

Manufacturing Status Review

<u>Rover and Air Visual Environment Navigation</u>

TEAM: ROLF ANDRADA, RYAN BLAY, BRENDAN BOYD, CODY CHARLAND, RISHAB GANGOPADHYAY, TORFINN JOHNSRUD, NATHAN LEVIGNE, IAN LOEFGREN, NIKOLAS SETIAWAN, ALEXANDER SWINDELL, RYAN WALL

CUSTOMER: NISAR AHMED

ADVISOR: TORIN CLARK

Project Overview	3 - 12	Rolf Andrada
Tracking and Determination	13 - 23	Rolf Andrada, Rishab Gangopadhyay, Ryan Blay
Communications and Watchdogs	24 – 26	Rishab Gangopadhyay
User Interface	27 – 29	Rishab Gangopadhyay
Flight Controller and Computer Interfacing	30 - 31	Ryan Blay
Schedule and Budget	32 – 39	Ryan Blay
Conclusion	40	Rolf Andrada

<u>Mission Statement:</u> RAVEN will develop a testbed that will collect image, position, and sensor data to be used by the customer for the verification of customer developed cooperative localization algorithms.

- Provide the customer with an UAV and UGV pair testbed
- ► Record image, position, and sensor data
- Deliver recorded information, including collected GPS data, and UAV/UGV pair to customer

Specific Objectives

Significant Level 3 Objectives:

Vision: A moving UAV shall track the UGV at 10-30 m and be in 90 % of frames. A stationary UGV shall track the UAV at 10-30 m and be in 90 % of frames. Acquire target in less than 3 seconds.

4

- Captured Data: Store battery life estimate, package temperature, control input data, GPS/ephemeris data, IMU data, magnetometer data, and barometer data all in ROS bags w/ 20 GB storage margin.
- Controls: UAV will have emergency land switch. Control station displays map overlay of UAV/UGV positions as well as battery status, flight timer, and storage capacity.
- Comms: Vehicles shall share GPS data, visual tracking, and state data with the control stations.
- ► Electronics/Software: Vehicles shall have 15 min tracking endurance.
- ► Management: Project cost shall remain under budget.

Currently on track to achieve Level 3 Objectives.

Concept of Operations

Functional Block Diagram

Project
OverviewTracking
and Det.Comms. &
WatchdogsUser
InterfaceC & C
InterfaceSchedule
and
BudgetConclusion

Updates Since CDR

UAV Gimbal:

- ► Problem:
 - ► **Requirement change** from customer post CDR
 - Unable to obtain true gimbal servo state

► Solution:

- New 1D gimbal using feedback servo
- ► Addition of Arduino Mini for servo control

UGV:

- Now using acrylic for gimbal base plate
- Gimbal and AR plates mounted on 8020
- Manufacturing simplicity

Communications and Watchdogs

Project
OverviewTracking
and Det.Comms. &
WatchdogsUser
InterfaceC & C
InterfaceSchedule
and
BudgetConclusion

Interfacing Between Flight Controller and Flight Computer

Project
OverviewTracking
and Det.Comms. &
WatchdogsUser
InterfaceC & C
InterfaceSchedule
and
BudgetConclusion

Tracking and Determination¹³

UAV Tracking Hardware

Overview:

- Majority of hardware purchased
- Only need to manufacture gimbal hook adapter
 - ▶ Hooks 23 mm apart
 - ▶ Vibration dampener 25 mm apart
- ▶ Priority not a concern due to ease of manufacturing

Comms. &

Watchdogs

680 mm 14

Hook Adapter (mm)

Conclusion

Tilt Gimbal

Schedule

and

Budget

C & C

Interface

Milestones:

- Order hardware
- Assemble all electronics [4/10 hrs]
- Assemble tilt gimbal [0/1 hrs]

Tracking

and Det.

