<u>Manufacturing Status</u> <u>Review</u>

<u>Range Extending System to</u> <u>Complement Underground</u> <u>Exploration (RESCUE)</u>

Customer: Prof. Eric Frew

University Of Colorado Boulder

Project overview

Project overview: purpose and specific objective

Figure 1: Clearpath Husky

Main Objective

Improve subterranean unmanned ground vehicles' ability to sense locations that the vehicle cannot travel to or are obstructed from the onboard sensors' field of

Proposed Solution

mounted to the top of the UGV, that extends an RGB camera, CO2 Sensor, and AHRS up to 4 meters from its base.

Specific Application

MARBLE's Clearpath Husky being used in DARPA's Subterranean Challenge.

Acronyms

MARBLE: Multi-agent Autonomy with Radar-Based Localization for Exploration **DARPA:** The Defense Advanced Research Projects Agency

(+)

Range Extending System to Complement Underground Exploration (RESCUE) Mission Concept Of Operation

Proje

Project overview

dule

Manufacturing: Hardware Manufacturing: Electronics Manufacturing Software

Subsystems Integration

*Not drawn to scale

Budget/Procuremen

Range Extending System to Complement Underground Exploration (RESCUE) Mission Concept Of Operation

0. RESCUE traveling with MARBLE's HUSKY in "standby mode" 1. RESCUE recieves a command to deploy to a location relative to the HUSKY

Project overview

lule

Manufacturing: Hardware Nanufacturing: Electronics Manufacturing: Software

Subsystems Integration

*Not drawn to scale

Budget/Procuremen

Range Extending System to Complement Underground Exploration (RESCUE) Mission Concept Of Operation

- 0. RESCUE traveling with MARBLE's HUSKY in "standby mode"
- 1. RESCUE recieves a command to deploy to a location relative to the HUSKY
- 2. RESCUE starts deployment process and switches to active mode

Project overview

edule 🔶

Manufacturing: Hardware Manufacturing: Flectronics Manufacturing Software Su Su

tion

*Not drawn to scale

Budget/Procurement

Range Extending System to Complement Underground Exploration (RESCUE) Mission Concept Of Operation

- 0. RESCUE traveling with MARBLE's HUSKY in "standby mode"
- 1. RESCUE recieves a command to deploy to a location relative to the HUSKY
- 2. RESCUE starts deployment process and switches to active mode
- 3. RESCUE collects sensory data

Project overview

edule

Manufacturing: Hardware Nanufacturing: Flectronics Manufacturing Software

Subs Inte

*Not drawn to scale

Budget/Procureme

Range Extending System to Complement Underground Exploration (RESCUE) Mission Concept Of Operation

- 0. RESCUE traveling with MARBLE's HUSKY in "standby mode"
- 1. RESCUE recieves a command to deploy to a location relative to the HUSKY
- 2. RESCUE starts deployment process and switches to active mode
- 3. RESCUE collects sensory data
- 4. RESCUE transmits data to the HUSKY

Project overview

edule

Manufacturing: Hardware anufacturing: Electronics Manufacturing Software

Subsystems Integration

*Not drawn to scale

Budget/Procuremer

Range Extending System to Complement Underground Exploration (RESCUE) Mission Concept Of Operation

- 0. RESCUE traveling with MARBLE's HUSKY in "standby mode"
- 1. RESCUE recieves a command to deploy to a location relative to the HUSKY
- 2. RESCUE starts deployment process and switches to active mode
- 3. RESCUE collects sensory data
- 4. RESCUE transmits data to the HUSKY
- 5. If RESCUE recieves no further commands, RESCUE returns to standy mode

Project overview

chedule

Manufacturing: Hardware anufacturing: Electronics Manufacturing: Software Subsystems Integration

Range Extending System to Complement Underground Exploration (RESCUE) Mission Concept Of Operation

- 0. RESCUE traveling with MARBLE's HUSKY in "standby mode"
- 1. RESCUE recieves a command to deploy to a location relative to the HUSKY
- 2. RESCUE starts deployment process and switches to active mode
- 3. RESCUE collects sensory data
- 4. RESCUE transmits data to the HUSKY
- 5. If RESCUE recieves no further commands, RESCUE returns to standy mode
- 6. Back to stage 0

Project overview

chedule

Manufacturing: Hardware anufacturing: Electronics Manufacturing: Software Subsystems Integration

*Not drawn to scale

Budget/Procureme

West I

*Not drawn to scale

Project Overview: High Levels of Success & CPEs

Manutacturing: Hardware Manufacturing: Electronics

Project Design

- Basic components (figure 2):
 - Extension System: inflatable tube
 - Pressurization System: paintball tanks to provide pressurized air
 - Pointing System: base capable of pointing the extension system
 - End Effector: housing sensors (camera, CO₂ sensor, and AHRS)
- Key characteristics:
 - Total Mass: 7.453 kg (below limit)
 - Total Power Consumption: 272.3W (below limit)
 - Extension distance: 4 m (satisfies requirements)
 - Number of Deployments: up to 14 times.
 - Communication: wireless communication between RESCUE's subsystem and wired connection to the mother rover: MARBLE.
 - **Mounting space:** 15" x 18" x 12"
- Changes since CDR/FFR:

None.

Figure 3: Schematic of the concept, courtesy of Stanford.

