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Project Statement

Model, build, implement, and verify an integrated recuperative system 
into a JetCat P90-RXi miniature turbojet engine for increased fuel 
efficiency from its stock configuration.
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What is a Recuperator?

• A recuperator is a form of energy recovery heat exchanger designed 
to recover waste heat from a system

• Our recuperator:
• Recover heat energy from the exhaust

• Preheated compressed air will decrease fuel consumption

𝑄𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 𝑄𝑓𝑢𝑒𝑙 𝑏𝑢𝑟𝑛 + 𝑄ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
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Novelty

• Most existing systems are ground based
• Highly efficient (up to ~90%)

• Add huge amounts of mass and volume 
to system

• Recuperators have not been used on 
turbojets of any size
• This project is a proof of concept
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Engine: JetCat P90-RXi

• Hobbyist miniature jet engine 

• Fuel: 19:1 Kerosene/Oil Mixture

• Specifications:
• Max thrust: 105 N @ 130,000 RPM 

• Exhaust: 490-690 °C at 1454 km/h (403.9 m/s)

• Fuel Flow Rate at Max RPM: 370 ml/min

• Diameter: 112 mm 

• Mass: 1.435 kg
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Heritage

• GoJett
• Test Stand and Test Procedures

• 2013-2014 COMET
• Generated turbine and compressor 

map

• 2014-2015 MEDUSA
• Prototyped custom circuit boards for 

engine control

• Characterized fuel and lubrication rates
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Requirements

Functional Requirements

• FR 1: The engine shall operate with the heat exchanger system integrated.

• FR 2: The thrust specific fuel consumption (TSFC) of the engine with the heat 
exchanger system integrated shall decrease by at least 10%

• FR 3: The simulation shall model the thrust and efficiency of the engine with 
the integrated heat exchanger system.
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DR 2.4: Less than 100% increase in throttle response time between half and full thrust
DR 2.5: Less than 10% thrust reduction
DR 2.6: Less than 50% mass increase
DR 2.7: Less than 100% volume increase

𝑻𝑺𝑭𝑪 =
𝑾𝒆𝒊𝒈𝒉𝒕 𝑭𝒍𝒐𝒘 𝑹𝒂𝒕𝒆 𝒐𝒇 𝑭𝒖𝒆𝒍

𝑵𝒆𝒕 𝑻𝒉𝒓𝒖𝒔𝒕



Baseline Design

9

Stock JetCat Engine

REAPER Recuperator Design

REAPER Recuperated Engine Design

Net Thrust [N]
Thrust Specific Fuel 
Consumption [𝒔−𝟏]

Stock Engine 105 4.46 × 10−4

REAPER Design 101 4.05 × 10−4

Percent Reduction 4% 10% 

11.0 in

4.4 in
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Functional Block Diagram
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Recuperator System FBD
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Electronics FBD
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Functional Block Diagram
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Heat Exchanger
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Heat Exchanger Options
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Heat Exchanger Heuristic
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Heat Exchanger Trade Study
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Baseline Design: Visualizing the Flow​
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How It works: Heat Exchanger
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How It works: Cycle Analysis
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Nozzle Extension Design
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DMLS EDM
In-

House

Price* $1,666 ~$1000 $515

Tolerance
0.007 in 

(0.178 mm)
0.001 in 

(0.025 mm)

~0.05 in
(1.27 
mm)

Lead Time 3-5 days TBD
1 

month

Nozzle Extension Manufacturability

• Direct Metal Laser Sintering (DMLS)
• Additive manufacturing technique 

similar to 3D printing

• Laser binds sinter powdered material 
together

• Electro Discharge Machining (EDM)
• Start with solid metal item

• Two electrodes discharge current to 

cut out desired shape 

• In-house Machining
• Clamp and weld method 

• Matt Rhode
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Materials
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Data ↓ Metal → Titanium Alloy (TI 4-6) 
Stainless Steel 

17-4 
Inconel 718 

Maximum Temperature (K) 1873 1373 1677

Thermal Conductivity 
(W/mK)

16.4 16 11.4

Mass (g) 484 849 889

Cost per (3"D x 8"L rod) $428 $116 $232
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Design Verification: Level 1

• Historically, engine has been challenging to run
• Software is proprietary

• Any modifications to the engine usually result in engine inoperability 

• Testing with Engine Analog
• Verify heat transfer model

• Keep additional mass< 50% of stock engine

• Keep additional volume increase < 100% of stock engine
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Engine Analog Level 1
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Engine Analog: Analysis