- ▶ 3D print hook adapter [0/2 hrs]
 - MarkForged carbon fiber printer

Status:

User

Interface

Project Overview

UAV Build Status

Overview:

- ► Hardware received
- Major components assembled
- ▶ Flight test plan completed
- ▶ Indoor flight space secured

Milestones:

- Order hardware
- Assemble UAV frame [10/10 hrs]
- Assemble all electronics [4/10 hrs]
- Manufacture Proxy masses [8/10 hrs]
- Static Motor Test [0/5 hrs]
- ▶ First Flight [0/20 hrs]

	Projected	Updated
UAV Total Mass	2.9 [kg]	3.09 [kg]
UAV Motor Skew	0 [deg]	0.2 [deg]
UAV Endurance Estimate	23.4 [min]	21.7 [min]

Status:

Unit Testing:

- Manual Flight
- Automatic Indoor Flight
- Outdoor Flight

UGV Tracking Hardware

Overview:

- Majority of hardware purchased/provided
- Need gimbal for acquisition and AR tags for verification
- Priority not a concern due to prototype from CDR

Mounting Rails (920 x 460 mm)

Milestones:

- Order hardware
- Assemble mounting rails [2/2 hrs]
- Cut AR tag plates and gimbal base [1/2 hrs]
 - Laser cutter
- Assemble pan & tilt gimbal [0/2 hrs)
- ▶ 3D print tilt arm [0/6 hrs]
 - ► Lulzbot PLA 3D printer

16

Pan & Tilt Gimbal (150 x 50 mm base)

Tracking and Determination Software Flowchart

GPS Parser

Overview:

 Parse GPS uBlox and NMEA messages to usable data for the Pixracer and determination software

Inputs:

 UBIOX/NMEA messages from GPS receivers [1 Hz]

Outputs:

 Parsed lat/lon/alt, DOP, ephemeris, UTC time, relative NED UAV position, velocity in NED frame [1 Hz]

Unit Testing:

- Parse GPS data
- ▶ RTK accuracy analysis

Milestones:

Status:

Ephemeris

Determination Software

Acquisition Software

Overview:

- Software that commands the servos to the requested angle
- ▶ The software runs on each vehicles microcontroller
- Integrates servo feedback to confirm that requested angle has been achieved

serial write rotation angles to pwm motor No: wait for next command **Milestones:** Status: **IF** angles Control servos via PWM pins on correct serial read microcontroller [2/2 hrs] servo angles Establish serial communication between computer and microcontroller [5/5 hrs] 1 Hz Current servo angles Integrate servo feedback [5/10 hrs] Schedule User C & C Project Trackina Comms. & Conclusion and Interface Overview and Det. Watchdogs Interface Budget

20

Servo control

Camera pointing

determine servo

rotation angles /

yaw angle

1 Hz

Servo angles

1 Hz

Rel. Pos.

Camera Software Configuration

21

Overview:

- Camera must interface with ODROID/Jackal
 - ▶ RGB24 color format
 - Aravis software package and Genicam standard used
- Images must be sampled, compressed, and converted to ROS message for UI

Unit Testing:

- Camera interface is tested via PC and ODROID
- UI sampling program tested via ODROID

Milestones:

- Integrate camera with PC and Linux [15/15 hrs]
- Write image data to file [4/10 hrs]
- Integrate camera with ODROID/Jackal [0/20 hrs]

UAV Image Confirmation Software

Overview: Confirm that the UGV is in frame of the UAVs camera by using AR tag detection ROS package: AR_track_alvar

Inputs: Camera image stream [11 Hz]

Outputs: Confirmation message [11 Hz] with image number stamp, Timestamp, Pos/Neg Confirmation

Unit Testing:

- Static Test of AR Tag Detection [Complete]
- Moving Test of AR Tag Detection

Milestones:

- Create tag bundle definition files [2/2 hrs]
- Create launch file to map inputs [2/2 hrs]
- Publishing of formatted topic [1/5 hrs]

