<u>REMOTE AUTONOMOUS MAPPING OF RADIO FREQUENCY</u> <u>OBSTRUCTION DEVICES</u>

Team: Jorgen Baertsch, Ian Cooke, Kennedy Harrmann, Mary Landis, Sarah Larson, Harrision Mast, Ethan Morgan, Selby Stout, Jake Ursetta, Justin Williams, Samantha Williams <u>Sponsor</u>: Dennis Akos <u>Advisor</u>: Jade Morton

CONOPS

<u>Step 1:</u> Launch UAS with payload <u>Step 3:</u> Simulate GPS denied environment over designated area

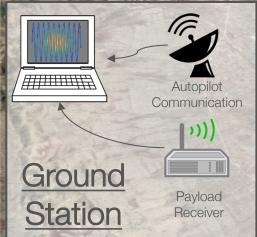
3 km

3

500

Step 5: Transmit signal strength and positioning measurements to ground

5


Operational

Payload

2

Autopilot

Communication

<u>Step 2:</u> Start autonomous flight on preplanned path

2

<u>Step 4:</u> Collect data on signal strength Step 6: Land UAS and localize signal source at ground station

((•))

GPS Denied Area

Signal Source

ω

A

6

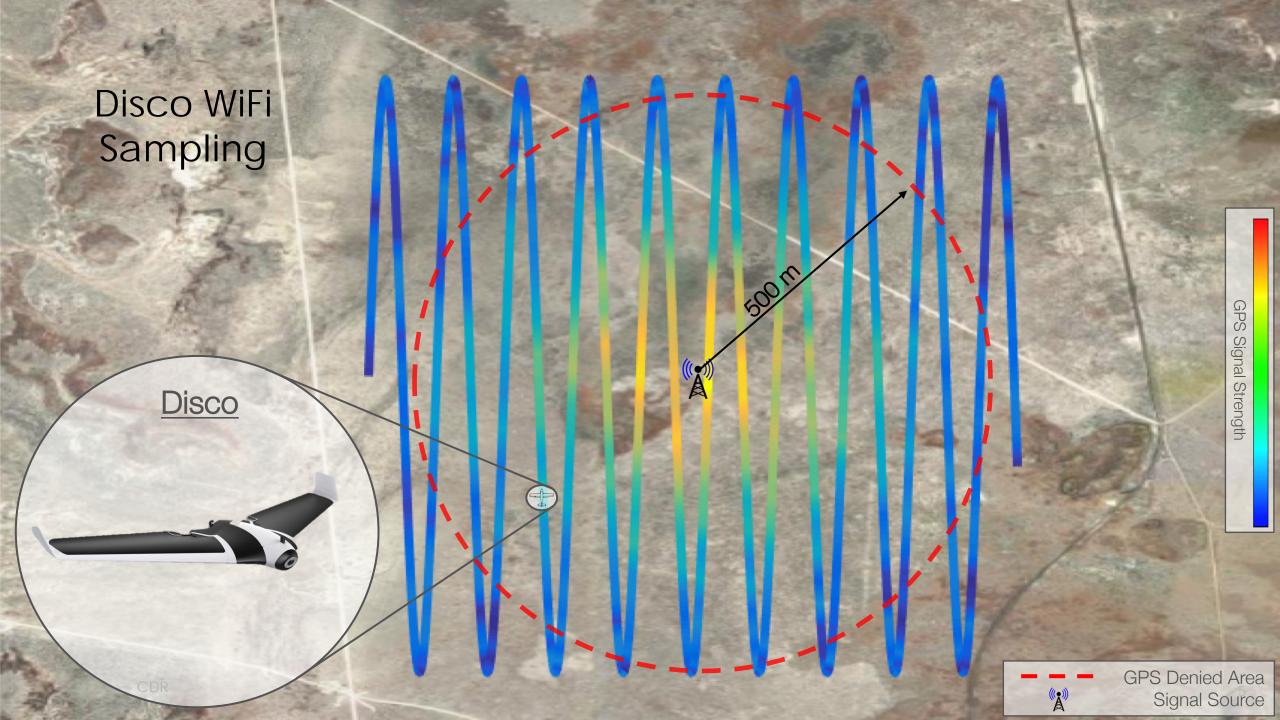
INTEGRATIVE TESTING PROBLEMS

Problem	The use of GPS jammers is illegal	The Talon will not mesaure frequencies outside of the GPS band
Solution	Use a WiFi signal to simulate GPS jammer	The "Disco" UAS will be used to sample WiFi power over the GPS denied area

	Overview Design Test Overview Test Results Systems Management
--	---

PARROT DISCO UAS

Given to team RAMROD
 by customer



- Already proven capable of sampling WiFi power
- Will be used to create contour plot of signal power

Systems

Engineering

Overview

Disco WiFi Contour Map

500 m

CONOPS

Step 1: Launch UAS with payload Simulate GPS denied environment over designated area

3 km

Step 5: Transmit signal strength and positioning measurements to ground

J.


Autopilot

Communication

)))

Operational

Payload

<u>Step 2:</u> Start autonomous flight on preplanned path

Step 4: Collect data for actual and estimated location with Talon <u>Step 6:</u> Land UAS and post process position/wifi signal at ground station

GPS Denied Area

Signal Source

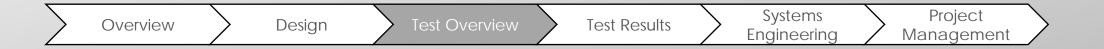
ω

KAY

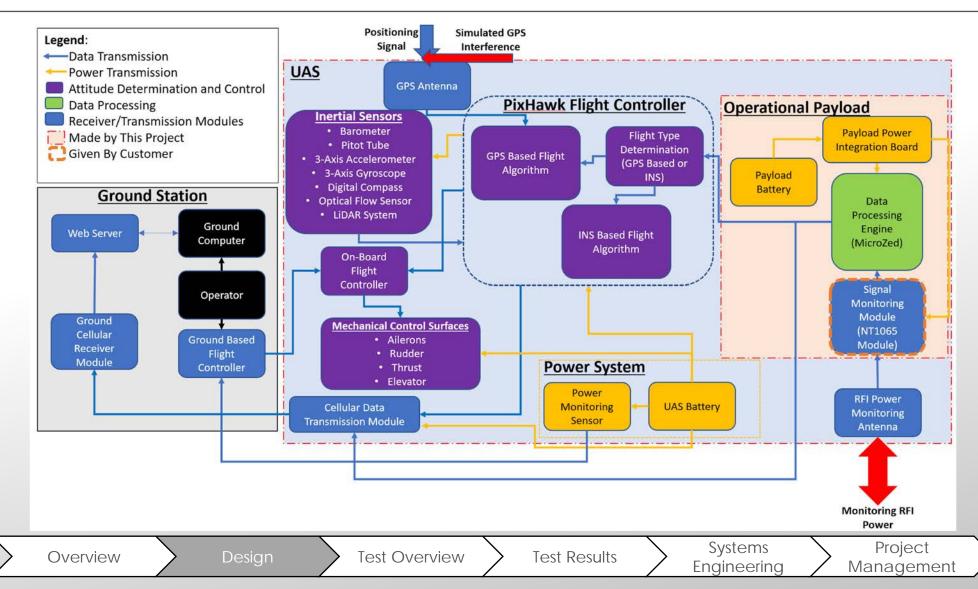
CRITICAL PROJECT ELEMENTS

CPE		Description	Reason
GPS De Flight S	enied Software	Maintain autonomous flight while in a simulated GPS denied environment for up to 200 seconds at a time	A PPD or ET will cause GPS data to be inaccurate.
UAS		Use the Talon to fly in a simulated GPS denied environment while housing the operational payload made by team RAMROD	A UAS capable of supporting the necessary sensors would be the best means of covering the required area.
Payloa	ad	Self-powered sensor payload that can monitor, store and transmit RFI signal data while interfaced with the UAS platform	To measure the RF source all necessary sensors must be integrated together. By customer request the payload must be capable of taking RF measurements without UAS integration
\geq	Overview	Design > Test Overview > Test Result	ts Systems Project Engineering Management

LEVELS OF SUCCESS

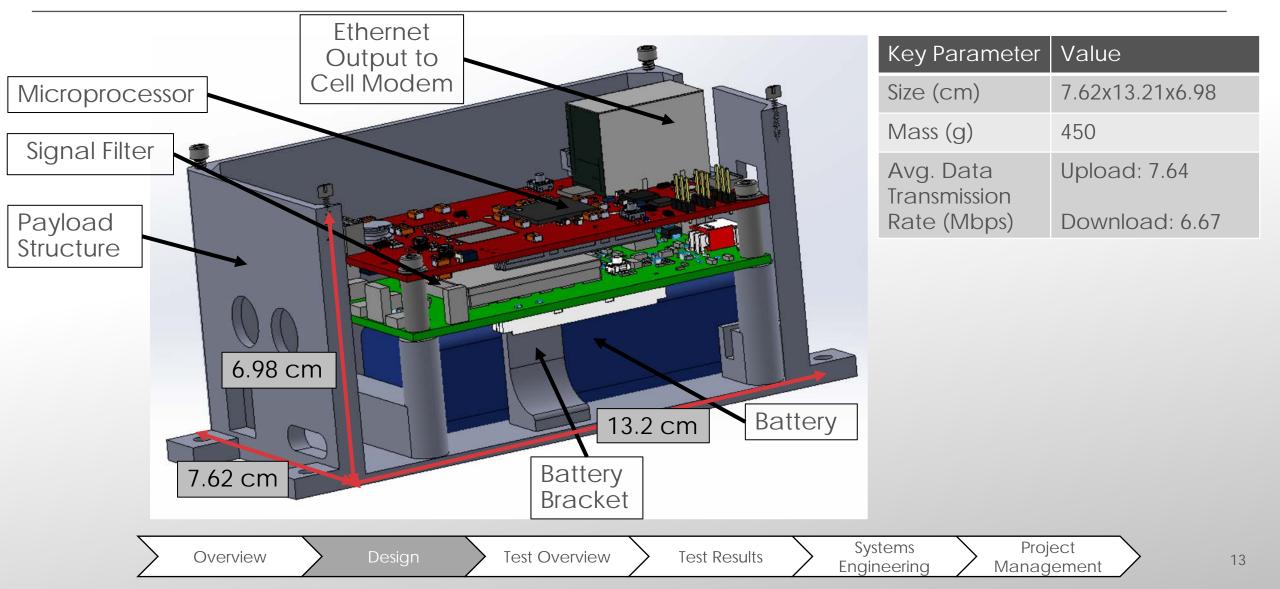

	Operational Payload	UAS Platform	GPS Denied Flight Software	RF Localization
Level 1	-Collect and store power measurements for a full 60 minutes	-Shall use manual flight to achieve a minimum total flight time of 60 minutes while containing the full payload	-Autopilot switches seamlessly to GPS denied flight	-Shall be able to establish an RFI power profile
Level 2	-Transmit data up to 4.25 km using LTE connection. -Communicate power data with PixHawk	-Shall have the ability to fly autonomously for 60 minutes with GPS active	-Shall allow for maintained straight and level GPS denied flight for 1 km	-Localize RFI source within 100 m
Level 3		-Shall have the ability to fly autonomously for 10 minutes with GPS denied	-Shall allow for turning manuevers in GPS denied conditions -Shall keep positional error less than 30m after 2km of GPS denied flight	-Localize RFI source within 40 m

