

Critical Design Review

1

<u>RE</u>cuperating <u>A</u>dvanced <u>P</u>ropulsion <u>E</u>ngine <u>R</u>edesign

Customer: Air Force Research Lab

Advisor: Dr. Ryan Starkey

<u>Team:</u> Kevin Bieri, David Bright, Kevin Gomez, Kevin Horn, Becca Lidvall, Carolyn Mason, Andrew Marshall, Peter Merrick, and Jacob Nickless

- Project Description
- Design Solution
- Critical Project Elements
- Design Requirement Satisfaction
- Risk Analysis
- Verification and Validation
- Project Planning

Model, build, implement, and verify an integrated recuperative system into a JetCat P90-RXi miniature turbojet engine for increased fuel efficiency from its stock configuration.

Design Requirements

Risk Analysis

Verification and Validation

Project Planning

4

- Heat Exchanger that recovers waste heat from power cycle
- Advantages/Disadvantages
 - $Q_{Required} = Q_{Transfer} + Q_{Fuel}$
 - Best for shaft work systems (all exhaust is waste)
 - Difficult for flow work systems (exhaust velocity is valuable)

CR 1: Increase efficiency of the engine through recuperative heat transfer

CR 2: Characterize changes in thrust and thrust specific fuel consumption

CR 3: Minimize thrust loss, weight, and volume additions

FR 1: Engine operates in modified state

FR 2: Thrust specific fuel consumption decreases at least 10% at full throttle

FR 3: Thermal-fluid simulation models the changes in engine performance

FR 4: Engine control electronics command the modified engine

	Simulation	Recuperator
Level 1	-Develop first order, steady state model -Model heat exchanger effectiveness, specific fuel consumption and thrust	-Recuperator designed and manufactured -Recuperator verified with engine analog
Level 2	-Model transient characteristics	-Recuperator is integrated onto engine -Integrate engine system starts and runs
Level 3	-Develop CFD model -Model is verified with test data	 Engine system operates for throttle range Engine system meets design requirements

- Problems with PDR Design
 - Flow Impedance
 - Not enough mass flow through Heat Exchanger
- Problems found with improved models

Station	Total Pressure [Atm]	Total Temperature [K]
1	1.00	273.0
2	2.60 ± 0.01	403 ± 2
3	2.53 ± 0.01	408 ± 2
4	2.36 ± 0.02	1080 ± 3
5	1.33 ± 0.02	963 ± 3
6	1.33 ± 0.02	958 ± 4

Stock Thrust: 105 N **Stock TSFC:** 4.46E-4 s⁻¹

REAPER Thrust: 103.4±0.5 N-1.6 %**REAPER TSFC:** 4.40 ±0.05E-4 s⁻¹-1.2 %

Functional Block Diagram

CPE 1: Thermal-Fluid Modeling

- System Characterization
- **CPE 2: Heat Exchanger**
 - Manufacturing, Cost, Integration

CPE 3: Engine Electronics

- Control, Safety, Sensors

CPE 4: Testing

- Model Validation, System Verification, Sensors

CPE 1: Thermal-Fluid Modeling

Goal: Characterize system to enable heat exchanger design and validation

FR 3: Thermal-fluid simulation models the changes in engine performance

DR 3.1: Quantify changes in engine thrust

DR 3.2: Quantify changes in fuel consumption

DR 3.3: Quantify frictional and geometric losses

Critical Project

Elements

Thermal Model 1: Control Volume Analysis

Conservation Laws

Mass: $\rho_1 A_1 V_1 = \rho_2 A_2 V_2$

Momentum: $\rho_1 A_1 V_1^2 + p_1 A_1 = \rho_2 A_2 V_2^2 + p_2 A_2 + g h_L$

Energy:
$$\left(\frac{\dot{Q}-\dot{W}_{shaft}}{\dot{m}}\right) = C_{p,2}T_2 - C_{p,1}T_1 + \frac{V_2^2}{2} - \frac{V_1^2}{2} + K_L$$

Constitutive: $p = \rho RT$

Assumptions/Correlations

- Ideal, thermally perfect gas
- 1-D flow; fully developed
- Engine component efficiencies from MEDUSA/COMET tests
- Colebrook-White friction correlation
- Gnielinski heat transfer correlation

Design Requirements

Risk Analysis

Mesh Independence

Project Description

3 meshes (384k, 647k, 1328k fluid cells) showed similar results

Design Solution

Critical Project

Elements

parameters •

4x symmetry

K-ε turbulence model

Convergence:

Assumptions:

All flow variables forced to converge within • 0.5% across 3 travels

Boundary conditions independent of flow

Thermal Model: Results

Project Description

CPE 2: Heat Exchanger

Goal: Transfer exhaust heat and integrate with engine

FR 2: Thrust specific fuel consumption decreases at least 10% at full throttle

DR 2.1: Effectiveness of at least 13%

DR 2.3: Integrate with engine

DR 2.5: Less than 10% thrust decrease

Thrust Specific Fuel Consumption

Key Conclusions:

- 1. 10% reduction in TSFC requires \sim 20 kW of heat transfer with no losses
- 2. Exhaust pressure losses supersede internal pressure losses

Reaper Design: Heat Transfer Rate: ~1300 W Internal Pressure Loss: ~1500 Pa External Pressure Loss: ~200 Pa $\Delta TSFC: \sim 4.4\text{E-4} \text{ s}^{-1} (-1.2\%)$ Thrust: 103.4 N (-1.6%)

Elements

Requirement	Value	Reaper Design	Compliance
FR 2: Decrease in TSFC	10%	1.2%	Do Not Comply

CR 1: Increase the efficiency of a jet engine by using a recuperative heat exchanger

Remaining Pieces

- Will be made in-house
 - Casings(8,9) Rolled and welded
 - Ring(1), Brackets(2,3), Connectors(4-7), Nozzle Shroud(11), Endcap(12) Milled

- Stainless Steel 304
 - Machinable
 - Weldable
 - Can withstand engine temperatures

- Created with Direct Metal Laser Sintering
 - Titanium
- Protolabs quote ~ \$1200

Heat exchanger is feasible

*Dimensions: inches

CPE 3: Engine Electronics

Goal: Safely control modified engine and save sensor data

Elements

Custom printed circuit boards – based off MEDUSA design

Project Description

Validation

Engine Electronics– Overview

Engine Electronics– ECU

Engine Electronics— Saving Data

- SD storage
 - Tested and fully functional
 - Up to 32 GB
 - Full File System
- Transfer rate of 16 Mbs write/read
 - 1 ms start up time per write
 - 512 byte buffer

SD Testing Configuration

Engine Electronics – Fuel Flow Sensor

- Equflow 0045
- Disposable insert (~\$50)
 - Fuel pump too weak to include filter in line
- Flow Rate 0.1-2L/min with 110,000 pulses/L
 - Engine fuel flow rate: 0.370 L/min
 - Accurate to 1% of reading (±0.0001 L/min)

Critical Project

Elements

Design Requirements

- Predicted 580±5 pulses/s
- 34mA current at 5V

Design Solution

Project Description

Project Planning

Disposable PFA flow meter

Risk Analysis

Verification and

Validation

Engine Electronics— Control Panel

37

Engine Sensor Board

- Used to calculate RPM
 - Limit of 130,000 RPM
 - 2116 pulses per second
 - Pull rate of at least 31 Hz
 - Maximum error of 0.5% at any moment
- Best option: Stock part
 - Off ramp: SS56AT (Honeywell)

Stock Engine Sensor Board: Hall Effect Location

Engine Electronics – Thermocouple

- K-type thermocouple
 - Limit of 700°C
 - Cold junction compensate chip
 - Max31855
 - Sample at 113 Hz minimum
 - Max error 3 degrees Celsius
- SPI interface

Stock Engine Sensor Board: Thermocouple Location

Engine Electronics– Software Main Loop

CPE 4: Testing

Goal: Validate model and verify requirements

Project Planning

Project Description

Design Solution

Critical Project Elements

Design Requirements

- Purpose:
 - Verify the 1-D thermal model is on the correct order of magnitude
 - Precursor to level 1 test
- Test Overview:
 - Hot and cold counter-flow in concentric pipes
 - Cold flow from leaf blower
 - Hot flow from heat gun
 - Flow fully turbulent and developed in test section

Project Description

Design Solution

Critical Project Elements

Design Requirements

Risk Analysis

Verification and Validation

Project Planning

- ΔT within 0.36K (12%) of 1D model prediction
 - ΔTmodel = 2.9K ± 0.3K
 - Δ Tanalog = 2.6K ± 0.2K
 - Between 2% a
- Decrease error
 - Take more me
 - Switch thermology position between tests
 - Increase speed of hot flow for a turbulent Reynolds number

Conclusions:

Model is Feasible

Risk Analysis

Project Description

Design Solution

Critical Project Elements Design Requirements

rements R

Risk Analysis

Verification and Validation

Project Planning

47

1. Modified Engine

- 1.1 Modified engine does not start
- 1.2 Primary air flow extinguishing flame
- 1.3 Fuel flow rate cannot be precisely controlled
- 1.4 Pressure leaks degrade engine performance