Requirements
• Fully turbulent flow (𝑅𝑒 ≥ 10000)
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𝐶𝑝 𝑇𝑡2 − 𝑇𝑡1 = 𝑈ℎ𝐴ℎ 𝑇𝑠𝑡𝑎𝑡𝑖𝑐,𝑒𝑥ℎ𝑎𝑢𝑠𝑡 − 𝑇𝑠𝑡𝑎𝑡𝑖𝑐,𝑐𝑜𝑙𝑑
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Engine Analog Level 2: Off Ramp
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Design Verification: Level 3

• Recuperator Integrated with the Engine:
• Effectiveness >13%

• Thrust Specific Fuel Consumption Reduction > 10% 

• Thrust Reduction < 10%

• Runs > 4 minutes

• 2 minutes at full throttle

• Engine throttle time from half to full throttle is within 100% of stock throttle 
response time
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Full System: Test
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Electronics
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Electronics Verification: Level 1 & 2

• Total and static temperature will be 
sampled to verify model

• Achieved using an NI DAQ

• Saved to a CSV file
• Data will then be processed
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Total Temperature Probes
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• Exhaust Gas (maximum)
• Velocity: 404 m/s (1325 ft/s)*

• Temperature: 700 C (1300 F)*

• Heat Exchanger Effectiveness:
• Total temperature = static temperature + 

velocity 

• Pitot probe, with temperature 

• United Sensor Corp.
• For use near burners, K type thermocouple

*As specified by JetCat
Project 

Description
Baseline 
Design

Feasibility 
Analysis

Project 
Summary



Data Collection: Level 1 & 2

• National Instruments DAQ Options:
• NI-9205

• Available for purchase or rent from the ITLL
• 16 high fidelity sensing ports 16-bit resolution and 250 kilo-samples/s aggregate sampling 

rate
• NI-9263

• Is available in lab for quick measurements
• Only 4 inputs

• LabVIEW:
• Thermocouple: amplified analog input
• Saved to CSV file

• Without full recuperator integration:
• Verifies model of recuperator
• No specific fuel consumption or thrust change
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Electronics: Level 3

• Operation of the engine in a 
modified configuration.
• Requires custom engine control unit and 

sensor board to run engine in modified 
configuration

• Fuel flow rate sensor, RPM sensor, and 
load cell 

• Requires additional DAQ work to 
add extra sensors
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Electronics: Engine Control Trade Study

• Main Components:
• Engine Control Unit (ECU)

• Engine Sensor Board (ESB)

• Options:
• Stock

• Custom PCB (Printed Circuit 
Board) - heritage

• Programmable ECU

• Main Category: Feasibility

• Limiting Factor: Time & Budget
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Stock ECU
Custom PCB ECU

Programmable ECU
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Electronics: Engine Control Trade Study 

• Will develop custom PCB for ECU 
and ESB

• Stock ECU/ESB for preliminary 
testing
• Provides success up to level 2

• Without recuperator integration, get 
only effectiveness (no thrust or 
specific fuel consumption)

• Not enough time/money to try 
programmable ECU development
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Weight Stock Custom
PCB

Programmable

Feasibility 30 -9 3 0

Safety 25 3 0 -3

Development
Time

15 3 -3 -3

Data 15 0 3 0

Cost 10 -3 0 -3

Accuracy 5 -3 3 3

Total 100 -1.95 1.8 -1.35
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Data Collection: Level 3

• Recorded through ECU/ESB
• RPM, fuel flow, and temperature

• Redundantly collected through the NI DAQ
• Sample rate of 250 KS/s (NI-9205)

• LabVIEW:
• Thermocouples & Load cell - amplified analog readings

• Flow sensor & Hall-effect (RPM) - similar to an encoder with pulses per second

• All data is saved to a CSV file
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Electronics: Custom PCB Design (FBD)
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Project Summary
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Budget
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Feasibility Overview

• Recuperator Design
• Materials: FEASIBLE

• 3 material options meet heat transfer requirement and temperature limitations

• Manufacturing: FEASIBLE
• 3 methods beneath lead time and cost maximums

• Testing: FEASIBLE 
• 3 test methods that validate the thermal model and levels of success
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Feasibility Overview

• Electronic Design
• Components: FEASIBLE

• Sensor and electronic component options are within budget limitations

• Data Acquisition: FEASIBLE
• DAQ options are within budget limitations

• PCB Manufacturing: FEASIBLE
• Team experience and in-house resources
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Critical Path
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Electronic Construction 

