<u>REMOTE AUTONOMOUS MAPPING OF RADIO FREQUENCY</u> <u>OBSTRUCTION DEVICES</u>

<u>Team</u>: Jorgen Baertsch, Ian Cooke, Kennedy Harrmann, Mary Landis, Sarah Larson, Harrison Mast, Ethan Morgan, Selby Stout, Jake Ursetta, Justin Williams, Samantha Williams <u>Sponsor</u>: Dennis Akos <u>Advisor</u>: Jade Morton

INTEGRATIVE TESTING PROBLEMS

Problem	The use of GPS jammers is illegal	The Talon will not mesaure frequencies outside of the GPS band
Solution	Use a WiFi signal to simulate GPS jammer	The "Disco" UAS will be used to sample WiFi power over the GPS denied area

PARROT DISCO UAS

Given to team RAMROD by customer

- Already proven capable of sampling WiFi power
- Will be used to create contour plot of signal power

•

Step 2: Start autonomous flight on preplanned path

Step 4: Collect data for actual and estimated location with Talon Step 6: Land UAS and post process position/wifi signal at ground station

> ((•)) Å

GPS Denied Area

Signal Source

FUNCTIONAL BLOCK DIAGRAM

9

CRITICAL PROJECT ELEMENTS

CPE	Description	Reason
GPS Denied Flight Software	Maintain autonomous flight while in a simulated GPS denied environment for up to 200 seconds at a time	A PPD or ET will cause GPS data to be inaccurate.
UAS	Use the Talon to fly in a simulated GPS denied environment while housing the operational payload made by team RAMROD	A UAS capable of supporting the necessary sensors would be the best means of covering the required area.
Payload	Self-powered sensor payload that can monitor, store and transmit RFI signal data while interfaced with the UAS platform	To measure the RF source all necessary sensors must be integrated together. By customer request the payload must be capable of taking RF measurements without UAS integration
Overv	view Schedule Tes	sting Budget

LEVELS OF SUCCESS

	Operational Payload	UAS Platform	GPS Denied Flight Software	RF Localization
Level 1	-Collect and store power measurements for a full 60 minutes	-Shall use manual flight to achieve a minimum total flight time of 60 minutes while containing the full payload	-Autopilot switches seamlessly to GPS denied flight	-Shall be able to establish an RFI power profile

On Track for Level 3 Success

	Overview	fly autonomously for 1 minutes with GPS deni Schedule	0 manuevers in GPS ed denied conditions -Shall keep positional error less than 30m after 2km of GPS denied fligh Testing	within 40 m t Budaet
Level 3	power data with PixHawk	-Shall have the ability	to -Shall allow for turning	-Localize RFI source

BASELINE DESIGN

Basic Components of Importance:

Flight Controller (PixHawk)

Microprocessor (MicroZed)

Inertial Measurement Unit (DMU11)

Signal Filter (NT1065)

Overview

Schedule

TALON BASELINE DESIGN

13

PAYLOAD BASELINE DESIGN

TESTING COLOR SCHEME

SPRING SCHEDULE

TESTING SCHEDULE

TEST PLAN

Level 1		Level 2		Mission Level	
Test	Date (2018)	Test	Date (2018)	Test	Date (2018)
Talon Hardware Calibration	March 6	Talon EKF Calibration	March 6-15	Autonomous Flight GPS Denied	March 15-31
Payload Functional Ground and Downlink Teating	February 17-24	GPS Guided Autonomous Flight Test	March 6-15	Mission Level Flight Test and Localization	March 19-30
 Autopilot Software Modification 	February 20-28	GPS Denied Flight (Straight and Level)	March 15-24	Redundant Tests	April 1-14
Overvie	ew	Schedule	Testing	Budget	

LEVEL 1 TESTING

Talon Calibration Payload Functional Autopilot Software Ground & Downlink **Modifications** Ensure payload Verify Talon UAV basic flight Verify modifications to ٠ components are capabilities Autopilot software function in functional simulation Verify unmodified Autopilot ٠ Verify structural software requirements Verify Autopilot software integrates with hardware Verify CG placement ٠ Verify data acquisition on Verify FR 1, 2, 4, 5,6 ٠ ground Verify FR 8 Verify LTE Downlink capabilities Verify FR 9 & 11 Test Plan Results Test Test Created Scheduled Conducted Analyzed Testing Budget Overview Schedule

MANUAL FLIGHT TEST RESULTS

- Initial calibration attempted on March 2
- Manual flight ended with tree impact due to pilot error
- Talon airframe critically damaged
- Replacement airframe
 assembled and tested

Takeaways:

- 1. Move to a more open testing location at CUSB
- 2. Talon was tail-heavy due to CG shift at launch
- 3. Talon flight hardware is functional

Schedule

PAYLOAD TESTING

Data Collection & Storage

- Objective: Verify the payload receives data from the signal filter and stores data to USB
- Status: Completed

Cellular Data Test

- Objective: Verify the payload downlinks data via cellular connection
- Status: Completed

Flight Controller Interface

- Objective: Verify the payload sends data to the flight controller and the data is received correctly
- Status: In Progress