9

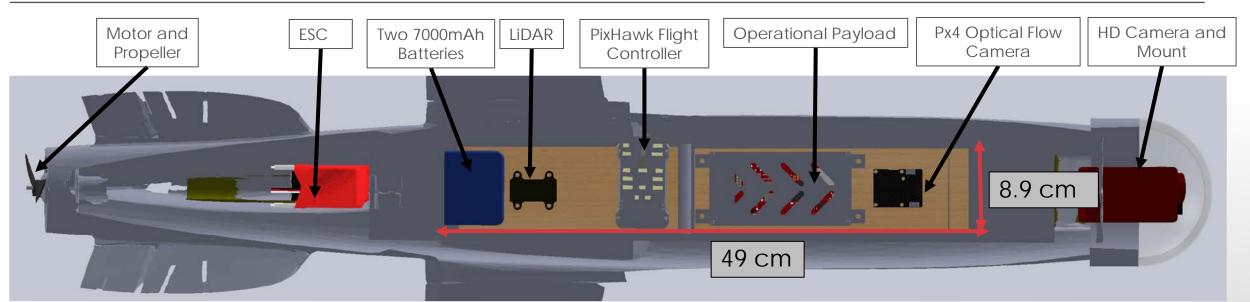


DESIGN

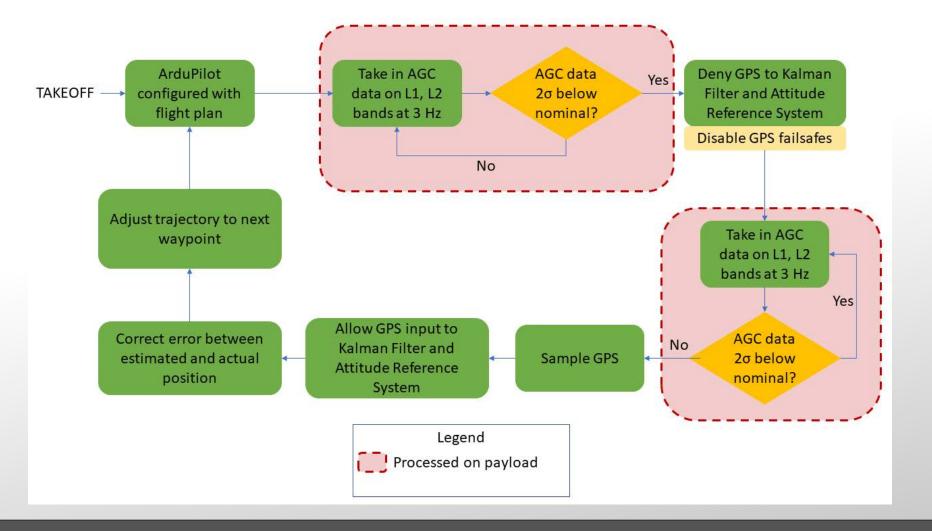
FUNCTIONAL BLOCK DIAGRAM


CRITICAL FOR MISSION SUCCESS

Critical Component	Components Chosen	Reason Component is Mission Critical Flight Controller (PixHawk)
Flight Controller	PixHawk 2.1	 Controls all flight characteristics and manages autonomous flight Contains modified GPS-Denied Flight Mode
Inertial Measurement Unit	DMU11	 Main component for minimizing positional error in GPS-Denied Flight Mode Inertial Measurement Unit (DMU11)
Signal Filter	NT1065	 Collects raw power data on L1 and L2 bands and filters it into usable data for microprocessor Signal Filter (NT1065)
Microprocessor	MicroZed	 Sends all power and position data to the ground Stores all power data Indicates flight mode switch
	Overview Desig	n Test Overview Test Results Systems Project Management 12


PAYLOAD BASELINE DESIGN

UAS BASELINE DESIGN



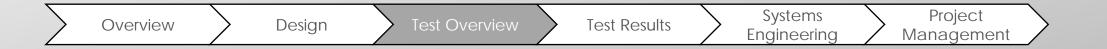
Key Parameter	Value	Key Parameter	Value
Wingspan (m)	1.7	Final CG	55 mm aft of leading
Body Length (m)	1.1	Location	edge
Payload Bay	49x8.9x10	Final Mass (kg)	3.2
Dimensions (cm)		Maximum Flight Time (min)	67

Overview Design	Test Overview	Test Results	Systems Engineering	Project Management
-----------------	---------------	--------------	------------------------	-----------------------

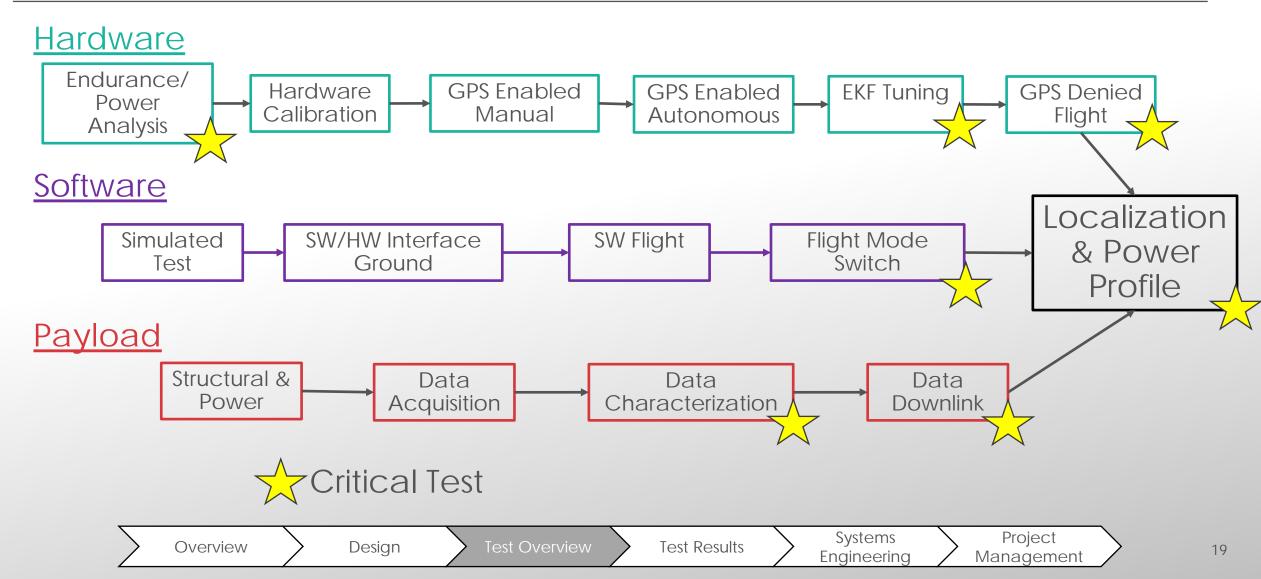

SOFTWARE BASELINE DESIGN FLIGHT MODE SWITCH

SOFTWARE BASELINE DESIGN MODIFIED AUTOPILOT

BASELINE DESIGN CHANGES


Design Change	Reason for Change	Impact on Design
Optical flow camera and LiDAR not used for testing	Not confident in landings. Rough landing environment.	Other sensors used for positional estimations were sufficient to minimize error therefore there was no major effect from this design change
Solid nose cone was used for final testing	Original nose cone (clear plastic and foam) was destroyed on a failed take off attempt and 3-D printing a replacement was faster than ordering a new cone	Since the solid nose cone is opaque, the HD camera could no longer be used, but that does not effect mission success
Main wing spar was replaced with brass rod	Original spar was damaged on rough landing and a replacement could not be ordered in time	20g increase in final mass and better structural stability of the wing.

Overview	Design	Test Overview	Test Results	Systems Engineering	Project Management	>
----------	--------	---------------	--------------	------------------------	-----------------------	---


TEST OVERVIEW

TEST FLOW DOWN

TESTING SETBACKS

Flight Testing Issues

Main	Setbacks for	
	Testing	

- 1. Weather
- 2. Scheduling
- 3. Test Location
- 4. Hardware failures

PAYLOAD AGC CHARACTERIZATION TESTS

Test Descriptions

5 minute tests at 3 different locations

60 min flight test with battery pack

Simulated GPS interference test

Purpose

Provide accurate GPS-denied threshold

Define when GPS is unreliable

Systems Used

Payload Components

Metric for Success

Capable of running and storing data for 60 minutes

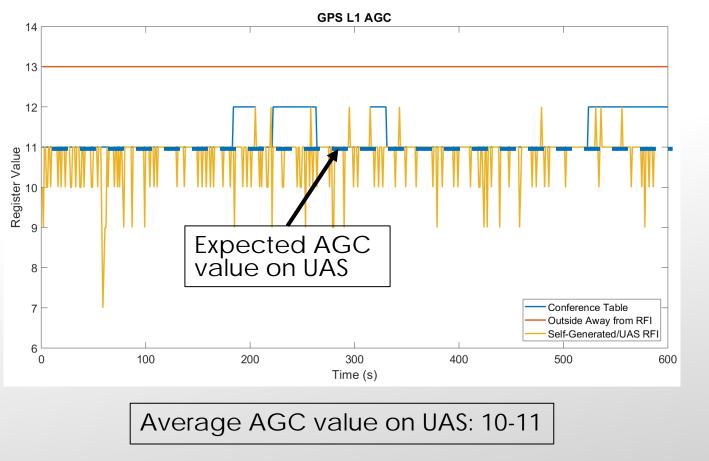
Understand the self-generated RFI on the UAS and when AGC data is unreliable

Overview

Design

Test Overview

Test Results


Systems Engineering

AGC data from 5-minute Tests in 3 different Locations

Design

Overview

Test Overview

Purpose

Understand AGC data collected on UAS

Setup

- LM Room
- CUSB
- UAS

Results

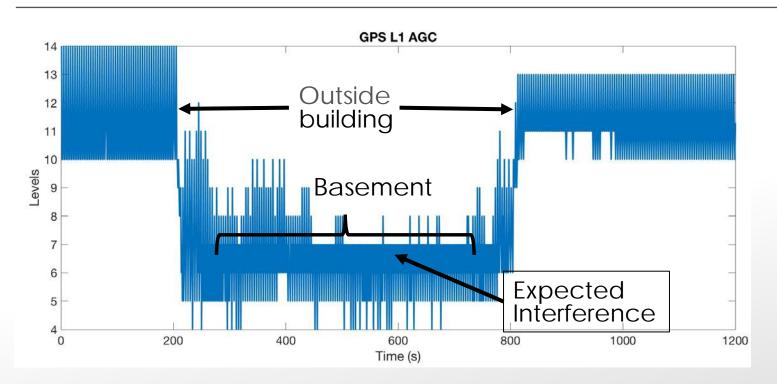
Systems

Engineering

Test Results

• Average AGC value on UAS: 10.5±0.5

Project


Management

23

AGC CHARACTERIZATION TESTS

- Mission Success ImpactCreation of power profile mapLocalization of an RFI source
- Reliable flight mode switching
- Satisfies All of FR/DR 12, part of FR/DR 10