2. Data Collection

2.1 Smalls changes in properties cannot be accurately measured

3. Engine Analog Tests

3.1 Sensor placement in flows to achieve correct readings

Likelihood	Near Certainty		1.4								
	Highly Likely				1.2						
	Likely		3.1	1.3	2.1						
	Low										
	Extremely Unlikely										
		Minimal	Minor	Major	Serious	Catastrophic	1.2 Re 3.1 Va	indificultion re	guires f quires f	dewitthiberita ield measure vary tocatie	emercerror ements empound
Severity											
Project Description Design Solution Critical Project Elements Design Requirements Risk Analysis Verification and Validation Project Planning 49						49					

Verification and Validation

Project Description

Design Solution

Critical Project Elements

Design Requirements

Risk Analysis

Verification and Validation

Project Planning

- Level 1:
 - Recuperator operates without critical failure
 - Verifies heat transfer from 1D Model
- Level 3:
 - Engine runs with recuperator attached
 - Throttle time met
 - Verifies effectiveness, Thrust Specific Fuel Consumption (TSFC), and thrust reduction match 1D and CFD models

Engine Analog Level 1 Verification

Manometer/ Pitot Probe

Sensor List	FR Validation	Error	Sample Rate	Acquired/ Tested
Thermocouples	Temperature (DR 3.3)	+/- 1.2 K	1Hz	yes/ yes
Pitot Static Tube	Exit Velocity (DR 3.3)	+/-1.4 m/s	N/A	yes/ yes

Project Description

Design Requirements

Critical Project

Elements

Verification and Validation

Project Planning

Engine Integration Level 3 Verification

Project Description

Critical Project

Elements

Engine Integration Level 3 Verification

54

$$TSFC = \dot{w}_f / F$$

Fuel Flow Sensor

Load Cell

$$Effectiveness = \frac{Tt3 - Tt2}{Tt5 - Tt2}$$

Project DescriptionDesign SolutionCritical Project
ElementsDesign RequirementsRisk AnalysisVerification and
ValidationProject Planning

Project Planning

Design Solution

Critical Project Elements

Design Requirements

Risk Analysis

Verification and Validation

Project Planning

Lead positions: *Project Manager:* Andrew Marshall Systems Engineer: Jacob Nickless *Electrical Lead:* Becca Lidvall *Software Lead:* Peter Merrick Electrical Team Mechanical Design Lead: Kevin Gomez *Manufacturing Lead:* David Bright Lead *Testing Lead:* Carolyn Mason Safety Lead: Kevin Horn Thermal Modeling Lead: Kevin Bieri

Project Description

November	December	January	February	March	April	Мау
	Thermal Mod	deling				
				Electronics		
			Software			
CI	DR • 11/30 FFR • 12/14					
			MSR ◆ ^{2/1}	Manu	facturing	
					Integration	
				RR 🔶 2/29		Testing
				AIAA 🔶 ^{3/11}	Design Symp. 🔶 4/	15
					SFR ◆	4/18 UROP ◆ 4/30
						PFR \$ 5/2

Category	Major Components	Heat Exchanger \$1,200
Electronics	ECU Board (3 revs) ESB Board (3 revs)	 Class Budget Electronics \$1,000
Heat Exchanger	DMLS Manufacturing Shipping	• UROP Manufacturing \$1,000
Manufacturing	Outer Casing Inner Casing	+ \$975 Testing \$800
	Endcap Pressure Sealing	\$5,975 Engine Repair \$350
Testing	Materials Sensors	 Total Expenses \$4,420 \$50 \$26%
Software Engine Repair	Testing PCB ESB damage	Margin \$1,555
	Critical	\$0 \$500 \$1,000 \$1,500 \$2,000 Project Data to Distant to
Project Description	n Design Solution Elem	Project Planning

10/20 Engine Test

11/12 Analog Test 0

1/15 Analog Test 0.1

1/23 Engine Analog Level 1

2/8 Fully Characterize Stock Engine

CR 1: Increase efficiency of the engine through recuperative heat transfer ✓ CR 2: Characterize changes in thrust and thrust specific fuel consumption ✓ CR 3: Minimize thrust loss, weight, and volume additions

Thermal modeling currently meets Level 3 success

- ➤Testing analog prepared for Level 1 success
- >Heat Exchanger and Electronics on track for Level 1 success in early spring

On track for project success

Questions?

