CU AES Senior Projects 2016-2017 : REPTAR CDR

Critical Design Review

REPTAR REcoverable ProTection After Reentry

Team: Calvin Buechler, Kevin Faggiano, Dustin Fishelman, Cody Gondek, Lee Huynh, Aaron McCusker, William Sear, Himanshi Singhal, Craig Wenkheimer, Nathan Yeo
Customer: Steve Thilker, Collin Baukol, Cody Humbargar, Jason Latimer (Raytheon)
Advisor: Dr. Brian Argrow

University of Colorado **Boulder** 1/17/2017

REPTAR

Raytheon

REPTAR shall assist in the recovery of a de-orbited 1U Raytheon Payload. The mission begins once the SmallSat has re-entered the atmosphere and has reached subsonic velocity. REPTAR shall facilitate the subsonic deceleration, landing, location determination, and location transmission portions of the mission.

Recovery of payload enables:

- Lower mission costs by re-using the payload
- Obtain samples collected by payload on-board

1) Launch REPTAR components survive launch conditions as payload attached to a bus. Mission Concept of Operations

2) Orbit/StandbyREPTAR Components survive on orbit conditions. Batteriescharged by bus.

6) Land and Recovery REPTAR protects payload during ground contact and transmit location.

5) Deceleration **Raytheon** Decelerate to subsonic speeds.

Raytheon

5

6

4) Re-entry Receive command from bus to power REPTAR systems. REPTAR separation from bus. Re-entry completed by Raytheon System. Legend

REPTAR Solution

Raytheon Solution

Raytheon

3) De-orbit

Receive command from bus to power REPTAR systems. Re-entry burn.

Descent

After being decelerated to subsonic speeds, REPTAR activates atmospheric deceleration systems to protect the payload.

Decelerate

Slows to safe landing speeds by deploying a parachute. Transmits location during descent.

Land

Lands payload safely within launch loading requirements.

REPTAR

REcoverable ProTection After Reentry (REPTAR) Concept of Operations(CONOPS)

Receive Location

Recovery team receives location.

Transmit Location

Transmits location to recovery element.

Driving Design Requirements

REPTAR

Requirement	Description	Motivation		
DR 2.1	REPTAR shall be 3U in size	REPTAR must conform to industry CubeSat standards		
DR 2.3	REPTAR shall be less than 4 kg in mass REPTAR must conform to industry C standards			
DR 3.1	REPTAR shall survive an instantaneous G loading of 40 G's	REPTAR is expected to protect a 1U payload that is designed to MIL-STD-810G standards		
DR 4.1	REPTAR shall communicate its location over a radius greater than or equal to 45 miles	A search team must be able to find and recover the 1U Raytheon payload		
verview Desi Solut		sks Verification & Project Validation Planning		
5	CU AES Senior Projects 2016-2017 : REPTA	AR CDR 1/17/2017		

Design Solution

Mission Timeline and FBD

On-Orbit Standby

• Maintain battery charge Descent

REPTAR

- Triggered by bus signal
- Determine altitude
- Attain GPS lock

Deceleration [3,500 m]

- Triggered by parachute deployment altitude being reached
- Deploy parachute, bottom panel, and side panels.
 Transmission
- Triggered by deployments
- Transmit Location

Avionics Bay Key Components

Critical Project Elements

Critical Project Elements

System	Critical Elements
Descent	Parachute Deployment
Landing	 Leg and Side Panel Deployment
Avionics	 Deployment Interfacing Antennae Pattern Altimeter Accuracy
Full System	ManufacturingFull System Testing

Design Requirements

Launch Inhibit Considerations

• CPE:

Interfacing to Deployment Mechanisms

Requirements:

- FR1: REPTAR shall survive launch and standby phase in space
- FR2: REPTAR shall conform to industry CubeSat standards

Project

Planning

1/17/2017

Concerns:

None at this time

Verification &

Risks Validation CU AES Senior Projects 2016-2017 : REPTAR CDR

REPTAR

Altimeter Considerations

CDH Error Stackup

REPTA	R
-------	---

Delay Source	Description	Altitude [m]			Raytheon
Update Delay	Distance traveled between	0.8	Error Source	Description	Altitude [m]
	measurement samples		Altimeter	Smallest altitude reading	0.7
Transmission Delay			Error	resolved by the altimeter	
2000	Microcontroller		Calculation Error	Interpolation error in standard atmosphere lookup tables	5.0
Calculation Delay	Distance traveled during a computation cycle of the flight code	0.9			
Denay			Total		5.7
Equilibrium Delay	Distance traveled during the time taken to equilibrate the ambient and internal pressures	1.3			
Parachute Delay	Distance traveled during the parachute deployment	1.0	$h_{margin} = 2$	$\sum h_{delay} + \sum h_{erro}$	$r = \boxed{13.7 m}$
Total		4.0			
Overview	Design Solution CPE's Re	Design quirements		ation & Project lation Planning	ST PROVING
17	CU AES Senior Project	s 2016-2017 : REPT	AR CDR	1/17/2017	REPTAR

Key Altitudes

REPTAR

REPTAR

Driver

Key Altitudes

REPTAR

Parachute Deployment

Raytheon

Design

Overview

20

• CPE:

- Parachute Deployment
- Antenna Pattern
- Manufacturing

Requirements:

DR 3.1: REPTAR shall survive an instantaneous G loading of 40 G's

Concerns:

Black powder ignition provides sufficient pressure to break thin aluminum plate

CDR Parachute Deployment

Black Powder Ignition Test

- Computer Model
 - 20 PSI
 - 0.3 g Black Powder
 - 18 G's on REPTAR from Ignition
 - 34 G's from Parachute Inflation
 - 5.5 m/s Landing Velocity
- Results
 - Recorded Pressure: 24 PSI
- Sources of Error
 - Mols of Air
 - Ignition Temperature
- Conclusion
 - 20% Deviation from Computer Model

Landing Legs

Landing Base Plate Deployment

Landing Legs

- Legs deploy as pairs instead of four individual legs
- Legs deploy utilizing torsion springs
- Moment due to drag: 8.3 x 10⁻³ N-m

Aluminum Foam Test

REPTAR

Landing Side Panels

CU AES Senior Projects 2016-2017 : REPTAR CDR

28

Side Panel Deployment and Locking

Requirements

DR 3.1: REPTAR shall survive an instantaneous G loading of 40 G's

Concerns

Orientation of side panels

Side Panel Operation

Raytheon

- Following deployment, the side panel inserts into the center foam structure of the system
- Acts as energy absorber, like the legs

1/17/2017

CU AES Senior Projects 2016-2017 : REPTAR CDR

29

Landing Side Panel Deployment and Locking **REPTAR**

- Side panels deployed by torsion springs
- Drag force calculations: 0.012 N-m to be overcome by springs during deployment (7 cm long panel)
- Side panels locked by torque provided by torsion springs and offset of side panels from walls
- The material properties of aluminum allow for proper orientation

Antenna Considerations

Project

Planning

1/17/2017

Descent Iridium Antenna Pattern Performance REPTAR

Landed Iridium Antenna Pattern Performance **REPTAR**

Iridium Orbit Path

Raytheon

STK Descent Model (1km Elevation) 4 Hour Period

Iridium Orbit:

- 100 Hour Orbital Period
- 86 Active Satellites
- 100% Earth Antenna Coverage
- STK Model in Descent:
 - 100% Coverage
- STK Model after Landing
 - Worst Case: 10 Minute Passes with 2 Minute Spacing

1/17/2017

CU AES Senior Projects 2016-2017 : REPTAR CDR

35

Avionics Deployment Considerations

Raytheon

REPTAR

Avionics Interface

Requirements:

- DR 3.1: REPTAR shall survive an instantaneous G loading of 40 G's
- DR 4.1: REPTAR shall communicate its location over a radius greater than or equal to 45 miles
- Concerns
 - Physical Interface and Sensors
 - Power Budget
 - Avionics Thermal Budget

Deployment Triggering and Monitoring

Raytheon

Battery and Regulator Statistics

					Raytheon
Parameter	Battery				
Pack Configuration	2 Panasonic NCR18650BF cells in	Parameter	3V3 Avionics	3V3 Deployer	12V Deployer
	series	Efficiency	80%	93%	92%
		Max Current	1.2 A	8 A	10 A
Pack Voltage	7.2 V (3.6V per cell) 10 A	Junction Temperature	100 C	125 C	120 C
Max		Max			
Discharge		Part Number	MCP1632	LTC1775	LTC3786
Internal Resistance	154 mOhm (77 mOhm per cell)				
Capacity	3350 mAHr				
38	CU AES Senior Proje	cts 2016-2017 : REPTA	R CDR	1/17/2017	REPTAR

Battery and Regulator Performance

Battery and Regulator Performance

Power Dissipation over Flight

Project Risks

Risk Introduction

R	ay		h	20)n
		/			

	Likelihood	Rating	Severity	Rating			
	1	Very Low		No effect on cost or schedule			
		(0% – 20%) Low	2	Schedule slip < 1 week Cost slip < \$200			
	2	(20%-40%)	3	Schedule slip < 3 weeks			
	3	Moderate 3		Cost slip < \$500			
	5 (40%-60%)			Schedule slip > 3 weeks			
	4	4 High (60%-80%)		Cost slip > \$500 Some requirements not met			
	5	Very High (80%-100%)	5	Project failure, most requirements not met			
(Overview Design Solution CPE's Design Requirements Risks Verification & Project Validation Planning						
	42 CU AES Senior Projects 2016-2017 : REPTAR CDR 1/17/2017						

Pre-Mitigation Risk Assessment

Risk	Description
RD1: Black Powder Ignition	Black Powder fails to ignite properly
RD2: Insufficient Top Break	Top fails to allow chute to properly eject from canister
RL1: Bottom Leg Locking	Bottom legs fail to lock after deployment
RL2: Side Panels Orientation	Side panels do not properly orient before ground impact
RA1: Antennae Failure	Antennae do not send or receive data properly
RA2, Regulator / Rattory Overdraw	Populator or Pattory overheat and fail due to current overdraw

RA2: Regulator / Battery Overdraw	Regulator or Battery overheat and fail due to current overdraw

					Severity	1	
			1	2	3	4	5
		5 (Very High)					
	poc	4 (High)			RA2	RA1	RD1
	Likelihood	3 (Moderate)					RD2,RL1,RL2
	Like	2 (Low)					
43		1 (Very Low)					

Post-Mitigation Risk Assessment

REPT	AR
------	----

Risk		Mitigation					
RD1: Black Powe	der Ig	nition	Packing BP canister, testing				
RD2: Insufficien	t Top	Break	Perforation i	n top plate, Ir	ncrease black	powder, Testing	5
RL1: Bottom Leg	g Lock	ing	Compression	n springs lock	a slotted pin		
RL2: Side Panels	oriei	ntation	Torsion sprin	ngs that excee	d expected Di	rag Force	
RA1: Antennae Failure		е	Antenna placement on the deck has been optimized				
RA2: Regulator / Battery Overdraw		ery Overdraw	All regulators include heat sinks and expanded ground planes				
			Severity				
			1	2	3	4	5
		5 (Very High)					
Likelihood	poc	4 (High)			RA2	RA1	RD1
	eliho	3 (Moderate)					RD2,RL1,RL2
	Lik	2 (Low)					
44		1 (Very Low)					

Post-Mitigation Risk Assessment

REPT	AR
------	----

Risk			Mitigation				
RD1: Black Powe	der Igi	nition	Packing BP canister, testing				
RD2: Insufficien	t Top l	Break	Perforation i	n top plate, Ir	ncrease black	powder, Testing	5
RL1: Bottom Leg	g Fails	to Lock	Compression	n springs lock	a slotted pin		
RL2: Side Panels	Fail t	o Orient	Torsion sprin	gs that excee	d expected D	rag Force	
RA1: Antennae Failure		9	Antenna placement on the deck has been optimized				
RA2: Regulator / Battery Overdraw		ery Overdraw	All regulators include heat sinks and expanded ground planes				
			Severity				
			1	2	3	4	5
		5 (Very High)					
	poc	4 (High)					
45	likelihood	3 (Moderate)					
	Like	2 (Low)				RA1	RL2
		1 (Very Low)			RA2		RD1,RD2,RL1

Verification and Validation

Launch Survivability Vibration Test

DR 1.5

Motivation:

- Acquire data on mode shapes
- Validate launch survival environment

Logistics:

- Facility: ITLL Vibration Table
- Tentative Week: 03/20/17 03/24/17
- LabView: Currently exists (Spacecraft Control LabView)

Vibration Profile of Delta IV:

Raytheon

Launch Survivability Vibration Test

			Raytheon
Parameters	Required	Facility(ITLL)	
Dimensions	14"x4"x4"	16"x16"	<u>Mounting</u>
Weight	10lbs	25lbs(vertical), 50lbs(horizontal)	<u>LabView1</u>
Frequency Sweep	5-100Hz	0-200Hz	LabView2

- Modal Sweep: Frequency Sweep of 5-100Hz with a loading of 0.25G (Safety Factor of 4)
- Post test assessment: Compare frequency response from Sine sweep with 0.25G and 1G
 - Failure Criteria: ≥±10% modal shift indicative of structural failure/alteration

Full System Drop Test

- Motivation:
 - System level validation
 - Acquire data for system G-loading model validation.
 - Tentative onboard sensors : Accelerometer, 2 cameras (for visual data)
- Logistics:
 - Company Name: SkyDive Colorado, Fremont County Airport, Canon City, CO. <u>http://skydiveco.com/</u>
 - POC Nate Morgan, and Mat Clark (owner).
 - Tentative Week: April 1st week (04/03/17-04/07/17)
 - Cost: \$200-300

REPTAR

Raytheon

Drop Test Measurement Equipment

Raytheon

REPTAR

1/17/2017

CU AES Senior Projects 2016-2017 : REPTAR CDR

50

Full System Drop Test

51

- At a 14,500 ft test drop, system will be within 5 m/s of terminal velocity
- Drop zone location is in altitude range of UTTR
- Minimum altitude drop test can be used to minimize wind drift

REPTAR

Raytheon

CU AES Senior Projects 2016-2017 : REPTAR CDR

1/17/2017

§91.15 Dropping objects.