Figure 2: CAD of RESCUE's version of the same concept

Figure 1: The arm design tested by RESCUE

FBD

FBD

Project Schedule

Project Schedule: Overview

Figure 1

Figure 3

W5	W6	Feb 21	W8	W9	W10	Mar 21	W12	W13	W14	Apr 21	W16	W17	W18	W.
Feb 01	Feb 08	Feb 15	Feb 22	Mar 01	Mar 08	Mar 15	Mar 22	Mar 29	Apr 05	Apr 12	Apr 19	Apr 26	May 03	May 10
Order P	arts and M	laterials:												
			CO	nstruct Base:		_								
	Manufactu	ring Status Re	view:											
				•	Construct Er	nd Effector :	System:							
						Const	truct Extensio	n Mechanisr	m:					
							Subsystems	Testing						
				Test F	Deedineer Devi		Subsystems	resting.						
				Test	Readiness Rev	ew:								
							AIAA Ma	nuscript:						
									Subsy	stem Integrat	ion & Full S	ystem Testin	g:	
										V V	erification a	and Validatio	n:	
														ct Closin
ALTREAT USANA													FIOJE	ct closin

Project Schedule: Base Manufacturing

Figure 2. The rotating base

Project overview

Hardware

anufacturing: Electronics Manufacturing Software

Integrati

Budget/Procureme

Project Schedule: End Effector Manufacturing

Manutacturing: Hardware Aanufacturing: Electronics

Integration

Figure 2. End Effector

Project Schedule: Extension Mechanism Manufacturing

Figure 2. Main Cylinder/Material Spool Container

Manutacturing: Hardware Nanufacturing: Electronics

Integration

Project Schedule: Testing Schedule

W5 Feb 01	W6 Feb 08	Feb 21 Feb 15	W8 Feb 22	W9 Mar 01	W10 Mar 08	Mar 21 Mar 15	W12 Mar 22	W13 Mar 29	W14	Apr 21	W16	W1
Feb 01	Feb 08	Feb 15	Feb 22	Mar 01	Mar 08	Mar 15	Mar 22	Mar 29	Apr 05	Apr 12	Apr 19	Apr 26
	_	_	_	_	_	_	Subsystem	ns Testing:				
Infla	ation testing							Ũ				
	amera											
	CO2 sen	sor										
	т	ube seals										
		Weight sup	port testing									
				Base rotat	ion/tilt							
				E	nd Effector p	an/tilt						
				🔸 Test I	Readiness Re	eview						
						Pressure	regulation					
						9	pooling					
							Last Machi	ining Day				
	Ľ	•				_		lanuscript:	_			
										/stem Integrat	tion & Full S	ystem To
									raction testin	-		
									sion/retracti		41	
									Full function	command tes	ling	
										ated use		
									Kepe	ateu use		
				Manufactu	ring:	Mapu	facturing:	h.A.c	anufacturing:		Subsysten	26
verview		Schedule		Hardwa			stronics		Software		Integratio	

curement

Manufacturing: Testing Manufacturability

The beginning of the semester:

• The team conducted extensive prototyping to test the extension mechanism mechanics and the payload

Fig. 1 : extension mechanism

Fig. 2 : material failure

Fig. 3 : payload capacity

Main outcomes:

- Understood the mechanisms of extension and time of extension.
- Due to material inaccurate properties (from manufacturer), the tubes would burst at a lower pressure than expected.
- Bursting at lower pressure means that RESCUE cannot support the mass at the end of the arm.
- Currently in the process of purchasing material from another supplier that provides material with more technical details.
- The process of prototyping took long time because the team could not access necessary tools in timely manner due to COVID

Hardware

Manufacturing: Electronics

Manufacturing: Hardware

Hardware Manufacturing: Overview

- 33.33% will be purchased:
 - Within budget limits
- 66.67% will be manufactured
 - Facility needed: machine shop, and 3D printer (3D printer is available off-campus for the team to use with proper health precautions)

Manufacturing: Electronics

Hardware Manufacturing: Material Spool Container

		-			
Functionality:	 Pressurizes to 48.3 kPa (7 psi) to evert arm tube Contains material spooling system End Cap Pressurization: Design point: 21 psi (144.8 kPa); (Operational 7 psi (48.3 kPa), 3 FOS) Main Tube Pressurization: Design point: 8.4 psi (57.9 kPa); (Operational 7 psi (48.3 kPa), 3 FOS) 				
Integration/Access:	 Clamped into base pivot/rotation system (backup slides) Arm material sealed to nozzle end Material spooling system installed during initial assembly 	- Fig			
Materials/Procurement:	 0.953 cm (0.375 in.) cast acrylic caps 119mm (9.375 in.) OD PVC tube Glenmarc G5000 Epoxy: 7600 psi (52.4 MPa) PLA printed material nozzle Pressurization connections (quick disconnect) 				

Figure 3. Material Spooling Example (Credit: Stanford CHARM Lab)

Hardware Manufacturing: Material Spool Container, Cont.

