CU AES Senior Projects 2016-2017 : REPTAR TRR



**Test Readiness Review** 

## **REPTAR** REcoverable ProTection After Reentry

Team: Calvin Buechler, Kevin Faggiano, Dustin Fishelman, Cody Gondek, Lee Huynh, Aaron McCusker, William Sear, Himanshi Singhal, Craig Wenkheimer, Nathan Yeo
Customer: Steve Thilker, Collin Baukol, Cody Humbargar, Jason Latimer (Raytheon)
Advisor: Dr. Brian Argrow



University of Colorado Boulder



# Overview

CU AES Senior Projects 2016-2017 : REPTAR TRR

2

REPTAR

**Raytheon** 

REPTAR shall assist in the recovery of a de-orbited 1U Raytheon Payload. The mission begins once the SmallSat has re-entered the atmosphere and has reached subsonic velocity. REPTAR shall facilitate the subsonic deceleration, landing, location determination, and location transmission portions of the mission.

Recovery of payload enables:

- Lower mission costs by re-using the payload
- Obtain samples collected by payload on-board



CU AES Senior Projects 2016-2017 : REPTAR TRR

1) Launch REPTAR components survive launch conditions as payload attached to a bus. Mission Concept of Operations

5

6

2) Orbit/StandbyREPTAR Components survive on orbit conditions. Batteriescharged by bus.

6) Land and Recovery REPTAR protects payload during ground contact and transmit location.

5) Deceleration **Raytheon** Decelerate to subsonic speeds.

### 4) Re-entry Receive command from bus to power REPTAR systems. REPTAR separation from bus. Re-entry completed by Raytheon System.

Legend

**REPTAR Solution** 

Raytheon Solution

### **Raytheon**

#### 3) De-orbit

Receive command from bus to power REPTAR systems. Re-entry burn.

### Descent

After being decelerated to subsonic speeds, REPTAR activates atmospheric deceleration systems to protect the payload.

### Decelerate

Slows to safe landing speeds by deploying a parachute. Transmits location during descent.

### Land

Lands payload safely within launch loading requirements.

REPTAR

**REcoverable ProTection After Reentry (REPTAR)** 

**Concept of Operations(CONOPS)** 

Transmits location to recovery element.

**Transmit Location** 



Recovery team receives location.



## **Levels of Success**



| Criteria | Volume                                                                                 | Instantaneous G-Loading                                                               | Communication                                             |
|----------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Level 1  | The volume of REPTAR including<br>payload shall not exceed a<br>maximum of 6U Standard | The payload shall endure a<br>maximum instantaneous G-<br>loading of less than 40 G's | REPTAR shall beacon its location over a range of 20 miles |
| Level 2  | The volume of REPTAR including<br>payload shall not exceed a<br>maximum of 4U Standard |                                                                                       | REPTAR shall beacon its location over a range of 30 miles |
| Level 3  | The volume of REPTAR including<br>payload shall not exceed a<br>maximum of 3U Standard |                                                                                       | REPTAR shall beacon its location over a range of 45 miles |
|          |                                                                                        |                                                                                       |                                                           |



CU AES Senior Projects 2016-2017 : REPTAR TRR

6

## Mission Timeline and FBD



**On-Orbit Standby** 

• Maintain battery charge Descent

REPTAR

- Triggered by bus signal
- Determine altitude
- Attain GPS lock

Deceleration [3,500 m]

- Triggered by parachute deployment altitude being reached
- Deploy parachute, bottom panel, and side panels.
   Transmission
- Triggered by deployments
- Transmit Location

## **Key Components**







## **Critical Project Elements**



### Raytheon

| Subsystem | CPE                   | Explanation                                                                                                                              |
|-----------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Descent   | Parachute Deployment  | If the parachute does not deploy and act properly, it will be nearly impossible to achieve any of the mission requirements.              |
| Landing   | Leg Deployment        | The legs lower the maximum G loading the vehicle experiences. Without successful leg deployment, safe landing will not be satisfied.     |
| Landing   | Side Panel Deployment | The side panels assist in lowering the maximum G loading in the case of windy weather where the vehicle will have a horizontal velocity. |
| Avionics  | Subsystem Interaction | Ensuring that the avionics integrate with the other subsystems will be crucial to success of the mission.                                |



10

## **Executive Summary**

### • Changes since MSR:

- Vibration test has been removed from schedule
  - Current system structure not fully representative of the final system
    - Thermal Protection System
    - Payload
- Aluminum cover removed from parachute housing
  - TPS is required to protect REPTAR on-orbit
- Schedule:
  - 11 days of margin incorporated before drop test
- Budget:

11

- All materials in-house or ordered
- Drop Test is only remaining major expense
- \$622.62 margin no overall concerns
  - CU AES Senior Projects 2016-2017 : REPTAR TRR





REPTAR

**Raytheon** 

# Schedule

CU AES Senior Projects 2016-2017 : REPTAR TRR

10/3/17



## TRR to Drop Test

## REPTAR

| Mar 5 - Mar 11 '17 Mar 12 - Mar 18 '17 Mar 19 - Mar 25 '17 Apr 2 - A                                                | pr 8 '17  | Apr 9 - Apr 15 '17 |
|---------------------------------------------------------------------------------------------------------------------|-----------|--------------------|
| S     M     T     W     T     F     S     M     T     W     T     F     S     M     T     W     T     F     S     M | T W T F S | S M T W T F S      |
| Altimeter Testing                                                                                                   |           |                    |
| Battery Testing                                                                                                     |           |                    |
| Chute Deployment Testing w/ Black Powder                                                                            |           |                    |
| lev A Bringup R                                                                                                     |           |                    |
| Foam Impact Testing                                                                                                 |           |                    |
| t for Legs and Side Deployment                                                                                      |           |                    |
| Day in the Life Testing                                                                                             |           |                    |
| → EGSE and Testing Device Verification                                                                              |           |                    |
| -Antennae Testing                                                                                                   |           |                    |
| ▲ 03/06/2017 TRR Due                                                                                                |           |                    |
| ◆ 03/00/2017 HIX Bue                                                                                                |           |                    |
|                                                                                                                     |           |                    |
|                                                                                                                     |           |                    |
| Integrate Side Pariels to Main Venicle                                                                              |           |                    |
| Integrate Legiand Panel De                                                                                          |           |                    |
| Integrate Board to Main Veh                                                                                         |           |                    |
| Integrate Battery System to I                                                                                       |           |                    |
| → → → → → → → → → → → → → → → → → → →                                                                               |           |                    |
| Integrate Legs to Main Vehicle                                                                                      |           |                    |
| Integrate Ante                                                                                                      |           |                    |
| → Integrate EGS Vehicle                                                                                             |           |                    |
|                                                                                                                     | •         | Drop Test          |

# Budget

CU AES Senior Projects 2016-2017 : REPTAR TRR

10/3/17

### **REPTAR BUDGET**

| \$5,000.00                                   |                             |                       |         |  |
|----------------------------------------------|-----------------------------|-----------------------|---------|--|
| \$4,500.00                                   |                             | \$622.62 (Margin)     |         |  |
|                                              |                             | \$400 (Drop Test)     |         |  |
| \$4,000.00                                   | \$293 (Side Panels)         |                       |         |  |
| \$3,500.00                                   | \$338 (Parachutes)          |                       |         |  |
| \$3,000,00                                   | \$467<br>(Frame Components) |                       |         |  |
| <i>,,,,,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,, | \$520 (Board+)              |                       |         |  |
| \$2,500.00                                   |                             |                       | \$5,000 |  |
| \$2,000.00                                   | (Communications)            | \$3,977.38<br>(Spent) |         |  |
| \$1,500.00                                   | \$606<br>(Aluminum Legs)    |                       |         |  |
| \$1,000,00                                   |                             |                       |         |  |
| <i>,,,,,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,, | \$1,173                     |                       |         |  |
| \$500.00                                     | (Other)                     |                       |         |  |
| \$-                                          |                             |                       |         |  |

Projected Total With Margin

Provided Budget

# Test Readiness

CU AES Senior Projects 2016-2017 : REPTAR TRR

10/3/17

## Past Testing – Descent Subsystem

| P                 | Past Testing – Descent Subsystem                                |                                                       |                                                                                                                                                      |
|-------------------|-----------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test              | Measurement Sought                                              | Requirement<br>Validation                             | Test Takeaway                                                                                                                                        |
| <u>Plate Load</u> | Deformation due to chute<br>deployment                          | Verifies structural integrity<br>of base plate        | Plate is strong enough to<br>withstand the force of<br>chute deployment                                                                              |
| <u>Drag</u>       | C <sub>d</sub> of Parachute                                     | Validate landing speed                                | <ul> <li>C<sub>d</sub> for undamaged</li> <li>parachute is within</li> <li>threshold, C<sub>d</sub> for damaged</li> <li>parachute is not</li> </ul> |
| BP Ignition       | Amount of black powder<br>needed to eject chute from<br>housing | Proves chute can be<br>deployed using black<br>powder | Parachute ejected properly<br>10 times out of 11 in<br>chosen configuration                                                                          |

