completed, need to build prototype	Yes (early March)
Motor Implementation with Motor Driver	High	Medium	Waiting on motor selection	Yes (end of February)
Communication with PixHawk Receiver	High	Medium	Have necessary components, studying how receiver works	Yes (mid-March)
SD Module Interfacing	Low	Medium	Part selected and ordered	Yes (end of February)

On Board Wiring Diagram

GPIO Pinout

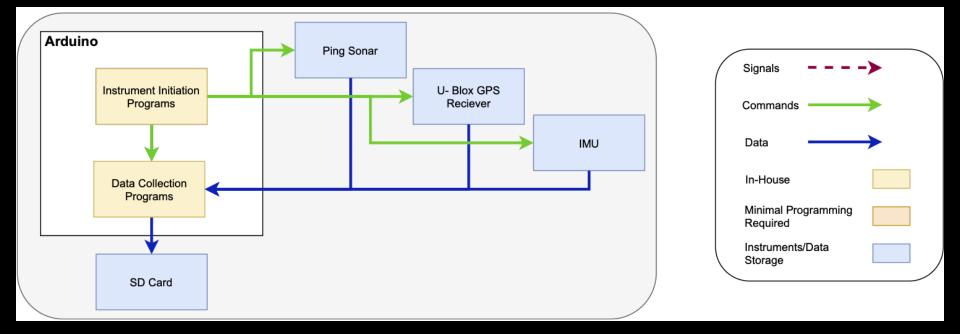
Float Wiring Diagram



Instrument Suite Wiring

Component	Method/Material	Progress	
Zed Camera Integration	Through USB connection		
Sonar Integration	Serial communication through UART ports on Arduino	Have identified necessary software and connections to begin testing	
GNSS Receiver Integration	USB connection for both Jetson Nano and Arduino Uno		
Power Distribution Board	Will use M/F jumper wires for Arduino, Barrel Jack for Jetson	Electrical schematic designed	

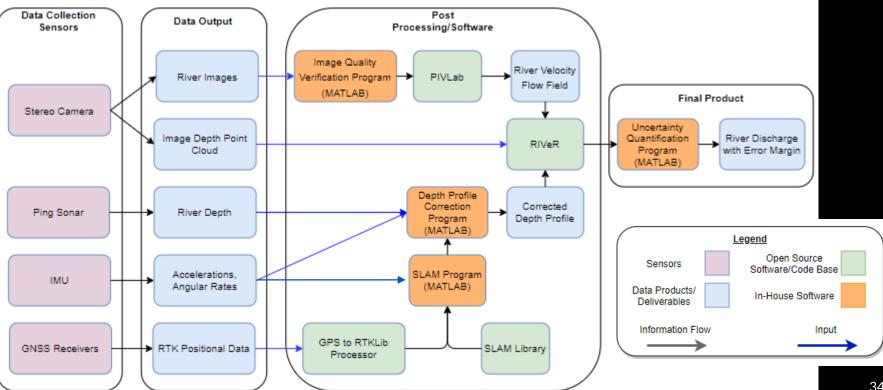
On-Board Flight Software Overview


On-Board Flight Software Overview

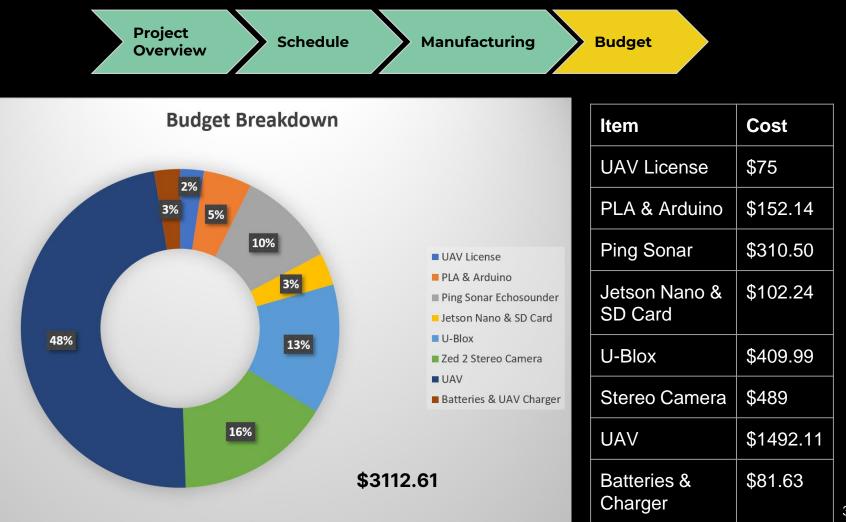
Software Component	Complexity	Priority	Progress	On Schedule?
Communication Program	High	High	Researched interfacing Pixhawk with companion computers	On schedule, plan to work with Pixhawk and Jetson interfacing (mid- February)
Instrument Initiation Programs - ZED Camera, GNSS Receiver	Medium	Medium	Researched running programs on Jetson's Linux OS from command line. Completion is dependent on the Communication Program	On schedule, dependent on Communication Program (end of February)
Data Collection Programs	Medium	High	Skeleton code completed for ZED 2 camera and in progress for GPS receiver	On schedule, ready for testing (mid-February)
Deployment System Initiation Programs	Medium	Medium	Same as Instrument Initiation Programs	On schedule, dependent on Communication Program (end of February)

