

REPTAR

REcoverable ProTection After Reentry Preliminary Design Review

Team: Calvin Buechler, Kevin Faggiano, Dustin Fishelman, Cody Gondek, Lee Huynh, Aaron McCusker, William Sear, Himanshi Singhal, Craig Wenkheimer, Nathan Yeo

Customer: Steve Thilker, Collin Baukol, Cody Humbargar, Jason Latimer (Raytheon)

Overview

12/8/2016

Descent

eon

REPTAR shall assist in the recovery of a de-orbited Raytheon 1U Payload. The mission begins once the SmallSat has re-entered the atmosphere and has reached subsonic velocity. REPTAR shall facilitate the subsonic deceleration, landing, location determination, and location transmission portions of the mission.

Landing

- Recovery of payload enables:
 - Lower mission costs by re-using the payload
 - Get samples collected by payload on-board.
 - Reduce the amount of space debris

- FR.1 REPTAR shall survive launch and a standby period in space
- FR.2 REPTAR shall conform to industry CubeSat standards
- FR.3 REPTAR shall keep the payload safe during descent and landing phases
- FR.4 REPTAR shall be locatable after landing phase

1) Launch REPTAR components survive launch conditions as payload attached to a bus. Mission Concept of Operations

5

6

2) Orbit/Standby REPTAR Components survive on orbit conditions. Batteries charged by bus.

6) Land and Recovery REPTAR protects payload during ground contact and transmit location.

5) Deceleration **Raytheon** Decelerate to subsonic speeds.

Raytheon

4) Re-entry Receive command from bus to power REPTAR systems. REPTAR separation from bus. Re-entry completed by Raytheon System. Legend

REPTAR Solution

Raytheon Solution

Raytheon

3) De-orbit

Receive command from bus to power REPTAR systems. Re-entry burn.

Descent

After being decelerated to subsonic speeds, REPTAR activates atmospheric deceleration systems to protect the payload.

Decelerate

Slows to safe landing speeds by deploying a parachute. Transmits location during descent.

Land

Lands payload safely within launch loading requirements.

REPTAR

REcoverable ProTection After Reentry (REPTAR) Concept of Operations(CONOPS)

Receive Location

Recovery team receives location.

Transmit Location

Transmits location to recovery element.

Subsystems

Events Timeline

8

EPT/

Baseline Design

Descent Baseline Design

Earlier: Drogue and Parachute

• Issue: Volume constraints

Now: Parachute

- Issues Earlier: High velocity during main chute deployment
- Solution: Maximum Instant G Loading increased

Baseline Design

Landing

A deployable structure with energy absorption Cost efficient and medium complexity

Location Determination

Global Positioning System (GPS) Reliable, cost efficient, accurate

Location Transmission Baseline Design

<u>Earlier</u>: Near Vertical Incidence Skywave (NVIS)

• Issue: Complexity

Now: Iridium

Issues Earlier: Affordability

• Solution: now affordable, easy to

CU AES Senior Projects 2016-2017 : REPTAR PDR

12

SolidWorks Model

Systems	Critical Elements
Descent	Top side deployment
Landing	Horizontal velocitySide and legs deployment
Avionics	Frangibolt and Pinpuller interfacesInternal skills development
Full System	 Mass and volume constraints Manufacturability Testing

Descent Feasibility Analysis

12/8/2016

Requirements

- Raytheon
- The instantaneous loading experienced by the vehicle shall not exceed 40G's as defined by MIL-STD-810G (DR 1.3)
- The sustained loading experienced by the vehicle shall not exceed 6.5G's (DR 1.2)
- Descent mechanism shall meet mass and volume requirements (FR.2)
- Descent deployment mechanisms shall have an interface with the CDH system
- Chute must be released after landing

- Aimed for center of Utah Test & Training Range (UTTR)
- Protected during re-entry by Thermal Protection System (TPS)
- System Dimensions: 3U
- Total System Mass: 4 kg
- Terminal velocity at altitude greater than 3600 meters MSL

Assumptions

Descent Functional Block Diagram

Descent Functional Block Diagram

Design (SolidWorks)

TiNi Aerospace Standard PinPuller P5 Manufactured **Deployment Cylinder** Fruity Chutes 48" Diameter Iris Ultra Compact Parachute **Ejection Canister** Bass Pro Shops GOEX FFFFg **Black Powder Recovery Wadding** TiNi Aerospace **Standard PinPuller P5**