Purpose

Identify when GPS is unreliable

Setup

Walked into basement of BESC, simulating unreliable GPS

Results

- Average unreliable GPS value: 6.5±1
- GPS cannot be trusted when AGC < 8

POWER AND ENDURANCE TEST

Objective:

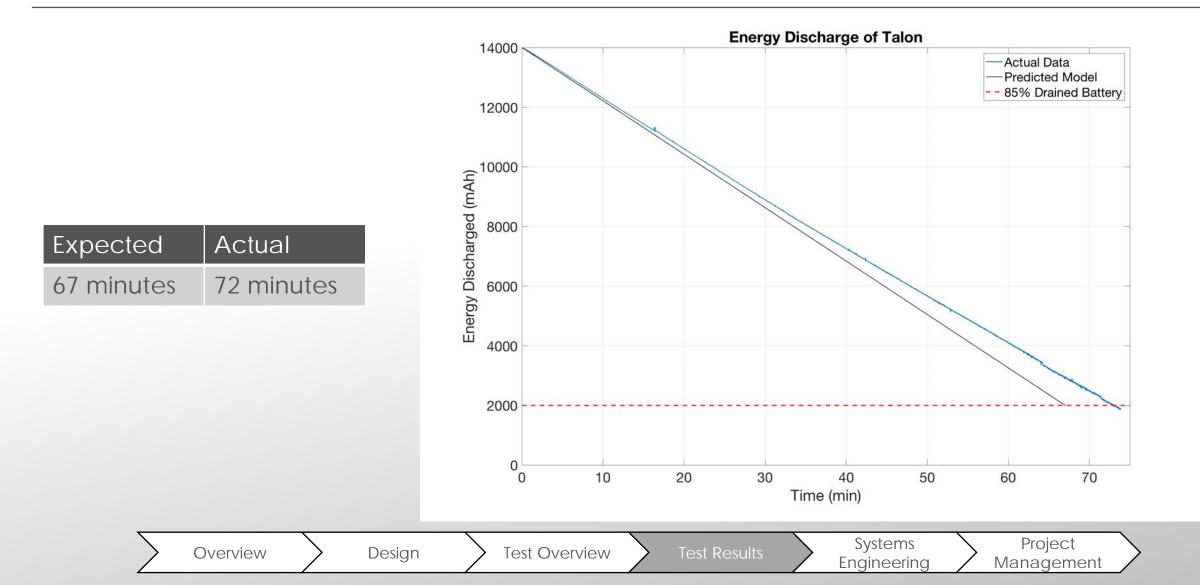
- Verify the UAS is capable of flying for 60 minutes in 30 kph wind
- Confirm UAS efficiency and validate power model

Description

- Static thrust test draining the batteries by 85% capacity
- 35% throttle (30% used for cruise at 60 kph)

Measurements:

- Recorded using flight controller power module
- Sent over telemetry and logged on ground station
- Voltage (V), Current (A), Discharge (mAh)
- Total Discharge Time (s)


Overview

25

POWER AND ENDURANCE TEST

Verification

- FR 1: The UAS shall sustain flight for 60 minutes
- FR 2: The UAS shall be capable of flying in 30 kph wind
- FR 4: The UAS shall be capable of flying the payload

Confidence

- Capable of sustaining flight for the required time in required wind conditions
- Capable of carrying all payload sensors

Overview	>	Design	Test Overview	>	Test Results	Systems Engineering	\geq	Project Management	

27

EKF FLIGHT TESTING AND TUNING

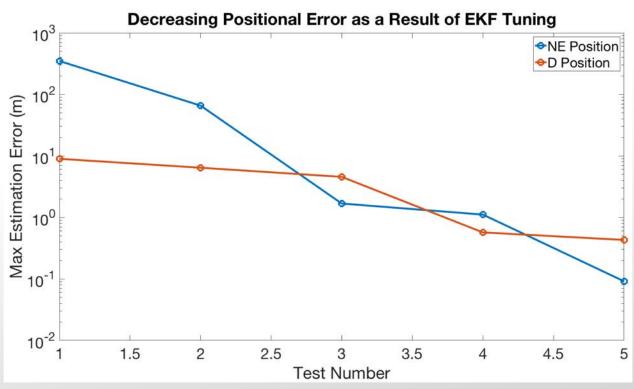
Description

- Five 10-20 minute flight tests
- Initially manual control, later moving to autonomous flight plans
- Collect EKF position estimates without GPS aided filter, with GPS aided sensors

Systems Used

• UAS with all sensors (except payload) integrated

Overview	Design	Test Overview	Test Results	Systems Engineering	Project Management	\rangle
----------	--------	---------------	--------------	------------------------	-----------------------	-----------



EKF FLIGHT TESTING AND TUNING

Goal: Reduce the estimated positional error through EKF tuning.

- EKF not given GPS position or velocity. IMU and Magnetometer measurements corrected with GPS
- NE positional error reduced from 25.8 m to 0.17 m as a result of EKF tuning
- Truly GPS denied ground testing has shown 37.4 m after ~100 seconds

Metric of Success: The positional error will decrease with tuning, eventually resulting in under 40 m of horizontal error

NE and D Position error for 5 discrete tests. Note the log scale on the y-axis

Overview Design Test Overview Test Results	Systems Project Engineering Management	28
--	---	----

GPS DENIED FLIGHT TESTING

Objectives:

- Verify ability of UAS to sustain flight in GPS denied state
- Continue tuning EKF
- Achieve level 2 success

Straight and level GPS Denied flight

- 200 m linear distance through GPS denied region
- GPS denied region set using geographic triggers
- 10 passes through GPS denied region

Major systems used in testing:		Metric for Success	Data Collected	
Software	 Modified autopilot 	 Flight mode switches from GPS guided flight to inertial guided flight 	 EKF innovations and estimated position 	
UAS	 Full flight system Inertial navigation instruments 	 UAS maintains straight & level flight with <40 m drift 	• GPS position	

	\rangle	Overview	Design	> Test Overview	Test Results	Systems Engineering	 Project Management
--	-----------	----------	--------	-----------------	--------------	------------------------	---

DATA LOOKS TOO GOOD

Problem:

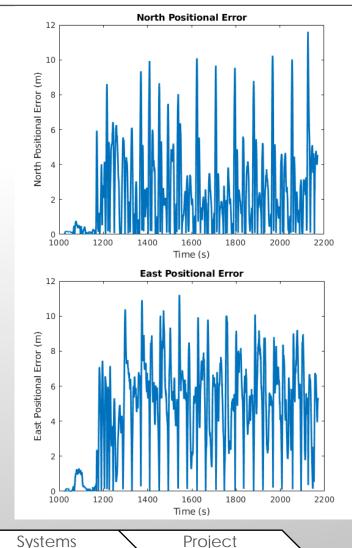
- Upon inspection, positional error was bounded when exponential error was expected
- <10 meter error after 20 minutes

Reason:

• EKF was fully GPS-denied

Overview

 However, inertial sensors were being constantly calibrated using GPS drift estimate


Result:

Autopilot software re-visited to truly deny GPS
 to all state estimation

Design

Test Overview

Test Results

Management

Engineering

Overview

Design

Test Overview

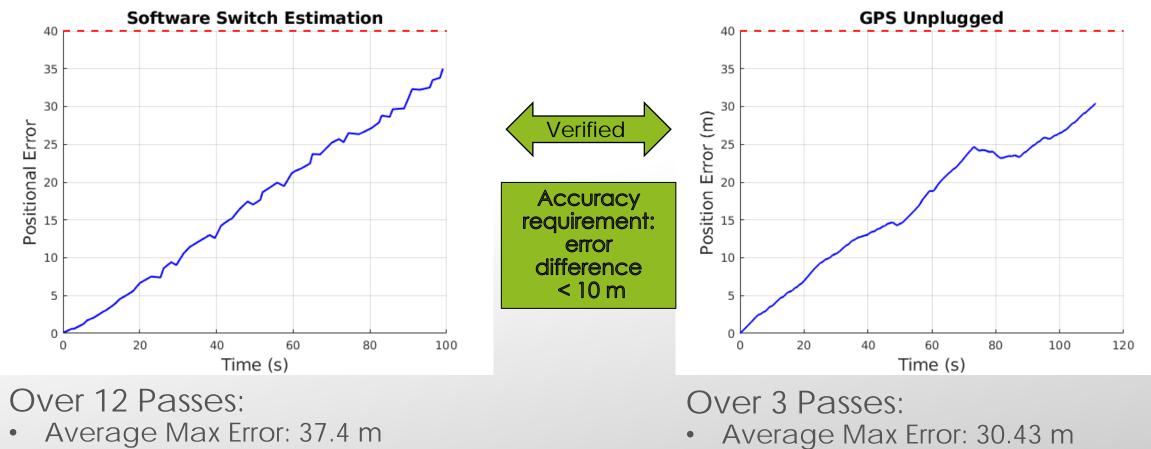
FLIGHT MODE SWITCH GROUND TEST

 Objective: Verify ability for autopilot software to switch from GPS guided to inertial guided flight using geographic trigger Test Details: Ground Test: walking Conducted on business field at CU Total of 3 passes with GPS unconnected Total of 12 passes with GPS connected Analyzed data in post processing 	Major systems used in testing:		Metric for Success Data Collected	
	Software	 Modified autopilot software 	Average error between GPS connected/	EKF estimated latitude and longitude
			unconnected within 10 m • Matching growth trends in positional error	
	UAS	 PixHawk flight controller GPS receiver 	 Testbed for software 	GPS position

31

Project

Management


Systems

Engineering

• Average Time: 103.6 s

Average Time: 111.3 s

Overview De	esign > Test Overview	Test Results	Systems Engineering	Project Management	
-------------	-----------------------	--------------	------------------------	-----------------------	--

HARDWARE FAILURE

Problem:

- PixHawk flight controller failed mid-flight due to power loss
- Catastrophic damage to airframe

Analysis: Caused by broken connector

- Connector briefly disconnected and reconnected, causing a system reboot
- PixHawk could not re-arm during flight

Future Mitigation:

• Inspect hardware prior to every flight

Overview

Design

Test Overview

Test Results

Systems

Engineering

Project

Managemen

GPS DENIED FLIGHT TEST RESULTS

GPS Denied flight testing was not successful; included in future testing plan

Functional Requirement / Level of Success Validation				
FR 3: The system shall fly and navigate in GPS denied region for linear distance of 1km	NOT Verified			
Level 2 Success: The UAS shall allow for maintained straight and level GPS denied flight for 1 km	NOT Verified			
Level 3 Success: The UAS shall allow for turning maneuvers in GPS denied conditions and shall keep positional error less than 40 m after 2km of GPS denied flight	NOT Verified			