Engine Analog Development Integration and Full System Test

1. Thermal Stress Analysis
2. Pressure Seals/Vessel Analysis
3. Improved Pressure Drop Model

Heat Exchanger Manufacturing

In Depth Heat Exchanger 
Analysis/Design



Questions?
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REAPERStock JetCat
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JetCat P90-RXi Overview
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Electronics: Heritage
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• MEDUSA printed circuit boards 
(PCB)

• Manufactured
• No full system integration test

• Component Selection



Critical Component: Processor 

• Atxmega128a3u
• 64 pins - 50 IO

• Need over 34

• Correct number of 
communication Busses

• Sufficient program memory 
and RAM

• 32 MHz Clock Speed
• External or Internal

• Easily Available
• ~$8.00 –Digikey

• Large quantity in stock
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Critical Component: Fuel Flow Sensor

• Equflow 0045

• Disposable insert (~$50)

• Flow Rate 0.1-2L/min with 110,000 pulses/L
• Engine fuel flow rate: 0.370 L/min

• Accurate to 1% of reading (±0.0001 L/min)

• Predicted 580±5 pulses/s 

• 34mA current at 5V
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Critical Component: Hall-Effect and Comparator

• Used to calculate RPM
• Reads magnetic changes

• Must be sent through comparator circuit

• Cheap and Available
• Thousand of different options

• Under $10.00

• Circuit will be interrupt driven
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Thermocouple Sampling Rate

• K type Thermos couple
• SPI interface

• Engine temperature range 

• 0 – 700 ˚C 

• ±2˚C Accuracy 

• Maximum rate of change  = 113.7 ˚C /s

• ±3˚C Maximum Tolerance
• Minimum sample rate 113.7 Hz
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Fuel Delivery & Lubrication FBD
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Electronics Sensors FBD
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User Control Inputs FBD



Critical Component: Software Startup/Safety
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Critical Component: Software Main Loop
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Recuperator ConOps
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Engine Testing

• Attended Graduate Engine Test (9/16):
• Learned general test procedures

• REAPER Test (10/6)
• Created own test procedures and cleaned 

up test environment

• At test trouble shot errors:  Thermocouple 
detached and ‘Wrong Pump’ 

• Working with JetCat on ‘No Fuel’ error
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Cycle Analysis: Methodology

1. Use JetCat manufacturer specifications and work from previous years to calculate engine component efficiencies

𝜂𝑏 = 0.95 Ploss = 0.065 𝜂t = 0.82 𝜂n = 0.92

2. Calculate stock engine performance using efficiencies

Fn = 105 N TSFC = 4.46 × 10−4 𝑠−1 Vexit = 403 m/s Tt4 = 1079 K

3. Calculate REAPER engine performance using efficiencies and same turbine inlet total temperature

Fn = 101 N TSFC = 4.05 × 10−4 𝑠−1 Vexit = 382 m/s Tt4 = 1079 K



Cycle Analysis: Equations
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3→4 Combustor:

𝑇𝑡4 =

𝑓
𝑎

𝜂𝑏
𝐶𝑝

𝐻𝑉 + 𝑇𝑡3

1 +
𝑓
𝑎

𝑃𝑡4 = 𝑃𝑡3 1 − 𝑃𝑙𝑜𝑠𝑠

4→5 Turbine:

𝑇𝑡5 = 𝑇𝑡4 1 − 𝜂𝑡 1 −
𝑃𝑡5
𝑃𝑡4

𝛾−1
𝛾

𝑃𝑡5 = 𝑃𝑡4
𝑃𝑡5
𝑃𝑡4

5→6 Nozzle:

𝑇𝑡6 = 𝑇𝑡5

𝑉6 = 2𝐶𝑝𝑇𝑡6 1 −
𝑃6
𝑃𝑡6

𝛾
𝛾−1

𝑇6 = 𝑇𝑡6 −
𝑉6

2

2𝐶𝑝
𝑀6 =

𝑉6

𝛾𝑅𝑇6

𝑃6 = 𝑃𝑡5
𝜂𝑛 − 1 + 1 +

𝛾 − 1
2

𝑀6
2

−1

𝜂𝑛

𝛾
𝛾−1

𝑞𝑥

6→7 Nozzle Extension:

𝑇𝑡7 = 𝑇𝑡6 −
𝑞𝑥
 𝑚0𝐶𝑝

𝑃𝑡7 = 𝑃𝑡6 − Δ𝑃𝑡,𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

𝑉7 = 2𝐶𝑝𝑇𝑡7 1 −
𝑃0
𝑃𝑡7

𝛾
𝛾−1

𝑃7 = 𝑃0

𝐹𝑛 =  𝑚0 1 +
𝑓

𝑎
𝑉𝑒𝑥𝑖𝑡 − 𝑉0 + 𝐴𝑒𝑥𝑖𝑡 𝑃𝑒𝑥𝑖𝑡 − 𝑃0

𝑇𝑆𝐹𝐶 =
𝑔  𝑚0

𝑓
𝑎

𝐹𝑛



Cycle Analysis: Results
Measurement Stock Engine Modified Engine

𝑇𝑡0 = 𝑇𝑡1 101.3 kPa 101.3 kPa

𝑃𝑡0 = 𝑃𝑡1 288 K 288 K

𝑇𝑡2 402.8 K 402.8 K

𝑃𝑡2 263.4 kPa 263.4 kPa

𝑇𝑡3 488.9 K 402.8 K

𝑃𝑡3 263.2 kPa 263.4 kPa

𝑇𝑡4 1079 K 1079 K

𝑃𝑡4 139.0 kPa 139.3 kPa

𝑇𝑡5 962.7 K 963.0 K

𝑃𝑡5 139.0 kPa 139.3 kPa

𝑇𝑡6 962.7 K 963.0 K

𝑃𝑡6 135.2 kPa 135.5 kPa

𝑇𝑡7 891.2 K N/A

𝑃𝑡7 135.0 kPa N/A

𝑉𝑒𝑥𝑖𝑡 381.6 m/s 403.0 m/s

Fuel:Air Ratio 0.0183 0.0160

Regenerator

CompressorInlet Turbine
Nozzle

Combustor

 𝑤𝑐
0 1

2

2a
2b

3

4

5

7a7

6



Heat Exchanger Sizing: Ideal Cycle Analysis 

67

𝜖𝑥 =
ℎ𝑜,3 − ℎ𝑜,2
ℎ𝑜,5 − ℎ𝑜,2

Nomenclature
𝜖𝑥 = effectiveness
ℎ𝑜 = total enthalpy
 𝑄𝑥= heat transfer rate
 𝑚= mass flow rate

𝑇𝑜 = total temperature
𝑐𝑝 = constant pressure specific heat

Assumptions
1. 𝑐𝑝 is constant

2. Ideal cycle 
3. Isentropic

Data
𝑇𝑜,2 = 318𝐾

𝑇𝑜,5 = 973𝐾
 𝑚0 = 0.26  𝑘𝑔 𝑠

 𝑄𝑥 =  𝑚0 ℎ𝑜,3 − ℎ𝑜,2

ℎ𝑜,5 = 𝑐𝑝 × 𝑇𝑜,5

ℎ𝑜,3 = ℎ𝑜,2 + 𝜖𝑥 ℎ𝑜,5 − ℎ𝑜,2

 𝑄𝑥 =  𝑚0 𝜖𝑥 ℎ𝑜,5 − ℎ𝑜,2

 𝑄𝑥 = 22500 𝑊

Heat transfer needed

ℎ𝑜,2 = 𝑐𝑝 × 𝑇𝑜,2



Heat Exchanger - Heat Transfer Model

68

𝑁𝑢𝑤𝑎𝑙𝑙 = 0.027𝑅𝑒𝐷
4/5

𝑃𝑟  1 3
𝜇

𝜇𝑠

0.14

𝑁𝑢𝑓𝑖𝑛 = 0.0296𝑅𝑒𝐿
 4 5𝑃𝑟1/3

𝑅𝑒𝐷 =
𝜌𝑢𝐷ℎ
𝜇

Nomenclature
Nu= Nusselt Number
𝑅𝑒 = Reynolds number
𝜇 = dynamic velocity 
𝑢 = velocity
 𝑚 = mass flow rate

