CU AES Senior Projects 2016-2017 : REPTAR MSR

Manufacturing Status Review

REPTAR REcoverable ProTection After Reentry

Team: Calvin Buechler, Kevin Faggiano, Dustin Fishelman, Cody Gondek, Lee Huynh, Aaron McCusker, William Sear, Himanshi Singhal, Craig Wenkheimer, Nathan Yeo
Customer: Steve Thilker, Collin Baukol, Cody Humbargar, Jason Latimer (Raytheon)
Advisor: Dr. Brian Argrow

Overview

CU AES Senior Projects 2016-2017 : REPTAR MSR

2

REPTAR

Raytheon

REPTAR shall assist in the recovery of a de-orbited 1U Raytheon Payload. The mission begins once the SmallSat has re-entered the atmosphere and has reached subsonic velocity. REPTAR shall facilitate the subsonic deceleration, landing, location determination, and location transmission portions of the mission.

Recovery of payload enables:

- Lower mission costs by re-using the payload
- Obtain samples collected by payload on-board

CU AES Senior Projects 2016-2017 : REPTAR MSR

Descent

After being decelerated to subsonic speeds, REPTAR activates atmospheric deceleration systems to protect the payload.

Decelerate

Slows to safe landing speeds by deploying a parachute. Transmits location during descent.

Land

Lands payload safely within launch loading requirements.

REPTAR

REcoverable ProTection After Reentry (REPTAR) Concept of Operations(CONOPS)

Receive Location

Recovery team receives location.

Transmit Location

Transmits location to recovery element.

Levels of Success

Criteria	Volume	Instantaneous G-Loading	Communication
Level 1	The volume of REPTAR including payload shall not exceed a maximum of 6U Standard	The payload shall endure a maximum instantaneous G-loading of less than 40 G's	REPTAR shall beacon its location over a range of 20 miles
Level 2	The volume of REPTAR including payload shall not exceed a maximum of 4U Standard		REPTAR shall beacon its location over a range of 30 miles
Level 3	The volume of REPTAR including payload shall not exceed a maximum of 3U Standard		REPTAR shall beacon its location over a range of 45 miles

CU AES Senior Projects 2016-2017 : REPTAR MSR

5

Key Components

Total Mass & Volume Budget

Item	Mass (g)	Volume (U)	Raytheor
Descent Subsystem	383	1.23	Descent: 12.3 cm
Landing Subsystem	395	0.41	
Avionics Subsystem	518	0.36	
Frame	437	-	Landing: 1.26 cm
Raytheon Payload (Provided and Unchanging)	1330	1.00	Avionics. 5.04 cm
SYSTEM TOTAL	3063	3.00	Raytheon Payload:
SYSTEM MAX	4000	3.00	
Margin	937	-	Landing: 2.8 cm

CU AES Senior Projects 2016-2017 : REPTAR MSR

7

Critical Project Elements

Raytheon

Subsystem	CPE	Explanation
Descent	Parachute Deployment	If the parachute does not deploy and act properly, it will be nearly impossible to achieve any of the mission requirements.
Landing	Leg Deployment	The legs lower the maximum G loading the vehicle experiences. Without successful leg deployment, a mission requirement cannot be met.
Landing	Side Panel Deployment	The side panels assist in lowering the maximum G loading in the case of windy weather where the vehicle will have a horizontal velocity
Avionics	MainBoard Bringup	The mainboard is critical for all flight actions as it controls deployments and the GPS-Iridium interface.
Avionics	Battery Testing	Verification of the battery is critical for personal and hardware safety.
Avionics	Antenna Pattern Testing	In order to determine and transmit our location we need to be able to make link with the GPS and Iridium constellations.