 Overview
 Design
 Test Overview
 Test Results
 Systems
 Project

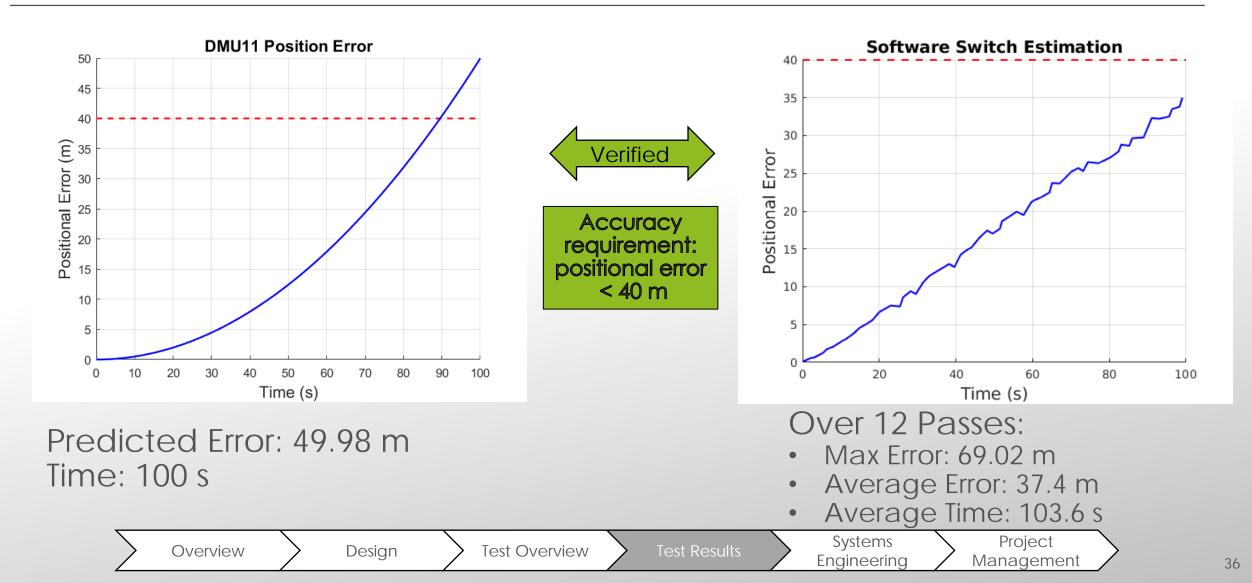
 Management
 Support
 Support
 Support
 Support
 Support

GPS DENIED PERFORMANCE GROUND TEST

 Objective: Analyze performance of inertial 	, , ,	stems used in esting:	Metric for Success	Data Collected
sensors in GPS denied conditions	Software	 Modified autopilot software 		EKF Estimated latitude and longitude
Test Details:				
 Ground Test: walking 				
 Conducted on business field at CU 	UAS	 PixHawk flight controller 	 Inertial sensor produce positional error within 40 m 	GPS position
 Total of 2 trials (12 passes) within a GPS denied region 		 GPS receiver 	after 100 seconds within GPS denied	

 Analyzed data in post processing

> Overview **Test Overview** Design


Systems

Engineering

GPS DENIED PERFORMANCE

LOCALIZATION OVERVIEW

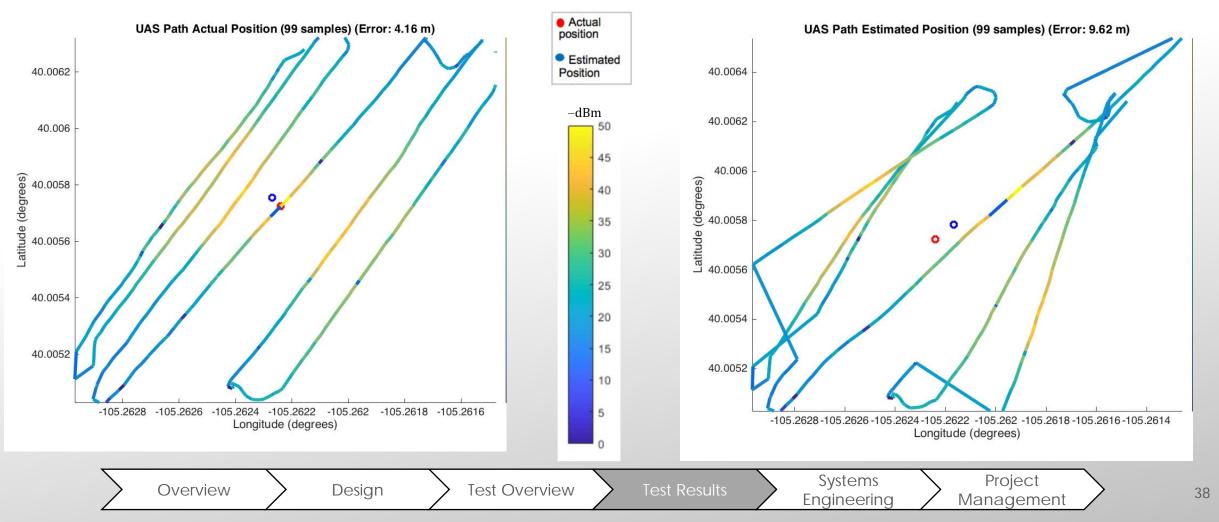
- Test Details:
 - Ground Test: walking
 - Conducted on business field at CU
 - Total of two trials (12 passes)
 - Collected data from Parrot Disco and RAMROD system
 - Performed localization in postprocessing
- Functionalities verified:
 - Ability to detect and measure signal from an RFI source
 - Ability to measure estimated position data from EKF in GPS denied

Major	systems used in testing:	Metric for Success		
Software	 Talon flight software, Estimated position (EKF output) Localization algorithm 	Localize with 40 m accuracy		
UAS	 Full flight system Inertial navigation instruments 	Positional error < 40 m		
Parrot Disco	• 2.4GHz receiver	Measure power data on 2.4 GHz band		

Systems

Overview

Test Overview Design



LOCALIZATION RESULTS

Localization using GPS Position Average Error 6.4 m

← → Localization using Estimated Position Average Error: 8.35 m

LOCALIZATION MODEL VALIDATION

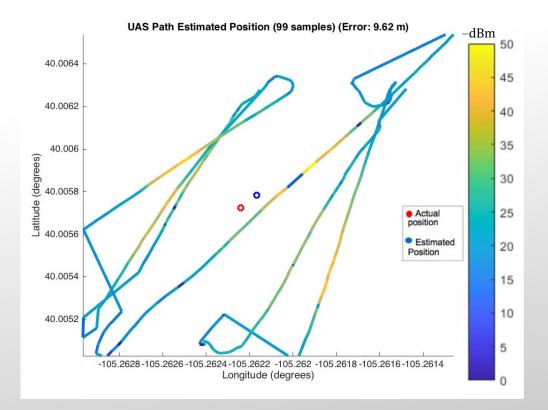
RAMROD Localization Results Localization Model: Monte Carlo Simulation of Source Location 40 Localization with Estimated Location Estimates Source Location -30m Required Radius 30 Position Results Vertical Distance From Source (m) Trial 1 9.62 m Trial 2 7.08 m Accuracy requirement: error < 40 m8.35 m Average -30 -40 -40 -30 -20 -10 0 10 30 40 20 Horizontal Distance From Source (m) Samples: 99 Trials: 2

- Samples: 100
- Trials: 30
- Accuracy: 8.03 m

Overview Design rest Overview rest Results Engineering Management	Overview Design	Test Overview	Test Results	Systems Engineering	Project Management	>
---	-----------------	---------------	--------------	------------------------	-----------------------	---

Average Accuracy: 8.35 m

LOCALIZATION TEST RESULTS & POWER PROFILE


Localization testing was successful!

Functional Requirement/ Level of Success Validation

FR 10: The RAMROD system shall generate a power profile of the search area	Verified
FR 12: The Ramrod system shall measure and localize an RF source	Partially Verified
Level 3 Success: The system shall	Partially

localize within 40m accuracy

RAMROD Power Profile

Overview	Design	Test Overview	Test Results	Systems Engineering	Project Management	
----------	--------	---------------	--------------	------------------------	-----------------------	--

Verified

FUTURE TESTING

<u>Agenda:</u>

- Full scale testing over 3km x 3km search area
- 2. True GPS denied flight (straight & level)
- 3. Maneuvers in GPS Denied

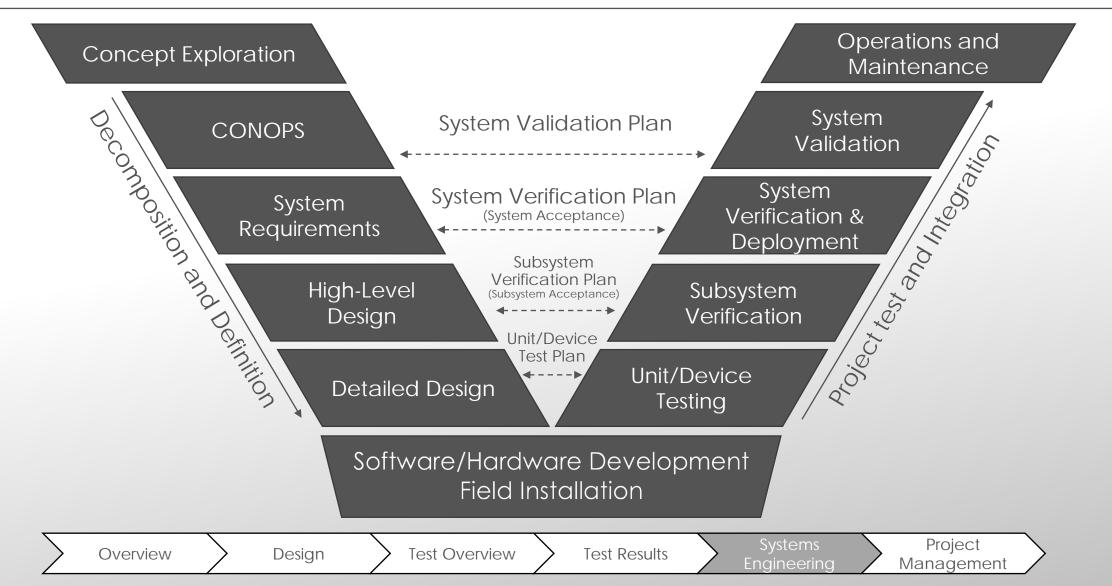
Functional Requirement/ Level of Success Future Valida						
FR 1: The UAS shall sustain flight for at least 60 minutes	Partially Verified					
FR 3: The system shall fly and navigate in GPS denied region for linear distance of 1km	NOT Verified					
Level 2 Success: The UAS shall have the ability to fly autonomously for 60 minutes with GPS active	Partially Verified					
Level 2 Success: Shall allow for maintained straight and level GPS denied flight for 1 km	NOT Verified					
Level 3 Success: The UAS shall allow for turning maneuvers in GPS denied conditions and shall keep positional error less than 40m after 2 km of GPS denied flight	NOT Verified					

