

Spring Final Review

REPTAR REcoverable ProTection After Reentry

Team: Calvin Buechler, Kevin Faggiano, Dustin Fishelman, Cody Gondek, Lee Huynh, Aaron McCusker, William Sear, Himanshi Singhal, Craig Wenkheimer, Nathan Yeo
Customer: Steve Thilker, Collin Baukol, Cody Humbargar, Jason Latimer (Raytheon)
Advisor: Dr. Brian Argrow, Dr. James Nabity

University of Colorado Boulder

REPTAR

Raytheon

REPTAR shall assist in the recovery of a de-orbited 1U Raytheon Payload. The mission begins once the SmallSat has re-entered the atmosphere and has reached subsonic velocity. REPTAR shall facilitate the subsonic deceleration, landing, location determination, and location transmission portions of the mission.

Recovery of payload enables:

- Lower mission costs by re-using the payload
- Obtain samples collected by payload on-board

CU AES Senior Projects 2016-2017 : REPTAR SFR

1) Launch REPTAR components survive launch conditions as payload attached to a bus. Mission Concept of Operations

5

6

2) Orbit/StandbyREPTAR Components survive on orbit conditions. Batteriescharged by bus.

6) Land and Recovery REPTAR protects payload during ground contact and transmit location.

5) Deceleration **Raytheon** Decelerate to subsonic speeds.

4) Re-entry Receive command from bus to power REPTAR systems. REPTAR separation from bus. Re-entry completed by Raytheon System.

Legend

REPTAR Solution

Raytheon Solution

Raytheon

3) De-orbit

Receive command from bus to power REPTAR systems. Re-entry burn.

Entry

After being decelerated to subsonic speeds, REPTAR activates atmospheric deceleration systems to protect the payload

Descent

Slows to safe landing speeds by deploying a parachute. Transmits location during descent

Land

Lands payload safely within launch loading requirements

Concept of Operations(CONOPS)

Receive Location

Recovery team receives location

Transmit Location Transmits location to recovery element

Levels of Success

Criteria	Form Factor – DR 1.1	Instantaneous G-Loading – DR 2.1	Communication – DR 3.1
Level 1	The form factor of REPTAR including payload shall be 6U Standard	The payload shall endure a maximum instantaneous loading of less than 40 G	REPTAR shall beacon its location over a range of 20 miles
Level 2	The form factor of REPTAR including payload shall be 4U Standard		REPTAR shall beacon its location over a range of 30 miles
Level 3	The form factor of REPTAR including payload shall be 3U Standard		REPTAR shall beacon its location over a range of 45 miles

CU AES Senior Projects 2016-2017 : REPTAR SFR

5

Executive Summary

- Designed and constructed 3U Recovery Vehicle
 - Parachute for deceleration
 - Aluminum foam for impact absorption
 - GPS and Iridium for location determination and transmission
- Performed thorough subsystem-level validation
- Full system integration incomplete
 - Drop from aircraft not performed
- Performed drop test from a fire tower

Landing Legs

Parachute

Housing

Design Description

CU AES Senior Projects 2016-2017 : REPTAR SFR

7

Key Components

REPTAR

Mass and Volume Budget

REPTAR

ltem	Mass (g)	Volume (U)
Descent Subsystem	383	1.23
Landing Subsystem	512	0.41
Avionics Subsystem	518	0.36
Frame	437	-
System Wiring	50	-
Test Payload and Added Ballast	1300	1.00
SYSTEM TOTAL	3200	3.00
SYSTEM MAX	4000	3.00
Margin	800	-

CU AES Senior Projects 2016-2017 : REPTAR SFR

Mission Timeline and FBD

REPTAR

Critical Project Elements

Raytheon

Critical Project Element	Description	
Parachute Deployment	Without chute deployment, vehicle hits ground at 90 m/s	
Landing Leg and Side Panel Deployment	Without leg and side panel deployment, vehicle experiences more than 40 G upon landing	
Avionics Internal Power	Provides sufficient power at a reasonable line and load configuration to all avionics components	
FET Deployment Triggers	Allows triggering of deployable elements	
Battery Charge - Discharge	Safely provides sufficient power to avionics	
Full System Integration	All components work together in form factor	