Manufacturing:	 Main tube: jigsaw cut to length from 122cm section Endcaps: Epilog Fusion M2 laser cut Nozzle: LulzBot Taz 6 printed Nozzle-material seal: TBD Epoxy sealed endcaps/nozzle connections 					
Tolerances:	- Airtight epoxy sealing for endcaps/nozzle - ± 1mm endcap radii					
Challenges:	- Epoxy sealed ends - Material spooling system serviceability - Pressurization testing					
Manufacturing Status:	 Planned (initial prototyping success dependence) Design improvements: Nozzle design Nozzle sealing design Bolted endcaps (sealing and maintenance) Gas inflow/outflow hardware 					

Figure 1. Material Spool Container

Figure 2. Material Spool Container Dim. (mm)

utacturing:

anufacturing:

Hardware Manufacturing: Extension mechanism (Material LDPE)

Functionality:	The material that makes the body of the robotic arm. Made out of LDPE
Integration/Access	- Mounted to a spool inside the pressure container - Connects to the nozzle outside the pressure container.
Materials/Procurement	- 6 Mil LDPE tubes to be bought from vendors. - Theoretically should be tolerate up to 138 kPa (20 psi)
Manufacturing	- Material procured from manufacturer and inverted and attached to the spool via glue and to the nozzle via tape.
Challenges	- Finding a material that tolerates high pressures and vendors that provide more technical details in small quantities.
Manufacturing Status	 The first patch obtained bursted at a lower pressure than expected Currently ordered a new material from a different supplier that has more technical details.

Figure 1: LDPE tubing from the original supplier ULINE

6 Mil Black Poly Tubing

.006 Black Poly Tubing on Rolls

Constructed of super heavy duty 6 mil black Low Density Polyethylene (LDPE) film. Opaque, all virgin poly is great for light-sensitive products. Neatly wound on a 3 core with 1 diameter core plug. Manufactured to exact specification to ensure even wall thickness. Can be heat sealed, tied, stapled or taped shut. See our Tubing Dispensers and Thermal Sealers for making your own custom static control bags.

- Extended shelf life
 Tensile strength: 2000 PSI.
 Tearing strength: 400 PSI.
 Elongation (MD%): greater than 150
 Dart impact 250 to 700 gms
 Burst (Mullen) 20 to 60 PSI.
 Heat Sealing Properties:
- Temperature 250 to 375 degrees Fahrenheit.
- Time 0.5 to 3.5 seconds.
 Pressure 30 to 70 PSI.

Figure 2: New LDPE tubing from International Plastics Inc. with more technical information

Manu

Hardware Manufacturing: Overview

B = Backups
 = covered in main presentation

Manufact

Manufacturing: Electronics

Hardware Manufacturing: End Effector Sensor Mounting

Functionality:	- Mechanical assembly holding end effector sensors/electronics in place							
Integration/Access	- Screwed to endcap - Power wired to base - Open assembly (unsealed, easy sensor access)							
Materials/Procurement	- 1.75 mm PLA - End Effector Electronics/Sensors - Fasteners							
Manufacturing	- LulzBot Taz 6 3D Printer (1.75mm PLA) - Hand Assembly, fastener hole drilling - Electronics wiring							
Tolerances	- 3mm printed part thickness (Taz 6, 1.75mm PLA) - 2mm M2 fastener holes							
Challenges	- Fastener length selection							
Manufacturing Status	- In Progress: identifying fastener options to minimize cost (M2 screw standardization)							
Project overview	Schedule Manufacturing: Manufacturing: Hardware Electronics							

Hardware Manufacturing: Tension System

Functionality:	- Provides a tension force on the end cap, holding the end effector on the tip of the arm at all times.
Integration/Access	- Mounted to material spooling container
Materials/Procurement	- 2 x HSR-2645CRH Servos - Nylon fishing line - Glenmarc G5000 Epoxy - PLA printed spools
Manufacturing	 Epoxy seal one end of the fishing line to the spool, measure and wrap 4 meters of fishing line Epoxy seal the spools to the servo heads Remove mounting brackets from servo (cut off with X- acto knife) so that the side is smooth Epoxy seal the smooth side of the servos to either side of the material spooling container
Challenges	- Ensuring sufficient contact area between the round container and flat servo
Manufacturing Status	- Planned, with secondary system being designed (more detail in backup slides)

Figure 1. Complete System

Figure 2: HSR-2645CRH Servo

Figure 3: Servo and spool connected

Manutacturing:
Hardware Manufacturing: Power Wire Spooling

Functionality:	- Spools out end effector power and ground wires as arm extends
Integration/Access	- Unsealed, outside of arm - Mounted to material spooling container
Materials/Procurement	- 5A, 22mm Slip Ring - 20 AWG Power/Ground Wires - Parallax 900-00360-ND continuous rotation servo - Spool (3mm PLA) - Servo/Slip Ring Mounts (3mm PLA)
Manufacturing	- LulzBot Taz 6 printed parts - Slip ring/servo/power/ground connections soldered - Assembly by hand
Tolerances	- 3mm min. PLA part dimensions (Taz 6, 1.75mm filament)
Challenges	- Software for spooling rate/servo control - Mounting dependence on material spool container
Manufacturing Status	- Planned, mounting dependence will require redesign
	·

Figure 1. Complete System

Figure 2. Power Spooling System (without wires)

Figure 3. Power Spooling System Dim. (mm)

Subsystems Integration

Ma

Hardware Manufacturing: Overview

Project overview

Manufac

g: 🔶

ment 38

Manufacturing - Electronics

Electronics Overview: End Effector

Electronics Manufacturing: Wireless Connections

Component:	Wireless Connection Between FPV Camera and Base Receiver	Wireless Connection Between RasPi Zero and RasPi 4
Functionality (purpose):	Transmit the analog (NTSC) video data from the TX on the end effector to the RX on the base.	Transmit the data from the CO2 and IMU to the base Raspberry Pi 4.
Manufacturing process	Purchase the wireless TX and RX.	Purchase the Raspberry Pi Zero W and Raspberry Pi 4.
Points of integration (connects to what?)	Integrates via 5.8 GHz (5 band 40 channel) wireless.	Integrates via IEEE 802.11n WLAN.
Used tools/machines	N/A	N/A
Expected challenges	Selecting a channel that will not interfere with MARBLE.	Integrating the Message Queuing Telemetry Transport (MQTT) broker.
Manufacturing status	Both the TX and RX have been purchased and received.	Both the Raspberry Pi Zero W and Raspberry Pi 4 have been purchased and received.

