<u>REMOTE AUTONOMOUS MAPPING OF REQUENCY</u> <u>OBSTRUCTION DEVICES</u>

Team: Jorgen Baertsch, Ian Cooke, Kennedy Harrmann, Mary Landis, Sarah Larson, Harrision Mast, Ethan Morgan, Selby Stout, Jake Ursetta, Justin Williams, Samantha Williams <u>Sponsor</u>: Dennis Akos <u>Advisor</u>: Jade Morton

Acronym:	Meaning:
AGC	Automatic Gain Control
ET	Emerging Threat
FAA	Federal Aviation Administration
GNC	Guidance Navigation and Control
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
IMU	Inertial Measurement Unit
INS	Inertial Navigation System
MCU	Microcontroller
PDOA	Power Difference of Arrival
PPD	Personal Privacy Device
RFI	Radio Frequency Interference
UAS	Unmanned Aerial System

AGENDA

- 1. Project Purpose and Objectives
- 2. Design Solution
- 3. Critical Project Elements
- 4. Design Requirements and Their Satisfaction
- 5. Risk Analysis
- 6. Verification and Validation
- 7. Project Summary

MISSION STATEMENT

<u>RAMROD</u> will utilize an autonomous **UAS** and self-contained sensor payload to localize Radio Frequency Interference and Emerging Threat sources in a **GPS-denied environment** to allow civilian and military GNSS endeavors to continue without disruption.

- Personal Privacy Devices and Emerging Threats (spoofers) are interrupting civilian and military GNSS endeavors
- Utilizing a UAS is the most efficient method for rapidly localizing these RFI sources
- Flying a UAS in GPS-denied conditions is problematic due to most autopilots reliance on GNSS

CONOPS

GPS

Denied

<u>Step 1:</u> Launch UAS with payload

Step 3: Simulate GPS denied environment over designated area

<u>3 km</u>

3

500

Step 5: Transmit signal strength and positioning measurements to ground

5

Payload

Step 2: Start autonomous flight on preplanned path

2

Step 4: Collect data on signal strength

Step 6: Land UAS and localize signal source at ground station

GPS Denied Area

Signal Source

ω

Km

6

FUNCTIONAL BLOCK DIAGRAM

DESIGN SOLUTION

Power System Name: Thunder Power TP700

Type: High Voltage LiPo Capacity: 2x 3s 7000 mAh Output: EC3/EC5

Mass: 423 g Dimensions: 27 x 69 x 110 mm

Project

Summary

Verification

& Validation

Electronic Speed Control Name: E-Flite Pro

Rating: 60-Amp – 13 AWG Input: EC3/EC5 Output: 3.5mm Bullet

Verification

& Validation

Mass: 75g Dimensions: 73 x 33 x 15.5 mm

Project

Summary

Name: E-Flite Power 25 BL

Rating: 1250 Kv, 14AWG Input: 3.5mm Bullet

Dimensions: 5 x 14 x 5 mm

Project

Summary

Receiver

Name: Spektrum AR7700 Type: Serial Output (PixHawk) Channel: 7 Mass: 8.9g Dimensions: 29.2 x 34.3 x 11.4 mm

Project

Summary

Verification

& Validation

16

UAS PLATFORM SOLUTION

Servos

Main

Name: HS-5065MG Mass: 11.9g Dimensions: 23.6 x 11.6 x 24 mm

Tail Name: HS-5055MG Mass: 9.5g Dimensions: 22.8 x 11.6 x 24 mm

Project

Summary

Verification

& Validation

Other Systems:

IMU Silicon Sensing DMU 11

<u>LIDAR</u> Garmin LiDAR Lite

<u>GPS Module</u> "Here" GPS Module

<u>Operational Payload</u> Designed by RAMROD

Verification

& Validation

Project

Summarv

INERTIAL NAVIGATION SYSTEM

IMU HARDWARE

Design

Satisfaction

CPE

DMU11 From Silicon Sensing

Design

Solution

Purpose &

Obiectives

Features:

- Low cost
- High precision
- Low noise
- Internal temperature
 compensation
- 1000Hz sensor sample rate
- 200Hz data output

Risk Analysis

Supporting evaluation kit and test software

Verification

& Validatio

Project

Summary

20

OPERATIONAL PAYLOAD

Satisfaction

Risk Analysis

& Validation

CPE

Objectives

Solution

Summary

OPERATIONAL PAYLOAD STRUCTURE

PAYLOAD STRUCTURE

3D printed from Nylon X

OPERATIONAL PAYLOAD NT1065

Design

Satisfaction

CPE

Purpose &

Objectives

Design

Solution

NT1065

Measures an RFI power source on multiple GPS bands

Board must be redesigned to have internal splitting

Risk Analysis

Verification

& Validation

Project

Summary

OPERATIONAL PAYLOAD MICROZED

Design

Satisfaction

CPE

MicroZed

Purpose &

Objectives

Design

Solution

Stores data from NT1065 on USB drive

Interface with cellular modem, NT board, and PixHawk 2

OPERATIONAL PAYLOAD BATTERY AND GPS ANTENNA

PP + Battery MZ + HT LTE GPS + NT + HT

Design

Solution

Purpose &

Objectives

Battery 2200 mAh 5V, 1A, USB3 Lithium Ion Battery

GPS Antenna

Design

Satisfaction

CPE

Name: TW7872 Magnetic Mount Dual Band GNSS Antenna Mass: 180 g Dimensions: 69mm Diameter, 22mm height

Risk Analysis

Verification

& Validation

Project

Summary

OPERATIONAL PAYLOAD LTE MODEM

LTE Modem:

Design

Satisfaction

CPE

Purpose &

Obiectives

Design

Solution

Pantech UML290 Global 4G LTE Modem Network: Verizon Wireless

Cellular Modem Bridge: Proxicast PocketPORT2 Ethernet to USB converter

Risk Analysis

Project

Summary

Verification

& Validation

OPERATIONAL PAYLOAD INTERFACE BOARD

Interface Board – PCB Design

Splits power between different components in payload

Connection between MicroZed and PixHawk

Indicators to show what's connected

GROUND STATION

Design

Satisfaction

Verification

& Validation

Risk Analysis

Project

Summary

Machine Running Linux

Purpose &

Objectives

• 2 GB RAM and 50 GB Storage

Design

Solution

- Capable of running MATLAB
- Connected through a publicly accessible IP address

CPE

• Listening on an open port above 1024

CRITICAL PROJECT ELEMENTS

CPE	Description	Reason
Payload	Self-powered sensor payload that can monitor, store and transmit RFI signal data while interfaced with the UAS platform	A self-contained payload is necessary to measure necessary data and feed into the autopilot, as well as downlink the data to a ground station.
UAS	Develop a UAS platform capable of maintaining flight in a GPS denied environment while supporting all RFI measuring equipment	Measuring the RF profile over a large area will require an efficient means of surveying the area. A UAS capable of supporting the necessary sensors is the best means of covering this area.
Algorithm	Maintain autonomous flight while in a simulated GPS denied environment for an extended period of time	A PPD or ET will cause GPS data to be inaccurate. Flying through the affected area will require an autonomous flight mode that is not reliant on GPS