Overview

Design

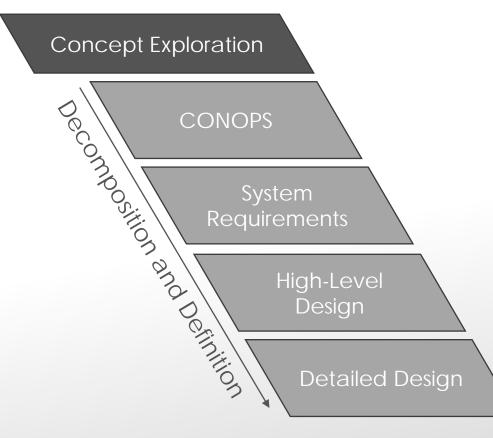
> Test Overview

Systems Engineering


SYSTEMS ENGINEERING

Overview	Design	Test Overview	Test Results	Systems Engineering	Project Management

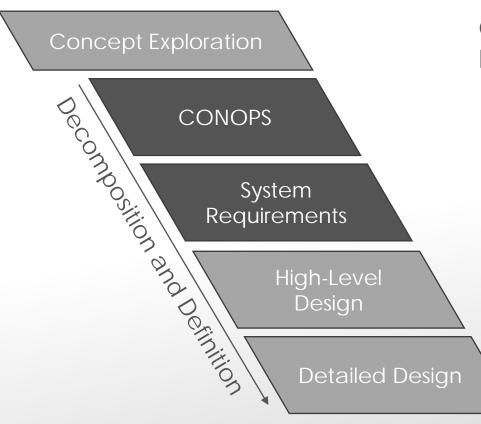
SYSTEMS ENGINEERING V MODEL



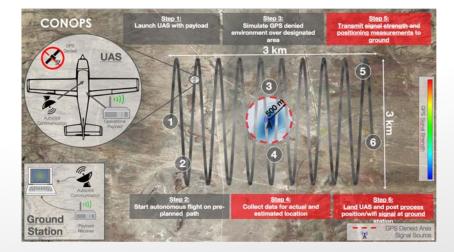
CONCEPT EXPLORATION

44

Basic Functional Objectives:


- Fly in GPS denied environment
 - Created need to detect when GPS is cut
- Localize RFI device
 - Created requirement for downlinking data
- One hour flight time
 - Created need for efficient flight platform

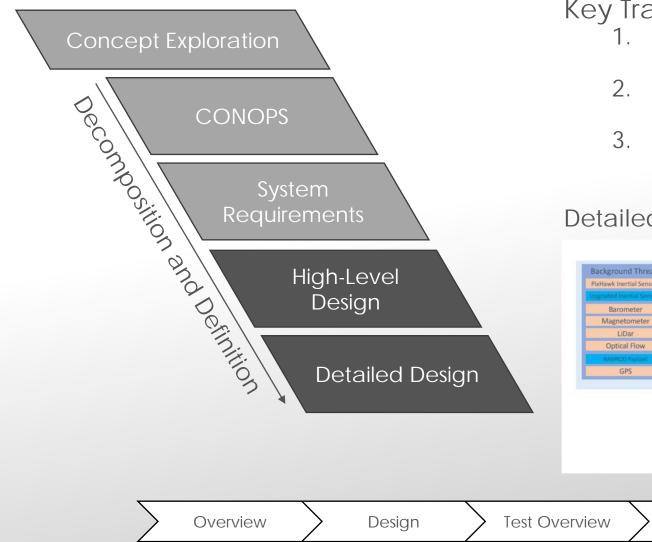
Overview	Design	Test Overview	Test Results	Systems	Project	\mathbf{i}
	Design			Engineering	Management	



CONOPS & SYSTEM REQUIREMENTS

CONOPS was critical for project definition

Requirements Development:

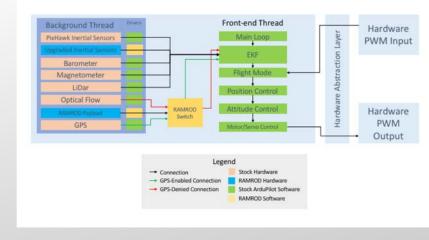

- Requirements stemmed from CONOPS
- Trade Studies
- Derived from each subsystem

PROJECT DESIGN

Key Trade Study: GPS Denied Guidance

- 1. Dead Reckoning w/ Inertial Navigation System light weight, not computationally expensive
- 2. LiDAR based Localization and Mapping expensive, computationally expensive

Systems

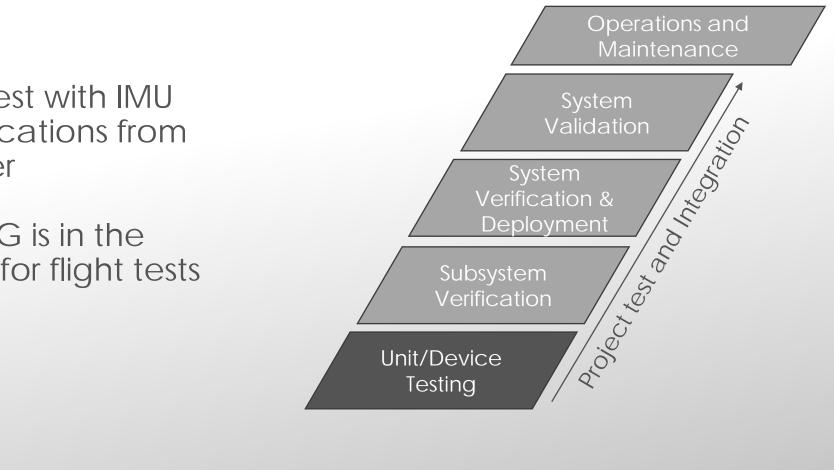

Enaineerina

Project

Management

3. LTE Localization – only estimates 2D, high position error

Detailed Design:



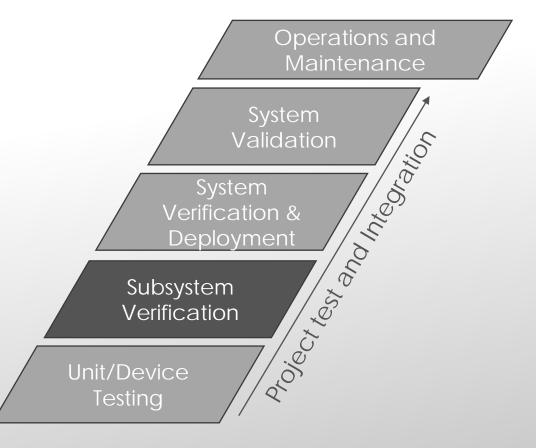
Test Results

UNIT/DEVICE TESTING

Unit Testing:

- 1. Motor Test
- 2. Static Ground Test with IMU
- Verify the specifications from the manufacturer
- 3. CG Placement
- Verify that the CG is in the correct location for flight tests

Project



SUBSYSTEM VERIFICATION

UAS Verification

- Airframe assembly
- Calibration flight
 Payload Verification
- Downlink testing
- Power test
- Autopilot Verification
- Ran software and hardware tests
- Used ArduPilot testing to verify software

Overview	Design	> Test Overview	Test Results	Systems Engineering	Project Management	>
----------	--------	-----------------	--------------	------------------------	-----------------------	---

•

SYSTEM VALIDATION

Design

Test Overview

Project

CDR LEVEL RISK

R1	Too much noise in the AGC data
R2	Time taken to switch flight modes is over 1 second
R3	Structural damage to airframe during take off/landing
R4	Plane lands in wrong location during autonomous landings
R5	Line of sight of the UAS is lost
R6	Higher rate of error due to simulations being incorrect
R7	There is not enough bandwidth to downlink the AGC data

	Occurred, no major impact	Occurred, major impact

\geq	Overview	$\left\langle \right\rangle$	Design	Test Overview	\geq	Test Results	Systems Engineering		Project Management	\rangle
--------	----------	------------------------------	--------	---------------	--------	--------------	------------------------	--	-----------------------	-----------

Risks that were not thought of during design: Weather

- Numerous tests were postponed due to weather (wind, snow, rain, etc.)
- Availability
- Testing at CU South Boulder required two days notification
- Not able to test at Table Mountain
- Never heard back from Boulder Model Airfield Faulty parts from manufacturer
- Design change of battery during project
- Flight controller board stopped working
- Electronic speed controller did not work

Engineering Management	\rangle	Overview	Design	> Test Overview	Test Results	Systems Engineering	Project Management
------------------------	-----------	----------	--------	-----------------	--------------	------------------------	-----------------------

LESSONS LEARNED

- Importance of subsystem testing
- Engineering design process
- Contingency planning
- Expect the little things to happen
- Murphy's Law

Overview

Design

Test Overview

Test Results

Systems Engineering

PROJECT MANAGEMENT

Overview Design Test Overview Test Results	Systems Project Engineering Management
--	---

MANAGEMENT PROCESS

- Team communication is key to success
 - Weekly full team meetings 1-2 times per week
 - Communication via Slack
 - Weekly meetings with customer
- Each subsystem has a lead to ensure each subsystem meets all requirements
- All major changes and issues are reviewed by entire team
 - Minor changes only needed subsystem approval
- Dead lines set on a weekly basis during team meetings

Overview	Design	Test Overview	Test Results	Systems Engineering	Project Management
----------	--------	---------------	--------------	------------------------	-----------------------

Overview

Design

MANAGEMENT SUCCESSES/DIFFICULTIES

Successes	Difficulties				
Process worked very well for design portion of the project	Team communication degraded over time				
Weekly meeting ensured everyone was aware of the current project status	Lack of accountability for deadlines and tasks				
	Could not sustain so many delays during manufacturing and testing				
Lessons	Learned				
There must be a way to hold team me	mbers accountable for tasks				
Must actively ensure that all required su	ubsystem communication occurs				
Things will rarely get done when they a	re supposed to				

Test Overview

Test Results

Systems

Engineering

CDR BUDGET VS CURRENT BUDGET

Subgroup	Final Expense	Expense at CDR	Difference
UAS	2602	2184	- \$418
Payload	1240	1315	+ \$75
Misc. Hardware	490	230	- \$260
Bungee Launcher	95	25	-\$70
Margin	0	750	+\$750
Total	4427	4504	+ \$77

Unexpected Expenses

- Hardware replacements from crashes
- Additional Batteries

\$573 Under Budget!