Deployment Systems

Wind Influence on Trajectory

Design Feasibility

CU AES Senior Projects 2016-2017 : REPTAR PDR

25

Design Feasibility

Requirement	40 G Max Instantaneous Loading (DR 1.3)	6.5 Sustained G Loading (DR 1.2)	6.3 m/s Landing Speed
Design	33.8 G's	1.2 G's Max	5.4 m/s
Feasibility	\checkmark	\checkmark	\checkmark

Cost	Mass	Volume
\$650	1.04 kg	1.25 U

Landing Feasibility Analysis

Landing Requirements & Assumptions

Requirements

- The instantaneous loading experienced during landing shall not exceed 40G's (DR 1.3)
- Landing mechanisms shall meet mass and volume requirement (FR.2)
- Landing deployment mechanisms shall have an interface with the CDH system

Assumptions

- Maximum vertical velocity : 6.3 m/s
- Mass: 4 kg
- Average Wind speed : 4.74 m/s
 - Standard deviation: 2.27 m/s

Landing Functional Block Diagram

Base Leg Design

Leg Design

Dimensions: 7.3 cm x 1.2 cm x 1.2 cm Effective Impact Area: 6.2 cm²

Duocel Aluminum Foam

ACTUATION

Density: 3-12% of Aluminum Compression Strength: 2.53 MPa Max Compression: 70%

Leg Energy Absorption

Raytheon

CU AES Senior Projects 2016-2017 : REPTAR PDR

31

Raytheon

Aluminum Side Panels

Dimensions: 9 cm x 10 cm x 0.7 cm Effective Impact Area: 6.2 cm²

Center Foam Structure

Dimensions: 9 cm x 9 cm x 0.9 cm

Duocel Aluminum Foam

Density: 3-12% of Aluminum Compression Strength: 2.53 MPa Max Compression: 70%

Property	Value
Effective Impact Area	6.2 cm ²
Compression Strength	2.53 MPa
3σ Wind Speed	11.55 m/s
3σ Rotation Speed	32.08 rad/s
3σ Deformation	5.7 cm
Max-Possible Deformation	6.3 cm

Requirement	40 G Max Instantaneous Loading (DR 1.3)	5.4 m/s Landing Speed	3σ Horizontal Speed of 11.55 m/s
Design	40 G Limit	6.3 m/s Allowable	12.06 m/s Allowable
Feasibility	\checkmark	\checkmark	\checkmark

Cost	Mass	Volume
\$650	0.78 kg	0.25 U

Avionics Feasibility Analysis

12/8/2016

Assumptions

- Patch antennae have at least a 120 degree view of open sky
- An operating Iridium satellite is overhead

Requirements & Assumptions

Requirements

- Vehicle location must be determined (FR.4)
- Vehicle must transmit its location to search party (DR 4.1)
- Logical decisions need to be made based on sensor input
- Electronic components must be supplied adequate power
- Avionics shall meet mass and volume requirements (FR.2)

Avionics System Layout

Command Data & Handling(CDH)

GPS Link Budget

DR 4.1 GPS Iridium Antenna Antenna

	Signal Strength	Noise Figure
Estimated Signal	-155 dBm [Worst Case Stress Test]	N/A
Antenna Gain	-1 dBi	N/A
LNA Gain	28 dB	1.5 dB
Receiver Incident	-128.5 dBm	1.5 dB
Minimum Requirement	-145 dBm [Acquisition]	2.0 dB Max
Feasibility	\checkmark	\checkmark

Command & Data Handling Sequence Diagram Raytheon

Microcontroller Data and Processing Budget

	Activatio	Step	Storage Needed [Words] Over Flight	Execution Time [ms] Per Iteration
		Read Pressure	1	6.8
		Read Temperature	1	6.8
	Read Press	ure Calculate Temperature	0	2.07
Legend	Read	Calculate Comp. Pressure	0	6.8
	Tempertu	re Store Result	2	12.6
Word Store	Calculate	Calculate Altitude	0	0.76
Calculation	Temperatu	subtotal	332	35.83
	Calculate Compensa	Coue Overneau	5000	N/A
	Pressure		1000	N/A
Deployment	No Store Res	Maximum	8000	500
	Total	6332	35.83	
Yes Dep	Calculate Altitude	Feasibility	\checkmark	\checkmark