10/3/17

Testing

CU AES Senior Projects 2016-2017 : REPTAR SFR

10/3/17

Parachute Ejection Modeling

REPTAR

REPTAR

Pressure Gauge:

- Measured 24 PSI, expected 20 PSI
- Friction Force:

13

- 5.29 J of energy: 1079 g dropped from 50 cm
- Parachute Exit Velocity:
 - Velocity measured over 5 inches at 59 FPS
 - Averaged from 3-5 m/s

*Tests performed in Aerospace Welding Shop and Senior Projects Work Shop

Parachute Ejection Testing

REPTAR

Raytheon

- Final Testing with Fiberglass Housing:
 - Ignite black powder for successful ejection
- Purpose:
 - Validate strength of fiberglass
 - Validate parachute ejected
- Results:

14

- 9/9 successful ejections
- No damage to fiberglass

*Test Performed in Aerospace Welding Shop

CU AES Senior Projects 2016-2017 : REPTAR SFR

Parachute Ejection Conclusion

REPTAR

Raytheon

- Parachute ejection from fiberglass housing:
 - 0.55 g of black powder with cotton sheet protection
- DR 3.2:
 - Parachute helps slow to reduce impact on landing
- Slow REPTAR to safe landing velocity:
 - 4.9 m/s landing velocity with selected parachute

CU AES Senior Projects 2016-2017 : REPTAR SFR

Leg Deployment Testing

- Full Leg System Deployment
 - Power sent to Kanthal coil, system deploys
- DR 2.1
 - 3U volume constraint
- DR 3.1
 - Survive 40 G
- Purpose
 - Validate Kanthal coil cuts wire
 - Validate springs rotate legs into place
 - Validate locking mechanism locks into place
- Model

16

- Torque required in 6 m/s wind: 0.065 in-lbs
- Torque provided: 2.76 in-lbs
 - CU AES Senior Projects 2016-2017 : REPTAR SFR

10/3/17

REPTAR **Raytheon**

Leg Deployment Testing Results

Simplified system deployed successfully 40/40 times in both no-wind and 6 m/s wind scenarios

- System successfully deployed 7/7 times with full system with final Kanthal coil setup
- Kanthal coils trigger deployments with 3V3 and 4A4

REPTAR

Leg Crushability Testing

REPTAR

Raytheon

- Single Leg Crushability
 - Simulate ¼ expected system energy 16.25 J
- Derived Requirement 3.1
 - Survive 40 G
- Purpose
 - Validates 65% compression of leg
 - Validate G-loading
- Model
 - Equating kinetic energy into expected work of leg deformation

Leg Crushability Testing

Raytheon

- Dropped 1 kg mass on single leg from
 1.66 m, to achieve ¼ of expected energy
- Tested 5 times
- Estimated G-loading using frame by frame estimate of deceleration

Test Results

Building Drop Test Purpose

Purpose:

- Test impact absorption qualities of landing system in dynamic environment
- DR 2.1 Keep payload below 40 G of loading

REPTAR

Raytheon

:ted ground as

10/3/17

REPTAR

Raytheon

Building Drop Test Impact on Project

Raytheon

REPTAR

- Side panels need a redesign, they did not act as intended
 - Panels need a locking mechanism and stronger springs
- Necessity of landing system needs to be reinvestigated
 - Stemming from mass tradeoffs
- Chute inflation time needs further testing
 - 10 G upon chute inflation was higher than expected
- Further testing is needed from higher altitudes
 - Allows system to reach steady state before landing, reduces sensitivity to wind upon landing