8

Schedule

CU AES Senior Projects 2016-2017 : REPTAR MSR

10/3/17

Critical Subsystem Tests

Subsystem	Test	Reasoning
Descent	Black Powder Deployment	Verifies chute deployment
Descent	Parachute Deployment Loading Test	Verifies base plate is strong enough to hold chute
Landing	Leg and Panel Deployment	Verifies legs and side panels deployment
Landing	Foam Impact	Verifies foam's structural properties and behavior
Avionics	Antennae Testing	Verifies antennae perform as expected
Avionics	Battery Testing	Verifies batteries function safely and properly
Avionics	Day in the Life	Verifies all avionics components cooperate when combined

CU AES Senior Projects 2016-2017 : REPTAR MSR

10

Plan to MSR

Plan from MSR to TRR

REPTAR

Plan from TRR to End of Semester

REPTAR

Manufacturing

CU AES Senior Projects 2016-2017 : REPTAR MSR

10/3/17

CPE: Parachute Deployment

Descent Subsystem

Past Manufacturing

PVC Housing

Fiberglass Housing

Raytheon

REPTAR

~ 4.5 Man Hours

~ 15 Man Hours

CU AES Senior Projects 2016-2017 : REPTAR MSR

10/3/17

Past Testing

REPTAR

Raytheon

Test	Purpose	Results
<u>Black Powder Tests,</u> <u>No Parachute</u>	Quantify the amount of equilibrium pressure in housing with various amounts of powder, compare with pressure model	Successful, ~ 24 psi equilibrium vs. 20 psi predicted
<u>Air Compressor Test</u>	Quantify the pressure needed to expel the parachute from housing	Successful, ~ 80 psi instantaneous with perforation
Black Powder Tests, with Parachute	Validate that parachute is expelled from housing due to instantaneous pressure from powder ignition	Somewhat Successful, expelled from housing, but burnt parachute
Drop Test	Validate the coefficient of drag of parachute, validate drift model accuracy	Unsuccessful, too much drift
Parachute Drag Test	Validate coefficient of drag of parachute	Successful, Cd ~ 2.15

10/3/17

CU AES Senior Projects 2016-2017 : REPTAR MSR

Parachute Ejection with Black Powder

Raytheon

REPTAR

- Purpose
 - Validate that parachute is ejected
- Model
 - > 0.4 grams, ~248 psi instantaneous pressure
- Results
 - Ejected but some burns presents

10/3/17

Future Testing

REPTAR

Raytheon

Test	Purpose	Possible Off-Ramps
Parachute	Validate that aluminum plate	Increase thickness,
Deployment Load	attached to parachute chord can	reinforce point of
Test	withstand instant force of 353 lbf	weakness
<u>Fiberglass</u>	Validate fiberglass housing can	Increase thickness of
<u>Housing Pressure</u>	withstand minimum 248 psi	fiberglass, carbon fiber
<u>Test</u>	instantaneously	housing
<u>Black Powder</u> Quantity Tests	Determine minimum amount of black powder needed to expel parachute from housing without damage to parachute	More perforations, parachute bag, more layers of protective paper

10/3/17

CU AES Senior Projects 2016-2017 : REPTAR MSR

Parachute Deployment Load Testing

Raytheon

REPTAR

Purpose

- Verify plate can withstand 353 lbf instantaneous force
- Model

U-Bolt

Drop 4 kilograms a distance of 1 meter

Current and Future Orders

Raytheon

- Parachute x2 Arrived
- Ejection Canisters Arrived
- Black Powder Arrived
- Fiberglass Tube Arrived
- Fiberglass Cloth Arrived
- Epoxy Arrived
- Fiberglass Top Plate Arrived
- Fiberglass Side Walls Material needs to be ordered

CPE: Software and Electronic Hardware

Avionics Subsystem

Avionics Status-at-a-Glance

REPTAR Raytheon

No testing yet performed

All components ordered

Task	Status	Comments
MainBoard Rev. A Design	113 Man Hours - <u>Complete</u>	Designed for simpler testing and mitigate regulator thermal Issues
Flight Software Development	7/30 Man Hours	Developed on Raspberry Pi 3 for simplicity and offramps
Bring Up Testing	0/20 Man Hours	Waiting on Rev A Board

10/3/17

CU AES Senior Projects 2016-2017 : REPTAR MSR

Future Hardware Testing

MainBoard Bringup Tests:

- **1**. <u>3V3 Internal Regulator [2 MH]</u>
 - Absolute Voltage, Ripple, and draw
- **2.** <u>3V3</u> and <u>12V</u> Deployment Regulator [8 MH]
 - Power Delivery
 - Trigger Logic
- **3.** <u>Altimeter</u> [4 MH] (on Reverse)
 - Absolute Pressure Accuracy
- 4. <u>GPS-Iridium Interface</u> [4 MH]
 - Electrical Connection
- 5. Inhibits [2 MH]
 - Design logic