No pilot in command of a civil aircraft may allow any object to be dropped from that aircraft in flight that creates a hazard to persons or property. However, this section does not prohibit the dropping of any object if reasonable precautions are taken to avoid injury or damage to persons or property.

Project Planning

Organizational Chart

Work Breakdown Structure

Cost Plan

REPT	AR
------	----

	Component or Service	Cost	Raytheon
	Parachute (x3)	\$510	
	Fiberglass Tubing	\$130	
	Ejection Canister (x5)	\$100	
	Aluminum Sheets	\$190	
	Side Panel Manufacturing	\$600	
	Aluminum Foam	\$400	
	Iridium RockBlock2+	\$250	
	Populated Boards	\$300	
	Circuit Board Revisions (x3)	\$200	
	Aircraft Rental	\$250	
	Shipping and Other	\$470	
	Total	\$3,400	
	Maximum	\$5,000	
56	Margin	\$1,600	REPTAR

	Test Plan	REPTAR
Dates	Plan	Key Dates
Pre-Semester (Dec 1 – Jan 16)	Epoxy Testing, Landing Deployment Mechanism Testing	
Weeks 1 – 2 (Jan 16 – Jan 29)	Avionics Rev A Bringup, Parachute Drop Test	
Weeks 3 – 4 (Jan 30 – Feb 12)	Chute Attachment Load Testing, Field Testing, Chute Deployment w/ Compressed Air	MSR – Feb 6
Weeks 5 – 6 (Feb 13 – Feb 26)	Chute Deployment w/ Black Powder, Avionics Rev B Bringup,Foam Impact Testing	
Weeks 7 – 8 (Feb 27 – Mar 12)	Landing Subsystem Drop Test, Avionics "Day in the Life", Chute inflation testing	TRR – Mar 6
Weeks 9 – 10 (Mar 13 – Mar 26)	Vibration Test	Last Machining Day – Mar 24
Weeks 11 – 13 (Apr 3 – Apr 23)	Full System Drop Test	SFR – Apr 24
Overview Design Solution Cl		roject (Restance)
57 CU AES Senior Projects 2016-2017 : REPTAR CDR 1/17/2017		

^{04/24/2017} SFR Due

Obtain Parts

REPTAR

CU AES Senior Projects 2016-2017 : REPTAR CDR

1/17/2017

59

Gantt Chart

:3'16

REPTAR

Raytheon

REPTAR

CU AES Senior Projects 2016-2017 : REPTAR CDR

Subsystem Manufacturing

CU AES Senior Projects 2016-2017 : REPTAR CDR

61

1/17/2017

Gantt Chart

Subsystem Testing

Gantt Chart

Full System Testing and Analysis

REPTAR

REPTAR

Raytheon

1/17/2017

CU AES Senior Projects 2016-2017 : REPTAR CDR

66

Questions?

Avionics Layout

REPTAR

Legend

Critical Project Elements

R	EI	PT	Ά	R

CPE	Explanation
Parachute Deployment	Proper deployment of parachute required for safe landing without structural damage
Leg and Side Panel Deployment	The base legs and side panels deploy to mitigate the landing G-Loadings experienced and the G-Loadings upon falling over onto a side
Interfacing Deployment Mechanisms	Deployment mechanisms require high current draw from battery. Battery will require cooldown time between deployments
Antennae Pattern	Aluminum portions of the structure may cause the antennae signal to change polarity and be unable to communicate
Altimeter Accuracy	Significant error in altimeter readings can cause structural damage due to improper deployment timings
Manufacturing	Manufacturing is expected to take a significant amount of time
Full System Testing	Full system tests are high risk, damaging components would cause project delays and added expense

CU AES Senior Projects 2016-2017 : REPTAR CDR

69

1/17/2017

CU AES Senior Projects 2016-2017 : REPTAR CDR

70

Background

DR 1.5 & DR 1.6

REPTAR

- Temperature in space tends to stay between 2 and 5 K
- There may be a requirement for the satellite, or at least specific components, to be kept warm through the use of a heater
- Investigating whether a heater, which would take up space, is necessary

1/17/2017

Requirements

DR 1.5 & DR 1.6

REPTAR

- The electronics must be kept between 218 and 298 K
- The nylon parachute must be kept between 233 and 353 K (Professional Plastics)

1/17/2017

72
Assumptions

DR 1.5 & DR 1.6

- Satellite is in a circular, 400 km altitude, 92.5 minute period orbit
- The satellite is a black body
- The satellite is composed entirely of aluminum
- The TPS is covering one long face of the satellite
- The payload does not generate heat while operational
- The only sources of heat addition are the sun and albedo
- The only source of heat loss is emission from the surface of the satellite

CU AES Senior Projects 2016-2017 : REPTAR CDR

1/17/2017

REPTAR Raytheon

Analysis

DR 1.5 & DR 1.6

74

- As the satellite orbits the earth, it will rotate and different faces will receive sunlight
- Earth's albedo also causes the satellite to increase in temperature
- Throughout the orbit, all exposed sides of the satellite will be radiating heat away from the satellite

1/17/2017

Raytheon

REPTAR

Variation in Temperature

DR 1.5 & DR 1.6

REPTAR

Raytheon

CU AES Senior Projects 2016-2017 : REPTAR CDR

1/17/2017

Descent Mass Budget

RE	P1	A	R

Raytheon

ltem	Mass (g)
Parachute	122
Parachute Container	251
Tie Down	7.3
Tie Down Bolts x2	0.4
Chute Cylinder Screws x4	0.2
Aluminum Foil Top	1

ltem	Mass (g)	
DESCENT SYSTEM TOTAL	382.9	

1/17/2017

CU AES Senior Projects 2016-2017 : REPTAR CDR

Risk	Description
RD1: Black Powder Ignition	Black powder must be in contact with electrodes in order to ignite
RD2: Insufficient Break in Top Plate	The parachute may not break the thin aluminum plate after black powder ignition due to lack of force
RD3: Parachute Burned during Canister Ignition	Burning the parachute as a result of igniting the black powder could lead to holes in the parachute and ultimately landing too fast
RD4: Partial Chute Opening	The parachute only partially opening due to strings being tangled
RD5: Destruction of Parachute Cylinder	Igniting the black powder creates an increase of pressure in the cylinder which could lead to a rupture in the fiberglass

1/17/2017

CU AES Senior Projects 2016-2017 : REPTAR CDR

Pre-Mitigation Risk Assessment

REPTAR

		Severity				
		1 2 3 4				5
	5 (Very High)		RD3			
poc	4 (High)					RD1
Likelihood	3 (Moderate)				RD4	RD2
Like	2 (Low)		RD5			
	1 (Very Low)					