Battery Power Test	Payload Fit Check	Full Payload Integration
Objective: Verify the battery can power the system for 60 minutes	Objective: Verify the payload box and electronic components interface correctly	Objective: Verify the payload integrates with flight system and functions correctly
Status: Completed	Status: Completed	Status: Not Started
Overview	Schedule Testing	Budget

AUTOPILOT MODIFICATION MODEL AND VERIFICATION

- Use SITL simulation to verify software functions with RAMROD modifications
- 2. Use HIL simulation to ensure software integrates & functions with PixHawk hardware
- ✓ 3. Ensure RAMROD autopilot software is ready for GPS denied flight
- Verification: Run build through Autotest framework used to verify stable ArduPilot builds

AutoTest Simulation

Legend 1 – Testing flight modes 2 – Testing telemetry loss 3 – Failsafe testing

Build passed

Overview

Schedule

LEVEL 2 TESTING

Autonomous Flight

- Verify Autopilot software
 functions in GPS Enabled state
- Gather IMU data during GPS
 guided flight
- Ensure successful flight plan
- Verify FR 7

Talon EKF Calibration

- Tune EKF based on flight
 performance
- Verify modified autopilot functionality
- Collect raw IMU and position data
- Verify DR 3.2, DR 3.3

GPS Denied Flight

- Verify modifications to Autopilot software function in simulation in GPS Denied state
- Verify INS drift is within localization threshold
- Verify FR 8

INITIAL GPS DENIED FLIGHT

MISSION LEVEL TESTING

Autonomous Flight GPS Denied

- Verify navigation and maneuvering in GPS denied state
- Ensure successful flight plan in GPS denied state
- Verify inertial drift is within threshold value
- Verify FR 7,8

Localization & Power Profile

- Utilize Disco to gain AGC data on WiFi band
- Verify PDOA algorithm can localize with WiFi data within 40m
- Generate power profile
- Verify FR 10, 12

Redundant Tests

- Ensure quality and consistent success of full system functionality
- Conduct at least 5 mission level flights and analyze results

AUTONOMOUS MANEUVERS IN GPS DENIED

- Problem: Can RAMROD Talon execute banked turns and navigate around waypoints in GPS denied state?
- Verification: Fly autonomous flight plan and deny GPS in 500 meter sphere in multiple locations on grid. Ensure inertial drift is within 40m threshold during maneuvers.

Overview

LOCALIZATION FLIGHT: DISCO

- Problem: RAMROD requires power data and GPS position data to switch from GPS to inertial guided flight
- Solution: Use disco UAS to • create a contour map of sphere of influence by:
 - Sample power on 2.4 GHz band 1. over 500km square area and sample at rate 1 Hz
 - 2. Collect GPS position data

Overview

Use minimum 300 samples over 3 3 separate flights to create contour power profile

LOCALIZATION FLIGHT: TALON

- Problem: RAMROD Talon requires ${\color{black}\bullet}$ power data to switch flight modes but cannot detect the 2.4GHz band
- Verification: Use power contour lacksquaremap to create geographic triggers for RAMROD flight mode switch by:
 - Fly RAMROD Talon over 3km square area 1.
 - Sample GPS position for entire flight at 1Hz 2.

Schedule

- Measure estimated position in GPS denied state 3.
- Perform 3 redundant flights 4.

Overview

Localization Accuracy Analysis

RADIROD

CURRENT EXPENSES AND PROCURMENT OVERVIEW

QUESTIONS?

Talon launch Method

Bungee Launch

Force Gauge & Quick Release

- Accurate Bungee Force
- Operate From Safe Distance
- Tensioned to ~5x aircraft weight (~35 lbs)

- Static Cord Junction allows no tension on aircraft until release
- 12 deg launch angle

Status: In Progress, completed with trainer aircraft, awaiting flight test with Talon

Motor burst test

- Verifies that motor can provide at least 671 W at takeoff $PR_{TO,max} = PR_{D,max} + PR_{L,max} + PR_{climb}$
- Provides battery discharge info, validates flight model and Requirement 1

Status: Completed, but must retest because batteries were not charged resulting in much lower power than expected

STATIC IMU TESTING

- Static testing shows error in position well below 40 m requirement.
- Performs better than
 previously modeled.

Overview

• Will improve with filtering and full sensor integration.

Schedule

Flight Model Validation

Validates that aircraft can stay in the air for 60 minutes

- Will use battery info from Flight Controller to validate Flight Model
- Expecting 8100/14000 mAh discharge
- Will Compare:
 - Power Required @ Takeoff
 - Power Required during Flight
 - Total Flight Time
 - Battery Discharge
 - Flight Weight

To validate flight model

Status: Incomplete, awaiting full flight test for data

Talon hardware verification

Component	Fly-Ready?	Required for Flight-Readiness	Test
Motor	Y		Burst Test, Full Flight
Batteries	Y		Charge Cycle, Full Flight
Receiver/Servos	Y		Deflection by Inspection
Speed Controller	Y		
LiDAR Rangefinder	Ν	Calibration, Installation	Range Test, Full Flight
Optical Flow Sensor	Ν	Calibration, installation	Ground Test, Full Flight
Airspeed Sensor	Y		
GPS Module	Y		
Inertial Sensor	Ν	Calibration, Drivers, Installation	Ground Test, Flight Test
MicroZed	Ν	Calibration, Drivers, Installation	Ground Test, Flight Test
Telemetry Antenna	Y		
PixHawk Flight Controller	Y		