22

Status:

UGV Image Confirmation Software

Overview: Confirm that the UAV is in frame of the UGV's camera by using OpenCV blob detection

Inputs: Camera Image Stream [11 Hz]

Outputs: Confirmation Message [11 Hz] with image number stamp, Timestamp, Pos/Neg Confirmation

Unit Testing:

- Static test of blob detection
- Moving test of Blob detection

Milestones:

- Prototype Functionality in Python [2/2 hrs]
- Unit Test in Gazebo Simulation [2/2 hrs]
- Port to C++ for Speed [1/3 hrs]
- Parameter Tuning [0/5 hrs]

23

Status:

Communications and Watchdogs²⁴

Project
OverviewTracking
and Det.Comms. &
WatchdogsUser
InterfaceC & C
InterfaceSchedule
and
BudgetConclusion

Watchdogs

Overview: Routinely checking set of variables to ensure safe and effective operations

Inputs: Time of Last Command [1 Hz], CPU Temperatures [1 Hz], UAV/UGV Battery State [1 Hz]

Outputs: Emergency Stop [1 Hz]

Unit Testing:

Envelope testing

Milestones:

- Determine CPU Temperatures [1/5 hrs]
- Determine Battery State [1/5 hrs]
- Write UAV Watchdog [0/5 hrs]
- Write UGV Watchdog [0/5 hrs]

Status:

Process Integration

Overview: Integrating of software in order to share data and information between code

Solution:

- ► Integration will be handled by ROS
- ▶ ROS serves as middleware
- Off-the-shelf tools for communication of data between processes on the same network
- Allows for unit testing of code

Testing:

- Publishing input messages to environment
- View output topics using Linux Terminal
- Testing of Integration using Gazebo

Milestones:

Project

Overview

- ROS Installation on ODROID [1/1 hrs]
- ROS Setup on Jackal [1/1 hrs]

Trackina

and Det.

- Nodes Communicating Data [15/15 hrs]
- Write UAV and UGV Launch Files [0/10 hrs]

Comms. &

Watchdogs

EROS 26

Tools

Plumbing

┿

Capabilities

Ecosystem

Status:

User

Interface

C & C Interface Schedule and Budget

User Interface

Project
OverviewTracking
and Det.Comms. &
WatchdogsUser
InterfaceC & C
InterfaceSchedule
and
BudgetConclusion

User Interface Software

- Overview: Displays position, housekeeping, attitude, controls and imaging data to user
- Inputs: Preview Image [2 Hz], Vehicle Status [4 Hz], DGPS Position [1 Hz]
- Outputs: GUI, Emergency Signal, Test Initialization

Testing:

- Read in and update UI from dummy processes [Done]
- ► Test all modules [Done]
- Vehicle testing

Milestones:

Status:

- Complete display modules [80/80 hrs]
- Integrate data subscriptions [20/20 hrs]
- Vehicle integration [5/25 hrs]
- Data recording [0/10 hrs]

 $\begin{array}{c} \text{Project} \\ \text{Overview} \end{array} \xrightarrow{} \begin{array}{c} \text{Tracking} \\ \text{and Det.} \end{array}$

Comms. & Watchdogs

User Interface C & C Interface Schedule and Budget

Conclusion

UI Video

Controller and Computer Interface ³⁰

Project
OverviewTracking
and Det.Comms. &
WatchdogsUser
InterfaceC & C
InterfaceSchedule
and
BudgetConclusion

ODROID/Pixracer/GPS Integration

Overview:

- ODROID and Pixracer connected via UART to USB
- ODROID and GPS connected via USB
- GPS will send relative position, global position, and ephemeris data to the ODROID
- Global position data will be sent to the Pixracer for navigation

Comms. &

Watchdogs

Milestones:

Project

Overview

- Establish physical connections between ODROID and Pixracer [5/5 hrs]
- Send commands to the Pixracer [5/5 hrs]
- Send GPS data through ODROID to Pixracer.
 [5/10 hrs]

Tracking

and Det.