Design

Satisfaction

CPE

Verification

& Validation

Risk Analysis

Project

Summary

Design Solution

DESIGN REQUIREMENTS AND THEIR SATISFACTION

FUNCTIONAL REQUIREMENTS

FR	
FR1	The UAS shall have a flight time of 60 minutes.
FR2	The UAS shall fly in maximum winds of 30 km/hr.
FR3	The UAS shall fly in GPS denied environment for a linear distance of up to 2 km and a time of 200 seconds.
FR4	The UAS shall support all flight hardware and instrumentation.
FR5	The UAS and its testing shall adhere to FAA and CU Boulder regulations.
FR6	The UAS shall be capable of flying the operational payload.
FR7	The system shall fly autonomously given a pre-programmed flight plan.
FR8	The system shall have the ability to seamlessly switch between GPS and GPS-denied flight.
FR9	The UAS flight algorithm shall record and transmit data for all 6 degrees of freedom to assess flight performance.
FR10	The system shall create a profile of RF signal power.
FR11	The payload components shall be fully functional in a self-contained structure.
FR12	The payload shall have the ability to measure and localize an RFI source in GPS-denied environments. 32

UAS ASSEMBLY

UAS ASSEMBLY

UAS ASSEMBLY

Note: Only large and critical components were modelled and shown; however, all components were considered for the CG calculation. The nonmodelled components were assumed to be evenly distributed throughout the payload bay and thus their CG was located at the airframe CG

UAS WIRING DIAGRAM

Purpose & Objectives Design Solution

UAS REQUIREMENTS

Requirement	Satisfaction
FR 4 : The UAS shall support all flight hardware and instrumentation.	The UAS Payload Bay and inserts can support all hardware and instrumentation as shown in in the CAD model
FR 5 : The UAS and its testing shall adhere to FAA and CU Boulder regulations.	The UAS complies with FAA weight and size requirements and testing will also comply with FAA regulations.
FR6 : The UAS shall be capable of flying the operational payload.	The operational payload fits within the payload bay and is under the total weight requirement for the UAS

Design Satisfaction

CPE

Verification

& Validation

Risk Analysis

Project

FUNCTIONAL REQUIREMENTS

FR	
FR1	The UAS shall have a flight time of 60 minutes.
FR2	The UAS shall fly in maximum winds of 30 km/hr.
FR3	The UAS shall fly in GPS denied environment for a linear distance of up to 2 km and a time of 200 seconds.
FR4	The UAS shall support all flight hardware and instrumentation.
FR5	The UAS and its testing shall adhere to FAA and CU Boulder regulations.
FR6	The UAS shall be capable of flying the operational payload.
FR7	The system shall fly autonomously given a pre-programmed flight plan.
FR8	The system shall have the ability to seamlessly switch between GPS and GPS-denied flight.
FR9	The UAS flight algorithm shall record and transmit data for all 6 degrees of freedom to assess flight performance.
FR10	The system shall create a profile of RF signal power.
FR11	The payload components shall be fully functional in a self-contained structure.
FR12	The payload shall have the ability to measure and localize an RFI source in GPS-denied environments. 38

Purpose & Objectives Design Solution

UAS WEIGHT BREAKDOWN

System	Weight [g]
Flight System (FS)	2398
Autopilot (AP)	242
Operational Payload (OP)	536
Miscellaneous (MS)	140
Structural Components (SC)	155
TOTAL	3471

Requirement	Satisfaction
DR 5.1: The UAS shall weigh less than 25 kg	The UAS weighs 3.471 kg
DR 6.2: The operational payload shall weigh less than 1kg	The payload and additional connected antenna only weight 536 g

Design Satisfaction

CPE

Verification

& Validation

Risk Analysis

Project

MAXIMUM SPEED

Motor: E-flite Power 25 BL

Design

Solution

CPE

Maximum Speed Achieved When Velocity Causes Power Required = 700 W

Requirement	Satisfaction
FR 2: The UAS shall fly in winds of 30 km/h	The UAS has a max speed of 148 km/h
DR 2.1: The UAS shall have a max speed of at least 45 km/h	The UAS has a max speed of 148 km/h

Purpose &

Objectives

FLIGHT SYSTEM COMPONENT SELECTION

Design

Satisfaction

Requirement	Satisfaction
DR 1.2: The UAS propulsion System shall be electrically powered	The UAS runs on an electric motor
DR 1.2.1: The electric power source shall be a battery	The UAS power source is a battery