10/3/17

3V3 Internal Regulator Performance Verification **REPTAR**

Test Scope:

- Fundamental Voltage Component
- Ripple
- Line/Load Regulation

Design Requirements:

- 3.3V Output to within 5%
- Less than 300 [mV] of ripple
- Less than 300 [mV] of combined line and load regulation

Importance of Validation:

Raytheon

The 3V3 Internal Regulator is responsible for providing power to:

- MSP430FR Microcontroller
- Iridium RockBlock Unit
- Venus GPS Unit
- MS5607 Pressure Altimeter

10/3/17

Initial Subsystem V&V and Integration

Subsystem Level Validation:

- 3.34 [V] Realized (Unloaded)
- 160 [mV] Ripple (Unloaded)
- 40 [mV] Load Regulation
- 10 [mV] Line Regulation

Integration:

- 1.5 [V] of ripple observed when **RockBLOCK** Iridium Module is attached and in a non-transmitting state.
- SPICE Model does not explain performance – issue lies at RF

10/3/17

REPTAR

Raytheon

Microwave Model in ADS

REPTAR

Raytheon

CU AES Senior Projects 2016-2017 : REPTAR SFR

10/3/17

Mitigation and Results

REPTAR

Raytheon

Issues Identified:

27

- RockBLOCK bias line incorrectly implemented by manufacturer
- Injection locking regulator switching frequency

Mitigation:

- Adjust RF drain Capacitor to 10pF
- Add 180 Ohm Ferrite to board wiring
- 200 [mV] Measured Ripple (from 1.5 [V])

12V and 3V3 Deployment FETs

Test Scope:

28

 Determine power handling capability of deployment FETs

Design Requirements:

- Handle 28.4 [W] power transfer to black powder charge
- Handle 12.21 [W] power transfer to each Kanthal coil

Importance of Validation:

Critical to ensuring deployment activities can occur

REPTAR

Raytheon

Initial Subsystem V&V and Integration

Subsystem Level Validation:

 Handled both Black Powder and Kanthal Coil Deployments successfully [10/10] times with representative load

Integration:

- Failure of the Black Powder Charge FET on test trigger with representative load
- Datasheet assumed one FET grounded for all measurements
- Breakout FET Controller off-ramp used to resolve issue

Thermal Expansion of Die Wafers

REPTAR

Raytheon

Final Trench Gap: ~ 2-3 microns Trench Air Gap Voltage: 6-9 Volts

CU AES Senior Projects 2016-2017 : REPTAR SFR

Battery Performance

REPTAR

Raytheon

Test Scope:

Li-Ion Battery Stability

Design Requirements:

 Charge-Discharge voltage curve stays within 0.25V of modelled

Importance of Validation:

Battery unit is responsible for providing power to all flight avionics and deployers.

10/3/17

30

CU AES Senior Projects 2016-2017 : REPTAR SFR

Test Scope:

Verify Communication from MSP430FR • I2C must provide 1Hz Altimeter to the following:

- **RockBLOCK** Iridium Unit
- Venus GPS Unit
- Power Monitor [x2]
- MS5607 Pressure Altimeter

Importance of Validation:

- I2C must work to allow altitude and deployment determination
- UART must work to all location determination and transmission

Design Requirements:

- update rate
- I2C must read power delivered through monitor
- UART Bus 1 must read GPGGA sentence from Venus GPS Unit
- UART Bus 2 must transmit correctly formed packet to Iridium module

Results:

All systems performed according to initial MSP430FR emulator model.