► Testing [0/20 hrs]

Budget

31

Status:

User

Interface

Interface

32

Schedule

RAVEN

Spring Semester Logistics Finance Procurement ETAR/ITAR Checks Part Ordering Shipment Monitoring **Finance Tracking** Standard Development Tracking Safety Safety Validation **Rule Development** Testing Unmounted Gimbal Tracking Detection Testing GPS Testing **UAV Manual Flight UAV Auto Flight** GCS Testing **Communications Testing** Mock Systems Test Full Systems Test Software Networking UI Safety Models Sensor Emulation **ROS Networking Gimbal Control Simulation Blob Detection Simulation** Platform Pathing Simulation Vision AR Tag Development **Blob Detection Development** Hardware Platforms **UAV** Assembly **PID Tuning** Electronics Pre-Integration Checks Uninstalled Test Assembly Platform Integration Manufacturing **UGV Mounting** Gimbals **UAV Proxy Masses** Sensors Sensor Configuration **GPS** Configuration Interference Reduction Payload UAV Subsystem Assembly UGV Subsystem Assembly **Platform Integration**

Multiple parallel

tasks

33

Critical Path follows development of vehicles and payload integration

Culminates in tests that require integration

Buffer is built into each task giving a total buffer time of 1.5 weeks

3 days behind schedule however this is within the buffer

Schedule – Logistics

	People Assigned	Oct 2017	Nov 2017	Dec 2017	Jan 2018	Feb 2018	Mar 2018	Apr 2018	May 2018
		9 16 23 3	0 6 13 20 27	4 11 18 25	8 15 22 2	9 5 12 19 20	5 5 12 19 26	•	30 7 14 21
AVEN									
 Spring Semester 									
 Logistics 									
▼ Finance							_		
 Procurement 									
ETAR/ITAR Checks	Brendan Boyd, Ryar								
Part Ordering	Brendan Boyd, Cod			1					
Shipment Monitoring	Ryan Blay								
 Finance Tracking 									
Standard Development	Ryan Blay								
Tracking	Ryan Blay								
 Safety 					_				
Safety Validation	Alexander Swindell,								
Rule Development	Alexander Swindell								
 Testing 									
Unmounted Gimbal Tracking	lan Loefgren, Natha								
Detection Testing	lan Loefgren, Rishak								
GPS Testing	Cody Charland, Rya								
UAV Manual Flight	Cody Charland, Niko								
UAV Auto Flight	Alexander Swindell,								
GCS Testing	Alexander Swindell,								
Communications Testing	Alexander Swindell,								
Mock Systems Test	Alexander Swindell,								
Full Systems Test	Alexander Swindell,								

Schedule - Hardware

	People Assigned	Oct 2017	Nov 2017	Dec 2017	Jan 2018	Feb 2018	Mar 2018
 Hardware 		9 16 23 3	0 6 13 20 27	4 11 18 25 1	8 15 22 29	9 5 12 19 26	5 12 19 2
 Platforms 							
UAV Assembly	Brendan Boyd, Cod						
PID Tuning	Brendan Boyd, Rolf						
 Electronics 							
Pre-Integration Checks	Nikolas Setiawan, R						
Uninstalled Test Assembly	Nikolas Setiawan, R						
Platform Integration	Brendan Boyd, Cod						
 Manufacturing 							
UGV Mounting	Rolf Andrada, Torfin						
Gimbals	Nathan Levigne, Rol						
UAV Proxy Masses	Cody Charland, Rolf						
 Sensors 							
Sensor Configuration	Nathan Levigne, Rya						
GPS Configuration	Nathan Levigne, Rya						
Interference Reduction	Ryan Blay						
 Payload 							
UAV Subsystem Assembly	Alexander Swindell,						
UGV Subsystem Assembly	Alexander Swindell,						
Platform Integration	Alexander Swindell,						