31

Deployable Unit Flight Software Overview



Deployable Unit Flight Software Overview


Software Component	Complexity	Priority	Progress	On Schedule?
Instrument Initiation Program - Sonar, GPS Receiver, IMU	Medium	Medium	Data flow between SONAR and arduino established Validity of SONAR data verified	On schedule (end of February)
Data Collection Programs	Medium	High	Have completed preliminary testing with SONAR and Arduino	On schedule (end of February)

Post-Processing Software Overview

Post-Processing Software Overview

Software Component	Complexity	Priority	Progress	On Schedule?
Image Quality Verification Program	Low	High	Particle diameter and particle density code written, need to integrate	On schedule, nearly complete (mid-March to April)
Depth Profile Correction Programs	High	Medium	Model finished, need to complete real testing with data & integrate with SLAM output	On schedule (mid-March to April)
SLAM Program	Medium	High	Skeleton code outline	On schedule (mid-March to April)
Uncertainty Quantification Program	High	Medium	Skeleton code, not started	On schedule, will be developed with testing and integration of individual systems (mid-March to April)

Questions?

Backup Slides

Backup Slides Table of Contents

- <u>Expanded Gantt Chart</u>
- <u>Design Changes Since CDR</u>
- <u>Levels of Success</u>
- <u>Test Plan</u>
- <u>Stereo Camera Data Collection Status</u>
- <u>Pixhawk-Jetson Communication Program</u> <u>Status</u>
- <u>On-Board Initiation Programs Status</u>
- Hardware Overview
- <u>Updated Dimensions</u>
- Float Weight Budget
- Deployment Mech Options
- Data Flow Analysis

Epic	JAN	FEB	MAR	APR	МАУ
 R8-86 Manufacturing R8-172 On-Board Payload Housing Pi R8-173 Sonar Float (M) R8-174 Sonar Float Electronics Box (I R8-175 Deployment Mechanism (M) R8-176 On-Board Electronics Connec R8-177 Deployable Unit Electronics C R8-178 Avionics Software Design (S) 	TO DO TO DO TO DO TO DO TO DO TO DO TO DO				
R8-155 Manufacturing Status Review R8-155 Sonar Float Assembly R8-159 Sonar Float Assembly R8-160 Deployment Mechanism Asse R8-161 Payload Housing Assembly R8-156 Test Readiness Review	TO DO TO DO TO DO				
RB-162 Testing					
Re-133 Component Performance Testing Re-138 Float Waterproof Test Re-139 Deployment Mechanism Stam Re-140 Stereo Camera Video Vibratio Re-141 Sonar Instrument Test Re-142 Sonar-IMU Integration Test Re-143 GNSS Receiver Test Re-144 Drone Stability Test Re-144 Avionic Integration Testing Re-145 Jetson Nano Integration Test		TO DO TO DO TO DO TO DO TO DO TO DO TO DO	0		
 RB-146 Arduino Uno Integration Test RB-147 RC Commanding Test RB-148 Emergency Release Test 		TO DO TO DO TO DO			
 R8-136 Power Testing R8-149 Drone Endurance Test R8-150 Float System Power Test R8-151 Drone-Fixed System Power Tr 		TO DO TO DO TO DO	0		
RB-135 Drone Integration Testing RB-152 Drone-Fixed Integration Test RB-153 Deployable Unit Integration Te			6 TO DO TO DO		
RB-137 Full System Integrated Testing RB-154 Full System DITL Test			TO I	00	
RB-157 Spring Final Review RB-158 Project Final Report					

Design Changes Since CDR

Part	Old Design	New Design	Rational
SONAR float	Electronix box sat atop the float	Box is entire hull body	 Fewer parts Lower CG Better cable management Less wasted space Original box was undersized
Stability Mech	Wider plate and longer pivot shoulders	Shorter plate and shorter pivot shoulder	 Account to float dimension change Eliminate shoulder collisions while rotating

Levels Of Success

Drone

	Level 1	Level 2	Level 3
Drone Command & Control	 Drone is capable of being flown manually the entire course of the flight. 	 Drone is capable of being flown manually the entire flight with commands to correct for wind or other disturbances. 	 Drone is capable of using autopilot along a pre-programmed flight path.
Drone Performance	 Drone is capable of carrying payload Drone is capable of flight time of at least 12 minutes carrying payload 	 Drone can fly 12 minutes with 5 minutes of additional flight time for travel 	- Drone can fly for 25 minutes.