Talon Launch Method

Bungee Launcher Elastic cord used to launch aircraft

cord junction

- – launch frame
- elastic cord
- inelastic para-cord
- ground
 - ground stakes

force gauge

CG Verification

- Will use CG stand on wing spar to test CG
- All components will be ensured secure before flight
- Susceptible to tailheaviness

EKF2 Tuning

- Pitot Tube
 - EK2_EAS_NOISE
 - EK2_EAS_GATE
- Optical Flow
 - EK2_MAX_FLOW
 - EK2_FLOW_NOISE
 - EK2_FLOW_GATE
 - EK2_FLOW_DELAY

- IMU
 - EK2_GYRO_PNOISE
 - EK2_ACC_PNOISE
 - EK2_GBIAS_PNOISE
 - EKF2_GSCL_PNOISE
 - EK2_ABIAS_PNOISE

EKF2 States

- Attitude (Quaternions)
- Velocity (North, East, Down)
- Position (North, East, Down)
- Gyro bias offsets (X,Y,Z)
- Gyro bias factors (X,Y,Z)
- Z acceleration bias
- Earth magnetic field (X,Y,Z)
- Body magnetic field (X,Y,Z)

Wind velocity (North, East)

IMU Hardware

DMU11 From Silicon Sensing

- Gyro bias = +/- 0.25 deg/s
- Gyro bias drift = +/- 0.025 deg/s
- Gyro bias instability < 10 deg/hr
- ARW < 0.4 deg/sqrt(hr)
- Acc. bias = +/- 3.0 mg
- Acc. bias drift = +/- 1.0 mg
- Acc. bias instability < 0.05 mg
- VRW < 0.05 m/s/sqrt(hr)
- Size: 22 x 22 x 10.6 mm
- Mass: 24 g
- Cost: \$359.00 (including evaluation kit)

- Airspeed Sensor crucial for all future autonomous flights and tuning
 - Automatic tuning mode, 5 minute loiter flight is all that is needed
- Ardupilot AUTOTUNE allows the flight software to learn key values for pitch and roll tuning and control surface outputs.
 - 20 minute manual flight with many sharp attitude changes
- NAVL1_PERIOD Sets the sharpness of aircraft turns, manually set
- PITCH2SRV_RLL how much elevator is used in turns to hold altitude

IMU Performance

- Default tune built around stock PixHawk sensors. A higher quality IMU, as well as a pitot tube, and optical flow sensor are to be added.
- Tuning for new IMU
 - Static baseline test
 - Utilize Mission Planner to analyze telemetry logs, view filter innovations
 - Update Parameters
 - Repeat
- Flight testing to follow static ground tests
 - Allow for pitot tube and optical flow tuning

Kalman Filter Tuning

BACKUP – Ardupilot autotest

Telemetry
😣 🗇 🗊 ethan@ethan-HP-ENVY-x360-m6-Convertible: ~/Documents/ardupilot-1
Hit ground at 0.065347 m/s Hit ground at 0.065347 m/s APM: Throttle disarmed APM: Auto disarmed AUTOTEST: Mission OK log list
AUTO> APM: Distance from LAND point=165.63m
Requesting log list Log 1 numLogs 1 lastLog 1 size 21626880 Thu Mar 1 18:46:14 2018 DISARMED
set shownoise 0 log download latest /home/ethan/Documents/buildlogs/ArduPlane-log.bin set shownoise 0
AUTO> log download latest /home/ethan/Documents/buildlogs/ArduPlane-log.bin AUTO> Downloading log 1 as /home/ethan/Documents/buildlogs/ArduPlane-log.bin Flight battery warning
Finished downloading /home/ethan/Documents/buildlogs/ArduPlane-log.bin (21626880 bytes 45 seconds, 472.0 kbyte/sec 0 retries)
>>>> PASSED STEP: fly.ArduPlane at Thu Mar 1 18:47:00 2018
Renaming logs/00000001.BIN to /home/ethan/Documents/buildlogs/ArduPlane-00000001 .BIN
ethan@ethan-HP-ENVY-x360-m6-Convertible:~/Documents/ardupilot-1\$

Talon manual flight video

Bungee Launcher vs hand launch

RAMROD will utilize an autonomous UAS and selfcontained sensor payload to localize Radio Frequency Interference and Emerging Threat sources in a GPS-denied environment to allow civilian and military GNSS endeavors to continue without disruption.

 GPS Jammer
 GPS Spoofer
 • Flying Condition of Con

- Personal Privacy Devices and Emerging Threats (spoofers) are interrupting civilian and military GNSS endeavors
- Utilizing a UAS is the most efficient method for rapidly localizing these RFI sources
- Flying a UAS in GPS-denied conditions is problematic due to most autopilots reliance on GNSS

Budget

DMU Static Attitude (Backup)

DMU Static Position