Wireless Data Budget for Video Transmission:

- NTSC analog video transmitted at 10.37 Mbps data rate.
- 5.8 GHz band maximum data rate: 1300 Mbps

Wireless Data Budget for Sensor Data Transmission:

- CO2 data (192 kbps) and IMU data (115.2 kbps) combine for: 307.2 kbps
- 2.4 GHz band maximum data rate: 150 Mbps

Link budget backup slide

41

Electronics Overview: End Effector

Electronics Overview: Base

Electronics Manufacturing: Voltage Regulation

Component:	Voltage regulation to decrease available input power	
Functionality (purpose):	To reduce the available power from MARBLE to the voltages that RESCUE's components require.	
Manufacturing process	Designed circuit will be soldered using a solderful breadboard. Circuit includes two LM317 voltage regulators, diodes, resistors and capacitors.	
Points of integration (connects to what?)	The input power from MARBLE will be regulated through a breadboard circuit. The reduced power will be connected to the RasPi, the solenoid, the wireless receiver and the RasPi Zero.	
Used tools/machines	Soldering Iron	
Expected challenges	The chosen voltage regulators may not be able to handle the input voltage.	
Manufacturing status	The circuit is designed, has been checked with Dr. Rainville. The parts have been obtained but manufacturing has not begun.	

CATLER OF

Electronics Manufacturing: Solenoid Control

0		_ Input power
Component:	Voltage regulation to allow the RasP to control the solenoid	24V, 25A
Functionality (purpose):	To allow the RasPi to control a component that requires a higher voltage input than the RasPi.	Power Board12V
Manufacturing process	A circuit using a transistor, resistor and diode will be soldered to allow the RasPi to control the Solenoid.	5V via USB-C Solenoid Valve
Points of integration (connects to what?)	The solenoid valve will receive power from the voltage regulation board and will be controlled by the RasPi.	GPIO Connection Raspberry Pi
Used tools/machines	Soldering Iron	
Expected challenges	Securing the wires for repeated deployment	Solenoid Valve
Manufacturing status	The circuit is designed and has been checked with Dr. Rainville. The parts obtained but manufacturing has not begun.	
	Backup for Circuit Diagram	12V Power Input
Project overview	Schedule Manufacturing: Manufactur Hardware Electron	

MARBLE:

.....

Raspberry Pi Model B (R2)

Electronics Overview: Base

Manufacturing - Software

Software Manufacturing: Overview

Complete

Software Manufacturing: Tasks

	ROS Package	RasPi Communications
Functionality (purpose)	Integrate the software side of the project into a comprehensive architecture, facilitating communication, commands, and control	Relay sensor data from end effector to base, as well as pan & tilt commands from base to end effector
Points of Integration (connects to what?)	Integrated with all peripherals except for FPV camera	Interaction with RESCUE's peripherals (i.e. data acquisition, commands)
Resources Available	ROS tools & libraries, ROS wiki tutorials & forums, university faculty	ROS tools & libraries, ROS wiki tutorials & forums, VNC (Virtual Network Computing) viewer, university faculty

Manufacturing: Hardware Manufacturing: Electronics

Software Manufacturing: Status

	ROS Package	RasPi Communications
Expected Challenges	Node / communication ROS architecture between RasPi (base) and RasPi Zero W (end effector)	Wireless communication without a network connection
Proposed Solutions	Separate packages for each node with independent wireless transmission	433MHz transmitter/receiver pairs integrated with RasPi and RasPi Zero W
# of Team Members Assigned	3	4
Expected Completion Date	2/15	2/8
Manufacturing Status	In progress (on schedule)	In progress (on schedule)

Manufacturing: Hardware Manufacturing: Electronics Backup for Software Status

Software Manufacturing: Overview

Complete

Manufacturing - Subsystems Integration

Subsystems Integration:

Unit Testing Systems Testing Integrated Testing

Unit Testing: In Progress

- Test instruments and parts individually
- Ensure that each instrument/part is functional as expected
 - Outputs correct data and/or performs as expected
 - Units could include: Sensors, motors, pressure regulators, microcontrollers, arm material, etc.
 - So far, all units subjected to the unit testing have passed with the *exception* of the LDPE material

Systems Testing:

- Ensure that subsystems operate as planned
- Test subsystems separately:
 - Test the base mobility, material spooling and retraction (including pressurization and venting), sensors data collection and transmission, system response to commands and status report

Integrated Testing:

- Test all subsystems together
 - Go through full proces, start to finish
 - Based on mock firing command
 - Attach RESCUE to a base on the ground and run the test.