Schedule - Software

	People Assigned	Oct 2017	Nov 2017	Dec 2017	Jan 2018	Feb 2018	Mar 2018
 Software 		9 16 23 3	80 6 13 20 27	4 11 18 25 1	8 15 22 29	9 5 12 19 26	5 12 19 26
 Networking 							
UI	Alexander Swindell						
Safety	Alexander Swindell						
 Models 							
Sensor Emulation	Rishab Gangopadhy						
ROS Networking	Alexander Swindell,						
Gimbal Control Simulation	lan Loefgren, Natha						
Blob Detection Simulation	lan Loefgren, Rishat						
Platform Pathing Simulation	Rishab Gangopadhy						
 Vision 							
AR Tag Development	lan Loefgren, Torfinı						
Blob Detection Development	lan Loefgren, Torfinı						

Budget

Procurement Update

Subsystem	Received	Purchased but not Received
Vision HW	Cameras, Lenses	
UAV HW	Frame, Motors, ESCs, Propellers, Batteries	
Sensor HW	GPS Receivers, GPS Antennas	Barometer
CPU HW	ODROID (CPU, eMMCs, Power), Flight Controller, PWM Board, Voltage Regulators	
Gimbal HW	Gimbal, Feedback Servos, Mounting HW	Servo Brackets, Bracket Bearing
Comms HW	Router, UAV Controller, micro SD cards, Telemetry Radios, Transceivers, Ethernet Cables	
UGV HW	3030 Steel, Acrylic AR Mounts, Mounting HW	
Misc HW	Wires, Nuts, Bolts, Velcro, Cable Ties, Connectors, Mounting Tape	

Yet to be Purchased: VICON Markers, Vinyl AR Tags, Misc. HW, Power Monitors, Administrative costs (Printing etc.)

Project Overview Tracking Comms. & User C & C and Det. Watchdogs Interface Interface Budget Conclusion

Cost Plan

Subsystem	Cost	
Vision HW	\$ 1,994.00	
UAV HW	\$ 1,303.55	
Sensor HW	\$ 612.05	
CPU HW	\$ 496.21	
Gimbal HW	\$ 443.34	
Comms HW	\$ 330.16	
UGV HW	\$ 302.93	
Misc HW	\$ 74.61	
Admin	\$ 200.00	
Money Spent	\$ 5,756.85	
Remaining Funds	\$ 1, 243 .15	
Total	\$ 7,000.00	

RAVEN Cost Plan

Uncertainties: Minor miscellaneous UAV/UGV Hardware. Risks: UAV Crash, need money to replace.

Project
OverviewTracking
and Det.Comms. &
WatchdogsUser
InterfaceC & C
InterfaceSchedule
and
BudgetConclusion

Conclusion

Project Area	Hours Done/Total Hours		
Tracking & Determination	97/218		
Comms. & Watchdogs	19/47		
User Interface	105/135		
C & C Interfacing	15/40		
Total	236/440 (~50%)		

Currently 3 days behind schedule, but within our buffer of 1.5 weeks.
 Currently under budget with 17.8 % left.

Project
OverviewTracking
and Det.Comms. &
WatchdogsUser
InterfaceC & C
InterfaceSchedule
and
BudgetConclusion