- [1] http://www.rmb-consulting.com/sknhrpap/hrpaper.htm
- [2] Kays, W.M. and London, A.L., *Compact Heat Exchanger Design*, R.R. Donnelley& Sons, 1984.
- [3] Titanium Ti-6Al-4V (Grade 5), Annealed," American Society for Materials. MatWeb Database. Web. Accessed 11 Oct. 2015. < http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MTP641>.
- [4] Contreras-Garcia, Julia, Emily Ehrle, Eric James, Jonathan Lumpkin, Matthew McClain, Megan O'Sullivan, BenWoeste, and Kevin Wong, "COMET Project Final Report", 2014.
- [5] Ma, Huikang, Daniel Frazier, Crawford Leeds, Corey Wilson, Carlos Torres, Alexander Truskowski, Christopher Jirucha, Abram Jorgenson, and Nathan Genrich, "MEDUSA Project Final Report", 2015. 09 Sept. 2015.
- [6] RMI Titanium Company. "Titanium Alloy Guid." (n.d.): n. pag. Jan. 2000. Web. 28 Nov. 2015. < http://www.rtiintl.com/Titanium/RTI-Titanium-Alloy-Guide.pdf>.
- [7] Nickel Development Insitute. "HIGH-TEMPERATURE CHARACTERISTICS OF STAINLESS STEELS." (n.d.): n. pag. *Nickel Insitute*. American Iron and Steel Institute. Web. 28 Nov. 2015. http://www.nickelinstitute.org/~/Media/Files/TechnicalLiterature/High_TemperatureCharacteristicsofStainlessSteel_9004_.pdf>.
- [8] Johnson, Carl R., and John D. Grimsley. Short-time Stress Rupture of Prestressed Titanium Alloys under Rapid Heating Conditions. Washington, D.C.: National Aeronautics and Space Administration, 1970. National Technical Reports Server. National Aeronautics and Space Administration. Web. 28 Nov. 2015.
 http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19710002194.pdf>.
- [9] Kadoya, K., M. Matsunaga, and A. Nagashima. "Viscosity and Thermal Conductivity of Dry Air in the Gaseous Phase." Journal of Physical Chemistry 14.4 (1985): 947-56. National Technical Reference Database. Web. 30 Nov. 2015. < http://www.nist.gov/data/PDFfiles/jpcrd283.pdf>
- [10] Lemmon, Eric W., Richard T. Jacobsen, Steven G. Penocello, and Daniel G. Friend. "Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon, and Oxygen From 60 to 2000 K at Pressure to 2000 MPa." *Journal of Physical Chemistry* 29.3 (2000): 331-56. *National Technical Reference Database*. Web. 30 Nov. 2015.
 http://www.nist.gov/data/PDFfiles/jpcrd581.pdf>.
- [11] "Stainless Round 304/304L 5 inch." OnlineMetals.com.Web. Accessed 29 Nov. 2015. https://www.onlinemetals.com/merchant.cfm?pid=127 & step=4& showunits=inches&id=6& top_cat=1>
- [12] "Stainless Round 304/304L 4.25 inch." OnlineMetals.com. Web. Accessed 29 Nov. 2015. https://www.onlinemetals.com/merchant.cfm?pid=124 &step=4&showunits=inches&id=6&top_cat=1#>
- [13] "Stainless 2B Sheet 304 Annealed." OnlineMetals.com. Web. Accessed 29 Nov. 2015. < http://www.onlinemetals.com/merchant.cfm?pid=6828&step=4 & showunits=inches&id=233&top_cat=1>
- [14] "Stainless Redtangle 304/304L." OnlineMetals.com. Web. Accessed 29 Nov. 2015. ">https://www.onlinemetals.com/merchant.cfm?pid=4420&step=4&showunits=inches&id=25&top_cat=1>

Backup Slides

FR 1: Engine operates in modified state

DR 1.1: Integrate with engine

DR 1.2: Throttle response characterization

DR 1.3: Less than 10% thrust decrease

FR 2: Thrust specific fuel consumption decreases at least 10% at full throttle

DR 2.1: Effectiveness of at least 13%

DR 2.2: Thermal survivability

DR 2.3: Integrate with engine

DR 2.4: Throttle response characterization

DR 2.5: Less than 10% thrust decrease

FR 3: The thermal-fluid simulation models the changes in engine performance

DR 3.1: Quantify changes in engine thrust

DR 3.2: Quantify changes in **fuel consumption**

DR 3.3: Quantify frictional and geometric **losses**

DR 3.4: Limited required sensors to validate model

Engine Control Design Requirements

FR 4: Engine control electronics shall operate the JetCat P90-RXi engine with integrated recuperator.

DR 1.1: Know the state of the engine.

DR 1.2: Ability to shut down engine with greater than with 31 Hz response time.

DR 1.3: Save data at a rate of at least 5 Hz.

DR 1.4: Measure and control the fuel flow rate to the engine.