Budget/Procurement

Budget Status

Subsystems	
otal Margin	\$1,955
Shipping Margin	\$300
est Equipment Margin	\$250
/lisc. Margin	\$109
Sensors Margin	\$195
Electronics Margin	\$600
lardware Margin	\$500

Procurement Status

	Sensors	Testing Equipment/ Components	Raw Materials/Misc.
Received	- All: IMU, CO ₂ , camera	 Low pressure LDPE Testing valves, gauge Heat sealer 	- 1.75mm/3mm PLA - Gantt software
Pending		- Pressure rated LDPE tubing	
Planned		 Material spooling test components Material alternatives 	- Gantt software subscriptions
Critical/Concerns	- Sensor damage during testing	- LDPE lead time	

Manufacturing: Hardware Manufacturing: Electronics Subsystems Integration

Procurement Status, Cont.

	Hardware	Electronics
Received	- End effector pan/tilt kit	 End effector sensor supporting components (All) FPV transmitter/receiver End effector servo drivers
Pending		
Planned	 End effector fasteners Material container (all) Material spooling (all) Tension system (all) Base pivot/rotation (all) Pressurization system (all) Power spooling (mounts) 	 Base pivot/rotation servos, controllers Power wire spooling wire, slip ring Material spooling servo Pressure regulation solenoid valve, controllers
Critical/Concerns	 Prototype test dependency Material container Pressurization system adaptors 	 Prototype test dependency Base pivot/rotation servos Material spooling servo Pressure system solenoid valves

Subsystems Integration

Backup Slides

Project overview: motivation and background

Background

- "The DARPA Subterranean Challenge seeks novel approaches to rapidly map, navigate, and search underground environments during time-sensitive combat operations or disaster response scenarios." (DARPA)
- MARBLE is CU Boulder's DARPA funded team competing in the systems portion of the Subterranean Challenge in which autonomous robots are tasked with the responsibility of locating various "artifacts".

Motivation

- MARBLE's UGV has **limited sensing** capabilities in comparison to other competitors in DARPA's Subterranean Challenge.
- UGVs offer greater endurance than UAVs, however, **field of view and mobility are limited**.
- Certain obstacles are currently **impassible** and/or out of the FOV of the UGV.

acturing:

anufacturing: Electronics

Back to FBD

Manutacturing: Hardware Manutacturing:

tearation

Backup Slides: Hardware Manufacturing

Backup Hardware Manufacturing: Material Spool Container, Cont.

Challenges	- Epoxy sealed ends - Material spooling system serviceability - Pressurization testing
Manufacturing Status	 Planned (initial prototyping success dependence) Design improvements: Nozzle design Nozzle sealing design Bolted endcaps (sealing and maintenance) Gas inflow/outflow hardware

Figure 2. Body Tube Stresses

- End Cap Pressurization:
- Design point: 21 psi (144.8 kPa); (Operational 7 psi (48.3 kPa), 3 FOS)
- Epoxy seal: $\sigma_{seal} \approx 250 \text{ psi} (1724 \text{ kPa})$
 - o G5000 Epoxy: 7600 psi (52.4 MPa) tensile strength
 - Cast acrylic yield strength: 10,000 psi (68.9 MPa) yield strength
- Main Tube Pressurization:
- Design point: 8.4 psi (57.9 kPa); (Operational 7 psi (48.3 kPa), 3 FOS)
- Main body tube: Hoop (max.) stress (σ 1) \approx 404.3 psi (2.79 MPa)
 - 500 psi (3.44 MPa) PVC yield strength

Hardware Manufacturing: Base Dynamic System

Functionality:	- Rotate 360° and pivot 90° to position the pressure container and inflatable arm
Integration/Access	- Screwed to base - Pivot screwed into upper plate
Materials/Procurement	 Square aluminum tube 4:1 gears 3D printed container attachment Plastic 22.86cm turntable Timing belt gears 2.54cm t-slotted aluminum 2 x DYNAMIXEL XM540-W270-R servos
Manufacturing	- Mill - Bandsaw
Tolerances	- Components machined to 0.08cm
Challenges	 Gears connecting the pivot system Rotating the belt 90° underneath the upper plate
Manufacturing Status	- Planned

Figure 1. The rotating base

Figure 2. The rotating base Dim.(mm)

Subsystems Integration

Hardware Manufacturing: Base Static Plate

Functionality:	- Supports all components and connects to the MARBLE ClearPath Husky			
Integration/Access	- Open, integration for all components and connects directly to the top of MARBLE's Husky			
Materials/Procurement	- 45.72cm x 38.1cm x 0.3175cm aluminum plate			
Manufacturing	- Bandsaw			
Tolerances	- Plate cut to 0.15cm in for length and width			
Challenges	- Secure mounting to MARBLE and of components			
Manufacturing Status	- Planned			

Figure 1. The rotating base

Figure 2. The rotating base Dim.(mm)

Manufacturing: Hardware

Manufacturing

Manufacturin Software

Hardware Manufacturing Backup: Base Electronics Housing

<u> </u>	0					
- Contains all base electronic components						
- Screwed to base as complete assembly						
- 3 mm PLA - M2 Screws (TBD) - All base electronics	[
- LulzBot Taz 6, 3mm PLA - Component assembly by hand - Base electronics soldered as required						
- Printed with 1.75mm PLA						
- Fitting under the turntable						
 Planned: Finalize base electronics (design dependent) determine standardized fastener sizes CAD design Actual print/assembly 						
Calcadula Manufacturing: Manufacturing: Ma	nufacturi					
	 Contains all base electronic components Screwed to base as complete assembly 3 mm PLA M2 Screws (TBD) All base electronics LulzBot Taz 6, 3mm PLA Component assembly by hand Base electronics soldered as required Printed with 1.75mm PLA Fitting under the turntable Planned: Finalize base electronics (design dependent) determine standardized fastener sizes CAD design Actual print/assembly 					