## Past Testing – Landing Subsystem

| F                                              | REPTAR                                                                   |                                                                                                                               |                                                                                                       |
|------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Test                                           | Measurement Sought                                                       | Requirement<br>Validation                                                                                                     | Test Takeaway                                                                                         |
| <u>Leg and Side Panel</u><br><u>Deployment</u> | Percentage of time that legs<br>and side panels deploy in 6<br>m/s winds | Validates reliability of deployables                                                                                          | Little concern about proper<br>deployment of legs and<br>panels                                       |
| Leg Locking                                    | Amount of torque needed<br>to overcome leg locking<br>mechanism          | Higher torque required to<br>overcome leg locking<br>mechanism means lower<br>likelihood legs fold when<br>they impact ground | Torque at break was<br>~0.165Nm causing a screw-<br>in design to be created for<br>a higher tolerance |
| <u>Foam Impact</u>                             | Determine crushing<br>characteristics of aluminum<br>foam legs           | Verify vehicle can be<br>slowed to a stop while<br>staying below 40 G's                                                       | Legs compressed almost<br>exactly as anticipated                                                      |

## **Avionics Status Dashboard**





## Day-In-The-Life (DITL) – Flight Dress Rehearsal **REPTAR**



Altimeter Readings from EGSE

CU AES Senior Projects 2016-2017 : REPTAR TRR

21



## Parachute Deployment

### **Raytheon**

- Setup Details:
  - Very similar to flight article
- **Repeatability:** 
  - Follow Checklist Procedure
- Risk Reduction:
  - Increases confidence that chute will deploy
- Expected Results:
  - 0.4 g of Black Powder to Eject Chute
- Actual Results:
  - Successful Ejection: 10/11 = 90.9%
  - Successful Canisters: 34/36 = 94.4%
  - Overall Confidence of Deployment: 85.8%

Parachute Housing

U-bolt





10/3/17

## Parachute Deployment



**Raytheon** 





## Full System Drop Test

CU AES Senior Projects 2016-2017 : REPTAR TRR

10/3/17

## Full System Drop Test



### Raytheon

| Scope             | Drop REPTAR from airplane in controlled environment                                                                | <ul> <li>Requires aircraft, large<br/>drop zone</li> </ul>                                                                                    |
|-------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Rationale         | Full system drop test is the<br>culminating test that provides<br>proof of concept and full<br>integration testing | <ul> <li>Testing high speed<br/>parachute deployment</li> <li>Location determination<br/>during descent</li> <li>G loading profile</li> </ul> |
| Risk<br>Reduction | Reduces risk by validating in-flight<br>performance before real flight<br>with expensive payload                   |                                                                                                                                               |



10/3/17

CU AES Senior Projects 2016-2017 : REPTAR TRR

### **Drop Test Logistics**

## REPTAR



- April 4th (primary date) and April 11th (backup date)
- No-go days: Surface wind of more than 30 knots (34.5 mph) or cloud clearance of less than 1000 ft from the desired drop altitude





## **Drop Test Measurement Unit**

- Where?
  - Housed where Raytheon Payload would be stored in actual mission
- How?

.

- Accelerometer (ADXL377, +/- 200G with an error of 1G)
- Raspberry Pi Camera
- Quantities from the main avionics:
  - Altitude (Altimeter)
  - Location (GPS)
- Mass and Volume
  - Mass: 177 g of instruments + 1157 g of ballast
  - Volume: 1U
- Additional Measurements will be taken from the plane





10/3/17



REPTAR

### **Expected G-Model**

## REPTAR

### Raytheon





CU AES Senior Projects 2016-2017 : REPTAR TRR

10/3/17

## **Drift Zone and Recovery**

## REPTAR





29

#### Monte Carlo Parameters

Initial Velocity = 32.0 [m/s] Initial Velocity Variance = 5.0 [m/s] Min Alt = 12500 [ft], Alt Variance = 200 [ft] Heading Range = 20 [deg] Pos. Variance (x) = 500 [m]Pos. Variance (y) = 500 [m]Pos. Shift (x) = -250 [m]Pos. Shift (y) = -250 [m]Wind Vel. min = 5 [kts] Wind Vel. Variance = 5 [kts] Wind Dir. min = 230 [deg] Wind Dir. Variance = 40 [deg] Chute Open Alt Min = 1900 [m] Chute Open Variance = 200 [m] Standard Deviation = 213.5 [m] Known Winds 2520 2530 2540 2545