DR 1.5: Control the existing engine starter motor.

DR 1.6: Control the existing engine glow plug.

DR 1.7: Control the existing engine fuel solenoid.

DR 1.8: Control the existing engine lubrication solenoid.

DR 1.9: Engine shall start, shutdown, and be throttle-able according to user input.

DR 1.10: Display status with indicator LEDs.

Model Backup Slides

Colebrook-White Equation

$$\frac{1}{\sqrt{f}} = -2.0 \log\left(\frac{\epsilon/D}{3.7} + \frac{2.51}{Re\sqrt{f}}\right)$$

Gnielinski Correlations

$$h = \frac{k(f/8(Re - 1000)Pr)}{D\left(1 + 12.7\sqrt{f/8}\left(Pr^{2/3} - 1\right)\right)}$$

Frictional Drag

$$D = \frac{1}{2}\rho V^2 A_w C_f$$
$$C_f = f/4$$

Loss	Equation
Friction	$h_L = f \frac{l}{D} \frac{V^2}{2g}$
Expansion	$h_L = \frac{V_1^2 \rho_1}{2g\rho_2} (K_C + 1 - \sigma^2)$
Contraction	$h_L = \frac{V_1^2 \rho_1}{2g\rho_2} (K_e + 1 - \sigma^2)$
Turn (0-45 degrees)	$h_L = 0.3 \frac{V^2}{2g} (\alpha/45)$
Sharp 90 degree turn	$h_L = 0.9 \frac{V^2}{2g}$
180 degree smooth bend	$h_L = 0.7 \frac{V^2}{2g}$

$$H_L = \sum \rho g h_L$$

CFD: Boundary Conditions/Assumptions

Boundary	Condition Type	Value(s)
Cold Inlet	Total Pressure	$P_t = 2.58 \ atm \ T = 400 K$
Cold Outlet	Mass Flow	$\dot{m} = 0.260 \ kg/s$
Hot Inlet	Total Pressure	$P_t = 1.38 \ atm \ T = 850 K$
Hot Outlet	Mass Flow	$\dot{m} = 0.264 \ kg/s$
Solid Walls	Heat Transfer Allowed	$Titanium \ k = 6.7W/(m \ K)$
Surroundings	Adiabatic	N/A

Surface R	oughness:
$\epsilon = 4.8E$	– 5 <i>m</i>

Turbulence Intensity:

 $I = 0.16 R e_D^{-1/8}$

→Cold Side Inlet: 3% →Hot Side Inlet: 8%

Fluid:

- Air
- Ideal gas
- Thermally perfect

CFD: Solidworks Flow Simulation Convergence

Method:

- Propagates calculation forward from initial conditions
- Tracks change between each iteration
- Once change drops below specified goals for all goals end of 1 "travel"
- Averages results across several (3) travels to give final steady-state solution

Model	Internal Total Pressure Loss [Pa]	External Total Pressure Drop [Pa]	Heat Addition [W]	Fuel Consumption Rate [kg/s]	Thrust [N]	TSFC $\left[s^{-1} ight]$
Control Volume	7403	158	1321	4.70E-2	104.8	4.40E-4
CFD – 384k	7281	207	1278	4.69E-2	104.6	4.41E-4
CFD – 647k	7261	194	1265	4.70E-2	104.7	4.41E-4
CFD – 1328k	7279	235	1309	4.68E-2	104.7	4.39E-4
Mean	7306	204	1286	4.69E-2	104.7	4.40E-4
Standard Deviation	65	40	75	0.00E-2	0.1	0.01E-4

Testing Backup Slides

- Percent difference: -12% +/- 10%
 - ∆Tmodel = 2.9 K+/- 0.3K
 - ∆Tanalog = 2.6 K+/- 0.2K
- Measurement Errors:
 - Thermocouples +/- 1.2 K
 - Pitot Probe+/- 2.8 m/s

- Mass flow rate cold flow: 0.0602 kg/s
- Qdot: 176.6370 J/s
- Heat Transfer Coefficient (U): 21.9360
- Cold Flow:
 - Velocity: 9.37 m/s
 - Reynolds Number: 4.27 * 10^3
- Hot Flow:
 - Velocity: 4.20 m/s
 - Reynolds Number: 2.73 * 10^4

Model Verification Error: DAQ + Thermocouple

- NI 9211 w/ K type Thermocouple:
 - Temperature Range: -270 1200 C
 - Temperature Accuracy: 0.05 C
- Temperature Error:
 - +/- 2.2C or +/- 0.75%

- Airflow PVM100 Micromenometer:
 - Velocity Range: 2.8 76 m/sec
 - Pressure Range: 0 3500 Pa
 - Pressure Resolution: 1 Pa
- Pitot Positioning Error:
 - +/- 3%