CDH Baseline Design Feasibility

Design Selection	Required Spec	Achievable Value	Feasibility
(Venus638FLPx)	 100 m position knowledge precision 1 Hz update rate GGA NMEA output messages 	 2.5 meters min CEP 20 Hz max update rate Supports GGA formats 	\checkmark
(MS5607-02BA03)	 851 Pascal precision (100 m Altitude knowledge) Update at 1 Hz 	150 Pascal precisionCan Update at 10 Hz	\checkmark
	 Process altimeter data at 1 Hz Store all altimeter data 	 Can process at 27 Hz Can store 6 flights worth of altimeter data 	\checkmark

COM

Iridium Link Budget

	Signal Strength
Transmitter Output	32 dBm
Antenna Gain	2.5 dBi
Path Loss	143 dB
Misc. Loss	7 dB
Receiver Incident (without Antenna)	-115.5 dBm
Satellite Sensitivity	-117 dBm
Feasibility	\checkmark

Electrical Power System (EPS)

Power Budget

Assumes 80% Efficient Regulators

46

Baseline Design Feasibility

Design Selection	Required Spec	Achievable Value	Feasibility
Maximum Battery Current Draw	 5 Amperes maximum sustained current draw 	 2.12 Amperes maximum sustained current draw 	\checkmark
Maximum Regulator Current Draw	 2.5 Amperes maximum draw for each regulator 	 1.85 Amperes Max (9V) 0.5 Amperes Max (3V3) 	\checkmark
Battery State of Charge at Landing	 State of Charge must stay over 20% throughout mission life 	 State of Charge minimum of 97.5% over mission life. 	\checkmark
Broadcast Time After Landing	 Broadcast ground location for at least 5 minutes. 	 Can broadcast ground location for 920 minutes. 	\checkmark

Systems Integration and Summary

Subsystem	Volume	Mass	Cost
Descent	1.25 U	1.03 kg	\$650
Landing	0.25 U	0.78 kg	\$650
Avionics	0.5 U	0.5 kg	\$850
Payload	1 U	1.33 kg	
Frame		0.23 kg	\$250
Total	3 U	3.87 kg	\$2,400

Systems Integration

Subsystem	Volume	Mass	Cost
Descent	1.25 U	1.03 kg	\$650
Landing	0.25 U	0.78 kg	\$650
Avionics	0.5 U	0.5 kg	\$850
Payload	1 U	1.33 kg	
Frame		0.23 kg	\$250
Total	3 U	3.87 kg	\$2,400

Systems Integration

Subsystem	Volume	Mass	Cost
Descent	1.25 U	1.03 kg	\$650
Landing	0.25 U	0.78 kg	\$650
Avionics	0.5 U	0.5 kg	\$850
Payload	1 U	1.33 kg	
Frame		0.23 kg	\$250
Total	3 U	3.87 kg	\$2,400

Full System Space and Launch Survivability Tests

General Vibration Test	Environmental Chamber	High altitude drop test
(DR 1.4)	Test (DR 1.1 & DR 1.3)	(DR 1.2 & DR 1.3)
 Hardware/Software: Full Integrated Unit Facility: Cascade Tek (Longmont) Risk: High 	 Hardware/Software: Full Integrated Unit Facility: Aero Dept. / Cascade Tek (Longmont) Risk: High 	 Full System Test: Drop from a height of greater than 3500 m MSL Hardware/Software: Fully integrated unit Facility: Plane Risk: High

Future Work

- Sliders / Risers for Parachute Deployment
- Alternative Top Plate Deployment Methods
- Materials Selection
- Friction Analysis
- Antennae pattern
- CDH Algorithm Model
- Regulator Simulation

Questions?