CU AES Senior Projects 2016-2017 : REPTAR TRR

## Drop Zone

## REPTAR

REPTA







EPTAR TRR

## **Consequences** Table



| Quantities              | All<br>golden! | Location Transmission<br>Fails | Landing Fails | Parachute Fails | All fail |
|-------------------------|----------------|--------------------------------|---------------|-----------------|----------|
| G's experienced         | 37             | 37                             | 52            | 840             | 840      |
| Location<br>Determined? | Yes            | No                             | Likely        | No              | No       |
| Time to Land (s)        | ~86 s          | ~86 s                          | ~86 s         | ~32 s           | ~32 s    |
| Data survived           | Yes            | Yes                            | Yes           | Likely          | Likely   |



CU AES Senior Projects 2016-2017 : REPTAR MSR

10/3/17

## Post Flight Analysis

Compare:

- G-loading experienced during flight
- Expected drift vs actual drift
- Expected time to land vs actual time to land

Review:

Leg deployment footage



10/3/17

REPTAR

**Raytheon** 

## Summary of Confidence for Drop Test

### • Descent System:

• 85% confidence of parachute deployment

### Landing System:

- High confidence that legs and side panels will properly deploy
- 95% confidence towards aluminum foam landing characteristics
- Concerns towards uncontrollable landing environment
- Avionics System:
  - High confidence in avionics system as designed
  - Flight environment can introduce issues in communication
- Overall:
  - Current: 81% confidence that full system will perform successfully in drop test
  - Further testing to reduce variance



REPTAR

**Raytheon** 

# Questions?

CU AES Senior Projects 2016-2017 : REPTAR TRR

10/3/17

## Parachute Drag Test

### • Objective:

- Determine the coefficient of drag of good and bad parachute
- Measurement Sought:
  - Force (lbs) and Wind (MPH)
- Expected Value:
  - Based on provided info from manufacturer
    - Good parachute ~ 2.2
    - Bad parachute < 2.2
- How it Reduces Risk:



- Higher coefficient, lower landing velocity, stay under 40 G's during landing
- Too high of coefficient, go over 40 G's during deployment



REPTAR

**Raytheon** 

CU AES Senior Projects 2016-2017 : REPTAR TRR

## Parachute Drag Test Cont.



**Raytheon** 

### • Results:

- Good parachute n = 23, Avg = 2.42, Std = 0.529
- Bad parachute n = 32, Avg = 2.09, Std = 0.553

### • What This Means:

- If parachute Cd is < 2.05, landing is over 40 G's
- Bad parachute, less than 66% confident will be more than 2.05
- Good parachute, slightly less than 66% confident will be more than 2.05



10/3/17
## Parachute Drag Test

# REPTAR

### **Raytheon**

- Parachute shock chord will be attached to rope which will be attached to a digital scale with hook
- The digital scale will be attached to the rod of a headrest in a car
- The rope will be approximately 4 meters in length
- Team member will begin to accelerate car to 13 mph
- Team member in back seat will slowly release line of rope as parachute gets taut
- Car will stay at 13 mph, team member in back will record different values of force from scale
- Third team member will hold anemometer out window and record wind data as backseat member records force
- Comparing the velocity and force will allow calculation of the coefficient of drag of parachute
- Important because if coefficient is off, landing team must prepare for different landing speed

10/3/17





## Black Powder Tests, No Parachute

- PVC Housing created to hold ejection canister
- Pressure gauge attached to bottom of PVC Housing
- High speed camera placed on gauge
- Canister connected to 12V, 5A power supply
- Top of PVC sealed down to prevent leaks
- From Model to create 20 psi equilibrium, 0.128 g of powder needed
- Results:
  - High speed camera showed equilibrium pressure of 24 psi
  - ~17% difference in experiment and model



REPTAR



## Air Compressor Test

# REPTAR

**Raytheon** 

- Pressure gauge removed
- U-bolt attached to bottom of housing
- Shock chord of parachute fed through housing and attached to Ubolt
- Parachute folded inside PVC housing
- Air compressor attached to hole where ejection canister would be
- Aluminum foil taped over top
- Some parts of experiment had small perforation in middle of foil
- Results:
  - 40 psi slight emergence of parachute through middle
  - 50 psi slight emergence of parachute through side of foil
  - 50 psi w/ perforation good emergence of parachute through middle
  - 80 psi very good emergence through middle
  - 80 psi w/ perforation fully deployed through middle