Figure 2. Estimated Base Electronics Housing Dim. (mm)

ardware

utacturing:

ing:

Hardware Manufacturing: Material Spooling System

Functionality:	- Provide the right amount of tubing to be inflated				
Integration/Access	- Contained inside the pressurized container - Will be unable to access once the pressurized container is sealed				
Materials/Procurement	- One Parallax 900-00360 servo - PLA 3D printed spool, spool end caps, servo mount - Timing belt with 1.08cm OD timing gears - Keyed axle				
Manufacturing	 Slot the keyed axle through material spool Place end caps on axle ends and tighten with set screws Epoxy seal the end caps to the inside of the material spool container Epoxy seal the servo to the servo mount, and the servo mount to the inside of the material spool container 				
Tolerances	- Filament tolerance for 3D printed parts, 1 mm for machined parts				
Challenges	- Assembling inside the container				
Manufacturing Status	- Planned (design dependent)				
	Manufacturing: Manufacturing				

Figure 2. Material Spooling Container

Figure 1. Complete System

Figure 3. Material Spooling Dim. (mm)

Project overview

ufacturing:

Mar

Hardware Manufacturing: Pressurization System

Functionality:	Provides pressurized air to the tank to support the inflatable arm		
Integration/Access	Open, outside of the pressurized container, easily accessible		
Materials/Procurement	 Adaptors Ninja SL2 Carbon Fiber Pressure Tank Swagelok Pressure regulators 		
Manufacturing	None, assembly by hand		
Tolerances	N/A		
Challenges	Pressure testing		
Manufacturing Status	Planned without the details, waiting for tests of the inflatable arm and the tension system		

Hardware Manufacturing: Pressure Tank Holder

Functionality:	- Holds the pressure tank in position on the robot, providing enough security from unwanted accidental collisions			
Integration/Access	- Open, away from the spooling mechanism			
Materials/Procurement	- 3D printer PLA			
Manufacturing	- LulzBot Taz 6 printed parts - Assembly by hand			
Tolerances	- 3mm min. PLA part dimensions			
Challenges	- Secure mounting to the top of the robot			
Manufacturing Status - Unplanned, depends on prior tests and possible redesi of the entire design				

Figure 1. Complete System

Manufact

Hardware Manufacturing: Tension System V2

- Constant force retractors and springs
- No motors, no software, overall a much simpler design
- Potentially two lines on top, one on bottom to balance the moment from the EE
- Difficulty: finding a 4 meter long, lightweight solution that doesn't apply too much force

side f	iew .
	Com
	~3 in = 0.25 Ft
Moment	the tension springs need to counter act = 0.33 16. Ft
1.1	
lets	put 3x on top, 1x on bottom
1. 4.	iner rudius ~ 4.75 in = 0.40 ft

Backup Slides: Budget/Procurement

Procurement Status Backup: Received

Hardware	Electronics		Sensors	Testing Equipment/ Components	Raw Materials/Misc.
Micro Pan-Tilt Servo Kit	Bright PI Raspberry Pi Lighting System	SparkFun DC/DC Converter Breakout	Yost Labs 3 Space Embedded IMU	ULINE 6 mil heavy duty poly tubing roll - 9" x 1,000'	Gantt Chart Software subscription reimbursement (Nov, Dec, Jan)
	Raspberry Pi Model 4 B 8 GB	Block Power Plug	SCD30 Co2 Sensor	Plastic Bag Heat Sealer	2.85 mm PLA, 1 kg
	Adafruit 16- Channel 12-bit PWM Servo Driver	USB Micro B Plug Breakout connection	RunCam Split 3 Micro FPV Camera	1/4 NPT Quick Disconnect Hose Coupling	1.75 mm PLA, 1kg
	Raspberry Pi Zero WH (Zero W with Headers)	Analog to digital video converter		1/4 NPT Ball valve	
	SparkFun Snappable Protoboard	Wireless FPV Transmitter and Receiver For Drones		0-15 PSI Mechanical Pressure gage	
		RunCam TX200U FPV Transmitter			
Project overview Schedule Manufacturing: Manufacturing: Subsystems Budget/Procurement 72					
Procurement Status Backup: Planned Hardware (Nothing Pending)

End Effector	Material Container	Material Spooling	Tension System	Pivot System	Rotation System	Pressurization System	Power Spooling System	
End Effector Mounting Fasteners	Material Container Tube	Material Spool Mounts	Tension spools	Pivot Supports Rectangle	Rotation Belt	Paintball Pressure Tank	Slip Ring	
End Effector Printed Frame	Material Container Caps	Material Spool Axle	Tension Spool Motors (2)	Pivot Bearings	rotation gears	Hose	Slip ring mounting parts	
IMU Breakout Mounting Board	Material Container Nozzle	Material Spool	Tension Spool Attachment System	Pivot Axle	rotation shaft	Pressure Regulator	Power Spooling System Mounting	
End Effector Cap	Epoxy/Container Sealing	Material Spool Servo Mount		Pivot System Gears (1 2cm D and 4 8cm D)	Rotation Crown gears	Solenoid	Power Spool	
		Material Spool Belt		Pivot to Container Connection		Adaptors		
		Material Spool Belt gears		Pivot System Turntable				
D COMPLEMENT Up.				Al Pivot Support Plate				
				Pivot Base Offsets				
Proj	iect overview	Schedule	Manufacturing: Hardware	Manufacturing: Electronics	Manufacturing: Software	Subsystems Integration	Budget/Procurement	