E-flite Power 25 BL 1250 Kv – <u>700 W (</u>Same as RECUV Talon)

Purpose &

Objectives

 $PR_{max} = 671 W$

E-flite 60-Amp ESC (recommended for motor)

CPE

Design

<u>Solution</u>

TOOMAN

2x Thunder Power RC 7000 mAh 3S LiPo batteries (Same as RECUV)

Risk Analysis

Verification

& Validation

Project

TIME AND DISTANCE COVERED IN GPS-DENIED ENVIRONMENT

- Distance Covered in GPS-Denied Area = 4.5 km
- $V_{cruise} = 14.4 \text{ m/s}$ -
- Time Spent in GPS-Denied Area = 315 s ←
- Total Flight Path Length = 57.14 km—
- Flight Time: 66.1 minutes —

Requirement	Satisfaction
FR 1: The UAS shall have a flight time of 60 minutes	The UAS has a flight time of 66.1 minutes
FR 3: The UAS shall fly in a GPS-denied area for at least 2 km and 200 seconds	The UAS will spend 4.5 km and 315 s in GPS-denied area, with max single stretch of 69 s and 1 km
Purpose & Design Objectives Solution CPE Satisfac	n tion Risk Analysis Verification Project & Validation Summary 42

ENDURANCE

FUNCTIONAL REQUIREMENTS

FR	
FR1	The UAS shall have a flight time of 60 minutes.
FR2	The UAS shall fly in maximum winds of 30 km/hr.
FR3	The UAS shall fly in GPS denied environment for a linear distance of up to 2 km and a time of 200 seconds.
FR4	The UAS shall support all flight hardware and instrumentation.
FR5	The UAS and its testing shall adhere to FAA and CU Boulder regulations.
FR6	The UAS shall be capable of flying the operational payload.
FR7	The system shall fly autonomously given a pre-programmed flight plan.
FR8	The system shall have the ability to seamlessly switch between GPS and GPS-denied flight.
FR9	The UAS flight algorithm shall record and transmit data for all 6 degrees of freedom to assess flight performance.
FR10	The system shall create a profile of RF signal power.
FR11	The payload components shall be fully functional in a self-contained structure.
FR12	The payload shall have the ability to measure and localize an RFI source in GPS-denied environments. 44

Design

Satisfaction

DMU11: Raw angular rate and linear acceleration

Risk Analysis

Magnetometer: Constrains heading Barometer: Constrains altitude

Project

Summary

PX4FLO	N:
Ground	speed

Design

Solution

Purpose &

Objectives

Digital airspeed sensor: True airspeed

CPE

	Requirement	Satisfaction
	FR 3: The UAS shall fly in a GPS denied environment for a linear distance of up to 2 km and a time of 200 seconds.	The DMU11 accumulates an error of < 2° after 200 seconds of operation, and the additional sensors will enhance operation to allow for accurate flight.
ensor:	FR 9: The UAS flight algorithm shall record and transmit data for all 6 degrees of freedom to assess flight performance.	The INS provides inertial data on all six degrees of freedom to be fused and recorded by the PixHawk.

Verification

& Validation

Purpose &

biective

Design

Solution

- A nonlinear state estimation system
- Incorporates noisy and/or slightly inaccurate sensor data with prior knowledge of the dynamics of the system to create an estimate of the system state

Design

Satisfaction

- Uses "innovations" for tuning and data rejection
- Innovation variance tests to check filter health

CPE

47

Verification

Validatio

Risk Analysis

Project

EXTENDED KALMAN FILTER

Satisfaction

Risk Analysis

& Validation

Design

Solution

Obiectives

CPE

- EKF2 Estimation System
- 24 state estimator
- Capable of processing data from multiple IMUs, increased chance of recovery from IMU fault
- Estimates error rotation vector, rather than quaternion orientation directly, resulting in faster and more efficient computations

Design

Satisfaction

CPE

Verification

Validatio

Risk Analysis

Project

Summary

• EK2_GPS_TYPE = 3

Design

Solution

Purpose &

biectives

Requirement

be able to fly

to GPS data.