42

Back up Slides

Specific Objectives (All Level 3) 43

- Vision: A moving UAV shall track the UGV at 10-30 m and be in 90 % of frames. A stationary UGV shall track the UAV at 10-30 m and be in 90 % of frames. Acquire target in less than 3 seconds. Image resolution must be less than or equal to 3 in/pixel at 30 m.
- Structure: UAV < 50 lbs. UGV payload < 44 lbs. UAV and UGV are unterthered. Batteries are field-accessible. Vision system shall be swappable and communicate over USB 3.0.</p>
- Captured Data: Have at least 128 GB removable storage. Store battery life estimate, package temperature, control input data, GPS/ephemeris data, IMU data, magnetometer data, and barometer data all in ROS bags w/ 20 GB storage margin. Use lossless compression.
- Controls: UAV will have emergency land switch. Autonomous UAV tracking orbit with piloted takeoff and landing. UGV remotely piloted up to 0.5 m/s. Controls algorithms compatible with ROS. Control station displays map overlay of UAV/UGV positions as well as battery status, flight timer, and storage capacity.
- Comms: Vehicles shall communicate over ISM RF link. Vehicles shall share GPS data, visual tracking, and state data with the control stations.
- Electronics/Software: Vehicles shall have 15 min tracking endurance. GPS, IMU, Vision, magnetometer, and barometer shall be integrated. Shall be OpenCl 1.1 capable and have hardware floating point acceleration. Will be able to run cooperative localization algorithms on each vehicle with 50 % CPU overhead margin.
- Management: Adhere to UCB UAS FOM. Keep best safety practices. No DJI or prohibited components. Project cost shall remain under budget.

Communications Layout

44

UAV Gimbal Problem & Solution

45

- **Problem:** No way to tell where UAV gimbal was pointing.
- Solution: New 1D gimbal using feedback servo.

Old Gimbal	New Gimbal	
167g	~75g	
3-axis	1-axis	
No feedback	Analog feedback	

Proxy masses are needed for testing safety.

Part	Mass	Dimensions	
Camera & Lens	116g	74 x 29 x 29mm	
Gimbal	75g	45 x 39 x 32mm	
ODroid XU4	65g	83 x 58 x 20mm	
PixRacer	11g	36 x 36 x 20mm	
GPS	35g	75 x 55 x 10mm	
GPS Antenna	100g	30 x 30 x 100mm	
Wiring	~150g		
Wireless Comms	~10g x3	10 x 10 x 10mm x3	
Additional testing masses	10g x20	10 x 10 x 10mm x20	

UAV Build Status

Milestone	Status	
Receive Components	Done	
Assemble Frame	Done	
Assemble Motors	Done	
Final Assembly	In Progress	
ESC Programming	In Progress	
First Flight	E.C.D. 2/9/18	
Automatic Flight	E.C.D. 2/20/18	

Net Rotational Skew: 0.2° Net thrust change: 0.04kg Net loss in Endurance: ~3sec

UAV Component Masses

Component	Measured Mass	Qty	Total
Frame	632g	1	632g
Propeller	24.5g	6	147g
Motor	88.2g	6	529.2g
Batt	954.5g	1	954.5g
Camera+lens	111g	1	111g
Telemetry Radio	16g	1	16g
Gimbal	76g	1	76g
Vibration Isolator	20g	1	20g
GPS System	123g	1	123g
Wifi Receiver	31g	1	31g
RC Receiver	15g	1	15g
ESC	31g	6	186g
Odroid + Arduino	120 g	1	120g
Wiring [estimate]	130g	1	130g
Total			3090g

48

Expected Mass: 2.9 kg

VICON motion capture

Overview: Motion capture system in RECUV indoor flight space. Allows for indoor vehicle flight tests. OTS ROS package solution: vrpn_client_ros (virtual reality peripheral network)

- ► VRPN:
 - Inputs: Data stream from VICON Tracker software [100Hz]
 - Outputs: Pose, linear and angular velocity, linear and angular acceleration of both vehicles [100Hz]
 - ► Milestones:
 - Attach motion capture markers and create VICON object for UAV and UGV [0/1]
 - Create launch file for vrpn_client_ros [0/1]
 - Integrate with UAV GPS collection process [0/5]

- ► "GPS" Handler
 - Inputs: Pose, linear and angular velocity, linear and angular acceleration of both vehicles
 - Outputs: Relative position and heading [1Hz]
 - ► Milestones:
 - ► Create handler [0/2]
 - ▶ Unit testing for integration [0/5]
 - Add noise to simulate sensor error [0/5]