CU AES Senior Projects 2016-2017 : REPTAR TRR

## Black Powder Tests With PVC Housing

- Objective:
  - Determine if parachute will deploy from PVC housing
  - Determine amount of black powder needed to deploy
  - Determine if velocity of parachute is to high
- Measurement Sought:
  - Amount of black powder needed in grams to 2 decimals
  - Velocity of parachute does not put REPTAR over 40 G's
- Expected Value:
  - Amount of powder to be > 0.10 grams which is approximately 75 psi
    - 80 psi is what expelled parachute during compressor test
  - With 4kg REPTAR, velocity of parachute must be 80 m/s to go over 40 G's
- How it Reduces Risk:

40

- Need parachute to deploy in order to be under 40 G's
- Ensures REPTAR stays under 40 G's during deployment



10/3/17



### Raytheon

REPTAR

## **Black Powder Tests With PVC Housing**



REPTAR

- Results:
  - .1 grams powder predicted to be ~75 psi instantaneous pressure
    - Did not hear ignition go off and no movement of parachute
  - .4 grams powder predicted to be ~248 psi instantaneous pressure
    - Parachute left housing, video recorded, burnt parachute
  - From video, velocity calculated to be 3.29 4.83 m/s
- What This Means:
  - Parachute will not cause REPTAR to go over 40 G's
  - Need to conduct black powder test with fiberglass housing
  - 0.40 grams should be sufficient to expel parachute from housing
  - 99% confidence parachute will not cause REPTAR to go over 40 G's



CU AES Senior Projects 2016-2017 : REPTAR TRR

## **Black Powder Tests With PVC Housing**

- PVC Housing with ejection canister inside
- Parachute shock chord attached to U-bolt
- Parachute folded inside of housing with recovery wadding between it and ejection canister
- Aluminum foil with small perforation in middle and taped down
- Canister attached to power supply with 12V and 5A
- Results:
  - .1 grams powder predicted to be ~75 psi instantaneous pressure
    - Did not hear ignition go off and no movement of parachute
  - .4 grams powder predicted to be ~248 psi instantaneous pressure
    - Parachute left housing, video recorded, burnt parachute
  - Could lower grams and probably still deploy



REPTAR

Raytheon

## **Black Powder Test Checklist**



### **Raytheon**

- 1. Fill canister with 0.4g black powder and place recovery wadding inside
- 2. Wipe down inside with wet rag
- 3. Dry inside with dry towel
- 4. Light sanding of inside with 600 grit
- 5. Lube inside with Aerokroil
- 6. Place ejection canister
- 7. Feed parachute through bottom and connect to u-bolt
- 8. Screw housing to wood and place in vise facing 180 degrees
- 9. Tape holes on back of housing with electrical tape
- 10. 2.5 sheets of recovery wadding placed over ejection canister
- 11. Lube up sides of parachute

12. Twisting parachute fold and fit inside housing, push down to make sure parachute is flush with housing surface

- 13. Connect power lines to canister lines and check resistance on other side
- 14. Connect other side to power supply and turn on power for ignition



10/3/17

CU AES Senior Projects 2016-2017 : REPTAR TRR

## **Drop Test**

- Lines placed across ECOT to give measurements of distance
- High speed camera set up with two other team members filming
- Caution tape placed to cut off courtyard from bystanders
- Parachute was as inflated as possible before drop
- Dropped from 8<sup>th</sup> story window instead of 3<sup>rd</sup> due to difficulties
- Anemometer on ground gave maximum reading of 2.2 mph
- Drift model stated 2.2 mph would provide 4 meter maximum drift
- Trouble communicating and ensuring safety of bystanders
- Once dropped, accelerated to wind speed and moved away from tower
- Minimal good data was acquired



REPTAR





CU AES Senior Projects 2016-2017 : REPTAR TRR

10/3/17

## **Aluminum Plate Load Test Explanation**

### • Model:

- MATLAB simulation to determine G-loading
- Solidworks to compare deformation
- Purpose:
  - Show aluminum plate withstands impulse from parachute inflation
  - Verify model and simulations





10/3/17



REPTAR

## **Aluminum Plate Load Test**



### Raytheon

- Aluminum plate will be attached to railings of CubeSat
- U-bolt will be placed in center and screwed into plate
- Shock chord of parachute will be attached to U-bolt
- When parachute deploys and becomes taut it will cause approximately 40 G's or 353 lbs of force on the aluminum plate
- Test is to ensure plate will not fracture/buckle
- Plate with railings will be suspended upside down
- A chain will be attached to U-bolt and other end will hold a ten pound plate
- Chain will be 1 meter in length
- Ten pound plate will be held against aluminum plate and dropped vertically
- If aluminum plate breaks it will need to be reinforced. If not test is a success