REPTAR

Raytheon

CU AES Senior Projects 2016-2017 : REPTAR SFR

Day-In-The-Life (DITL) – Flight Dress Rehearsal **REPTAR**

Purpose:

Deviations From Test Flight:

- Black powder ignition without parachute
- Altimeter readings from EGSE

CU AES Senior Projects 2016-2017 : REPTAR SFR

To verify the integrated performance of the

Avionics Hardware and Software

DITL Results

REPTAR

- Avionics Day in the Life test performed without incident
 - All components performed as expected after mitigation
- Full System Day in the Life test was not run due to complications
 - Control FET triggers mounted incorrectly
 - 12V grounding through structure
 - Iridium suffered from power supply errors following integration

DITL Impact on Project

REPTAR

Raytheon

- Not yet proven system as a flight unit
- Sufficient testing validating each subsystem
 - All deployments functioned properly after trigger FET mitigation
- System not yet proven to meet DR 3.1 (Location Transmission)
 - A functional Iridium module would allow DR 3.1 to be met

10/3/17

Systems Engineering

CU AES Senior Projects 2016-2017 : REPTAR SFR

10/3/17

Functional Requirement Flow Down

REPTAR

Raytheon

- FR.2: REPTAR shall conform to industry CubeSat Standards
 - Target form factor is a standard 3U CubeSat
 - Volume becomes the constraining factor in design
- FR.3: REPTAR shall keep the payload safe during descent and landing phases
 - Assuming a 40 G loading limit as defined by military standard specifications
 - Landing is the clear critical event, other critical events arise dependent on design
- FR.4: REPTAR shall be locatable upon landing
 - REPTAR should be locatable for a search team in the UTTR
 - Reliability of communication is prioritized

Systems Engineering Approach

REPTAR

Fall Semester

REPTAR

Spring Semester

REPTAR

REPTA

CU AES Senior Projects 2016-2017 : REPTAR SFR

Risk Outcomes

|--|

Raytheon

Risk	Mitigated	Realized
RD1: Black Powder Ignition	✓	
RD2: Insufficient Top Break		\checkmark
RL1: Bottom Leg Fails to Lock	✓	
RL2: Side Panels Fail to Orient		~
RA1: Antennae Failure	✓	
RA2: Regulator / Battery Overdraw	v	

40

- The realized risks were most difficult to mitigate
- Severity of realized risks had minimal impact to project schedule due to design
- Unforeseen risks were the most impactful on schedule

Challenges and Lessons Learned

- Well defined requirements are necessary
 - Poorly defined requirements introduces confusion to system requirements
- Integration and interfacing must be accounted for in design
 - Unaccounted for components can lead to significant redesign
 - Reduces risk as project approaches full system testing
- Off-ramps are critical to project success
 - Multiple issues at subsystem level caused various schedule slips
- Characterize component reliability and complexity
 - COTS components may not perform as expected
 - Custom components may introduce unnecessary complexity

REPTAR

Raytheon

Project Management

CU AES Senior Projects 2016-2017 : REPTAR SFR

10/3/17

Management Approach

Technical Management

Aaron McCusker – Project Manager Craig Wenkheimer – Modelling Lead Himanshi Singhal – Testing Lead

Descent Subsystem

Cody Gondek – Descent Lead Dustin Fishelman -- Financial Lead

Landing Subsystem

Calvin Beuchler – Landing Lead Kevin Faggiano – Manufacturing Lead Lee Huynh – Systems Lead

Avionics Subsystem

Will Sear – Avionics Lead Nathan Yeo – Software Lead Lee Huynh – Systems Lead

- Break team into 3 subsystem teams
 - Mission had 3 unique tasks, allowed team members to focus on single mission task
- Identify and assign team members to critical tasks
 - Primarily allows autonomy while still accomplishing critical tasks
- Employ team members in accordance with their talents
 - Let each team member work to their own strengths

REPTAR

Raytheon

CU AES Senior Projects 2016-2017 : REPTAR SFR

10/3/17

Management Lessons Learned

- Scheduling can be extremely difficult to predict
 - Some tasks were accomplished much quicker than anticipated, some took weeks longer than anticipated
- Tasks must be defined in a way where help can be supplied if needed
 - Team members became knowledgeable about their complex systems, but outside help could not be supplied if needed due to lack of experience with system
- Specific tasks need to be assigned to individuals, not to subsystem teams
 - Tasks were not accomplished efficiently because teams took time determining who would do which task