Housekeeping Data

► UAV:

- Pixracer outputs telemetry data when requested via mavROS message [50 Hz max]
- ► Housekeeping process:
 - Create and send mavROS messages
 - Send data to SD storage and and package and send to GCS

- ► UGV:
 - Jackal software makes temperature, battery information, command, and IMU data available out of the box [50 Hz]
 - ► Housekeeping process:
 - Grab data and send to SD storage and package and send to GCS

- ► Milestones:
 - Create and send mavROS messages [0/5]
 - Package data and send to GCS [0/2]
 - ▶ Send data to SD storage [0/2]

- Milestones:
 - Find all ROS topics with pertinent data [0/2]
 - Package data and send to GCS [0/2]
 - ► Send data to SD storage [0/2]

Latency Model

- Calculated Latency is time between pointing states
- Includes position transmission, processing, pointing commanding, and actuation

Latency Model

Mounting Rail

- Used to mount AR tag plates and gimbal
- ▶ 8020 3030
- M5 bolts for mounting onto UGV
- ► Weight not a concern

UGB Gimbal

- Prototyped from CDR
- ▶ 3D printed PLA
- Tolerances sufficient (no necessity for accuracy)
- ► M5 bolts
- ► 2 x analog feedback servos
- Servo bearing on other side of tilt arm for smooth movement

GPS Configuration

RTK Moving Baseline Mode (MB)

- ► Requires RTCM Messages:
 - 1077 (GPS Observations), 1087 (GLONASS Observations), 1230 (GLONASS Code-phase Biases), 4072 (uBlox Proprietary MB Message).
- Base will send RTCM messages at 19200 Baud, and Rover will receive RTCM messages at 19200 Baud.
- Both the Base and the Rover will be configured with 1 Hz navigation rate.
- ► Users will receive:
 - NAV-DOP, NAV-HPPOSECEF, NAV-TIMEUTC, NAV-VELNED, NAV-RELPOSNED, RXM-RAWX (Observations), RXM-SFRBX (Navigation Subframe)
 - NMEA-RMC (Recommended minimum NMEA message)

Updated Electronics Connection 56 Diagram

Electronics Integration Status

Tested Working Connection:

- Pixracer Odroid Connection
- Pixracer RC Controller
- Pixracer Telemetry Radio
- UGV Bluetooth
- Wifi router setup
- ODROID Arduino Servo

Untested Connection:

- Pixracer-ESC
- ODROID-Wifi
- ODROID-GPS
- ODROID-Camera
- UAV Power Distribution
- UGV Extra Sensors

Gazebo Overview

- ROS Simulation Tool
- Provides 3D visualization of systems
- Allows sensor emulation
- Simulates reasonable approximations of dynamics
- Allows prototyping of RAVEN network

Gazebo Assumptions

Sensors are emulated

- Sensor traits are not yet configured
- ► Sensor data source will change
- Physical characteristics

Design

Solution

► Magnitude of losses are unknown

CPEs

► Can change with environment

Validation

Project

Risks

Design

Reqs.

Project

Planning

Simulated Camera and Mount

► Gazebo plugin for camera

- ► Parameters
 - ► View distance
 - ▶ Resolution
 - ▶ Field of view
- Gazebo plugin for mount control
 - Modeled by two intersecting cylinders
 - Manually command pan and tilt joints to angles
 - Still to implement: mount tracks UAV by sharing GPS, more realistic model for camera and mount

60

Gazebo Playback

- A ROS Bag records ROS messages for topics that the bag is subscribed to, as well as a time record of the message.
- Using ROS playback, tools these messages can be played back in real time.
- Utilizing the Gazebo model, and replaying all ROS messages, the test conditions and results can be played back.
 - There are some limitations, based on the time difference between when a topic was published to, and when the value was processed.

UGV Gimbal Demonstration

62