Structural and Instrument

	Level 1	Level 2	Level 3
Depth Sensing	 Instrument system can measure river depths of 0.5m-3m in ideal conditions to an accuracy of <1% of the total depth 	 Instrument system can measure river depths of 0.5m-3m in ideal conditions to an accuracy of <0.75% of the total depth. Instrument can measure river depths to 3-5m in ideal conditions with an accuracy of <1% of the total depth. 	 Instrument system can measure river depths to 0.5m-3m in ideal conditions to an accuracy of <0.5% of the total depth. Instrument can measure river depths to >5m in ideal conditions with an accuracy of <1% of the total depth.
Velocity Measurements	 Instrument system can sufficiently capture surface velocity of 0m/s-4m/s. 		
Instrument Positional Measurements	 The instrument system can know its relative horizontal position to an accuracy of +/-3 cm and its vertical position to an accuracy of +/-4 cm using RTK or PPK. The instrument system will know its angular position to an accuracy of +\- 1 degree. 	 Inclusion of GNSS receivers on both the drone and sensor suite. 	 Inclusion of ground control points or use of advanced base station localization techniques such as truthing to survey landmarks. Perform SLAM algorithm to integration receivers and IMU.
Drone Mount	 Instrument suite can be mounted to the selected drone. 		

13

Software and Electronics

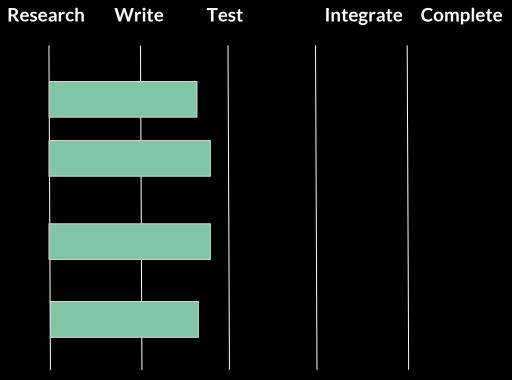
	Level 1	Level 2	Level 3		
Data Handling	 All data is stored in on-board memory 				
Power	 All onboard sensors shall be powered at minimum for the flight duration of 720 seconds 	 All onboard sensors shall be powered for 720 seconds with reserve charge 	 Drone shall be able to draw upon reserve sensor suite power under necessary conditions 		
Velocity Data Post Processing	 The river is modeled as a flat plane. The velocity of the flow is the horizontal component of true velocity. 	 The river is modeled as a 3D surface. The velocity of the flow is the horizontal component of true velocity. 	 The river is modeled as a 3D surface. The velocity of the flow is the true velocity. [See appendix section 7.1 for schematic of flow velocity components]. 		
Data Verification and Validation	 River velocity and depth profile data shall be compared to in-situ measurements to observe system accuracy. 	 Depth profile data shall be compared to that collected by AstraLite. 	 Ground control points shall be collected and integrated into the depth profile model to ensure the model is accurately georeferenced. 		

Test Plan

Test	Date	Location	Status	Phase	
Velocity Post-Processing Test	11/20/2020	Boulder Creek	Complete		
Stereo Camera Data Collection	1/1/2021 - 3/1/2021	Boulder Creek	Under design	2	
Sonar Data Collection	1/1/2021 - 3/1/2021	Boulder Creek	Under design	2	
Float Stability Test	1/1/2021 - 3/1/2021	Boulder Creek	Under design		
UAV Control & Weight Capacity Test	3/1/2021 - 4/1/2021	CU East Campus	Initial planning stage		
Deployment Mechanism & Emergency Release Test	3/1/2021 - 4/1/2021	Boulder Creek	Initial planning stage	2	
Full data software collection test	3/1/2021 - 4/1/2021	CU South Campus	Initial planning stage		
System Integration Testing	3/1/2021 - 4/1/2021	CU South Campus	Initial planning stage		
Final Demonstration	4/1/2021 - 4/19/2021	Colorado Blue River Confluence	Initial planning stage	3	

Stereo Camera Data Collection Program

Language: Python

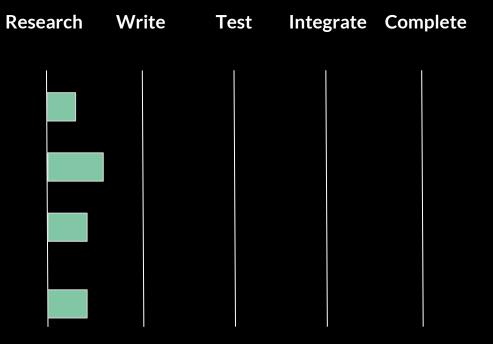

Critical Tasks:

- 1. Adjust camera controls
- 2. Record video data
- 3. Save recorded video to output file on

micro SD card in SVO format

4. Collect 3D depth point cloud data

Estimated Date of Completion: 02/28/2021


Pixhawk-Jetson Communication Program

Language: Bash or Python

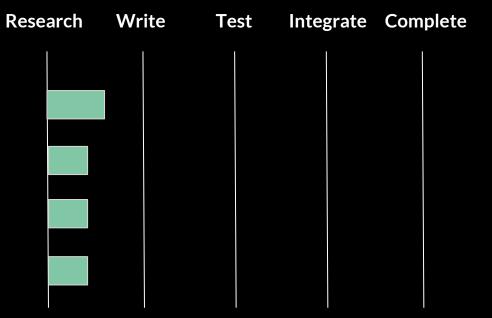
Critical Tasks:

- 1. Send a signal from the ground controller
- 2. Pixhawk receives and processes signal from controller
- 3. Pixhawk forwards the appropriate command to the Jetson Nano
- 4. Jetson Nano calls requested initiation program

Largest Uncertainty: What communication between the Pixhawk and Jetson Nano will look like

Estimated Date of Completion: 02/28/2021

On-Board Initiation Programs

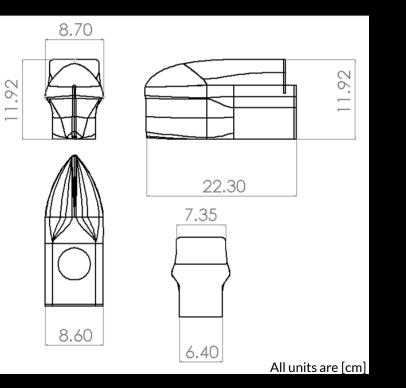

Language: Bash or Python

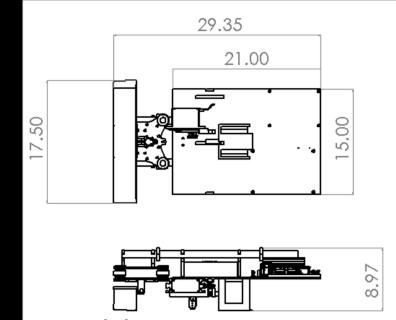
Critical Tasks:

- 1. Respond to commands from Pixhawk controller
- 2. Initiate ZED camera data collection program
- 3. Initiate GNSS Receiver data collection program
- 4. Initiate deployment system functions

Largest Uncertainty: What communication between the Pixhawk and Jetson Nano will look like

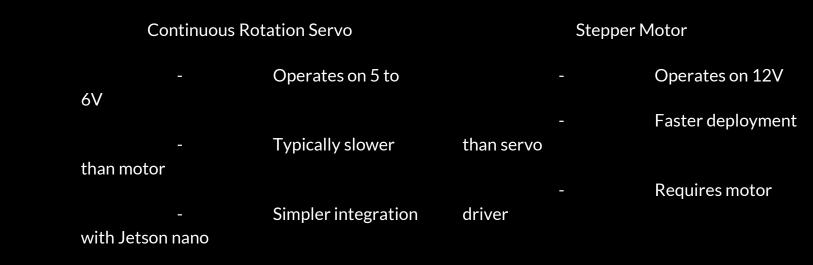
Estimated Date of Completion: 02/28/2021




Hardware Overview

System	Remaining Work	Schedule Status
SONAR Float	 Print part Integrate stability system Install Electronix box 	On-Schedule
Float Stabilizer	 Print individual components Assemble system Integrate into float 	On-Schedule
Electronics Box	 Laser cut shelves and print standoffs Install electronics Integrate into SONAR float 	On-Schedule
Deployment Mech	 Further testing is required Assemble and integrate into mounting plate 	Behind Schedule

Updated Dimensions


All units are [cm]

Float Weight Budget

Part	Weight [g]
Arduino Uno	25
1000mAh Battery	98
SD Shield	5
Wiring	15
Ping Sonar	135
IMU	3
U-Blox	35
Hull	219
Pontoons	364
TOTAL	894

Deployment Mech Options

Data Flow Analysis

On-Board Unit

Component:	Maximum estimated data required
Jetson Nano	6Gb
ZED 2	64Gb
Ublox Receiver	1Gb
Additional Code:	5Gb
Total:	77Gb

Design solution: 128Gb microSD card on Jetson Nano

Deployable Unit		
Component:	Maximum estimated data required	
Ping Sonar	2Gb	
Ublox Receiver	2Gb	
IMU	2Gb	
Total:	6Gb	

Design Solution: Minimum of 8Gb microSD card