REPTAR

Raytheon

Software Testing Buildup

Mission Action	Time to Develop	Required Hardware
<u>Altitude</u> <u>Determination</u>	8 Man Hours	Altimeter
<u>Deployment</u>	5 Man Hours	Deployment Regulators
Location Determination and Transmission	15 Man Hours	Iridium Module & Antenna GPS Module & Antenna

CU AES Senior Projects 2016-2017 : REPTAR MSR

10/3/17

Physical Interfaces

REPTAR

Battery Interface and Inhibits

Antenna Testing

30

Responsible For:

Location Determination and Transmission

Hardware Tests:

 Radiation Pattern Determination Requires Anechoic Test Chamber (currently booked in ECEE Department)

Software Tests:

• None

Offramps:

External Antenna Mount

CPE: Landing Leg Deployment

Landing Leg Design Changes

Raytheon

Changed Copper Foam Legs to Aluminum Foam Legs

- Done by lowering density of aluminum foam
- Delays caused in the changing process, will not cause further delays once ordered

• Will machine Aluminum foam to desired shape

- Been tested in the machine shop with samples, proving viability of in house machining
- Saves \$500 and 3 weeks of time to receive material

Past Manufacturing

- Most parts for the landing subsystem are purchased parts
 - Torsional springs Arrived
 - Compression springs Arrived
 - Slotted pins Arrived
 - Aluminum Foam Material for legs– Ordered (Expected Arrival: 2/19)
 - Epoxy for mounting Arrived
- Leg locking mechanism attachment has been manufactured

CU AES Senior Projects 2016-2017 : REPTAR MSR

Past Testing

Raytheon

Test	Purpose	Results
Epoxy Testing	To test the adhesive capabilities of the NASA rated epoxy purchased	Successful, upwards of 49 N of applied force without breaking (needed 10 N)
Deployment Testing	Testing the reliability of the torsion springs in deploying a pair of legs	Successful, the provided torque is enough to overcome a wind of 5.5 m/s

10/3/17

CU AES Senior Projects 2016-2017 : REPTAR MSR

Deployment Testing

- Purpose: Testing the reliability of the torsion springs in deploying a pair of legs
- Differences from actual setup
 - Use of hot glue instead of epoxy
 - Use of Aluminum legs instead of Al foam
- Key Results
 - Confirmation of system deployment with a single spring
 - Torque expectation has been met

Future Testing

REPT/	A R
-------	------------

Raytheon

Test	Purpose	Possible Off-Ramps
Impact Loading Test	Verify energy absorbing properties by measuring deformation with known impact	Changing the taper ratio, lower system mass
Locking Mechanism Testing	Testing the locking mechanism for effectiveness and reliability of design	Alter the locking mechanism design, change in spring

10/3/17

CU AES Senior Projects 2016-2017 : REPTAR MSR
Future Manufacturing

•

CPE: Landing Side Panel Deployment

Past Manufacturing

REPTAR

- Most parts for the landing subsystem are purchased parts
 - Torsional springs Arrived
 - Side panel pins Arrived
 - CNC Side Panels Ordered (Expected Arrival: 2/18)
 - Aluminum Foam for center panels Arrived
 - Kanthal coil wire Arrived

Future Testing

Raytheon

Purpose

Deployment Testing Testing the reliability of the torsion springs and locking mechanisms for a side panel

10/3/17

CU AES Senior Projects 2016-2017 : REPTAR MSR

41

Test

Future Manufacturing

REPTAR

Raytheon

- 4 Center Plates that connect to the rails and provide structure and deployment surfaces
 - ~25 man hours

CU AES Senior Projects 2016-2017 : REPTAR MSR

Landing Manufacturing Summary

REPTAR

Work Completed:

- Side rails constructed
- Leg locking mechanism constructed
- Outer Panels constructed

Future Work:

- Manufacture remaining parts (~8 man hours)
- Integration of Side Panels (4-6 man hours)
- Integration of Aluminum Foam Legs (4-6 man hours)