12/8/2016

Backup Slides

55

Thermal Analysis

12/8/2016

DR 1.5 & DR 1.6

- Temperature in space tends to stay between 2 and 5 K
- There may be a requirement for the satellite, or at least specific components, to be kept warm through the use of a heater
- Investigating whether a heater, which would take up space, is necessary

DR 1.5 & DR 1.6

- The electronics must be kept between 218 and 298 K
- The nylon parachute must be kept between 233 and 353 K (Professional Plastics)

Analysis

- As the satellite orbits the earth, it will rotate and different faces will receive sunlight
- Earth's albedo also causes the satellite to increase in temperature
- Throughout the orbit, all exposed sides of the satellite will be radiating heat away from the satellite

DR 1.5 & DR 1.6

- Satellite is in a circular, 400 km altitude, 92.5 minute period orbit
- The satellite is a black body
- The satellite is composed entirely of aluminum
- The TPS is covering one long face of the satellite
- The payload does not generate heat while operational
- The only sources of heat addition are the sun and albedo
- The only source of heat loss is emission from the surface of the satellite

Variation in Temperature

Descent

12/8/2016

Descent Design Decision

Item	COTS/Manufactured	Source/Facility	Details
Iris Ultra 122 cm Compact Parachute	COTS	Fruity Chutes	121.9 g, $C_d =$ 2.20, Packing volume 428 cm^3
Goex FFFFg Black Powder	COTS	Bass Pro Shop	0.1128 g for parachute
Parachute Containment Cylinder	Manufactured	ITLL/Aerospace Shop	Manufactured out of aluminum sheet
PinPuller P5	COTS	TiNi Aerospace	5 lbf with 0.25 in stroke
Ejection Canisters	COTS	Apogee Rockets	Tested for 9 and 12 VDC
Recovery Wadding	COTS	Apogee Rockets	Thermal protection for parachutes

Costs

ltem	Source/Facility	Cost
2 x Iris Ultra 48" Compact Parachute	Fruity Chutes	\$340
Goex FFFFg Black Powder	Bass Pro Shop	\$30
Sheet Aluminum	Metals Depot	\$40
50 x Ejection Canisters	Apogee Rockets	\$100
200 x Recovery Wadding	Apogee Rockets	\$10
2 x PinPuller Actuator	TiNi Aerospace	\$ TBD
TOTAL COST:		\$650

Assumptions:

- Area = 1.13 m²
- Open Time = 0.46 Sec
- Chute Deploy = 3500 m MSL

Cd Vs. Landing Velocity of Parachute

• Cd = 2.20

Cd of Parachute Sensitivity

Assumptions:

- Area = 1.13 m²
- Open Time = 0.46 Sec
- Chute Deploy = 3500 m MSL

Cd Vs. Instant G Loading of Parachute

Baseline:

• Cd = 2.20

Projected Area of Parachute Sensitivity

67

Assumptions:

12/8/2016

- Cd = 2.20
- Open Time = 0.46 Sec
- Chute Deploy = 3500 m MSL

CU AES Senior Projects 2016-2017 : REPTAR PDR

Projected Area Vs. Landing Velocity of Parachute

Baseline:

• Area = 1.13 m²

Projected Area of Parachute Sensitivity

Raytheon

Assumptions:

- Cd = 2.20
- Open Time = 0.46 Sec
- Chute Deploy = 3500 m MSL

Baseline:

• Area = 1.13 m²

Time to Open Parachute Sensitivity

Assumptions:

• Cd = 2.20

Baseline:

• Open Time = 0.46 sec

- Area = 1.13 m²
- Chute Deploy = 3500 m MSL

Time to Open Vs. Instant G Loading of Parachute

Altitude of Deployment of Parachute Sensitivity Raytheon

Assumptions:

• Cd = 2.20

Baseline:

• Chute Deploy = 3500 m MSL

- Area = 1.13 m²
- Open Time = 0.46 sec

Altitude of Deployment Vs. Instant G Loading for Parachute

70

- Designed in SolidWorks
 - Flow Simulation used to calculate drag in Z direction
 - Plugged into coefficient of drag equation
 - Took atmospheric conditions at different heights to calculate multiple values of Cd
 - Average of values used for MATLAB script, Cd = 1.07

Flow Simulations Cube

72

•
$$S_0 = 231.54 ft^2$$

• $D_0 = \sqrt{\frac{4 * S_0}{\pi}}$

•
$$n = 8^*$$

•
$$t_{deploy} = \frac{n * D_0}{v_{term}} = 0.4551 \text{ s}$$

•
$$G's = \left(\frac{Diff(V)}{t_{step}}\right)/9.81m/s^2$$

• $t_{step} = 0.011 \sec \rightarrow milspec \ standard$

*Mohaghegh, F., and Jahannama, M. R., "Parachute Filling Time: A Criterion to Classify Parachute Types," pp. 1–13.