DR 7.1: The UAS system shall

autonomously with access

MODIFIED ARDUPILOT FLYING WITH GPS – BLOCK DIAGRAM

Design

Satisfaction

CPE

- GPS-enabled flight uses ArduPilot
 AUTO flight mode
 - Take off, fly through each waypoint, land
 - GPS 2D position and 3D velocity data used in EKF state estimation

Satisfaction

Purpose &

Objectives

The AUTO flight mode flies

Design

Solution

autonomously using GPS

Verification

& Validation

Risk Analysis

Project

Objectives

Solution

MODIFIED ARDUPILOT FLYING WITHOUT GPS – BLOCK DIAGRAM

Summary

& Validation

 GPS-disabled flight will use Initialize FLY_BY_WIRE_B flight mode Main 400Hz loop Using Extended Kalman Filter state (control, AHRS, navigation) estimation, autopilot will hold 50Hz loop 10Hz loop <10Hz loop (misc. (GPS, (telemetry, sensor altitude, roll, and pitch calculations) telemetry) updates) Update EKF attitude/heading GPS input into EKF disabled, but reference system (IMU, gyros) Optical Flow enabled Update GPS (2D position and 3D velocity Sample GPS Case Update flight mode Update navigation Fallsafe handling FBWB Performance logging instructions Read compass. Etc... Constrain Requirement Satisfaction barometer, airspeed roll 3-axis Read PWM Failsafe handling stabilization Update GPS (2D position) DR 7.2: The UAS flight The modified FBW_B flight mode Calculate Set servos and 3D velocity) airspeed Downlink data system shall be able to allows for autonomous flight Update optical flow DataFlash - Create local fly autonomously without GPS Calculate pitch (microSD) data logs and throttle to without access to GPS fly straight/level data. Code Progression Data Transmission Routines Functions Purpose & Project Design Verification Design CPE Risk Analysis 51

Satisfaction

MODIFIED ARDUPILOT GPS SWITCH – BLOCK DIAGRAM

Design

Satisfaction

CPE

- Payload sends a binary input to PixHawk
 @3Hz
 - 0: GPS available
 - 1: No GPS available
- For testing purposes, AGC data replaced with simulated WiFi power data
 - Flight software unchanged
- Flight mode switch will be written in existing function events.cpp (10Hz)

	(• • • • =)
Requirement	Satisfaction
DR 8.1: The UAS flight system shall integrate with RF sensors in order to monitor RF power levels in real time.	The NT1065/MicroZed sample AGC in real time, transmitting to the PixHawk
DR 8.2: The UAS flight system shall utilize an RF signal power threshold to trigger a switch in flight modes.	The modified autopilot switches between flight modes based on AGC power data

Design

Solution

Purpose &

Objectives

Verification

& Validation

Risk Analysis

Project

SWITCH TIME

FUNCTIONAL REQUIREMENTS

FR	
FR1	The UAS shall have a flight time of 60 minutes.
FR2	The UAS shall fly in maximum winds of 30 km/hr.
FR3	The UAS shall fly in GPS denied environment for a linear distance of up to 2 km and a time of 200 seconds.
FR4	The UAS shall support all flight hardware and instrumentation.
FR5	The UAS and its testing shall adhere to FAA and CU Boulder regulations.
FR6	The UAS shall be capable of flying the operational payload.
FR7	The system shall fly autonomously given a pre-programmed flight plan.
FR8	The system shall have the ability to seamlessly switch between GPS and GPS-denied flight.
FR9	The UAS flight algorithm shall record and transmit data for all 6 degrees of freedom to assess flight performance.
FR10	The system shall create a profile of RF signal power.
FR11	The payload components shall be fully functional in a self-contained structure.
FR12	The payload shall have the ability to measure and localize an RFI source in GPS-denied environments. 54