𝐷 = Hydraulic diameter
𝐿= Fin length
𝑐𝑝 = constant pressure specific heat

𝜂0 = area efficiency
𝜂𝑓 = fin efficiency

ℓ = fin height

Assumptions
1. 𝑐𝑝 is constant

2. Velocity is constant 
3. Use film temperature 
4. Turbulent flow (𝑅𝑒 ≥ 10000) 

𝑁𝑡𝑢 =
𝑈𝑐𝐴𝑐
𝑐𝑝  𝑚

ℰ =
1

1 + 𝑁𝑡𝑢

1

𝑈𝑐
=

1

𝜂𝑜,𝑐ℎ𝑐
+

𝑡𝑤

 
𝐴𝑤

𝐴𝑐
𝜅𝑤

+
1

𝜂𝑜,ℎ  
𝐴ℎ

𝐴𝑐
ℎℎ

𝜂𝑜 = 1 −
𝐴𝑓

𝐴𝑤
1 − 𝜂𝑓

𝜂𝑓 =
𝑡𝑎𝑛ℎ 𝑚ℓ

𝑚ℓ
𝑚 =

2ℎ

𝜅𝑓𝛿

𝐴𝑐 = 𝐴𝑤 + 𝑛𝑓,𝑐𝐴𝑐,𝑓

𝑅𝑒𝑙 =
𝜌𝑢𝑙

𝜇



Heat Exchanger: Sizing Results

Cold Side Hot Side

Convective Heat Transfer 

Coefficient 
𝑊

𝑚2𝐾

548 528

Area 𝑚2 0.149 0.151

Area Effectiveness 0.99 0.97

𝑈𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 263.4
𝑊

𝑚2𝐾



Heat Exchanger: Pressure Drop

1

𝑓
= −2.0𝑙𝑜𝑔10

 𝜀 𝐷

3.7
+

2.51

𝑅𝑒𝐷 𝑓

Colebrook formula

Δ𝑃 = 𝜌𝑓
ℓ

𝐷

𝑉2

2

Frictional Losses: Wall Frictional Losses: Fins 

Δ𝑃 = 𝑛𝑓𝑖𝑛𝐶𝑓𝐴𝑒𝑥𝑝𝑜𝑠𝑒𝑑𝜌
𝑉2

2

1/7th Power Law

𝐶𝑓 = 0.0725𝑅𝑒𝐿
 1 5

Flow Pressure Drop 
from Wall [Pa]

Pressure Drop 
from Fins [Pa]

Total Pressure 
Drop [Pa]

Internal 167 63 230

External 146 110 256

Nomenclature
f= Wall friction factor
𝜀 = Wall roughness
𝐷 = Hydraulic diameter
ℓ = effective length
𝑉 = Flow velocity
𝜌 = Fluid density
𝑅𝑒𝐷 = Reynold’s number in a pipe
𝑅𝑒𝐿 = Reynold’s number on a flat surface
𝐶𝑓 = Skin friction coefficient for a flat plate

Assumptions
1. Velocity is constant 
2. Use film temperature 
3. Turbulent flow (𝑅𝑒 ≥ 10000) 



Engine Analog: Components

Project 
Description

Baseline 
Design

Feasibility 
Analysis

Project 
Summary

Portable Heater[16] Mighty Pro Blower[15] Car Exhaust

• Available from Home Depot 
($100)

• Three levels of heat

• Available from Home Depot 
($20)

• 0.0635 kg/s mass flow rate
• 51 m/s max speed

• High flow velocity and mass 
flow rate, lower 
temperature . 

• Typical temperatures: 366-
422 K

• Toyota RAV4 V6 
• 0.0245 kg/s mass flow 

rate (idle)
• 17.54 m/s speed (idle)
• 50 m/s at 2750 rpm

71



Nozzle Extension: Manufacturing Tolerance



Material Selection – Titanium Alloy 6AI-4V

• Weldability: Vital for ability to 
integrate recuperator into engine 

• Inert gas shielding techniques must be 
employed to prevent oxygen pick up 

• Plasma and spot welding have been used 
successfully 

73



Parts: Endcap
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Material: Inconel



Parts: Combustor Can Extension
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Material: Titanium



Parts: Housing

76

Material: Stainless Steel



Backup Slides: Budget
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Expanded Budget: Electronics

78

Item Unit Price Quantity Total

Printed Circuit Boards (PCB) $100/board 6 $600

PCB Parts $150/board 6 $900

Temperature Measurement
Probes

$300 3 $900

Load Cell $100 2 $200

Fuel Flow Sensor $100 + $50 (inserts) 1, 10 inserts $500

DAQ Module $1,200 1 $1,200

Batteries $100 -- $100

Transmitter $100 1 $100

Total - - $4,500



Expanded Budget: Heat Exchanger

79

Item Unit Price Quantity Total

Manufacturing/Material $2,000 1 $2,000

Engine Casing/Nozzle Replicas $300 2 $600

Interface Components $500 - $500

Prototyping Materials $300 - $300

O-ring/Sealing $300 - $300

Total - - $3,700