## Load Test: Measurements



**Raytheon** 

### • What and how well?

- Deformation: mm to two decimal places
- Drop Height: in to nearest 1/16<sup>th</sup>
- Mass of weight: kg to nearest g
- How?
  - Distance between straight edge going across plate to top of deformation with caliper
  - Tape measure in projects work shop
  - Scale from composites lab



10/3/17

CU AES Senior Projects 2016-2017 : REPTAR TRR

### Aluminum Plate Load Test SolidWorks

Model name:centerPlate\_2cmThick Study name:Static 1(-Default-) Plot type: Static displacement Displacement1 Deformation scale: 3.46459

48



SOLIDWORKS Educational Product. For Instructional Use Only.

48 G's Impulse 2" thick plate - 2.84 mm Displacement 48 G's Impulse 4" thick plate - 2.15 mm Displacement

SOLIDWORKS Educational Product. For Instructional Use Only.



REPTAR

CU AES Senior Projects 2016-2017 : REPTAR TRR

## **Aluminum Plate Load Test**

### • Objective:

- Determine deformation of aluminum plate due to instantaneous force from parachute becoming taut
- Measurement Sought:
  - Deformation in mm to two decimal places
- Expected Value:
  - From SolidWorks simulations, deformation is 2.80mm
- How it Reduces Risk:
  - Ensures aluminum plate and/or U-bolt does not fracture
  - Minimizes deformation that could affect antennas



10/3/17

REPTAR

**Raytheon** 

## **Aluminum Plate Load Test**

### **Raytheon**

REPTAR

### Results:

50

- Measured deformation to be 2.43mm
- Error could exist in method of measuring due to human error
- Error from caliper used
- What This Means:
  - Increased thickness to minimize deformation
  - Antennas have chance of being slightly angled
  - Aluminum plate will not fracture and parachute lost
  - 99% confidence aluminum plate and/or U-bolt will fracture



## Landing Backup

CU AES Senior Projects 2016-2017 : REPTAR MSR

10/3/17

## Foam Leg Drop Test

### • Objective

- To achieve landing velocities to determine crushing characteristics of a one leg setup as well as G-loading in a one leg scenario at a 5.7 m/s landing velocity
- Requirement DR 3.2 The payload shall not experience instantaneous loading exceeding 40 G's
- Measurement Sought
  - Deformation of foam leg in the compressive direction as well as G-Load upon impact
- Expected value
  - Expected to deform for validation of ERG Aerospace's projected value of 70%+ compression
  - G-Loading of 11.8 G's
- How it reduces risk

52

 Provides verification of design to reduce G-loading below the 40 G limit requirement

10/3/17

8 cm





**Raytheon** 



## Foam Leg Drop Test

# REPTAR

**Raytheon** 

### Results

- Dropped at 1.66 m ± 0.05 m
- Initial Leg Length: 8.00 ± 0.05 cm
- Initial Leg Width: 1.80 ± 0.05 cm
- Final Leg Length: 2.35 ± 0.05 cm
- Final Leg Width: 3.60 ± 0.05 cm
- G-Loading experienced: 29.2 G's
- What this means for our project



- This shows that the assumption of a 65% deformation during calculations for areas and lengths required for the leg design can be upped to 70% deformation following the validation of ERG Aerospace's claim
- 98% due to the performance meeting expectations of foam, and increasing area would lower G-Loading experienced

CU AES Senior Projects 2016-2017 : REPTAR TRR

10/3/17

## Foam Leg Drop Test



### **Raytheon**

- Using kinematics the proper height to drop was found
  - V = V\_0 + at = 0 + 9.81t
  - X = X\_0 + V\_0t + ½at^2
  - V = 5.7 m/s
  - Solving for X the leg must drop 1.66 m to achieve the proper impact velocity



10/3/17

## Leg Locking Testing

### • Objective

- To determine the point of breakage for the leg locking mechanism
- Requirement DR 3.2 The payload shall not experience instantaneous loading exceeding 40 G's
- Measurement Sought
  - Amount of torque held by locking mechanism housing walls
- How it reduces risk

55

 By verifying the load required to break, the design can be altered to not allow rotation upon landing following the locking of the mechanism