Model Verification Error: Load Cell

- National Instruments Daq USB-6009
 - Analog Input:
 - +/-10V, accuracy 7.73mV
 - +/-1V, accuracy 1.53mV
- Load Cell: LCGD-100
 - Range 0-100lbs
 - Repeatability +/-0.10% Full Scale Output

- Heat Gun:
 - Amperage (amps) 6.6, 12.1
 - Temperature range (deg F): 572°/1112°
 - Wattage (watts): 1500
- Leaf Blower:
 - Dual speed: 120 and 150mph

Engine Analog Level 2 Verification- Off Ramp

Manometer/ Pitot Probe

Sensor List	FR Validation	Error	Sample Rate	Acquired/ Tested
Thermocouples	Temperature (DR 3.3)	+/- 1.2 K	1Hz	yes/ yes
Pitot Static Tube	Exit Velocity (DR 3.3)	+/-1.4 m/s	N/A	yes/ yes

Heat Exchanger & Manufacturing Backup Slides

	Stock JetCat Engine	REAPER Design
Net Thrust (N)	105	103
Thrust Specific Fuel Consumption (s ⁻¹)	4.46×10 ⁻⁴	4.40×10 ⁻⁴
Mass (kg)	1.435	4.871
Volume (cm³)	~2614	~3894

DR 2.3: The heat exchanger shall maintain structural integrity at steady-state operating temperatures.

Maximum Casing Temperature: 124°C (from CFD model)

$$\sigma_{\theta\theta} = \frac{p_g R}{t} = \frac{(0.26 - 0.101)MPa * 0.054m}{0.0015m} = 5.7 MPa$$

DR 2.3: The heat exchanger shall maintain structural integrity at steady-state operating temperatures.

Maximum End Cap Temperature: 664°C (from CFD model)

$$\sigma_{\theta\theta} = \frac{p_g R}{t} = \frac{(0.26 - 0.101)MPa * 0.018m}{0.001m} = 2.9MPa$$

Safety Factor: 2.4

DR 2.3: The heat exchanger shall maintain structural integrity at steady-state operating temperatures.

Maximum Heat Exchanger Temperature: 806°C (1482°F)

$$\sigma_{\theta\theta} = \frac{p_g R}{t} = \frac{(0.26 - 0.101)MPa * 0.0335m}{0.0012m} = 4.4MPa \text{ (638 psi)}$$

	Room temp.	1	Ultimate tensile strength (psi)			Room temp. yield strength	Percent elongation (2 in.)					
intoy	(Rc)	Room temp.	1000°F	1200°F	1400°F	1600°F	10 01 -5541	Room temp.	1000°F	1200°F	1400°F	1600°F
555	31	126 300	78 000	69 300	44 300	22 700	118 400	17	21	14	18	19
6242	35	150 500	103 500	77 700	35 300	12 100	146 600	12	10	10	21	27
52	35	142 100	80 800	59200	24 600	12 400	136 000	15	11	15	30	45
64	35	142500	79200	52 300	28 100	12 500	138 700	12	11	16	24	32
HT 64*	37	160 000	99000	54 900	27 000	12 500	152 500	3	8	12	20	30

Thermal Expansion - Analysis Setup

- Materials
 - Titanium 6Al-4V ELI
 - Stainless Steel 304
- Mean Coefficient of Thermal Expansion (μ m/m*K)
 - Ti 6Al-4V ELI: 10.6*10⁻⁶
 - SS 304: 10*10⁻⁶

Thermal Expansion – Nozzle Shroud

Thermal Expansion - Endcap

1.450e+002

1.329e+002

1.209e+002

1.088e+002

9.668e+001

8.460e+001

7.251e+001

6.043e+001

4.834e+001

3.626e+001

2.417e+001

1.209e+001

1.000e-027

- 12 Total Parts
 - Forward Ring
 J Brackets (2 halves)
 J Space Connectors (x4)
 Inner Casing
 Outer Casing
 Outer Casing
 Nozzle
 Nozzle Shroud
 Endcap

• Stock Components

Connection of two forward brackets to stator

• Connection of secondary bracket rings to first set of brackets

• Connection of nozzle to turbine

• Connection of casing ring

• Connection of inside case

• Case over Nozzle

• Connection of endcap to nozzle

Connection of Outer Casing

• Complete Assembly

- Milled from solid bar
- Will need round "puck"
- Material: 5" diameter, 1" length bar = \$28.15^[2]

- Milled from solid bar
- Will need 2 "pucks" 1 for each bracket
- Material: 4.25" diameter, 1" length bar = \$20.34^[3]