10/3/17

Budget

CU AES Senior Projects 2016-2017 : REPTAR MSR

10/3/17

Budget

CU AES Senior Projects 2016-2017 : REPTAR MSR

10/3/17

Backup

CU AES Senior Projects 2016-2017 : REPTAR MSR

10/3/17

Descent Backup

CU AES Senior Projects 2016-2017 : REPTAR MSR

10/3/17

Black Powder Tests, No Parachute

REPTAR

- PVC Housing created to hold ejection canister
- Pressure gauge attached to bottom of PVC Housing
- High speed camera placed on gauge
- Canister connected to 12V, 5A power supply
- Top of PVC sealed down to prevent leaks
- From Model to create 20 psi equilibrium, 0.128 g of powder needed
- Results:
 - High speed camera showed equilibrium pressure of 24 psi
 - ~17% difference in experiment and model

Air Compressor Test

REPTAR

Raytheon

- Pressure gauge removed
- U-bolt attached to bottom of housing
- Shock chord of parachute fed through housing and attached to Ubolt
- Parachute folded inside PVC housing
- Air compressor attached to hole where ejection canister would be
- Aluminum foil taped over top
- Some parts of experiment had small perforation in middle of foil
- Results:
 - 40 psi slight emergence of parachute through middle
 - 50 psi slight emergence of parachute through side of foil
 - 50 psi w/ perforation good emergence of parachute through middle
 - 80 psi very good emergence through middle
 - 80 psi w/ perforation fully deployed through middle

10/3/17

Black Powder Tests, With Parachute

Raytheon

REPTAR

- PVC Housing with ejection canister inside
- Parachute shock chord attached to U-bolt
- Parachute folded inside of housing with recovery wadding between it and ejection canister
- Aluminum foil with small perforation in middle and taped down
- Canister attached to power supply with 12V and 5A
- Results:
 - .1 grams powder predicted to be ~75 psi instantaneous pressure
 - Did not hear ignition go off and no movement of parachute
 - .4 grams powder predicted to be ~248 psi instantaneous pressure
 - Parachute left housing, video recorded, burnt parachute
 - Could lower grams and probably still deploy

Drop Test

- Lines placed across ECOT to give measurements of distance
- High speed camera set up with two other team members filming
- Caution tape placed to cut off courtyard from bystanders
- Parachute was as inflated as possible before drop
- Dropped from 8th story window instead of 3rd due to difficulties
- Anemometer on ground gave maximum reading of 2.2 mph
- Drift model stated 2.2 mph would provide 4 meter maximum drift
- Trouble communicating and ensuring safety of bystanders
- Once dropped, accelerated to wind speed and moved away from tower
- Minimal good data was acquired

REPTAR

CU AES Senior Projects 2016-2017 : REPTAR MSR

10/3/17

Parachute Drag Test

REPTAR

Raytheon

- Parachute shock chord will be attached to rope which will be attached to a digital scale with hook
- The digital scale will be attached to the rod of a headrest in a car
- The rope will be approximately 4 meters in length
- Team member will begin to accelerate car to 13 mph
- Team member in back seat will slowly release line of rope as parachute gets taut
- Car will stay at 13 mph, team member in back will record different values of force from scale
- Third team member will hold anemometer out window and record wind data as backseat member records force
- Comparing the velocity and force will allow calculation of the coefficient of drag of parachute
- Important because if coefficient is off, landing team must prepare for different landing speed

Aluminum Plate Load Test

Raytheon

- Aluminum plate will be attached to railings of CubeSat
- U-bolt will be placed in center and screwed into plate
- Shock chord of parachute will be attached to U-bolt
- When parachute deploys and becomes taut it will cause approximately 40 G's or 353 lbs of force on the aluminum plate
- Test is to ensure plate will not fracture/buckle
- Plate with railings will be suspended upside down
- A chain will be attached to U-bolt and other end will hold a ten pound plate
- Chain will be 1 meter in length
- Ten pound plate will be held against aluminum plate and dropped vertically
- If aluminum plate breaks it will need to be reinforced. If not test is a success