LTE server

Overview Design Test Overview Test Re	esults Systems Project Engineering Management
---------------------------------------	---

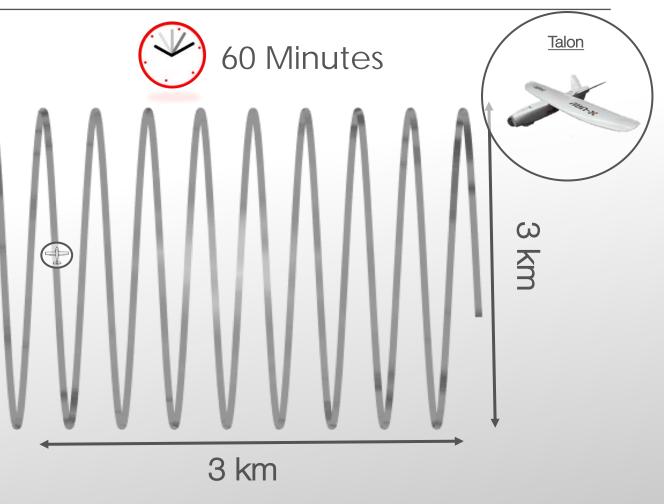
ESTIMATED TOTAL COST

Cost	Amount
First Semester Hours: 2263	\$ 70,718
Spring Semester Hours: 1913	\$ 59,782
Total Hours: 4176	\$130,500
Material Cost	\$ 4,427
Subtotal	\$134,927
200% Overhead	\$ 261,000
Estimated Total	\$ 395,927

Overview	Design	Test Overview	Te	est Results	Systems Engineering	>	Project Management	\rangle		57
----------	--------	---------------	----	-------------	------------------------	---	-----------------------	-----------	--	----

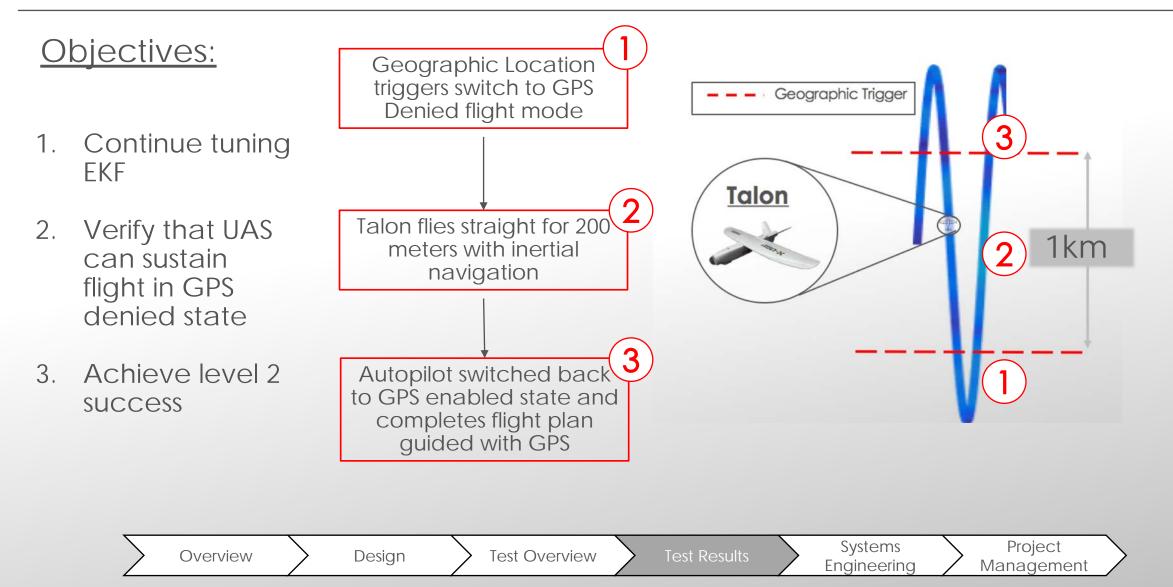
QUESTIONS

BACKUP SLIDES

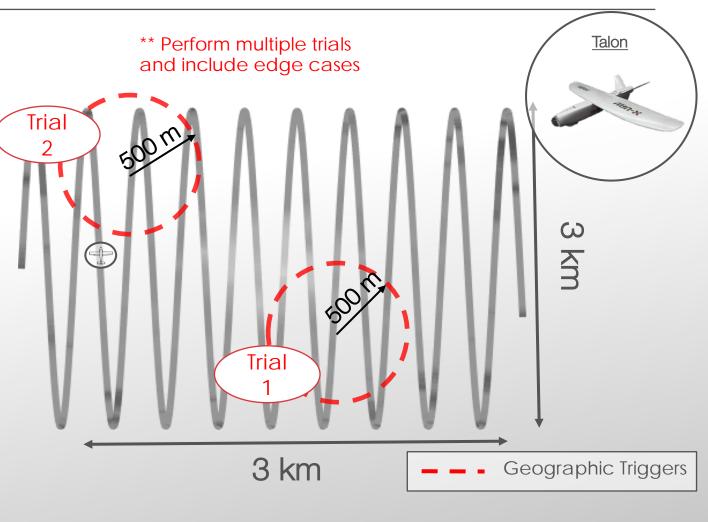


FULL SCALE SEARCH AREA

Objectives:


- 1. Extend RAMROD search area to 3km x 3km search area
- 2. Ensure UAS is capable of 60 minute autonomous flight time
- 3. Verify autonomous landing capabilities
- 4. Achieve level 2 success and verify FR 3

TRUE GPS DENIED STRAIGHT AND LEVEL



MANEUVERS IN GPS DENIED

Objectives:

- Ensure UAS can maneuver around waypoints in GPS denied state
- 2. Include multiple trials for performance analysis
- 3. Full system integration
- 4. Achieve level 3 success

REFERENCE SLIDES

- Not included in presentation, used for reference for requirement verification
- Use these as a reference for our requirements verification and data collection!

FR 1: THE UAS SHALL SUSTAIN FLIGHT FOR 60 MINUTES

<u>Test:</u>

- Fly at 40% throttle with max weight
- Ensure UAS capable of 60 minute flight

- 1. Use Pixhawk data to verify 60 minute flight
- 2. Extrapolate data to analyze flight time capabilities
- 3. Compare to Power Model from PDR

FR 2: UAS SHALL BE CAPABLE OF FLYING IN 30KM/HR WINDS

<u>Test:</u>

- Fly at 80% throttle with max weight
- Ensure UAS capable of 30km/hr flight speed for 60 minutes

- Use pixhawk data to analyze max speed and average speed
- 2. Analyze throttle needed to achieve 30km/hr sustained 60 minute flight
- 3. Extrapolate data and analyze performance
 - Show throttle vs speed data
 - Compare to flight model

FR 3: THE SYSTEM SHALL FLY AND NAVIGATE IN GPS DENIED REGION FOR LINEAR DISTANCE OF 1KM

<u>Test:</u>

1. TRR Plan: Initial GPS denied flight

- 1. Quantify position error
- 2. Ensure inertial drift is below 40m
- 3. Perform 5-10 redundant tests and analyze error
- 4. Compare to static IMU model

FR: 4 UAS SHALL FLY WITH ALL NECESSARY HW AND INSTRUMENTATION

<u>Test:</u>

- Fly at 40% throttle with max weight
- Ensure UAS capable of 60 minute flight

- 1. Use Pixhawk data to verify 60 minute flight
- 2. Extrapolate data to analyze flight time capabilities
- 3. Compare to Power Model from PDR

Verification

1. Inspection

FR 6: UAS SHALL BE CAPABLE OF FLYING THE PAYLOAD

<u>Test:</u>

- 1. How does battery life depend on UAS weight?
- 2. What is max flight time with full payload weight?
- What is max speed with full payload weight (for 60 minute flight)

- 1. Inspection: show that payload fits inside UAS
- 2. Show UAS is capable of 60 minute flight at current weight (with payload)
- 3. Compare to Power Model from PDR

FR 7: THE PAYLOAD SHALL BE CAPABLE OF FULL AUTONOMOUS FLIGHT

Test:

- Show parameters for autonomous flight (including launch, landing, and flight path)
- 2. Fly autonomously around a series of set waypoints to analyze the accuracy of the UAS on the flight path

- 1. Present the average distance to a waypoint that the UAS achieves during autonomous flight
- 2. Analyze error

FR 8: THE RAMROD SYSTEM SHALL SEAMLESSLY SWITCH FROM GPS GUIDED FLIGHT TO INERTIAL GUIDED FLIGHT WITHIN ONE SECOND

Test:

- Ground test: test switch time and switch capabilities
- 2. Ground test: flight mode switch using actual AGC data? (data from Akos?)
- 3. Flight test: test the flight mode switch during flight

- Present ground test results -> verify ground test capabilities
- 2. Present flight test results
- 3. Verify switch time results
- 4. Analyze error
 - Average switch time?
 - Number of failed switches?
 - SD of data sets

FR 9: THE RAMROD SYSTEM SHALL DOWNLINK THREE DEGREES OF FREEDOM ,AGC AND I.F. DATA

<u>Test:</u>

 Downlink data and ensure that downlink speed matches 4G LTE network capability

- 1. Present downlink speed and capability
- 2. Number of dropped packets?

FR 10: THE RAMROD SYSTEM SHALL GENERATE A POWER PROFILE OF THE SEARCH AREA

<u>Test:</u>

- 1. Gather ACG data using Parrot disco
- 2. Gather position data using Talon
- 3. Generate power profile

Verification

- 1. Present power profile
- 2. Analyze error in true position and estimate position in power profile

FR 11: THE PAYLOAD SHALL FIT INSIDE THE UAS

Test:

1. Is this one even necessary?

FR 12: THE RAMROD SYSTEM SHALL MEASURE AND LOCALIZE AN RF SOURCE

<u>Test:</u>

- 1. Collect AGC data using payload
- 2. Gather inertial drift data from static tests, ground test, and flight test.
- 3. Localize source using Disco/Talon

Verification

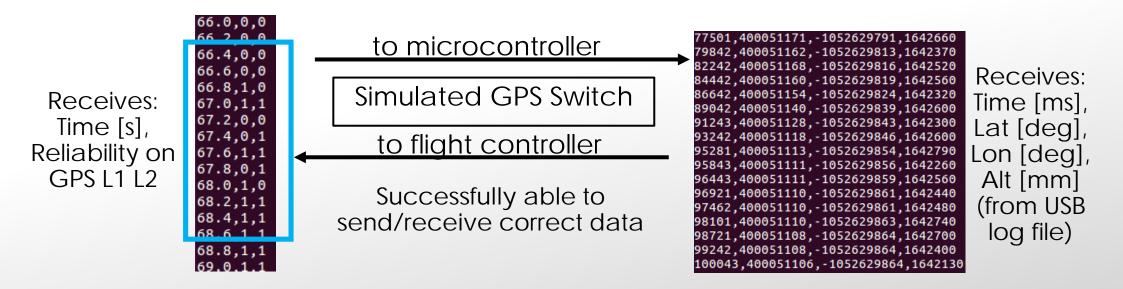
- Show that data is accurate AGC data linked with a geographic position
- 2. Present localization accuracy
- 3. Analyze error
- 4. Compare to PDOA model

Downlinking: Upload AGC data received to a web server and download onto a ground computer

Purpose: To understand possible data rates and access collected AGC data during a live test, To verify requirements FR?, FR?, and FR?.