10/3/17

REPTAR

Raytheon

CDR Budget Vs. End of Year

\$5,000		
\$4,500		Margin \$768
\$4,000	Margin \$1,590	Other \$453
\$3,500		EGSE \$400
	Other \$420	Parachute Housing \$446
\$3,000	Parachute Housing \$200 Printing \$250	Printing \$300
\$2,500	Aircraft Rental \$250	Populated Boards
\$2 000	Populated Boards \$300	\$643
2,000	Iridium & GPS \$300	Iridium & GPS \$390
\$1,500	Parachute (x3) \$500	Parachute (x2) \$390
\$1,000	Aluminum \$590	Aluminum \$210
\$500		Side Panels & Legs
	Side Panels & Legs \$600	\$1,000
\$0		

CDR Prediction

End of Year Budget

Industry Cost

Assumptions:

- \$65,000 annual salary of entry-level aerospace engineers, 2080 hours per year
- Overhead rate of 200%

Total Hours	4,560 hours
Total Direct Labor Cost	\$143,500
Overheard Percentage	200%
Overhead Cost	\$285,000
Materials Cost	\$4,000
Total Industry Cost	\$432,500

Acknowledgments

REPTAR

Raytheon

REPTAR would like to thank:

- Steve Thilker, Collin Baukol, Cody Humbargar, and Raytheon Company
- Dr. Brian Argrow
- Dr. James Nabity
- Trudy Schwartz, Matt Rhode, Bobby Hodgkinson
- Dave Zader
- The Project Advisory Board

10/3/17

CU AES Senior Projects 2016-2017 : REPTAR SFR

Questions?

Budget Comparison

CDR Prediction	Cost	Actual Purchases	Cost
Parachute (x3)	\$500	Parachute (x2)	\$390
Fiberglass Tubing	\$100	Fiberglass Tubing	\$293
Ejection Canister (x25)	\$100	Ejection Canister (x75)	\$153
Aluminum Sheets	\$190	Aluminum Sheets	\$110
Side Panel and Leg Manufacturing	\$600	Side Panel and Leg Manufacturing	\$1000
Aluminum Foam	\$400	Aluminum Foam	\$100
Iridium RockBlock2+ and GPS	\$300	Iridium RockBlock2+ and GPS	\$390
Populated Boards	\$300	Populated Boards	\$643
Aircraft Rental	\$250	Aircraft Rental	\$0
Printing	\$250	Printing	\$300
Other	\$420	Other	\$853
Tetel	62.440	Tatal	ć4 222

Battery and Regulator Statistics

REPTAR

					Ravtheon
Parameter	Battery				
Pack Configuration	2 Panasonic NCR18650BF cells in	Parameter	3V3 Avionics	3V3 Deployer	12V Deployer
	series	Efficiency	80%	93%	92%
		Max Current	1.2 A	8 A	10 A
Pack Voltage	7.2 V (3.6V per cell)	Junction Temperature	100 C	125 C	120 C
Max	10 A	Max			
Discharge		Part Number	MCP1632	LTC1775	LTC3786
Internal Resistance	154 mOhm (77 mOhm per cell)				
Capacity	3350 mAHr				
50	CU AES Senior Proie	ects 2016-2017 : REPTA	AR SFR	10/3/17	REPTAR

Battery and Regulator Performance

Power Dissipation over Flight

REPTAR

Full System Drop Test

CU AES Senior Projects 2016-2017 : REPTAR SFR

10/3/17

	REPTAR	
Scope	Drop REPTAR from airplane in controlled environment	 Requires aircraft, large drop zone
Rationale	Full system drop test is the culminating test that provides proof of concept and full integration testing	 Testing high speed parachute deployment Location determination during descent G-Loading profile
Risk Reduction	Reduces risk by validating in-flight performance before real flight with expensive payload	

53

Drop Test Logistics

REPTAR

Raytheon

Drop Test Measurement Unit

- Where?
 - Housed where Raytheon Payload would be stored in actual mission
- How?