Fiberglass Housing Pressure Test

REPTAR

- Prior tests showed that 0.4 grams expels parachute
- 0.4 grams equates to 248 psi instantaneous pressure
- Actual amount used for project will be less than this
- If fiberglass housing can withstand an ignition of 0.4 grams it will not break during testing
- Model calculates burst pressure of fiberglass cylinder to be 717 psi
- Creates a FOS of 2.89

54

$$P = \frac{2St}{(OD)(SF)}$$

P = Fluid Pressure (PSI) = 20 t = Wall Thickness (in) = 0.157 OD = Outer Diameter (in) = 3.46 SF = Safety Factor = 1 (Burst Pressure) S = Ultimate Tensile Strength (PSI) = 7900 PSI

http://www.engineersedge.com/calculators/pipe_bust_calc.htm

CU AES Senior Projects 2016-2017 : REPTAR MSR

Black Powder Quantity Tests

Raytheon

- Purpose
 - Determine minimum amount of black powder needed to expel parachute without damage to parachute
- Possible Off-Ramps
 - More perforations
 - Parachute bag
 - More recovery wadding

Fiberglass Housing Manufacturing

Raytheon

REPTAR

- COTS 8cm diameter fiberglass tube and 0.030" fiberglass sheets cut to 10cm • square.
- Fiberglass cloth to join flat sheets to tube. Fiberglass cloth and resin between the plates to create a thicker, plied panel with factory finish.
- Cut circular plate matching OD of 8cm tube and adhere using resin and fiberglass "stitches."
- Cut/grind out hole in top plates
- Sand

- Drill mounting holes and holes for chute line and cartridge.
- Side panels are cut from .030" sheet and mounted with screws. •

Avionics Backup

Altitude Determination Algorithm

REPTAR

58

EGSE Testing Components:

- Altimeter Breakout Board
- Rasberry Pi 3 EGSE

Flight Testing Components:

- MainBoard
- Raspberry Pi 3 EGSE (if MSP430FR drivers fail)

Deployment Algorithm

Raytheon

EGSE Testing Components:

• N/A

Flight Testing Components:

- MainBoard
- EGSE (if MSP430FR drivers fail)

ocation Determination/Transmission Algorithm REPTAR

EGSE Testing Components:

- Iridium RockBlock
- Venus GPS
- Rasbperry Pi 3 EGSE

Flight Testing Components:

MainBoard

10/3/17

 Rasberry Pi 3 EGSE (if MSP430FR drivers fail)

Raytheon

3V3 Internal Regulator

61

Responsible For:

 Providing power to GPS, Iridium, and MSP430FR

Hardware Tests:

- Verify Absolute Voltage Accuracy (+-5%)
- Verify Voltage Ripple (<300mV)
- Verify Current Draw (2A Max)

Software Tests:

• N/A

Off-ramps:

Hardware: COTS Dev. Board

CU AES Senior Projects 2016-2017 : REPTAR MSR

<u>Altimeter</u>

REPTAR

Responsible For:

- Raytheon
- Altitude Determination with MSP430FR

Hardware Tests:

- Altimeter Correctly Mounted
- Verify Altimeter Accuracy via comparison to known standard barometer

Software Tests:

- Verify I2C Interface
- Verify Altitude Calculation (MSP430FR)

10/3/17

• Flight Test

Off-ramps:

- Hardware: COTS Dev. Board
- Software: Raspberry Pi 2 EGSE

GPS-Iridium Interface

REPTAR

Raytheon

Responsible For:

Determining and Transmitting Location

Hardware Tests:

- Correct Electrical Connections
- Internal 3V3 Regulator Testing

Software Tests:

- Verify UART Communication to each
- Verify Parsing Code
- Flight Test

Off-ramps:

• Hardware/Software: Raspberry Pi 2 EGSE

Black Powder Trigger

REPTAR

Raytheon

Responsible For:

Parachute Deployment

Hardware Tests:

- Power Sensor Verification via known Standard
- Trigger Logic Verification
- 12V Regulator Power Verification

Software Tests:

• Trigger logic Verification

Off-ramps:

Raspberry Pi 3 EGSE

Kanthal Coil Triggers

Responsible For:

Side and Bottom Panel Deployment

Critical Hardware Tests:

- Power Sensor Verification via known Standard
- Trigger Logic Verification
- 3V3 Regulator Power Verification