- Machined from solid block
- Will need 1 rectangular bar (cut into 4 to make connectors)
- Material: 0.375" x 0.75" cross section, 4" length bar = \$3.44^[4]

Manufacturing: Casings

- Heat, then shrink onto "puck" and anneal to ensure roundness at ends
- Outer Casing
 - Needs to seal to Forward Ring and End Cap
 - 2.44" inner radius -> 15.33" circumference
 - 7.19" length
 - $16"x7.5" = $14.40^{[5]}$
- Inner Casing
 - 2.11" inner radius -> 13.26" circumference
 - 5.95" length
 - OnlineMetals.com 14"x6" = \$10.08^[5]

- Machined from solid rod of stainless steel
- 4.25" diameter, 2.2" length = \$44.75^[3]

- Machined from solid disk of stainless steel
- 5" diameter rod, 1" length = \$28.15^[2]
- Needs to seal with outer casing and end of nozzle

- Machining Tools: \$350 (estimate from Matt Rhode)
- Connection Hardware: \$20 (bolts, nuts, etc.)
- Deacon 3300 Sealant: \$100

Brackets

- Case Connectors
- Forward Ring
- Outer Case
- Inner Case
- Nozzle Shroud
- End Cap
- Tools
- Hardware
- Sealant
- Shipping

Total: \$670

- Outer Casing
- Thin Walled?
 - $\frac{r}{t} \ge 10? \to \frac{62 \, mm}{1.52 \, mm} = 40.8 \ge 10 \,\checkmark$
- Longitudinal Stress

•
$$\sigma_{long} = \frac{Pr}{2t} \rightarrow \sigma_{long} = \frac{(263445 Pa)(.062 m)}{2(.00152 m)}$$

 $\sigma_{long} = 5372891.45 Pa = 5.4 MPa$

• Hoop Stress

•
$$\sigma_{hoop} = \frac{Pr}{t} \rightarrow \sigma_{hoop} = \frac{(263445 Pa)(.062 m)}{.00152 m}$$

 $\sigma_{hoop} = 10745782.89 Pa = 10.7 MPa$

• Stainless Steel 304 Yield Strength = $\sigma_{yield} = 205 MPa$

• σ_{long} and $\sigma_{hoop} \leq \sigma_{yield} \checkmark$

r = 62 mm

t = 1.52 mm

 $r_{outer} = 62 \text{ mm}$ • Shear Out of Casing? Force on Endcap $r_{inner} = 26 \text{ mm}$ $F_{case} = P * A$ $A = \pi \left(r_{outer}^2 - r_{inner}^2 \right)$ $A = \pi (62^2 - 26^2) = 9952.57 \ mm^2 = 9.95 E^{-3} \ m^2$ P = 2.6 atm = 263445 Pa $F_{case} = 263445 Pa * 9.95E^{-3} m^2 = 2621 N = F_{case}$ d = 6 mm• Bolt hole shear path Shear Path Cross Section L = 6 mmStainless 304 yield strength: 205 Mpa L = 6 mmt = 1.52 mm Yield force = $F_{vield} = \sigma_{vield} * A$ t = 1.52 mm $F_{vield} = 205E^6 Pa * 2(.006 * .00152) = |3767N = F_{vield}|$ $|F_{case}| \leq F_{vield} \checkmark$ 123

$$F_{case} = F_{bolt} = 2621 N$$
Bolt Cross Section

$$F_{yield} = \sigma_{yield} * A$$

$$\sigma_{yield} = 205 MPa$$

$$A = \pi r^{2} = \pi (.0015 m)^{2} = 7.07E^{-6} m^{2}$$

$$F_{yield} = 205E^{6} Pa * 7.07E^{-6} m^{2} = 1449 N$$

Need 2 bolts to hold case $(2 * 1449 N = 2898 N = F_{yield} \le F_{bolt})$ Using 4 bolts $\rightarrow F_{bolt} \le F_{yield} \checkmark$

Most likely to occur at joint of Endcap and Nozzle

$$\dot{m} = C * A_{leak} \sqrt{2\rho_{engine} \left(P_{engine} - P_{atm}\right)}$$

$$A_{leak} \rightarrow \bigcap_{\substack{i \in A_{leak} \\ i \in Nozzle}} A_{leak} = \pi ((r_{Nozzle} + gap)^2 - r_{Nozzle}^2)$$

$$A_{leak} = 2E^{-5} m^2$$

$$\rho_{engine} = 3.6 \frac{kg}{m^3}$$

- $P_{engine} = 2.6 \ atm = 263445 \ Pa$, $P_{atm} = 1 \ atm = 101325 \ Pa$
- $C = .625 \rightarrow \text{hole flow coefficient, between .6 and .65}$