.

- Accelerometer (ADXL377, +/- 200G with an error of 1G)
- Raspberry Pi Camera
- Quantities from the main avionics:
 - Altitude (Altimeter)
 - Location (GPS)
- Mass and Volume
 - Mass: 177 g of instruments + 1157 g of ballast
 - Volume: 1U
- Additional Measurements will be taken from the plane

10/3/17

REPTAR

CU AES Senior Projects 2016-2017 : REPTAR SFR

Expected G-Model

REPTAR

Raytheon

CU AES Senior Projects 2016-2017 : REPTAR SFR

56

Drift Zone and Recovery

REPTAR

57

Monte Carlo Parameters

Initial Velocity = 32.0 [m/s] Initial Velocity Variance = 5.0 [m/s] Min Alt = 12500 [ft], Alt Variance = 200 [ft] Heading Range = 20 [deg] Pos. Variance (x) = 500 [m]Pos. Variance (y) = 500 [m]Pos. Shift (x) = -250 [m]Pos. Shift (y) = -250 [m]Wind Vel. min = 5 [kts] Wind Vel. Variance = 5 [kts] Wind Dir. min = 230 [deg] Wind Dir. Variance = 40 [deg] Chute Open Alt Min = 1900 [m] Chute Open Variance = 200 [m] Standard Deviation = 213.5 [m] Known Winds 2520 2530 2540 2545

10/3/17

CU AES Senior Projects 2016-2017 : REPTAR SFR

Drop Zone

REPTAR

REPTA

Consequences Table

Quantities	All golden!	Location Transmission Fails	Landing Fails	Parachute Fails	All fail
G's experienced	37	37	52	840	840
Location Determined?	Yes	No	Likely	No	No
Time to Land (s)	~86 s	~86 s	~86 s	~32 s	~32 s
Data survived	Yes	Yes	Yes	Likely	Likely

CU AES Senior Projects 2016-2017 : REPTAR MSR

10/3/17

Post Flight Analysis

Compare:

- G-loading experienced during flight
- Expected drift vs actual drift
- Expected time to land vs actual time to land

Review:

Leg deployment footage

REPTAR

Raytheon

Summary of Confidence for Drop Test

• Descent System:

• 85% confidence of parachute deployment

Landing System:

- High confidence that legs and side panels will properly deploy
- 95% confidence towards aluminum foam landing characteristics
- Concerns towards uncontrollable landing environment
- Avionics System:
 - High confidence in avionics system as designed
 - Flight environment can introduce issues in communication
- Overall:
 - Current: 81% confidence that full system will perform successfully in drop test
 - Future: Further testing to reduce variance

REPTAR

Raytheon

Launch Inhibit Considerations

• CPE:

Interfacing to Deployment Mechanisms

• Requirements:

- FR1: REPTAR shall survive launch and standby phase in space
- FR2: REPTAR shall conform to industry CubeSat standards

10/3/17

• Concerns:

None at this time

REPTAR

Raytheon

Altimeter Considerations

Raytheon

10/3/17

CU AES Senior Projects 2016-2017 : REPTAR SFR

CDH Error Stackup

R	E	P	T/	4	R

Delay Source	Description	Altitude [m]			Raytheon
Update Delay	Distance traveled between	0.8	Error Source	Description	Altitude [m]
	measurement samples		Altimeter	Smallest altitude reading	0.7
Transmission Delav	Distance traveled during the transmission from Altimeter to	order of millimeters	of Error	resolved by the altimeter	
,	Microcontroller	Calculation	Interpolation error in	5.0	
Calculation Delay	Distance traveled during a computation cycle of the flight	0.9	Error	standard atmosphere lookup tables	
Denay	code		Total		5.7
Equilibrium Delay	Distance traveled during the time taken to equilibrate the ambient and internal pressures	1.3			
Parachute Delay	Distance traveled during the parachute deployment	1.0	$h_{margin} = 2$	$\sum h_{delay} + \sum h_{error}$	r = 13.7 m
Total		4.0			