1/17/2017

CU AES Senior Projects 2016-2017 : REPTAR CDR

Post-Mitigation Risk Assessment

REPTAR

Raytheon

Risk	Mitigation		
RD1: Parachute Burned during Canister Ignition	Use of recovery wadding		
RD2: Partial Chute Opening	Testing, Increase PSI		
RD3: Black Powder Ignition	Packing canister, Using more black powder		
RD4: Insufficient Break in Top Plate	Perforations, Increase PSI, Testing		
RD5: Destruction of Parachute Cylinder	Pressure testing, Back up cylinder		
79 CU AES Sen	ior Projects 2016-2017 : REPTAR CDR	1/17/2017	REPTAR

Post-Mitigation Risk Assessment

REPTAR

		Severity				
		1 2 3 4				5
	5 (Very High)					
pod	4 (High)					
Likelihood	3 (Moderate)					
Like	2 (Low)	RD3				
	1 (Very Low)		RD5		RD4	RD1, RD2

CU AES Senior Projects 2016-2017 : REPTAR CDR

1/17/2017

RD1. Black Powder Ignition

REPTAR Raytheon

- Severity: 5 Likelihood: 4 Total: 20
- Black powder must be in contact with electrodes in order to ignite after signal from altimeter
- Source of Mitigation: Packing ejection canisters with recovery wadding/hot glue
- Before Mitigation:
 - Use minimum amount of black powder to eject parachute, moves freely in canister
- After Mitigation:
 - Recovery wadding keeps black powder near electrodes
 - Post Mitigation Severity: 5 Likelihood: 1 Total: 5

CU AES Senior Projects 2016-2017 : REPTAR CDR

1/17/2017

RD2. Insufficient Break in Top Plate

REPTAR

- Severity: 5 Likelihood: 3 Total: 15
- The parachute may not break the thin aluminum plate after black powder ignition
- Source of Mitigation: Increase PSI, Perforations in thin aluminum sheet, modeling and testing
- Before Mitigation:
 - Use typical model rocketry pressures to push parachute out of cylinder
- After Mitigation:
 - Using more black powder to create a higher force to burst through top plate weakened by perforations
- Post Mitigation Severity: 5 Likelihood: 1 Total: 5

1/17/2017

CU AES Senior Projects 2016-2017 : REPTAR CDR

RD3. Chute Burned during Canister Ignition **REPTAR**

- Severity: 2 Likelihood: 5 Total: 10
- Burning the parachute as a result of igniting the black powder could lead to holes in the parachute and ultimately too fast of a landing speed
- Source of Mitigation: Recovery wadding
- Before Mitigation:
 - Use minimum amount of black powder to eject parachute
- After Mitigation:
 - Recovery wadding receives burns from black powder ignition
- Post Mitigation Severity: 1 Likelihood: 2 Total: 2

1/17/2017

Raytheon

CU AES Senior Projects 2016-2017 : REPTAR CDR

RD4. Partial Parachute Opening

Raytheon

REPTAR

- Severity: 4 Likelihood: 3 Total: 12
- The parachute only partially opening due to strings being tangled
- Source of Mitigation: Testing chute packing options
- Before Mitigation:
 - Poor packing of the parachute potentially leads to tangled lines
- After Mitigation:
 - Testing to ensure proper packing as well as adequate pressure for parachute ejection validates complete parachute opening
- Post Mitigation Severity: 4 Likelihood: 1 Total: 4

1/17/2017

CU AES Senior Projects 2016-2017 : REPTAR CDR

RD5. Destruction of Parachute Cylinder

Raytheon

REPTAR

- Severity: 2 Likelihood: 2 Total: 4
- Igniting the black powder creates an increase of pressure in the cylinder which could lead to a rupture in the fiberglass
- Source of Mitigation: Pressure testing, Back up cylinder to prevent project timeline creep
- Before Mitigation:
 - Use required PSI to eject parachute quickly from the cylinder
- After Mitigation:
 - Decreasing PSI to ensure parachute ejection and safety of cylinder
- Post Mitigation Severity: 2 Likelihood: 1 Total: 2

1/17/2017

CU AES Senior Projects 2016-2017 : REPTAR CDR

Descent Design Decision

REPTAR

Raytheon

Item	COTS/Manufactured	Source/Facility	Details
Iris Ultra 122 cm Compact Parachute	COTS	Fruity Chutes	121.9 g , C _d = 2.20, Packing volume 428 cm ³
GOEX FFFFg Black Powder	COTS	Bass Pro Shop	0.300 g per canister
Parachute Containment Cylinder	Manufactured	ITLL/Aero Shop	Manufactured from fiber glass
Ejections Canisters	COTS	Pratt Hobbies	Tested for 9 and 12 VDC
Recovery Wadding	COTS	McGuckins Hardware	Thermal protection for parachutes

1/17/2017

CU AES Senior Projects 2016-2017 : REPTAR CDR

Coefficient of Drag

- **Global Force in SolidWorks Flow Simulation**
 - $C_{d} = \frac{1}{0.5 * \rho * v^2 * s}$
 - C_d = 1.135 @ 15,000 m
 - C_d = 1.095 @ 6,000 m
 - C_d = 0.978 @ 3,000 m
 - Average C_d = 1.069

CU AES Senior Projects 2016-2017 : REPTAR CDR

- Reynolds Number and Coefficient of Drag
 - $R_e = \frac{\nu * L}{\mu / \rho}$
 - V = velocity at altitude
 - L = length of object
 - μ = dynamic viscosity of air
 - ρ = density of air at altitude
 - $R_e = 3.96 \times 10^5 @ 20,000 m$
 - $R_e = 9.07 \times 10^5 @ 10,000 m$
 - $R_e = 1.15 \times 10^6 @ 5,000 m$
 - Average $R_e = 8.18 \times 10^5$
- Shames, Irving Herman. "Chapter 12: Boundary-Layer Theory." *Mechanics of Fluids*. Fourth ed. New York: McGraw-Hill, 1962. 674. Print.
 - Drag Coefficient of Cube = 1.05
 - For Reynolds Number $\approx 10^5$

Black Powder Calculation

REPTAR Raytheon

Products of Combustion:

- 56% Solid Products, 43% Gaseous Products, 1% Water
- Energy Density = 3 MJ/kg
- 75% Potassium Nitrate, 15% Charcoal, 10% Sulfur
- $10KNO_3 + 8C + 3S \rightarrow 2K_2CO_3 + 3K_2SO_4 + 6CO_2 + 5N_2$
 - (101.1*0.75) + (12*0.15) + (32.1*0.10) = 80.8 g/mol

Black Powder Calculation

REPTAR

Raytheon

Ideal Gas Law: PV = nRT

- $n = \frac{PV}{RT}$
 - P₂ = 20 psi = 137,900 Pa
 - $V_2 = 9 \text{cm}^* \pi^* (4 \text{cm})^2 = 452.4 \text{ cm}^3 = 4.52^* 10^{-4} \text{ m}^3$
 - R = 8.314 J/mol*K
 - T = 1837.2 K
- n = 4.08 x 10⁻³ mol
- 80.8 g/mol * 4.08 x 10⁻³ mol = 0.330 g
- Tests found 0.318 g produce 24 psi
- http://www.vernk.com/EjectionChargeSizing.htm