- 5 speedtest.net tests at various positions at testing location to determine data rates
- Dowlinking test to ensure proper data transfer MZ -> server -> ground computer

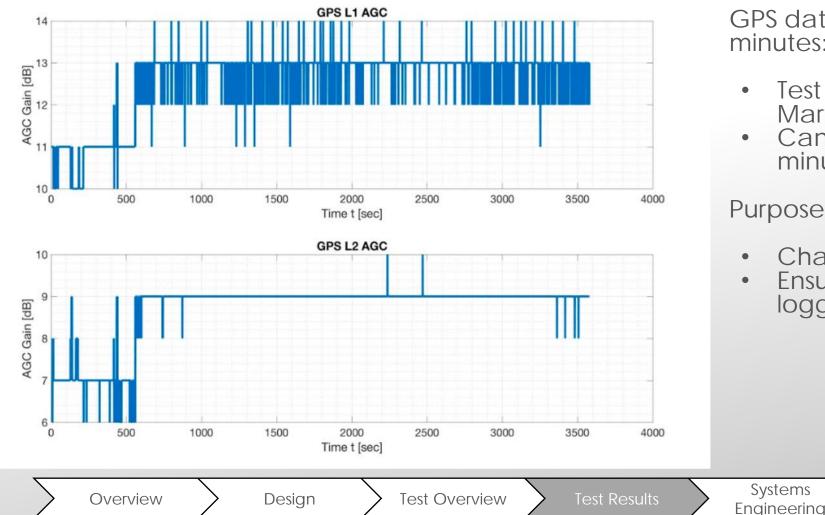
Components


- GPS Antenna and Signal Filter
- Microcontroller and USB Drive
- Battery Pack

- 4G LTE Modem
- Ground Computer

Overview Design Test Overview Test Results Systems Engineering M	Project Management	>
---	-----------------------	---

PIXHAWK/MICROZED INTERFACE TESTS



PAYLOAD AGC CHARACTERIZATION TESTS

60-minute Test

GPS data collected for 60 minutes:

- Test run at the Lockheed Martin Conference table
- Can log data for 60 minutes

Purpose:

- Characterize GPS data
- Ensure data can be logged for 60 minutes.

Project

Management

INERTIAL SENSOR INTEGRATION TEST

Objective

 Verify IMU is capable of interfacing with PixHawk in Autopilot

Description

- 10 minute autonomous flight at CU South Boulder
- Triangular pattern over 300 m area.

Measurements

- GPS position and estimated position data recorded onboard PixHawk flight controller
- NED coordinates directly from GPS
- NED coordinate estimated from Kalman Filter with new IMU input

D	M	U	1	1

Project

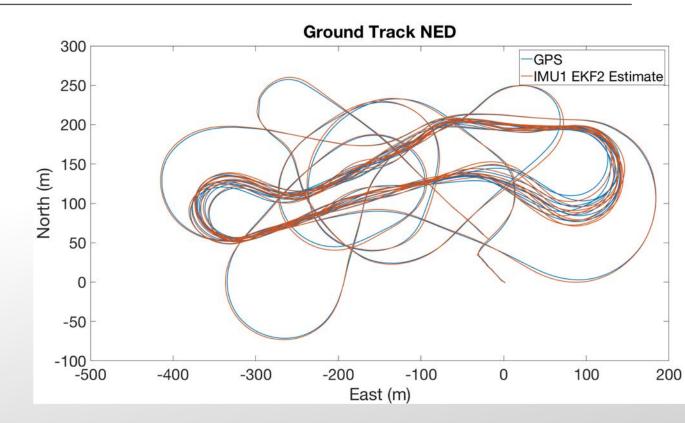
Management

Overview

Design

Test Overview

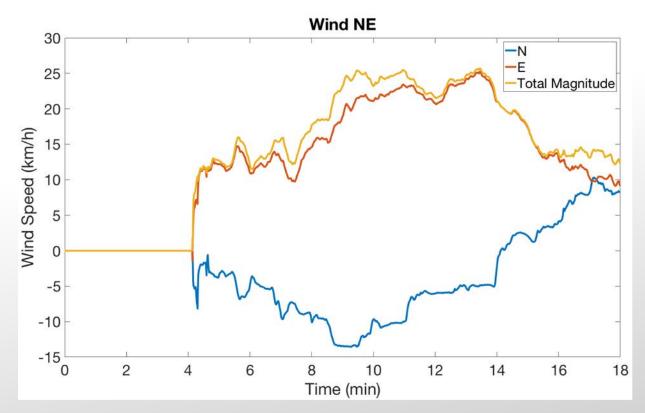
Test Results


Systems Engineering

Result

 Ground track estimated by EKF (given inertial sensor measurements) aligns with GPS ground track

Overview Design Test Overview Test Result	Systems Project 80 Engineering Management 80
---	---


Perogan for m

Description

- 14 minute flight conducted in winds averaging 18.2 kph
- Maximum wind of 25.7 kph
- UAS performed fine in the air, though had difficulties with landing

Functional Requirement Validation

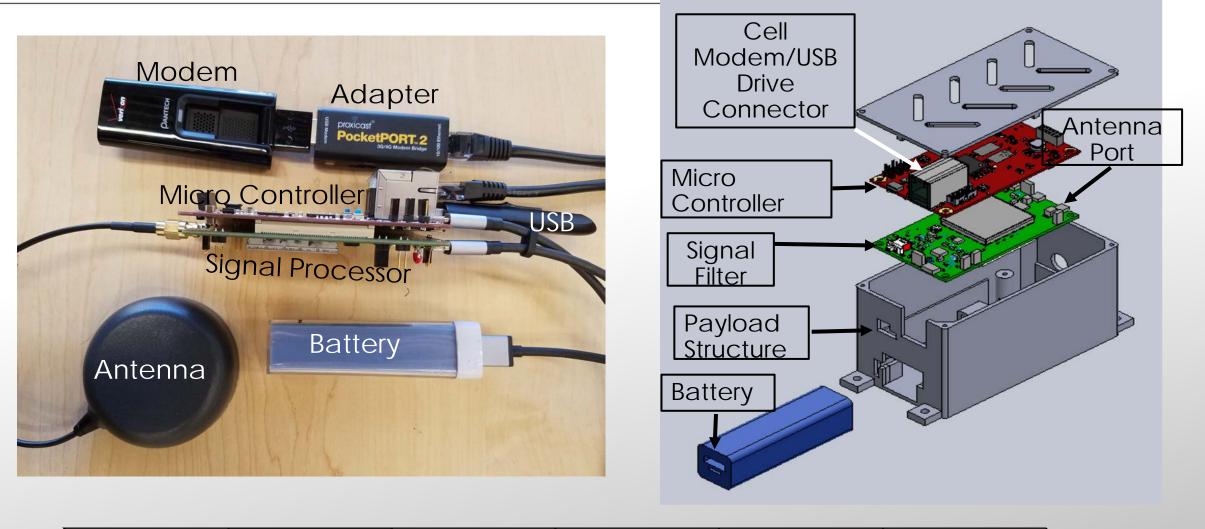
FR 2: The UAS shall be capablePartiallyof flying in 30 kph windsVerified

INERTIAL SENSOR INTEGRATION TEST

Verification - Almost

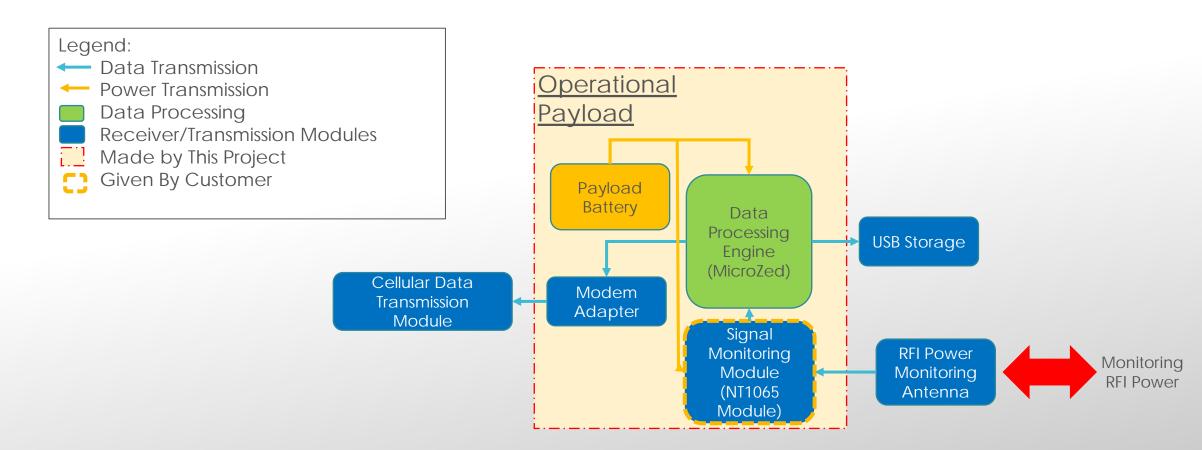
- FR 3: The system shall fly and navigate in GPS denied region for a linear distance of 1 km
 - Confirm inertial drift is under 40 m

Confidence


- Flight controller can interface with 3rd part inertial sensor
- Capable of remaining under inertial drift requirement while GPS denied

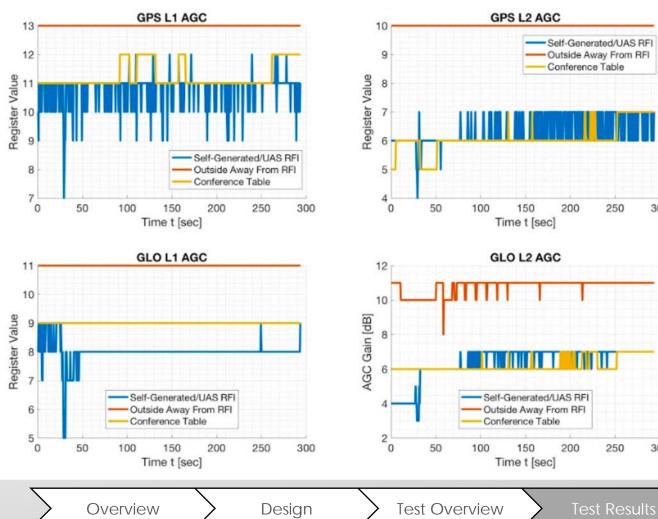
Overview

PAYLOAD INTEGRATION DIAGRAM



Overview	Design	Test Overview	Test Results	Systems	Project	$\mathbf{\mathbf{x}}$
	Design			Engineering	Management	

PAYLOAD FBD



PAYLOAD: AGC CHARACTERIZATION TESTS

5-minute Tests in Various Locations

GPS data collected for three scenarios:

- Lockheed Martin • Conference table
- Open area away from RFI UAS generated RFI
- •

Purpose:

Systems

Engineering

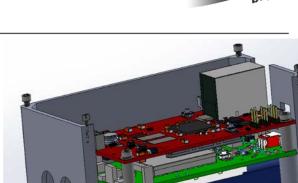
300

300

- Characterize AGC data •
- Ensure data can be • logged.
- Success is defining when GPS data cannot be trusted