CU AES Senior Projects 2016-2017 : REPTAR SFR

10/3/17

Key Altitudes

REPTAR

Raytheon

65

Altitude [m]	Description	Driver
TPS Jettison	Begin altitude sensing	REPTAR terminal velocity becomes subsonic
5900	Upper Bound for parachute deployment	Parachute deployment at higher altitudes induces greater than 40 G's
3513.7	CDH target for parachute deployment	Builds in margin from CDH error stackup
3500	Target for parachute deployment	Factor of safety for deceleration and deployments
3050	Lower Bound for parachute deployment	Not enough time for deceleration or deployments

CU AES Senior Projects 2016-2017 : REPTAR SFR

Key Altitudes

REPTAR

Raytheon

CU AES Senior Projects 2016-2017 : REPTAR SFR

66

Descent Stage Design

- Without Deceleration: 91 m/s & 840 Gs
- Selected Parachute
 - 48" Diameter
 - Cd = 2.2
- With Deceleration: 5.7 m/s & 53 Gs

REPTAR

Raytheon

Chute Exit Velocity Model Development

5

Chute Velocity [m/s]

0.3

e = specific energy of black powder [3MJ/kg] L = energy losses for pressure, thermal, friction, etc $m_{BP} = \text{mass of black powder}$ $m_c = \text{mass of parachute} = 0.122 \text{kg}$ $V_c = \text{velocity of parachute}$

 $E = e \cdot m_{BP}$ Total Energy in Control System

$$e \cdot m_{BP} - L = \frac{1}{2}m_c V_c^2 \qquad V_C = \sqrt{\frac{2(e \cdot m_{BP} - L)}{m_c}}$$

From the regression:

$$V_C = 7831m_{BP} - 1.7218$$

Setting the velocity equations equal to each other and solving for *L*

$$L = e \cdot m_{BP} - \frac{m_c}{2} [7831m_{BP} - 1.7218]^2$$

Experimental Data Fit Line O

REPTAR

Raytheon

CU AES Senior Projects 2016-2017 : REPTAR SFR

Landing Legs Design

REPTAR Raytheon

- 4 Legs designed to absorb remaining energy of vertical velocity
- Made of highly compressible aluminum foam
- Deploy and lock using torsional spring system utilizing Kanthal coil

Side Panel Design

REPTAR **Raytheon**

Torsional Springs

Foam Layers

Deployed Side Panels

10/3/17

Side Panels

Landing

- Needed to absorb energy due to horizontal velocity on impact due to wind during descent
 - Designed to compress aluminum foam stored internally
- Deploy via torsional spring system utilizing Kanthal coil

Side Panel

Undeployed Side Panels

Side Panel

Landing Stage Design

Raytheon

- Landing subsystem is meant to keep system under 40 G upon impact
- Nominal landing speed of 5.7 m/s from descent subsystem
 - Need to account for high wind speed as well
- Crushable leg structure designed to limit G-Loading during impact
 - Done in both horizontal and vertical directions

72

Landing Testing

REPTAR

Raytheon

Aluminum Foam Stress Strain Both deployments underwent 4000 static deployments without 3500 Kanthal coils in no-wind and 3000 6 m/s wind scenarios 2500 Aluminum foam performed as $\frac{2}{2}$ 2000 expected, but initial design 1500 susceptible to buckling Predicted 1000 Experiment causing a tapered redesign 5% Error 500 0 0.005 0.015 0.02 0.025 0.01 0.03 0