1/17/2017

Black Powder Burn Time

Raytheon

- Sources indicate burn velocity of GOEX Black Powder = 0.47 in/sec
- Other sources indicate burn velocity of Black Powder = 0.197 in/sec
- From testing this burn time was almost instantaneous
- Worst cases range from 1.5 sec to 3.5 sec
 - Height of black powder is 0.67 inches
- <u>http://www.ctmuzzleloaders.com/ctml_experiments/bp_burning/bp_burning_g.html</u>
- http://www.dtic.mil/dtic/tr/fulltext/u2/a129087.pdf

1/17/2017

Fiberglass Cylinder Burst Pressure

Raytheon

REPTAR

•
$$P = \frac{2St}{(OD)(SF)}$$

- P = Fluid Pressure (PSI) = 20
- t = Wall Thickness (in) = 0.157
- OD = Outer Diameter (in) = 3.46
- SF = Safety Factor = 1 (Burst Pressure)
- S = Ultimate Tensile Strength (PSI) = 7900 PSI
- Burst Pressure for Fiberglass Cylinder = 717 PSI
 http://www.engineersedge.com/calculators/pipe_bust_calc.htm

CU AES Senior Projects 2016-2017 : REPTAR CDR

Force of Parachute Vs. Aluminum Foil **REPTAR**

Raytheon

- Perforated (1/8" hole, centered) foil failed at approximately 25.7 kPa
- Non-perforated foil failed under approximately 258 kPa pressurized air
 - Parachute did not deploy. Pressure was gradually increased, so assumption that chute is acting like a piston fails without near-instantaneous pressure increase from below chute
 - Foil failed at 5 psi below maximum chamber pressure for instantaneous loading limits

Parachute Cylinder Pressure

 $m = 3.82 \, kg$

 $A = .005 \text{ m}^2$

a = Gg

Raytheon

Limitations on pressure due to MIL-SPEC 11ms 40G loading

•
$$F = P_{max} \cdot A - f = ma$$

- f includes pressure differences, losses, friction, gravity, and $g = 9.81 m/s^2$ dynamic pressure, which may allow higher pressure to overcome G = 40
- Assuming ideal situation, f = 0, solving for maximum chamber pressure P_{max} yields:

$$P_{max} = \frac{mGg}{A} = 302.7 \ kPa \ (43.91 \ psig)$$

CU AES Senior Projects 2016-2017 : REPTAR CDR

Parachute Cylinder Pressure Losses

Raytheon

REPTAR

- Parachute Friction modeled as $P \cdot A \cdot \mu$, which determines friction force as function of chute position.
- Ambient pressure difference higher ambient pressure requires more pressure increase from
- Energy lost in pushing through top plot
- Pressure lost through top plate, wire or chute line holes
- Dynamic pressure from top-down descent

Parachute Time to Deploy

•
$$S_0 = 232 f t^2$$

•
$$D_0 = \sqrt{\frac{4 * S_0}{\pi}}$$

•
$$n = 8$$

$$t_{deploy} = \frac{n * D_0}{v_{term}} = 0.455 \text{ s}$$

•
$$G's = \left(\frac{Diff(V)}{t_{step}}\right)/9.81m/s^2$$

• $t_{step} = 0.011 \operatorname{sec} \rightarrow milspec \ standard$

*Mohaghegh, F., and Jahannama, M. R., "Parachute Filling Time: A Criterion to Classify Parachute Types," pp. 1–13.

CU AES Senior Projects 2016-2017 : REPTAR CDR

1/17/2017

Force on Strings of Parachute

Raytheon

REPTAR

- Maximum Instant G Loading = 34.3 G's
- 34.3 G's * 9.81m/s² = 336.5 m/s²
- F = ma = 3.99kg * 336.5 m/s² = 1343 N
- 1343 N= 301.9 lbf
- 301.9 lbf / 8 strings = 38 lbf per string
- Each line is #400 Spectra, which means 400 lbf per string
- Factor of Safety of 10.53

Parachute Drop Test

Raytheon

- Drop deployed parachute attached to 4 kg at 15m above ground
- Use high speed camera at 120 fps to measure trajectory
 - Verify C_d of parachute
 - Verify landing velocity model
 - Verify wind trajectory model

Design Feasibility

CU AES Senior Projects 2016-2017 : REPTAR CDR

Time to Open Parachute Sensitivity

Assumptions:

Baseline:

Open Time = 0.46 sec

Raytheon

REPTAR

- Cd = 2.20
- Area = 1.13 m²
- Chute Deploy = 3500 m MSL

Time to Open Vs. Instant G Loading of Parachute

Altitude of Deployment of Parachute Sensitivity **REPTAR**

Assumptions:

- Cd = 2.20
- Area = 1.13 m²
- Open Time = 0.46 sec

Baseline:

Raytheon

- Maximum deployment height: 8,000 m MSL
- Minimum deployment height: 3,020 m MSL

Wind Influence on Trajectory

REPTAR

Surface Wing Analysis by Hour

Windiest Month – August

Average wind speed for August 2016: 4.74 m/s.

1/17/2017

Effect of Parachute Deployment Altitude

 Parachute deployment altitude significantly increases wind-drift spread due to high velocity winds at high altitudes

1/17/2017

REPTAR

Raytheon

CU AES Senior Projects 2016-2017 : REPTAR CDR

Utah Test and Training Range Slope Data

CU AES Senior Projects 2016-2017 : REPTAR CDR

1/17/2017

REPTAR

REPTA

Parachute Release

REPTAR

REPTAR Removal of Parachute Release Requirement

Assumptions:

• $\mu = 0.3$ Sudden stop means full deceleration in 0.011s.

Raytheon

- Fully inflated chute
- All horizontal force components

Rationale:

- Unlikely to accelerate consistently to reach sudden stop speed.
- Added complexity in design, power, mass, volume constraints
- More than 70% of wind measurements less than theoretical maximum

Project

Planning
Landing Pre-Mitigation Risk Assessment **REPTAR**

Risk		Description						
		Early plate deployment can harm parachute while late deployment may not allow landing system to be deployed in time						
		_	If legs are not locked into position they may fold upon impact reducing absorption capabilities					
			f panels are not oriented properly absorption capabilities are reduced or					
		lost	Severity					
				1	2	3	4	5
		5 (Ver	y High)					
	pod	4 (Hig	h)					
	Likelihood	3 (Mo	derate)					RL2,RL3
		2 (Low	/)					RL1
109	109 1 (Very L		y Low)					

Landing Post-Mitigation Risk Assessment

Raytheon

REPTAR

Risk Mitigation								
			DH does not allow deployment before chute deployment. edundant/excessive behavior. Contact sensors					
RL2: Bottom Leg Locking Compression		ssion springs lock a slotted pin						
RL3: Side Panel Orientation Torsion sp		Torsion spr	rings that exceed expected Drag Force					
		Severity						
				1	2	3	4	5
5 (\		5 (V	ery High)					
	poq	ው 4 (High)						
Likelihood		3 (N	loderate)					
	Lik	2 (L	ow)					RL3
110		1 (V	ery Low)					RL1,RL2

1. Deployment Timing

Raytheon

REPTAR

- Severity: 5 Likelihood: 2 Total: 10
- Early plate deployment can harm parachute while late deployment may not allow landing system to be deployed in time
- Source of Mitigation: CDH Timing Sequence
- After Mitigation:

111

- CDH does not allow deployment before chute deployment. Redundant/excessive behavior. Contact sensors
- Post Mitigation Severity: 5
 Likelihood: 1
 Total: 5

CU AES Senior Projects 2016-2017 : REPTAR CDR

2. Bottom Leg Locking

Raytheon

REPTAR

- Severity: 5 Likelihood: 3 Total: 15
- After deploying, and upon impact, the legs may fold, reducing impact absorption capabilities
- Source of Mitigation: Compression Spring System
- Before Mitigation:
 - Use torsion spring with large enough torsion to overcome horizontal drag forces
- After Mitigation:
 - Using compression springs and slotted pins for rotation, compression springs will insert into pins for a redundant locking mechanism
- Post Mitigation Severity: 5 Likelihood: 1 Total: 5

1/17/2017

CU AES Senior Projects 2016-2017 : REPTAR CDR

3. Side Panel Orientation

Raytheon

REPTAR

- Severity: 5 Likelihood: 3 Total: 15
- After deployment, the walls may over rotate or under rotate to not impact the aluminum foam directly causing higher G-Loadings not under requirements
- Source of Mitigation: Torsion Springs/Lip Outside Panel
- After Mitigation:
 - Torsion spring will push panel into the lip created from manufacturing to orient the panel perpendicular to the side walls of the system
- Post Mitigation Severity: 5 Likelihood: 2 Total: 10

Torsion Spring Calculations

Raytheon

 Torque required to deploy the base legs and the side panels is calculated using the Drag Force from the descent through the atmosphere

• Force of Drag,
$$F_d = \frac{1}{2}\rho V^2 A C_d$$

- Moment, $M = F_d \times l$ where l is the length dimension of the legs (7.3 cm) and side panels (12.5)
- $c_d = 2.02$, used as a worst case scenario for a flat plat straight into the wind
- $A_{Base Leg} = 7.3 \ cm \times 1.2 \ cm$ for undeployed legs into direct velocity
- $A_{Side Panel} = 12.5 \ cm \times 6.14 \ cm$ for fully deployed panels into direct velocity
- $\rho = 0.8191, 0.8543, 1.0065, 1.112 kg/m^3$ for altitudes of 4000, 3600, 2000, and 1000 m, respectively
- V = 100, 90, 6.3 (with chute) m/s for various terminal velocities at altitudes as well as expected landing speeds reached following chute deployment

CU AES Senior Projects 2016-2017 : REPTAR CDR

Torsion Spring Calculations (cont'd)

From Drag Force calculations:

- Moment required for base legs to deploy:
 - M(4000 m) = 1.058 N m = 9.36 in lbs
 - M(3600 m) = 0.894 N m = 7.92 in lbs
 - $M(2000 m)_{\frac{w}{o}chute} = 1.054 N m = 9.32 in lbs$
 - $M(2000 m)_{w/chute} = 0.0056 N m = 0.04 in lbs$
- Moment required for side panels to deploy:
 - M(4000 m) = 7.446 N m = 65.90 in lbs
 - M(3600 m) = 6.290 N m = 55.67 in lbs
 - $M(2000 m)_{w/o \ chute} = 7.411 \ N \ m = 65.59 \ in \ lbs$
 - $M(2000 m)_{w/chute} = 0.036 N m = 0.343 in lbs$

1/17/2017

REPTAR

Raytheon

Torsion Spring Selections

McMaster Carr Torsion Springs:

ltem	Deflection Angle	Outside Diameter				Torque (in-lbs.) w/cut down legs
Base Leg Springs	90°	0.560"	2.000"	0.343"	5.518	1.9313 (0.7" legs)
Side Panel Springs	180°	0.304"	1.25"	N/A	1.070	0.642 (0.75" legs)

1/17/2017

CU AES Senior Projects 2016-2017 : REPTAR CDR

Epoxy Data for Mounting (Landing)

Raytheon

REPTAR

- Torr Seal Vacuum Epoxy
 - ThorLabs, Inc.
 - Price: \$84.70 for 2.9 oz resin and 1.3 oz hardener
 - Total Mass Loss (TML): 0.63%
 - Collected Volatile Condensable Material (CVCM): 0.01%
 - NASA Standards for Outgassing
 - TML ≤ 1.0%

117

• CVCM ≤ 0.1%

CU AES Senior Projects 2016-2017 : REPTAR CDR

Landing Mounting Interfaces

REPTAR

Raytheon

- Aluminum and Steel cannot be welded together
- Due to shape of spring legs, pinning down is subject to sliding
- Due to these interface problems, an epoxy will be used for mounting of system components that aren't screwed in or those that need to remain inert
- Torr Seal Vacuum Epoxy
 - ThorLabs, Inc.

Heated Kanthal Coil Test: Increasing Voltage **REPTAR**

Raytheon

- For this test, the voltage was increase until the coil heated enough to cut the nylon line. The Voltage and Current at which this occurred was recorded.
- This was a proof of concept test, high accuracy was not needed, rather the gather voltage and current proves the concept will work for the chosen battery.

	Cold Resistance (Ohms)	Voltage at Break (V)	Current at Break (amps)
Coil 1	.20	1.8	2.5
Coil 2	.82	2.1	2.2

1/17/2017

Heated Kanthal Coil Test: Constant Voltage

Raytheon

REPTAR

- For this test, the voltage was made constant at 3.3 volts. The time and current at which the nylon broke were recorded.
- This was a proof of concept test, high accuracy was not needed, rather the time and current recorded, proves the concept will work for the chosen battery and will occur in a timely manner compatible with REPTAR

	Voltage (V)	Current at Break (amps)	Time (sec)
Coil 1	3.3	4.7	<1
Coil 2	3.3	3.7	<1

Side Panel Orientation Verification

- $\theta \leq \alpha$, this process allows for proper insertion of the aluminum side panel into the foam without impacting the frame components directly
- Becomes a tolerance of manufacturing and pin placements
- Through trigonometry pin must be placed within 0.1 mm accuracy

CU AES Senior Projects 2016-2017 : REPTAR CDR

121

1/17/2017

REPTAR

Landing Volume Budget

			Rayth
ltem	Volume (cm ³)	Item	Volume (cm ³)
Leg Pins x2	2.47 ea.	Side Panel Springs x4	0.12 ea.
Leg Springs x2	0.42 ea.	Side Panel Pins x8	0.02 ea.
Base Locking x2	0.036 ea.	Side Panels x4	8.47 ea.
Base Legs x4	20.17 ea.	Side Panel Foam x2	29.04 ea.
Base L-Brackets x8	0.28 ea.	Foam Divider Plate x2	6.57 ea.
Base Mounting Plate	19.27	Wire L-Brackets x10	0.013 ea.
Base Deployment Plate	8.05	Center Mounting Plate	17.70
Spring Attachment x2	0.18 ea.	Small Spring Attachment x2	0.07 ea.

ltem	Volume(cm ³)	Screws are internal so do not take up volume, just mass
LANDING SYSTEM TOTAL	239.84	
CU AFS Senior Projects 2016	-2017 · REPTAR CDR	1/17/2017