- PV = NRT
- $N = \frac{PV}{RT}$
- T = 1837.2 K (Black Powder Ignition Temperature) • $N = \frac{1000 * (PSI x 6894.76 (Pa)) * (Volume (m^3))}{(287 \frac{J}{Kg K}) * (1837.2 K)}$ grams of BP in g
- At 20 PSI, 0.128 g of Black Powder required

http://www.vernk.com/EjectionChargeSizing.htm

Raytheon

Flow Simulations Parachute

Raytheon

Flow Simulations Parachute

Raytheon

CU AES Senior Projects 2016-2017 : REPTAR PDR

- Maximum Instant G Loading = 33.8 G's
- 33.8 G's * 9.81m/s² = 332 m/s²
- F = ma = 3.99kg * 332 m/s² = 1323 N
- 1323N= 297 lbf
- 297 lbf / 8 strings = 37 lbf per string
- Each line is #400 Spectra, which means 400 lbf per string
- Factor of Safety of 10.8

Ha

eon

Surface Wind Analysis by Hour

Windiest Month – August

Ray

eon

Average wind speed for August 2016: 4.74 m/s.

Max daily average wind speed for August 2016: 7.02 m/s.

Effect of Parachute Deployment Altitude

79

Backup

Raytheon

CU AES Senior Projects 2016-2017 : REPTAR PDR

Landing

Item	COTS/Manufactured	Source/Facility	Details
Foam Legs and Internal Panel	COTS	ERG Aerospace	2.53 MPa Compression Strength
Side Legs	Manufactured	Machine Shop	Aluminum bulk purchase
3U Frame	Manufactured	Machine Shop	Aluminum bulk purchase
Frangibolt Actuator FD04	COTS	TiNi Aerospace	Price Unknown

Landing Deformation

- Deformation was calculated using basic kinematic equations
 - Vertical deformation during initial landing
 - Acceleration = $a = g * #G's = 9.81 \frac{m}{s} * 40G's$
 - Change in Velocity= $\Delta V = V_{initial} V_{final}$
 - Time = $t = \frac{\Delta V}{a}$ where ΔV is the velocity required to go from provided velocity from parachute descent to a 0 vertical velocity at rest.

• Displacement = d =
$$V_{avg} * t = \frac{\Delta V}{2} * t$$

Landing Deformation

- Deformation during tipping over due to horizontal wind velocity
 - Angular velocity = $\omega = \frac{v}{r}$
 - Moment of Inertia = I = $\frac{m}{12} * (w^2 + h^2) + m\Delta D^2$ where w and h are the dimensions of the system
 - Kinetic Energy = Force*displacement => $KE = \frac{1}{2}I\omega^2 = Fd = mad$
 - Displacement = $d = \frac{\frac{1}{2}\omega^2(\frac{1}{12}(w^2+h^2)+\Delta D^2)}{g*\#G's}$ where mass, m, has been canceled out

Landing Area

- Velocities able to be withstood during landing from different leg areas
 - Area = A = varying areas as defined by system dimension limits
 - Deformation = $d = 60\% * Leg \ length$ (assumed to be 6cm)
 - $\sigma = 2.53 * 10^6 Pa$ from the material specifications of aluminum foam
 - Force = $F = A\sigma$
 - Work = W = Fd

• Velocity =
$$V = \sqrt{\frac{2W}{m}}$$
 from the KE equation ($KE = \frac{1}{2}mV^2$) where $W = KE$

Velocities of Landing vs. Area and Deformation Raytheon

Assuming a 60% deformation of material for lower legs

Costs

ltem	Source/Facility	Cost	Notes
Aluminum Sheet	McMaster Carr	\$150	Machined into frame and sheets
8x Steel Pins (Side Legs)	McMaster Carr	\$4.97 each	Machine to shorter length
4x Steel Pins (Base Legs)	McMaster Carr	\$10.33 pack of 10	Dowel pin: Two different lengths of pins for two prices
Aluminum Foam	ERG Aerospace	\$400	Pre-machined Material
TOTAL COST		\$634.56	