Procurement Status Backup: Planned Continued (Nothing Pending)

Elec	ctronics	Sensors	Testing Equipment/Components	Raw Materials/Misc.
PWM Servo Controller	Pivot servo		Higher Pressure LDPE Tubing	Insta Gantt Subscriptions
Arm Power Wiring	Rotation servo			
Solderfull Breadboard	Material Spool Servo			
LM317(x2)	Power wire servo			
Solenoid Valve	Raspberry Pi DYNAMIXEL Servo Controller Board			

74

Budget Status (Backup)

\$1,133 Hardware Hardware Margin \$500 \$1,310 **Electronics Margin** \$600 \$195 **Sensors Margin** \$195 \$96 Misc. Margin \$109 **Test Equipment** \$254 **Test Equipment Margin** \$250 \$57 **Shipping Margin** \$300 \$5,000

Budget Backup: Current Expenses: \$820.92

Project overview Schedule Manufacturing: Manufacturing: Subsystems Budget/Procurement 76

Budget Backup: Current Expenses: \$820.92

dule 🔶

Manufacturing:

Manufacturing:

Budget Backup: Overview (Previous Estimate)

Backup Slide: Off Ramp Option: X-Rail

- COTS option, all components commercially available
- Adding 2 x 12.45in. extension lengths would provide max ≈ 74in. ≈ 1.88m
 - Required rails, extension line, cabling = 0.45kg
- 49.8in. kit supports ≈ 0.64 kg. In **horizontal** orientation.
 - Performance indication from ServoCity, verification required.
- Base actuation, end effector, instrument design elements experience minimal change
 - PDR/Redesign work is highly applicable
 - Removes need for any pressurized components
 - Would require additional servo analysis/selection
- Decision Point: NLT 2/7
 - Depends on inflation/weight support testing results

Wireless transmissions between Raspberry Pi units

- Limited resources on establishing communication without network connection
 - Operating under presumption that any MARBLE network is off-limits
- Switching to wired connection is not compatible with overall design

Back to Software Overview

Establishing communications with MARBLE's system and RESCUE's peripherals

- Ensuring RESCUE's software is compatible with and does not interfere with MARBLE
 - Procuring a means of testing with MARBLE's system or imitation of such
- Testing of communications and accuracy of instruments and actuators
 - Timing largely dependent on mechanical subsystem manufacturing completion

Manutacturing: Hardware Manutacturing: Electronics

Detailed Software Status

Software Component	Expected Challenges	# of Team Members Assigned	Resources Available	Projected Completion Date
Inter-RasPi Communication	ROS-based communication without wireless internet connection	4	Raspberry Pi tutorials, ROS documentation	2/8
ROS Package	Possibility of separate packages for RasPi and RasPi Zero	3	ROS wiki tutorials, ROS libraries	2/15
Sensor/actuator Interfacing	Remote involvement from software team	4	Instrument datasheets, ROS libraries, ROS wiki tutorials	2/22
RESCUE-MARBLE Availability of MARB Communication team & hardware		2	ROS wiki tutorials, MARBLE team (via Dr. Frew)	3/22 Back to Software Star

Electronics Manufacturing: Sensors Connection to RasPi Zero

	CO2 Sensor	IMU	LED Board
Functionality (purpose):	The purpose of this sensor is to provide readings of the CO2 content of the local air.	The purpose of this sensor is to provide readings of the orientation relative to the base.	The purpose of this sensor is to provide a lighting source to improve video quality.
Manufacturing process	Purchase the sensor and assemble the I2C circuit.	Purchase the sensor and assemble the I2C circuit.	Purchase the sensor and assemble the I2C circuit.
Points of integration (connects to what?)	Connects to the Raspberry Pi Zero via I2C connection(SCL and SDA).	Connects to the Raspberry Pi Zero via I2C connection(SCL and SDA).	Connects to the Raspberry Pi Zero via I2C connection(SCL and SDA).
Used tools/machines	N/A	N/A	N/A
Expected challenges	Securing the wires for repeated deployment.	Securing the wires for repeated deployment.	Securing the wires for repeated deployment.
Manufacturing status	The CO2 sensor is purchased and received.	The IMU is purchased and received.	The LED board is purchased and received.
Project overview	Schedule		ufacturing: Manufacturing: ctronics Software

End Effector Electronics: Sensor Diagram

Electronics Manufacturing: Voltage Regulation Circuit to RasPi Zero

	Power Source and Ground Wires to the Voltage Regulator	Voltage Regulator to Micro- USB Converter		
Functionality (purpose):	Down step the power from 12V to 5V for the Raspberry Pi Zero W.	Pipe the power into a micro-USB connector that is usable by the Raspberry Pi Zero W.		
Manufacturing process	Purchase the voltage regulator.	Connect GND and VIN ports from the output of the voltage regulator.		
Points of integration (connects to what?)	Integrates with the micro-USB converter.	Integrates with the PWR micro- USB port on the Raspberry Pi Zero W.		
Used tools/machines	N/A	N/A		
Expected challenges	Ensuring a connection from the power spool that is robust to the tension from the lines.	Ensuring a connection that is robust to repeated deployment.		
Manufacturing status	The voltage regulator has been purchased and received.	The micro-USB converter has been purchased and received.		
Project overview	Schedule Manufacturing: Hardware	Manufacturing: Manuf Electronics Sof		