Project

Management

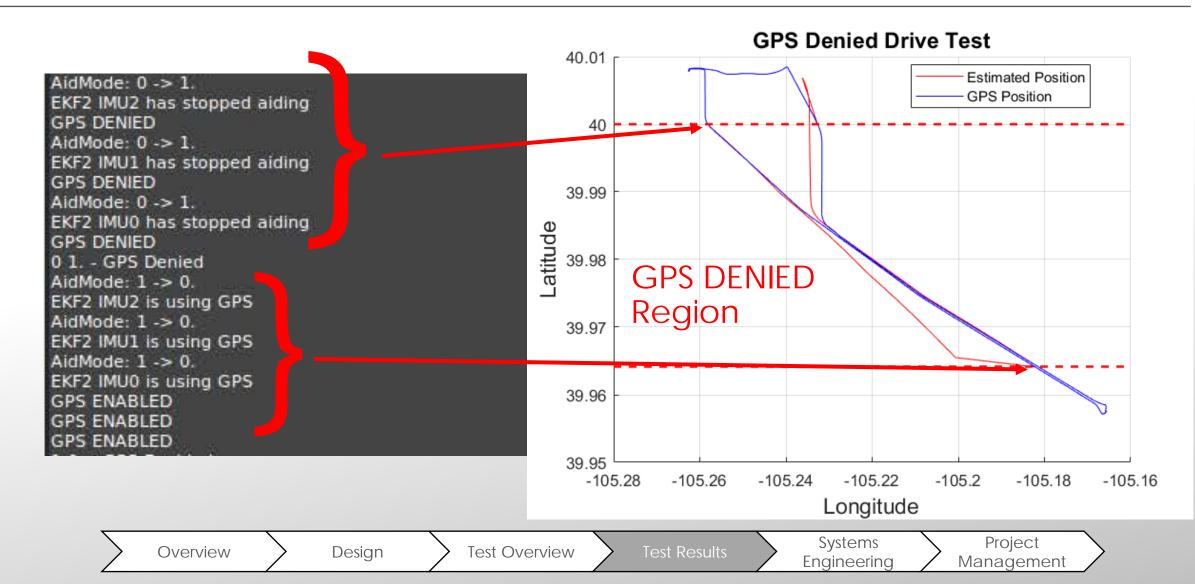


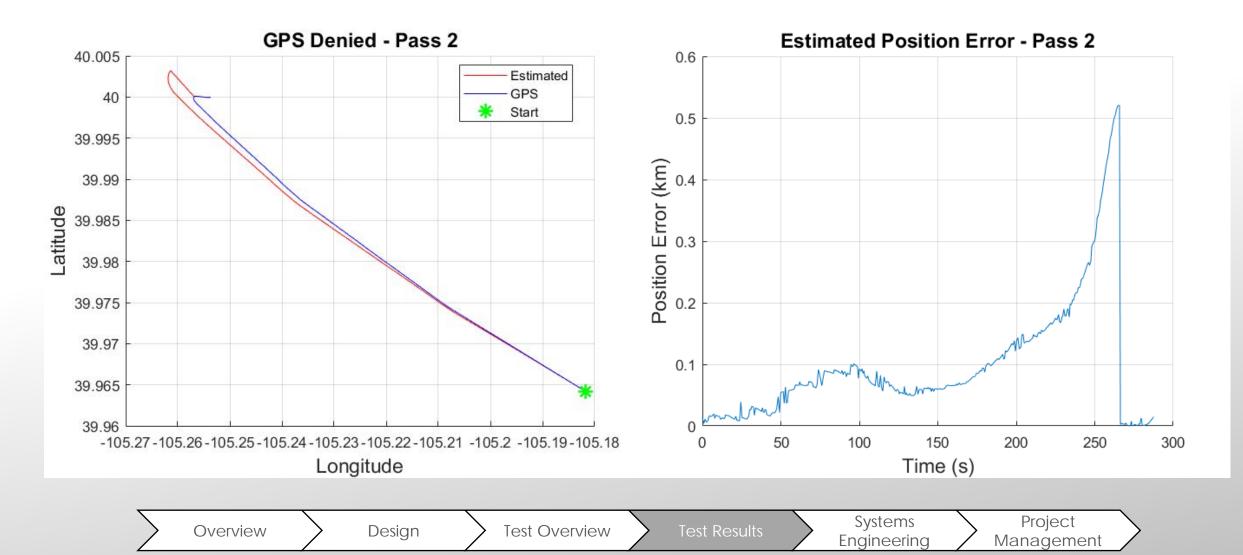
PROJECT DELIVERABLES

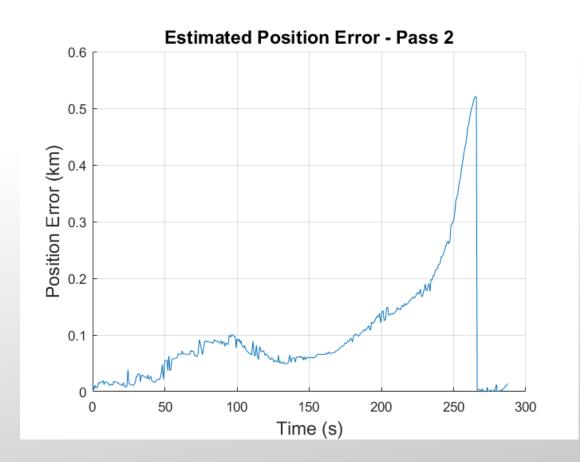
 Self-integrated payload containing customer provided microprocessor and signal filter

 Modified Flight Software allowing for GPS denied flight

Fully Integrated UAS with payload and flight software




SOFTWARE: GEOGRAPHIC FLIGHT MODE SWITCH

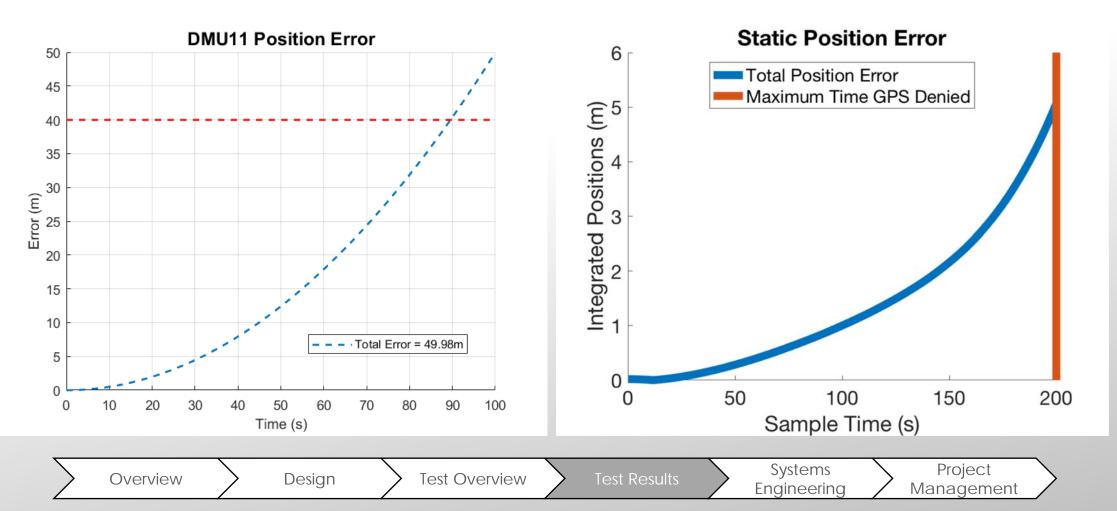


- Driving test performed in 2 ways to verify GPS denial:
- 1. Physically removing GPS module
- 2. Software geofence

GPS denial tested for ~200 seconds

Results:

- Similar error for both tests
 - 150 meters NE error
- Consistent with expected t² error



GPS DENIED PERFORMANCE

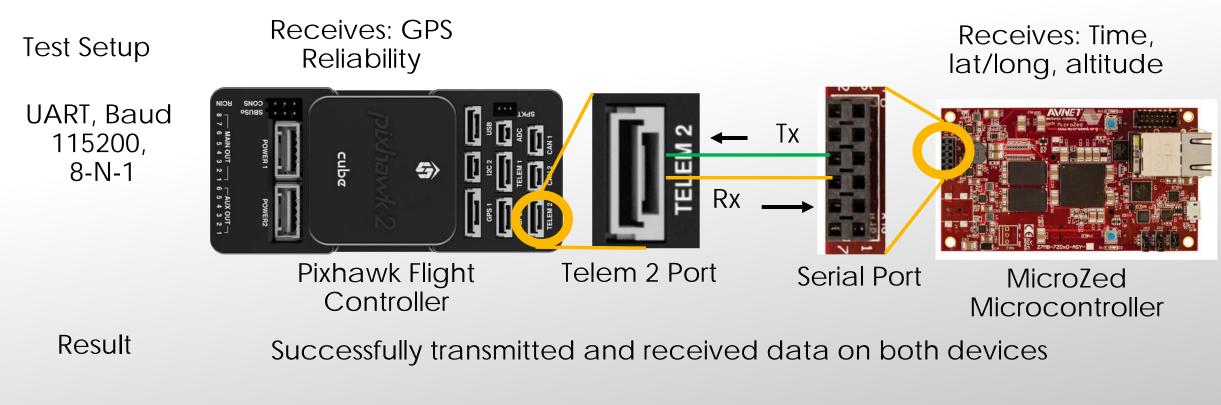
MODEL ESTIMATION

INTEGRATED STATIC DATA

PIXHAWK/MICROZED INTERFACE TESTS

Interfacing: 2-way serial communication between flight/micro controllers

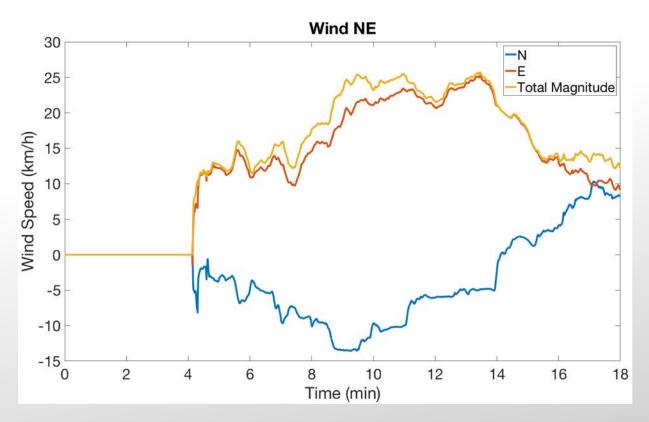
Purpose: To provide flight controller with AGC data to enable flight mode switching, to receive and log position data, To verify requirements FR3, FR6, FR8, and FR9.


- Send GPS data reliability value to flight controller
- Receive and log position data from microcontroller
 Components
- GPS Antenna and Signal Filter
- Microcontroller and USB Drive
- Flight Controller

PIXHAWK/MICROZED INTERFACE TESTS

Goal Have flight and microcontrollers communicate via a serial interface

Overview Design	Test Overview	Test Results	Systems Engineering	Project Management
-----------------	---------------	--------------	------------------------	-----------------------


UAS WIND PERFORMANCE

Description

- 14 minute flight conducted in winds averaging 18.2 kph
- Maximum wind of 25.7 kph
- UAS performed fine in the air, though had difficulties with landing

Functional Requirement Validation

FR 2: The UAS shall be capable Partially of flying in 30 kph winds Verified

Systems