Mass Budget - Landing

Item	Mass (g)	ltem	Volume (cm ³)
Aluminum Side Legs	680.4	Aluminum Side Legs	252
Aluminum Foam Base Legs	13.62	Aluminum Foam Base	120 (Base 0.12U)
Aluminum Foam Mid-Section	61.03	Legs	
Plate	01.05	Aluminum Foam Mid- Section Plate	72.5
Steel Pins	16.3	Aluminum SmallSat	3000 (Total chassis
1x Frangibolt	7	Structure	volume contained,
Aluminum SmallSat Structure	225.25		not included in total)
TOTAL MASS:	1003.6 g	TOTAL VOLUME:	444.5 cm ³

Avionics Backup

12/8/2016

Previous PCB Design Pt1/2

Raytheon

Previous PCB Design Pt2/2

Venus638FLPx IC GPS on Breakout Board Selected

- Operation within Device's COCOM Limits
- Output: NMEA-0183 Binary Sentences at 96kbps or 115.2kbps
- Update Rates of up to 20Hz
- SMA Antenna Connector
- 2.5m 50CEP Accuracy
- 1 second hot start
- 3V3 Power Supply

Altimeter Selection

MS5607-02BA03 Barometric Pressure Sensor Selected

- 10-1200 mbar Pressure Sense Range
- 3V3 Power Supply
- I2C or SPI Digital Interface
- IC on Main Board
 - Minimizes Volume Requirements
 - Minimizes Wiring Complexity
 - Simple Implementation
- Includes Temperature Sensor
 - Temperature Sense Range of -40 to 85 C
 - Accurate to within 1^{o} C

Microcontroller Data and Processing Budget Backup Raytheon

			Step	Calculations	Cycles	Time [ms]
	Activation		Read Pressure	N/A	N/A	0
			Read Temperature	N/A	N/A	0
		Read Pressure	Calculate Temperature	3 Multiplication 3 Addition	321 Multiplication 12 Addition	2.07
Legend	Word Store Calculation Calculate Calculate Calculate Calculate Calculate Calculate Calculate	Read Temperture	Calculate Comp. Pressure	10 Multiplication 7 Addition	1070 Multiplication 28 Addition	6.8
word Store		Calculate Temperature Calculate Compensated	Store Result	N/A	N/A	0
Calculation			Calculate Altitude	2 Multiplication 2 Addition	114 Multiplication 8 Addition	0.76
		Pressure	Operation Cycles	Addition: 4	Multiplication: 107	N/A
Deployment		Store Result	Clock Frequency	14 MHz	N/A	N/A
Yes		Calculate	Clock Period	6.2 ns	N/A	N/A
Dep	loy?	Altitude	Total	N/A	N/A	9.63

Altimeter Specifications

- For a desired altitude knowledge of 100 meters, the pressure accuracy required is derived using the standard atmosphere model to relate pressure and altitude
- A vector of altitude values from 0 to 3500 meters by 100 meter intervals was mapped to a vector of pressure values

Value #	-		2		3	3	۷	Ļ	5	5	6	5	7	7	• (•	3	6
<i>h</i> [m]	(C	10	0	20	00	30	00	40	00	50	00	60)0	• •	••	35	00
p [kPa]	10	1.3	100).1	99	0.0	97	'.8	96	.6	95	5.5	94	.3	• •	•	65	.8
$ \Delta p $ [kPa]		1.7	20	1.:	18	1.1	17	1.1	16	1.1	15	1.	14	• •	••	0.8	51	

Hay

eon

Altimeter Specifications

The difference between each pressure value corresponds to the necessary pressure resolution to obtain an accuracy of 100 meters in altitude. The lowest of these differences was used to derive the altimeter's minimum pressure accuracy:

Ray

leon

 $p_{sens} = \min(|p_1 - p_2|, |p_2 - p_3|, |p_3 - p_4|, ...) = 0.851$ kPa

Position Broadcast Accuracy

	Lat/Long Decimal Degrees	Military Grid Reference System
NW Corner	41.2576° - <mark>11</mark> 4.139°	11TQF 396 713
NE Corner	41.2967° - <mark>11</mark> 2.921°	12TUL 391 734
SW Corner	39.9459° -114.120°	11SQE 459 257
SE Corner	39.9933° -112.761°	12SUK 496 285
Accuracy	N/S ##.#### / 11.132m E/W #.### / 78.71m	ZZZZZ ### ### 100m accuracy
12/8/2016	10 total digits for 100m accuracyAssumptions on location CU AES Senior Projects 2016-2017 : R	11 total digits for 100m accuracy. No assumptions.