## Leg Locking Testing



REPTAR

### Results

- The setup broke following a 0.6 kg load applied at the end of a 16.5 cm vice grip equating to a 0.165 N load
- What this means for our project
  - This caused a redesign to involve a thicker housing wall and a screw-in setup for the housing walls
  - By changing the design it upped the confidence to 99%



10/3/17

## Leg Deployment Testing

# REPTAR

### Objective

- To achieve reliability numbers for deployment of the aluminum foam legs
- Requirement DR 3.2 The payload shall not experience instantaneous loading exceeding 40 G's
- Measurement Sought
  - Number of successful deployments in both no-wind and 6 m/s wind scenarios
- Expected value
  - 95% deployment success rate
- How it reduces risk
  - Indicates the reliability of these deployments following extensive testing for their on mission deployment probability



10/3/17



## Leg Deployment Testing



REPTAR

### Results

- The setup was tested 40 times in both the no-wind and 6 m/s wind scenarios and successfully deployed in all cases
- What this means for our project
  - This verified the design of utilizing torsion springs and epoxy for deployment purposes while the legs are attached to a slotted pin
  - This result provided a confidence level of 99%



10/3/17

## Side Panel Deployment Testing

# REPTAR

### Raytheon

- Objective
  - To achieve reliability numbers for deployment of the machined aluminum side panels
  - Requirement DR 3.2 The payload shall not experience instantaneous loading exceeding 40 G's
- Measurement Sought
  - Number of successful deployments in both no-wind and 6 m/s wind scenarios
- Expected value
  - 95% deployment success rate
- How it reduces risk
  - Indicates the reliability of these deployments following extensive testing for their on mission deployment probability





10/3/17



CU AES Senior Projects 2016-2017 : REPTAR MSR

## Side Panel Deployment Testing

**Raytheon** 

REPTAR

### Results

- The setup was tested 40 times in both the no-wind and 6 m/s wind scenarios and successfully deployed in all cases
- What this means for our project
  - This verified the design of utilizing torsion springs and epoxy for deployment purposes while the side panels are attached with steel pins
  - This result provided a confidence level of 99%



10/3/17

CU AES Senior Projects 2016-2017 : REPTAR TRR

# **Avionics Backup**

## **Altitude Determination Algorithm**



REPTAR



62

### **EGSE Testing Components:**

- Altimeter Breakout Board
- Rasberry Pi 3 EGSE

### **Flight Testing Components:**

- MainBoard
- Raspberry Pi 3 EGSE (if MSP430FR drivers fail)



## **Deployment Algorithm**



**Raytheon** 



### **EGSE Testing Components:**

• N/A

### **Flight Testing Components:**

- MainBoard
- EGSE (if MSP430FR drivers fail)



# ocation Determination/Transmission Algorithm REPTAR



### EGSE Testing Components:

- Iridium RockBlock
- Venus GPS
- Rasbperry Pi 3 EGSE

**Flight Testing Components:** 

• MainBoard

10/3/17

 Rasberry Pi 3 EGSE (if MSP430FR drivers fail)



**Raytheon** 

## **3V3 Internal Regulator**



### **Raytheon**



65

### **Responsible For:**

 Providing power to GPS, Iridium, and MSP430FR

### Hardware Tests:

- Verify Absolute Voltage Accuracy (+-5%)
- Verify Voltage Ripple (<300mV)</li>
- Verify Current Draw (2A Max)

### Software Tests:

• N/A

### **Off-ramps:**

Hardware: COTS Dev. Board



CU AES Senior Projects 2016-2017 : REPTAR MSR

## <u>Altimeter</u>



**Raytheon** 



### **Responsible For:**

Altitude Determination with MSP430FR

### Hardware Tests:

- Altimeter Correctly Mounted
- Verify Altimeter Accuracy via comparison to known standard barometer

### Software Tests:

- Verify I2C Interface
- Verify Altitude Calculation (MSP430FR)

10/3/17

• Flight Test

### Off-ramps:

- Hardware: COTS Dev. Board
- Software: Raspberry Pi 2 EGSE



## **GPS-Iridium Interface**

# REPTAR

**Raytheon** 



## **Black Powder Trigger**

# REPTAR

**Raytheon** 



### **Responsible For:**

Parachute Deployment

### Hardware Tests:

- Power Sensor Verification via known Standard
- Trigger Logic Verification
- 12V Regulator Power Verification

### Software Tests:

Trigger logic Verification

### **Off-ramps:**

Raspberry Pi 3 EGSE



## Kanthal Coil Triggers



**Raytheon** 



### **Responsible For:**

Side and Bottom Panel Deployment

### **Critical Hardware Tests:**

- Power Sensor Verification via known Standard
- Trigger Logic Verification
- 3V3 Regulator Power Verification