•
$$\dot{m} = .014 \frac{kg}{s}$$

Metric	Weighting	Welding	Putty	O-Ring
Time for	0.2	1	А	Л
Installation	0.2	T	4	4
Difficulty of	0.25	2	4	3
Installation				
Cost	0.2	5	1	2
Dissassembly	0.35	1	5	5
Totals	1	2.05	3.75	3.7

Ranking	1	2	3	4	5
Time for					
Installation	4+ hrs	3-4 hrs	2-3 hrs	1-2 hrs	0-1 hrs
			Done in-house	Done in-house	
		Done in house	with a lot of	with some	Done in-house
Difficulty of	Done out-of-	entirely by Matt	assistance from	assistance from	without Matt
Installation	house	Rhode	Matt Rhode	Matt Rhode	Rhode's assistance
Cost	\$100 - \$125	\$75 - \$100	\$50 - \$75	\$25 - \$50	\$0 - \$25
				Outer Casing and	
	Permanently		Endcap can be	Endcap can be	Recuperator can be
Dissassembly	Assembled	N/A	removed	removed	completely removed

- Deacon 3300 Extruded Gasket Compound
 - Thermal reactive sealing compound of high temperature, pressure, and chemical tolerance
 - Designed to produce mechanical seal on metal-to-metal surfaces, without chemical adhesion.
 - High flexibility, pliability and resistance to wear
 - Compatible with thermal cycling. Seal achieved before full cure.
 - Compressible to within a few thousandths of an inch
 - Temperature Range: 600°F to 1600°F (585K to 1140K)

Engine Electronics Backup Slides

- Set up low level SPI
- Generate file system structure
- Generate DISKIO layer for in between communication
- Create first file
- Create directory listing
- Open File

• All functionality complete

Engine Control Electronics – Software

- Close Fuel Valves
- Leave lube solenoid open during shutdown
- Kill all power going to pump.
- Once stopped, close solenoid
 - Stop based on hall effect rpm
- Finalize all data
 - Flush buffers
- Reset flags

- Made to prevent software errors from harming hardware.
- Updated every 40 ms
- Will always check watchdog reset flags on restart
 - If set will go into shut down
- Timer is adjustable based on loop time.
- This is hardware based and must be written to.

- Atxmega256a3
 - 64 pins 50 IO
 - 1 to 3 SPI
 - 2 to 6 l2c
 - 2 to 6 USART
 - 12 bit ADC
 - 32 MHz Clock Speed
 - External 16 MHz utilized as well
 - Easily Available
 - ~\$8.00 –Digikey
 - Large quantity in stock

Fuel Flow Sensor

- Equflow 0045
- Disposable insert (~\$50)
- Flow Rate 0.1-2L/min with 110,000 pulses/L
 - Engine fuel flow rate: 0.370 L/min
 - Accurate to 1% of reading (±0.0001 L/min)
 - Predicted 580±5 pulses/s
- 34mA current at 5V
 - Not using filters
 - Replace as needed
- Store pulses in buffer collect at every read cycle

Critical Component: Hall-Effect and Comparator

- Used to calculate RPM
 - Reads magnetic changes
 - Must be sent through comparator circuit
 - 2116 pulses per second
- Circuit will be interrupt driven
 - Placed into buffer
 - Will work with processor
 - Enough clock cycles (3 instructions per pulse)
 - Buffer collected with every red cycle.
- Options
 - Part off of stock ESB
 - SS56AT (Honeywell)

- Magnetic field proportional to distance:
 - Sensor 37±0.2 mm from magnet

$$B \propto \frac{1}{r^3}$$
 $\frac{B(r + \Delta r)}{B(r)} = \frac{37^3}{37.2^3} = 0.984 = 98.4\%$ field $20 \log 0.98$

 $20 \log 0.984 = -.14 \, dB$

• Field: 15mT

$$50\frac{mV}{mT} \times .15mT = 7.5 mV$$

- Sensitivity: 50mV/mT
- Sensor noise: $10\mu T$

$$50\frac{mV}{mT} \times 10\mu T = 0.5 \ mV$$

• Signal to noise ratio:

$$SNR = 20 \log \frac{7.5}{0.5} = 23.5 \ dB$$

• Hall Effect Sample Rate:

- Safety range: 0 130,000 RPM
- Desire: 0.50% (650 RPM) maximum sampling error
- Max rate of change = 20,360 RPM/s Min sampling Rate = $\frac{20,360 \frac{RPM}{s}}{650 RPM}$ = **31 Hz**