Critical Software Tests:

Trigger logic Verification

Off-ramps:

• Raspberry Pi 3 EGSE

Avionics Design Changes

Raytheon

Trimmed down complexity of Main Board Revision A

10/3/17

CU AES Senior Projects 2016-2017 : REPTAR MSR

Avionics Development Approach

REPTAR

- Separate Hardware and Software Testing
- Make all testable components independently testable
- Provide as many proven offramps as reasonably possible
- EGSE can interface the Raspberry Pi 2 to all Components
- Raspberry Pi 3 is first step for software testing always
- Extensive Design work on Mainboard to separate testable elements

Manufacturing Summary

Raytheon

Work Completed:

 Revision A designed and (ordered/received/not ordered)

Future Work:

- (Solder any additional components?)
- Validate Revision A and decide if a Revision B is necessary
- Continue down Test Paths for subsystem validation
- Integrate Main Board in REPTAR structure

10/3/17

Landing Backup

Impact Loading Test

Raytheon

- Facility: Idea Forge Impact Loading Machine
- Process: Mount the legs to the hole pattern and drop it with a velocity of approximately 5.5 m/s from a calculated height to mimic the landing forces
- Mounting: Mount onto the hole pattern using screws to mimic the forces experienced as being part of the satellite
- Measurements: Will measure the force experienced on the load cell upon impact as well as deformation of the aluminum foam

10/3/17

Side Panel Deployment Test

Raytheon

- Similar to Leg Deployment Testing
- Mounting with hot glue
- Test spring deployment repeatedly for reliability in fan, reaching landing velocities

Center Plate Manufacturing

Raytheon

- COTS Aluminum from McMaster 0.5 in x 4 in x 24 in
- CNC Machine in AES Machine Shop
- Drill mounting holes for side panels and rails

Locking Housing Manufacturing

REPTAR

- COTS Aluminum from McMaster
- Machined in AES Machine Shop

CU AES Senior Projects 2016-2017 : REPTAR MSR

10/3/17

73

L-Bracket Manufacturing

- COTS Aluminum from McMaster 1 in x 1 in L frame, x 12 in long
- Machine in AES Machine Shop to correct length
- Drill mounting holes

74

10/3/17

Spring Attachment Manufacturing

REPTAR

- COTS Aluminum from McMaster
- Machined in house in AES Machine Shop

CU AES Senior Projects 2016-2017 : REPTAR MSR

10/3/17

75

Budget Backup

Descent		Landing		Avionics	
Key Items Bought	Price	Key Items Bought	Price	Key Items Bought	Price
Parachute x2	\$388	Side Panels	\$293	Rev A	\$300
Black Powder	\$30	Aluminum Legs	\$578	Antenna GPS	\$18
Ejection Canisters	\$44	Torsional Springs	\$13	Smart Charger	\$26
Fiberglass Tube	\$77	Compression Springs	\$\$21	Battery Recharger	\$123
Fiberglass Cloth	\$44	Slotted Pins	\$12	Iridium Antenna	\$33
Fiberglass Sheet	\$28	Side Panel Pins	\$66	Raspberry Pi3	\$40
Ероху	\$112	Ероху	\$94	Venus GPS SMA	\$50
		Aluminum	\$151	Altimeter Break	\$30
				RockBlock	\$294
Key Points		Key Points		Key Points	
Estimated Cost	\$897.00	Estimated Cost	\$1,444.15	Estimated Cost	\$1,087.90
Total Cost	\$836.67	Total Cost	\$1,360.79	Total Cost	\$1,006.39
Under/Over	\$60.33	Under/Over	\$83.36	Under/Over	\$81.51

CU AES Senior Projects 2016-2017 : REPTAR MSR

Total Budget Breakdown

RE	:P	TA	R
KE	:2	IA	K

Raytheon

Key Points	
Already Purchased	\$3,203.85
Estimated Cost	\$3,429.05
Under/Over	\$225.20

Key Points	
Already Purchased	\$3,203.85
Drop Test and Equipment	\$700
Other Test Equipment	\$200
Other Manufacturing	\$250
Final Margin	\$646.15

CU AES Senior Projects 2016-2017 : REPTAR MSR

10/3/17

78