CU AES Senior Projects 2016-2017 : REPTAR SFR

10/3/17

Displacement [m]

Aluminum Foam Material Testing

- Test Energy Absorbing Properties of Aluminum Foam
 - Tested in ITLL Instron Materials Testing Laboratory
- DR 3.1
 - Survive 40 G
- Purpose
 - Validate compression strength of foam
 - Validate possible compression of foam
- Model

- W = F d
- $\sigma_{\text{crush,f}} = 0.58 \text{TS}_{\text{s}} \rho^{3/2}$

Test Results

REPTAR

Raytheon

Load Cell

- Range from 496-49800 N
- Maximum Error of 0.16 %, 79.97 N
- Tested to 64% Compression
 - Deviates from model at 46% compression
 - Design assumed with 60% compression

10/3/17

Torsion Spring Calculations

- Torque required to deploy the base legs and the side panels is calculated using the Drag Force from the descent through the atmosphere
- Force of Drag, $F_d = \frac{1}{2}\rho V^2 A C_d$
- Moment, $M = F_d \times l$ where l is the length dimension of the legs (7.3 cm)
- $c_d = 2.02$, used as a worst case scenario for a flat plat straight into the wind
- $A_{Base Leg} = 7.8 \ cm \times 1.65 \ cm \times 2 \ legs$ for undeployed legs into direct velocity
- $\rho = 0.8191, 0.8543, 1.0065, 1.112 \ kg/m^3$ for altitudes of 4000, 3600, 2000, and 1000 m, respectively
- V = 100, 90, 6 (with chute) m/s for various terminal velocities at altitudes as well as expected landing speeds reached following chute deployment

10/3/17

REPTAR

Raytheon

Torsion Spring Calculations (cont'd)

Raytheon

REPTAR

• From Drag Force calculations:

- Moment required for base legs to deploy:
 - M(4000 m) = 1.661 N m = 14.70 in lbs
 - M(3600 m) = 1.403 N m = 12.42 in lbs
 - $M(2000 m)_{\frac{w}{o}chute} = 1.653 N m = 14.63 in lbs$
 - $M(2000 m)_{w/chute} = 0.0073 N m = 0.065 in lbs$

10/3/17

Avionics Deployment Considerations

REPTAR

- Critical Element:
 - Avionics Interface
- Requirements:
 - REPTAR shall survive an instantaneous G-Loading of 40 G
 - REPTAR shall communicate its location over a radius greater than or equal to 45 miles
- Concerns:
 - Physical Interface and Sensors
 - Power Budget
 - Avionics Thermal Budget

10/3/17

Deployment Triggering and Monitoring

Raytheon

REPTAR

 FET Controlled Burn Wire Interface Connector to AWG 14 Wire (29 Amp. Max)

79

 Power Monitor capable of "snapshotting" 1 second periods and determining power transfer.

CU AES Senior Projects 2016-2017 : REPTAR SFR

10/3/17

Battery and Regulator Performance

REPTAR

Antenna Considerations

Raytheon

81

Critical Element:

Antenna Performance

Requirements:

 REPTAR shall communicate its location over a radius greater than or equal to 45 miles

Concerns:

- Antenna Pattern inside REPTAR Structure
- Location of Iridium Communication Satellites relative to REPTAR

10/3/17

Descent Iridium Antenna Pattern Performance REPTAR

Landed Iridium Antenna Pattern Performance **REPTAR**

Iridium Orbit Path

REPTAR

Raytheon

STK Descent Model (1km Elevation) Iridium Orbit: 4 Hour Period

- 100 Hour Orbital Period
- 86 Active Satellites
- 100% Earth Antenna Coverage
- STK Model in Descent:
 - 100% Coverage
- STK Model after Landing
 - Worst Case: 75% Coverage (90/120 minutes)

CU AES Senior Projects 2016-2017 : REPTAR SFR

10/3/17