Raytheon EICD

DR 2.1.1 ETMM 2.00mm Shrouded Terminal Strip Connector and the TCSD 2.00mm Ribbon Cable Assembly

EGSE

Raytheon

Board/Element	Mass (g)	Cost
Main Board	120	\$66 Per Panel + \$40 per Board
Iridium Radio COTS Board	80	\$250 + Per Byte Fee of \$0.001
GPS COTS Board	80	\$60
Battery Pack	200	\$60

Risk Matrix

Risk Identification	Probability	Impact	Risk Value	Risk Mitigation Plan
Black powder ignited during launch	LOW	HIGH	MED	Vibration and loading tests
Low temps of space make parachute material brittle	LOW	MED	LOW	Test in environmental chamber, keep REPTAR warm
Top of CubeSat is not jettisoned, drogue and parachute can not deploy	LOW	LOW HIGH MED		Frangibolt to release, pressure force, force of drogue deploying

Risk Matrix Cont'd

Risk Identification	Probability	Impact	Risk Value	Risk Mitigation Plan
Black powder does not ignite on command	LOW	HIGH	MED	Static and drop testing
Heat from ignition burns fabric of parachute/drogue	MED	MED MED MED		Thermal recovery wadding place in cylinders below parachutes
G Loading during deployment tears drogue	MED	MED	MED	Drop testing
Altimeter has errors and misreads altitude	LOW	MED	LOW	Mitigating by cross-checking GPS, redundancy of timer
Drogue and parachute not removed at landing	MED	MED	MED	High accuracy location information during descent for quick recovery

Risk Matrix

Risk Identification	Probability	Impact	Risk Factor	Risk Mitigation Plan
Payload descends with a horizontal component to orientation	LOW	MED	LOW	Descent during later hours of the day while winds have been recorded to be smaller in magnitude
Legs don't deploy before landing	MED	MED	MED	Leg deployment is sensitive to G-Loadings
Legs for ground torque don't enter structure correctly	MED	HIGH	HIGH	Redundancy implementation of material for proper entrance orientation

Available Vibration Test Methods

MECHANICAL

Valid To: September 30, 2016

Certificate Number: 2582.02

Raytheon

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following tests on <u>aircraft components</u>, <u>automotive components</u>, <u>marine</u> components, coatings, packaging and containers, electronics and consumer goods:

Test:	Parameters:	Test Method(s):
Mechanical Vibration ¹ : Includes: Sine Random Sine-on-Random Gunfire	(1 to 3,000) Hz 3" Stroke 40,000 lbs Force	ASTM D4169; BellCore GR-63-CORE 5.4.2, 5.4.3; IEC 68-2-59, Test Fe; IEC 68-2-34, Test Fd; IEC 68-2-35, Test Fda; IEC 68-2-6, Test Fc; JESD22 B103B; MIL-STD-810E, Method 514.4, 519.4; MIL-STD-810F, Method 514.6, 519.5; MIL-STD-810G, Method 514.6, 519.6; MIL-STD-167-1 (A SHIPS); MIL-STD-167-1 (A SHIPS); MIL-STD-202G, Method 201A, 204D, 214A; MIL-STD-883G, Method 2005.2, 2007.3, 2026; MIL-STD-883H, Method 2005.2, 2007.3, 2026; MIL-STD-1344A, Method 2005.1; RTCA DO-160D, E, F, G, Sec. 8.0; RTCA DO-227 6/23/1995, Sec. 2.3.1; SAE J1455, Sec. 4.10; SAE J1211, Sec. 4.7; UN ST/SG/AC.10/11 Rev. 5, Para. 38.3.4.3

Bench Top Test : Both for Top side removal and Chute Deployment

- Hardware needed: CDH, EPS, Pinpuller, Black Powder, Ejection Canisters, Parachute, Thermal Paper
- Skills needed: Packing of black powder and chutes, manufacturing
- Safety Measures: Hearing and eye protection
- Cost: TBD
- Facility: Boulder Airport
- Frequency of test: 3-4 Attempts
- Risk Factor: Low mitigated by keeping other sensitive components away
- Areas of concern: Burning parachutes, over pressurization