Landing Mass Budget

	Item	Mass (g)		Raytheon
	Leg Pins x2	19.03 ea.	ltem	Mass (g)
		3.31 ea.	Side Panel Springs x4	0.92 ea.
	Leg Springs x2		Side Panel Pins x8	0.18 ea.
	Base Locking x2	0.17 ea.	Side Panels x4	22.94 ea.
	Base Legs x4	16.25 ea.	Side Panel Foam x2	9.44 ea.
	Base L-Brackets x8	0.95 ea.	Foam Divider Plate x2	17.82 ea.
	Base Mounting Plate	52.22	Wire L-Brackets x10	
	Base Deployment Plate	21.82		0.04 ea. 47.70
	Spring Attachment x2 Steel Screws x12	0.49 ea. 0.2 ea.	Center Mounting Plate Small Spring Attachment x2	47.70 0.19 ea.
	Item		Mass (g)	0.19 ea.
		DING SYSTEM TOTA	L 394.92	
101	1 CU AES Senio	or Projects 2016-2017 :	REPTAR CDR 1/17	7/2017

Landing Cost Budget

REPT	AR
------	-----------

REPTAR

					Raythe
ltem	Pkg. Qty. (if specified)	Number of Pkgs. needed	Part Number	Pkg. Price	Total Price
McMaster Carr					
Slotted Spring Pin	10	1	92383A777	\$8.97	\$8.97
Flat Headed Pin	1	16	98378A211	\$4.97	\$79.52
Base Leg Torsion Spring	6	2	9271K620	\$7.81	\$15.62
Side Panel Torsion Spring	6	2	9271K603	\$5.01	\$10.02
Base Leg Compression Spring	3	2	9001T15	\$5.03	\$10.06
ThorLabs, Inc.					
Vacuum Epoxy	1	1	TS10	\$84.70	\$84.70

CU AES Senior Projects 2016-2017 : REPTAR CDR

124

Aluminum Foam Test

REPTAR

Raytheon

Aluminum Foam Test

1/17/2017

CU AES Senior Projects 2016-2017 : REPTAR CDR

Base Leg Material Change

Raytheon

- Change from Duocel Aluminum Foam \rightarrow Duocel Copper Foam
- Duocel Aluminum Foam Compression Strength: 2.07 MPa

Material Characteristic	Value	Expected Upon Landing	Margin
Relative Density	9%	-	-
Compression Strength	1.08 MPa	-	-
Energy Absorbed	61.06 J	58.3 J	2.76 J
Max Loading	34.3 G's	40 G's Max	5.7 G's

 Allows for more surface area to be utilized to make the legs larger

Avionics Mass Budget

REPT	AR
------	----

Raytheon

ltem	Mass (g)
GPS Antenna	80
Iridium Antenna	80
Battery	200
RockBlock	76
Aluminum Base Plate	20.82
Custom Board	60
Screws x4	0.2

ltem	Mass (g)
AVIONICS SYSTEM TOTAL	517.62

1/17/2017

CU AES Senior Projects 2016-2017 : REPTAR CDR

REPTAR

\bigcap	Calculate temperature compensated pressure								
	OFF	Offset at actual temperature ^[3] $OFF = OFF_{T1} + TCO * dT = C2 * 2^{17} + (C4 * dT)/2^{6}$	signed int 64	41	-17179344900	25769410560	5764707214		
	SENS	Sensitivity at actual temperature ^[4] SENS = SENS _{T1} + TCS* dT = C1 * 2 ¹⁶ + (C3 * dT)/2 ⁷	signed int 64	41	-8589672450	12884705280	3039050829		
	P	Temperature compensated pressure (101200mbar with 0.01mbar resolution) P = D1 * SENS - OFF = (D1 * SENS / 2 ²¹ - OFF) / 2 ¹⁶	signed int 32	58	1000	120000	110002 = 1100.02 mbar		

	OSR	4096	0.024	
		2048	0.036	
Resolution RMS		1024	0.054	mbar
		512	0.084	
1		256	0.130	

$$p_{res} = (0.01 + 0.024) \text{ mbar} = 3.4 \text{ Pa}$$

Standard Atmosphere Model
 $h_{res} = 0.6679 \text{ m} \approx 0.7 \text{ m}$

Raytheon

CU AES Senior Projects 2016-2017 : REPTAR CDR

1/17/2017

REPTAR

Raytheon

ANALOG DIGITAL CONVERTER (ADC)

Parameter	Symbol	Conditions		Min.	Тур.	Мах	Unit
Output Word					24		bit
Conversion time t _c		OSR	4096	7.40	8.22	9.04	
			2048	3.72	4.13	4.54	
	t _c		1024	1.88	2.08	2.28	ms
			512	0.95	1.06	1.17	
			256	0.48	0.54	0.60	

$$h_{update} = t_{sample} V_{max} = (9.04 \times 10^{-3})(89) = 0.8046 \text{ m} \approx 0.8 \text{ m}$$

1/17/2017

CU AES Senior Projects 2016-2017 : REPTAR CDR

Raytheon

Parameter	Symbol	Conditions	Min.	Тур.	Мах	Unit	
		SPI protocol			20	MHz	
Serial data clock	rial data clock SCLK				400	KHz	

$$h_{trans} = \frac{1}{f_{I^2C}} V_{max} = (2.5 \times 10^{-6})(89) = 2.2 \times 10^{-4} \text{m} \approx 0$$

1/17/2017

REPT	AR
------	----

	Calculations	Cycles	Time [ms]	Raytheon
Step				
Read Pressure	N/A	N/A	0	
Read Temperature	N/A	N/A	0	
Calculate Temperature	3 Multiplication 3 Addition	321 Multiplication 12 Addition	2.07	$h_{calc} = t_{calc}V_{max} =$ (9.63 × 10 ⁻³)(89) = 0.8572 m ≈ 0.9m
Calculate Comp. Pressure	10 Multiplication 7 Addition	1070 Multiplication 28 Addition	6.8	
Store Result	N/A	N/A	0	
Calculate Altitude	2 Multiplication 2 Addition	114 Multiplication 8 Addition	0.76	
Operation Cycles	Addition: 4	Multiplication: 107	N/A	
Clock Frequency	14 MHz	N/A	N/A	
Clock Period	6.2 ns	N/A	N/A	Star Party
Total	N/A	N/A	9.63	REPTAR

Raytheon

2.1.4 Calculate and Display the Altitude (inside the loop)

Calculating the altitude h using directly the formula

$$h = \frac{288.15}{0.0065} \cdot \left(1 - \left(\frac{p}{101325}\right)^{0.0065 \cdot \frac{R}{g}} \right)$$

is too complicated for a 4 or 8 Bit microcontroller, because it would require extensive floating point calculation. Instead Intersema has developed a simple formula based on a linear piecewise approximation which will give a maximum error of \pm - 5 meters between -700 and 9000 meters, and a maximum error of \pm - 10m between 9000 and 16000 meters. The idea of this formula is to build the two models of the troposphere and the stratosphere out of linear segments with coefficients allowing calculations without floating