### **Critical Software Tests:**

Trigger logic Verification

### **Off-ramps:**

• Raspberry Pi 3 EGSE



## **Avionics Design Changes**



**Raytheon** 

### Trimmed down complexity of Main Board Revision A



10/3/17

CU AES Senior Projects 2016-2017 : REPTAR MSR

## **Avionics Development Approach**



REPTAR

- Separate Hardware and Software Testing
- Make all testable components independently testable
- Provide as many proven offramps as reasonably possible
- EGSE can interface the Raspberry Pi 2 to all Components
- Raspberry Pi 3 is first step for software testing always
- Extensive Design work on Mainboard to separate testable elements



## Manufacturing Summary



### **Raytheon**

#### **Work Completed:**

 Revision A designed and (ordered/received/not ordered)

### **Future Work:**

- (Solder any additional components?)
- Validate Revision A and decide if a Revision B is necessary
- Continue down Test Paths for subsystem validation
- Integrate Main Board in REPTAR structure

10/3/17


| Descent                   |                  | Landing       |        |              | Avionics |            |               |            |
|---------------------------|------------------|---------------|--------|--------------|----------|------------|---------------|------------|
| Key Items Bought          | Price            | Key Items     | Bought | P            | rice     | Key l      | tems Bought   | Price      |
| Parachute x2              | \$388            | Side Pa       | inels  | \$           | 293      |            | Rev A         | \$76       |
| Black Powder              | \$30             | Aluminur      | n Legs | \$           | 606      | Alti       | meter Break   | \$39       |
| <b>Ejection Canisters</b> | \$108            | Sprin         | gs     | ć            | 534      | Batte      | ery Recharger | \$123      |
| Fiberglass Tube           | \$77             | Pins          | 5      | ć            | 592      | Iridi      | um Antenna    | \$33       |
| Fiberglass Cloth          | \$44             | Aluminun      | n Foam | ć            | 592      | Ra         | spberry Pi3   | \$40       |
| Fiberglass Sheets         | \$59             | Еро           | ку     | ç            | 594      | Ven        | us GPS SMA    | \$50       |
| Ероху                     | \$112            | Alumir        | num    | \$           | 166      | F          | RockBlock     | \$294      |
| Other                     | \$134            | Othe          | er     | \$6          | 7.15     |            | Other         | \$951.45   |
| Key Numbers               |                  | Key Nur       | nbers  |              |          | Ke         | y Numbers     |            |
| Estimated Cost            | \$897.00         | Estimate      | d Cost | \$1,4        | 44.15    | Est        | mated Cost    | \$1,087.90 |
| Total Cost                | \$951.90         | Total C       | Cost   | \$1,4        | 18.93    | ٦          | fotal Cost    | \$1,606.45 |
| Under/Over                | -\$54.90         | Under/        | Over   | \$2          | 5.22     | U          | nder/Over     | -\$518.55  |
|                           |                  |               |        |              |          |            |               |            |
|                           | stimated Cost To | tal Cost Drop |        | Test Under/O |          | ver Margin |               |            |
|                           | \$3,429.05 \$3   | 3,977.38      | \$400  | .00          | -\$948.2 | 23         | \$622.62      |            |

## In-plane measurements

**Raytheon** 

| Quantity                                                  | How                           | Why                                                           |  |  |  |
|-----------------------------------------------------------|-------------------------------|---------------------------------------------------------------|--|--|--|
| Coordinates and<br>time of the point<br>REPTAR is dropped | Drop a pin using<br>a map app | To calculate final drift, assist recovery                     |  |  |  |
| Indicated airspeed                                        | Plane<br>instruments          | To validate wind aloft model and predict drift                |  |  |  |
| Outside Air<br>Temperature                                | OAT Gauge                     | To calculate True<br>Airspeed                                 |  |  |  |
| Pressure Altitude                                         | Plane altimeter               | To calculate True<br>Airspeed                                 |  |  |  |
| Ground speed                                              | GPS                           | Compare with True<br>Airspeed for Winds<br>Vector Calculation |  |  |  |
| Ground track vs<br>heading                                | Magnetic<br>compass           | To validate wind aloft model and predict drift                |  |  |  |

74





CU AES Senior Projects 2016-2017 : REPTAR TRR

10/3/17

## **Expected Drift Model**

**Raytheon** 





10/3/17

CU AES Senior Projects 2016-2017 : REPTAR TRR

75

## **Drift Zone and Recovery**

## REPTAR