End Effector Electronics: From Base Power to RasPi

Base power passes through a voltage regulator to obtain the necessary 5.1V

Using a USB MicroB breakout the power will be transferred to the RasPi Zero W

Hardwa

Manutacturing Electronics Manufacturin Software

Subsyster Integratio

Budget/Procuremer

Electronics Manufacturing: Video Transmission Link Budget

Base Electronics : Voltage Regulation Circuits

Base Electronics: Solenoid Circuit

<u>Back</u>

Electronics Manufacturing: USB, PWM, GPIO & Ethernet Connections to RasPi

	USB Connection to Dynamixel Servos	Ethernet Connection to MARBLE	PWM Connections to Spooling Servos
Functionality (purpose):	The purpose of these servos is to rotate and pivot the base which will be controlled through the RasPi	To enable MARBLE to send and receive communications with RESCUE	These four servos that will spool both the arm material, tension cables and the power cable will be controlled through the RasPi
Manufacturing process	Purchase the servos	Purchase an ethernet cable	Purchasing the servos and RasPi servo control hat.
Points of integration (connects to what?)	There is a USB connection between each servo and	The RasPi will be connected to MARBLE through the gigabit ethernet cable	The servo control hat will directly connect to the RasPi and the servos will connect to the hat
Used tools/machines	N/A	N/A	N/A
Expected challenges	Securing the wires for repeated deployment	Securing the wires for repeated deployment	Securing the wires for repeated deployment
Manufacturing status	The CO2 sensor is purchased and received	The ethernet cable has not been ordered yet	The material spool servos has been ordered but the other servos have not

Back

Wiring Diagram

Design Solution: Additional CAD

Figure 1: Top View

Figure 2: Back View

Design Solution: CAD

Levels of success: detailed

Table 1: Levels of Success

	Level 1	Level 2	Level 3		Level 1	Level 2	Level 3
Sensing	All sensors can be utilized to	All sensors can be utilized	All sensors can be uti-	Response	The total time to go from	The time of responding to	The time between re-
Range	effectively sense their respec-	to effectively sense their	lized to effectively sense	to	standby state to active state	firing commands should be	ceiving deactivation
	tive artifacts within 3 meters of	respective artifacts within	their respective artifacts	commands	shall be $\leq 30[s]$.	instantaneous $\leq 1[s]$	commands returning to
	MARBLE's Husky in any given	4 meters of MARBLE's	within 5 meters of MAR-				standby state shall be
	accessible direction.	Husky in any given accessi-	BLE's Husky in any				$\leq 120[s]$
		ble direction.	given accessible direc-	Usage	The sensor apparatus can be	The sensor apparatus can be	The sensor apparatus
			tion.		deployed and utilized ≤ 5 times.	deployed and utilized ≤ 10	can be deployed and uti-
Physical	Sensor apparatus has the abil-	Sensor apparatus has the	Once the sensor appara-			times.	lized ≤ 15 times.
Reach	ity to physically reach a lo-	ability to physically reach	tus is re-positioned, the	Endurance	Sensor system is able to main-	Sensor system is able to	Sensor system is able to
	cation that is along an unob-	a location that is along an	mechanical mount for		tain an active state where it is	maintain an active state	maintain an active state
	structed radial path at least 1	unobstructed radial path at	the visual artifact signa-		sensing for 25% of MARBLE	where it is sensing for 50% of	where it is sensing for
	m, but not more than 5m from	least 2.5 m, but not more	ture sensor shall be ca-		average competition operation	MARBLE average competi-	75% of MARBLE aver-
	its mounting location.	than 5m from its mounting	pable of rotating $\geq 90^{\circ}$		(30 minutes) and a standby	tion operation (60 minutes).	age competition opera-
		location.	about at least one axis.		state for 100% average compe-		tion (90 minutes).
Artifact	The sensor suite shall be able	The sensor suite shall be			tition operation and setup time		
Sensing	to visually sense the following	able to sense and detect			(135 minutes).		
	brightly colored artifacts: hu-	CO_2 at approximately 2000		Communi-	Communicate sensing data	Communicate sensing data	Communicate sensing
	man survivor, backpack, fire	parts per million concentra-		cation	with MARBLE before next	with MARBLE upon re-	data with MARBLE
	extinguisher, and rope.	tion.			deployment. (1-Way)	quest. (2-Way)	asynchronously as the
System	Sensor apparatus able to de-	Sensor apparatus is capable					sensor system operates.
Position	termine and report its position	of reporting its orientation					(2-Way continuous)
and Orien-	relative to the Husky within 1	relative to the Husky with					
tation	meter accuracy of its ground	$\leq 5^{\circ}$ accuracy.					
	truth location.						

Extension Method Off Ramp 1: Eversion Arm, Reduced Length

RESCUE will decrease the overall length of the tube causing:

- Reduced risk of buckling
- Decrease overall tube mass
- Increase payload mass capability greater FOS
- Faster reach

Extension Method Off Ramp 2: X Rail System

- Off the shelf option, all components commercially available
- Adding 2 x 12.45in. extension lengths would provide max ≈ 74in. ≈ **1.88m**
 - Required rails, extension line, cabling = 0.45kg
- 49.8in. k it supports ≈ 0.64 kg. In **horizontal** orientation.
 - Performance indication from ServoCity, verification required.
- Base actuation, end effector, instrument design elements experience minimal change
 - PDR/Redesign work is highly applicable

Back to the Directory

96