Pre-Mitigation Risk Assessment

Pre-	Mitigation Risk Assessment	REPTAR
Risk	Description	
RA1: CDH Lockup	CDH will have operation flags to ensure proper sequencinare not detected properly operations will not be perform	-
RA2: Mounting and Interfacing	Avionics must interface with all deployments	
RA3: Antenna Placing	Antennas must be mounted to ensure communication	
RA4: Altimeter Error	Due to speed of travel dynamic pressure error can arise	
RA5: Battery Management	Make sure it does not blow up	

Altimeter Bay Static Port Sizing

Design ports to allow altimeter bay to equilibrate with ambient pressure for accurate altimeter readings. Minimize large currents and dynamics pressure effects

Raytheon

$$V = l \cdot w \cdot h$$
$$n = 4$$

c = 0.62, discharge coefficient for sharpedged orifices in thin plates

GPS Acquisition

REPTAR

GPS Tracking

REPTAR

Regulator Power Issues REPT						
Max Rated Junction Temp. [C]	Max Modelled Junction Temp. With Heatsink [C]	Thermal Resistance Without Heatsink [C/W]	Thermal Resistance With Heatsink [C/W]			
125	85	80	65			
125	100	45	36			
^{1,25} FR4 4-Layer Board		50	16			
 Dissipating 1 Watt in 3V3 Deployer Regulator takes 5 seconds (LT App Note for Regulator) 						
	Max Rated Junction Temp. [C] 125 125 Assumptions 125FR4 4-Layer Board 4 2 cm separation be 0 Dissipating 1 Watt 4 (LT App Note for Re	Max Rated Junction Temp. [C]Max Modelled Junction Temp. With Heatsink [C]12585125100Assumptions115 VITA Action Secondary Sec	Max Rated Junction Temp. [C]Max Modelled Junction Temp. With Heatsink [C]Thermal Resistance Without Heatsink [C/W]125858012510045Assumptions • 2 cm separation between regulators • Dissipating 1 Watt 3V3 Deployer Regult50			

Launch Survivability Vibration Test Mounting **REPTAR**

Mounting: P-pod satellite interface: Mechanical interface with CubeSats by means of guiderails

Shaker:

3 L shaped brackets on each side.

Accelerometers Tentative Positon:

- 1. Initial
 - On the shaker table
 - On both ends of the CubeSat
- 2. Later (Initial + more)
 - Near the side panels
 - Near parachute canister

Raytheon

Launch Survivability Vibration Test LabView

REPTAR

Launch Survivability Vibration Test LabView **REPTAR**

Frame Mass Budget

REP	TAR
-----	-----

Raytheon

ltem	Mass (g)
Rails x4	55.8
Short Side Panels x2	33.4
Long Side Panels x2	32.2
Short Upper Panel x2	18.4
Long Upper Panel x2	19.6
Screws x32	0.2

ltem	Mass (g)
FRAME SYSTEM TOTAL	436.8

CU AES Senior Projects 2016-2017 : REPTAR CDR

1/17/2017

Screw Specifications

Raytheon

- 18-8 Stainless Steal Flat Head Phillips Screw
- #4-40, ¼ inch
- Can be purchased from McMASTER-CARR
- \$3.75 for pack of 100

1/17/2017

U-bolt Screw and Nut Selection

REPTAR

Raytheon

- 4-40, ¼ inch long screw
- .06 inch/1.5 mm head height allows it to fit in counterbore of 2mm plate

REPTAR

Solidworks Drawings

1/17/2017

CU AES Senior Projects 2016-2017 : REPTAR CDR

	AUTHOR	Kevin Faggiano	
	DATE	11-22-16	
	COMVENTS: 1 mm holes act as center locations for screws		Mounti
SPECHED:			

00

L.....

UN ES OIXERVEE SPECHED: DIVENSIONS ARE IN MILLIVETERS TOLERANCE: ± .01 mm

MATERIAL: Aluminum 6061

AUTHOR	Kevin Faggiano	Team REPTAR		
DATE	11-22-16	Team Kertak		
COMMEN	ITS:	TITLE:		
1 mm holes act as center locations for screws		Mounting Plate		
		SUBSYSTEM	RE∨	
		Landing	1	

	AUTHOR DATE	Kevin Faggiano 11-22-16	Team REPTAR
	COMMENTS: Screwholes will most likely change, but the center will stay the same		тяць: Bottom Mounting Plate
UPLESS OF FRWIE SPECIFIES			
DIMENSIONS ARE IN MILLIMETERS TOLERANCE: ±.01 mm			s ubsystem: Landing
MATERIAL: Aluminum 4041			

CU AES Senior Projects 2016-2017 : REPTAR CDR

T g

81.40

ы С

147

CU AES Senior Projects 2016-2017 : REPTAR CDR

1/17/2017

REPTAR

CU AES Senior Projects 2016-2017 : REPTAR CDR

1/17/2017

REPTAR

149

CU AES Senior Projects 2016-2017 : REPTAR CDR

REPTAR

CU AES Senior Projects 2016-2017 : REPTAR CDR

	AUTHOR DATE	Kevin Faggiano 11-22-16	Team REPTAR	
REFTAR	C OMMENTS: Hale on end is a guide for the bottom plate		πιε: Rail	
UNIESS OLVERWIEE SPECIFIED: DIIVENSIONS ARE IN MILLIMETERS TOLERANCE: ± .1 mm			subsyster/a Fram	RE√]
MATERIAL: Aluminum 6061			(Tum)	

	AUTHOR	Kevin Faggiano	Team REPTAR		
REFERENCE	DATE COMMEN Will be se	11-22-16 NTS: ent off for manufacturing	TTLE: Deployable Side Panel		
UNLESS OTHERWISE SPECIFIED:					
DIMENSIONS ARE IN MILLIMETERS TOLERANCE: ± .01			SUBSYSTEM: Landing	RE∨ 1	
MATERIAL: Aluminum 6061					

151

.25

CU AES Senior Projects 2016-2017 : REPTAR CDR

1/17/2017

REPTAR

152

CU AES Senior Projects 2016-2017 : REPTAR CDR

1/17/2017

REPTAR

CU AES Senior Projects 2016-2017 : REPTAR CDR

_	
	t,

	AUTHOR DATE	Kelvin Faggiano 11-22-16	Team REPTAR	
	COMMENTS: This could change after actually getting parts and testing		ππ.e: Spring Top	
DIMENSIONS ARE IN MILLIMETERS TOLERA NCE: ± .01 mm			SUBSYSTEM: Landing	REV 1
MATERIAL: Aluminum 60.61			20	

154

CU AES Senior Projects 2016-2017 : REPTAR CDR

119.50

0.80

155

REPTAR

	AUTHOR DATE	Kevin Faggiano 11 - 22-16	Team RE	PTAR
	COMMENTS: Holes are for screw locations		TTTLE: Drawing Title: Upper Panel 1	
UNIESS OTHERWISES PECTRED:				
DIMENSIONS ARE IN MILLIMETERS TOLERANCE: ± .01 mm			subsystem: Frame	R E'
MATERIAL: Fiber Glass				

CU AES Senior Projects 2016-2017 : REPTAR CDR

 $R\,E\nabla$