Bench Top Test (without CDH, EPS) : Both for Top side and Chutes Deployment

- Hardware needed: Power Source, Pinpuller, Black Powder, Ejection Canisters
- Skills needed: Packing of black powder, manufacturing
- Safety Measures: Hearing and eye protection
- Cost: TBD
- Facility: Boulder Airport
- Frequency of test: 3-4 Attempts
- Risk Factor: Low
- Areas of concern: Over pressurization of cylinders

Field Test I : Drop from a height of TBD meters

- Hardware needed: Power Source, Accelerometer, High Speed Camera, Sensors (Accelerometers, Parachute, Dummy Payload)
- Skills needed: Parachute re-packing, personnel safety
- Safety Measures: Damage to payload
- Cost: TBD
- Facility: Local fire tower
- Frequency of Test: 4 Attempts
- Risk Factor: High due to the possibility of damaging the unit significantly.
- Areas of concern: Real-time processing of the altitude and/or accelerometer measurement

•FR.1 REPTAR shall survive launch and standby period in space.

- •– DR 1.1 REPTAR shall survive vacuum.
 - * Motivation: Derived from the space environment conditions.
 - * V&V: Environmental Testing Facility at CU.
- DR 1.2 REPTAR shall survive the 8.5 G's that will be experienced during launch.

* Motivation: Derived from the launch environment conditions based on the popular launch vehicles such as Falcon 9 and Delta 4.

* V&V: Simulation/Analysis.

- •– DR 1.3 REPTAR shall survive an instantons G Loading of 40 Gs
 - * Motivation: Derived from MIL Spec

* V&V: Drop testing

- •– DR 1.4 REPTAR shall have a natural frequency greater than 100 Hz
 - * Motivation: Derived from launch environment conditions based on the popular launch vehicles

* V&V: Simulation/Analysis and maybe 40 Gs

• DR 1.5 REPTAR's components shall survive environmental temperature as low as 3 Kelvin.

* Motivation: Derived from the space environment conditions.

* V&V: Environmental Testing Facility at CU.

•– DR 1.6 REPTAR's components shall survive temperatures as high as 400 Kelvin.

* Motivation: Derived. REPTAR should not be more sensitive than the payload to high temperatures. As defined by Raytheon, the payload can survive temperatures as high as 400 Kelvin.

* V&V: Environmental Testing at CU.

- FR.2 REPTAR shall conform to industry CubeSat standards.
 - – DR 2.1 REPTAR shall interface with the Raytheon Unit.
 - * DR 2.1.1 REPTAR shall have an electrical interface according to Raytheon provided ICD.
 - Motivation Derived. REPTAR will need power and signal interfaces in order to carry out its mission objectives. Therefore, it needs to be charged before re-entry. Hence, it will have an interface with the Raytheon Unit to provide necessary power to perform the mission and signal when the REPTAR unit should activate.
 - V&V: Bench Top Test.
 - * DR 2.1.2 REPTAR shall structurally interface with the 1U Raytheon payload.
 - Motivation Derived. REPTAR will need to be built in a way that the 1U payload can be added to the vehicle by Raytheon.
 - V&V: Demonstration by inspection.

- FR.3 REPTAR shall keep the payload safe during descent and landing.
 - DR 3.1 The payload shall not experience loading exceeding 8.5 G's during any stage of the mission.
 - * Motivation: Derived. The payload can survive the loading experience during launch, therefore it should be kept within the launch limits to ensure its safety.
 - * V&V: Simulation/Analysis. Possibility of vibration testing at CU facility or around the Boulder area.

- FR.4 REPTAR shall be locatable.
 - DR 4.1 REPTAR shall communicate its location over a radius less than or equal to 20 miles.

* Motivation: Derived from the map of Utah Testing and Training Range(UTTR). The 20 mile range covers half of the range, therefore needing one search team each in the Northern or Southern regions of the range.

* V&V: Demonstration by field test.

Gantt Chart

Raytheon

References

"Thermal Properties of Plastic Materials," Professional Plastics, 2016.

"Windiest Month in Utah", <u>https://wind-speed.weatherdb.com/l/240/Salt-Lake-City-Utah</u>.

http://www.ams.sunysb.edu/~linli/para_html/parachute.html

"Efficient Multiplication and Division Using the MSP430."*Http://www.ti.com/lit/an/slaa329/slaa329.pdf* (n.d.)

"The TI MSP430"http://eleceng.dit.ie/frank/msp430/msp430.pdf (n.d.)

Datasheets for products reviewed as applicable