PAYLOAD STRUCTURE DESIGN

STRUCTURAL ANALYSIS

Design

Satisfaction

CPE

Model name:Payload Box Study name:Static 2(-Default-) Plot type: Factor of Safety Factor of Safety1 Criterion : Automatic Factor of safety distribution: Min FOS = 1.3e+003

Structural Test	Yield Stress (N/m^2)	Factor of Safely
Static 1	6.00e7	3.562e3
Static 2	6.00e7	1.313e3
Static 3	6.00e7	2.751e3
4g Drop Test	6.00e7	N/A

Design

Solution

Purpose &

Objectives

Verification

& Validation

Risk Analysis

Project

Purpose &

Objectives

Design

Solution

STRUCTURAL REQUIREMENTS SUMMARY

Requirement	Satisfaction
DR 6.1 : The operational payload must be small enough to fit within the UAS payload bay.	With dimensions of 3"X3"X5" the payload easily fits in the Talon payload bay as shown in the UAS CAD Model
DR 11.2 : The operational payload structure shall have a mechanical interface to allow for attachment to a baseplate structure.	There are four clearance holes for #8-32 screws located on flanges that will be used to mount the structure inside the payload bay
DR 12.5 : The operational payload shall have an exterior interface for power and data post processing.	There are interfaces for a clip-in power switch, wires to the MicroZed, wires to the antenna, and wires to the LTE modem
DR 12.6 : The operational payload shall have an access panel on the exterior structure.	The lid of the structure can easily be removed by removing the four #4-40 screws located on the top

CPE

Verification

& Validation

Risk Analysis

Project

MODAL FREQUENCY

Design

Satisfaction

CPE

Model name:Payload Box Study name:Frequency 1(-Default-) Plot type: Frequency Amplitude1 Mode Shape : 1 Value = 186.19 Hz Deformation scale: 0.00105701

Requirements	Satisfaction
DR 11.1: Each structural component of the operational payload shall have a first modal frequency of above 100 Hz.	First modal frequency of the structure is 186 Hz.

Design

Solution

Purpose &

Objectives

Verification

& Validation

Risk Analysis

Project

shall operate for at least 1 hour

Purpose &

Objectives

Design

Solution

OPERATIONAL PAYLOAD BATTERY

	Capacity: 2200 mAh	Battery Discharge Duration		
PROEL	Voltage Output:	$\frac{2200 \text{mAh} * 5\text{V}}{1000} = 11 \text{ Wh}$		
	Payload draws at a maximum of 5W	$\frac{11Wh}{5W} = 2.2 \text{ hours}$		
Requirement	Satisfaction			
FR 12.2: The operational payload shall have its own power source	The battery selected will poperational payload	oower the		
FR 12.2.1: The operational payload	The payload should be ab	ple to		

operate for 2.2 hours

Design

Satisfaction

CPE

Verification

& Validation

Risk Analysis

Project

PAYLOAD WIRING DIAGRAM

PAYLOAD WIRING DIAGRAM

FILE TRANSFER

SSH/SCP File Transfer Service

Cellular enabled Linux Machine Cellular Network Access Linux Machine with Public IP and open port

DATA TRANSFER

REQUIREMENTS & SATISFACTION

Requirements	Satisfaction
DR9.1: The UAS flight algorithm shall output GPS data which will be compared with the estimated flight generated by inertial sensors.	The PixHawk sends the position data from both the inertial sensor package (IMU) and the GPS data of the UAS.
DR 10.1: The localization algorithm used with the operational payload shall function using payload hardware only.	The data is taken with the payload and sent to a ground station.
DR 10.4: The localization algorithm shall interface with the flight algorithm during flight to receive positional data.	The connection between the PixHawk and the Microzed sends the position data.
DR 10.5: The algorithm shall store data for post-processing.	All of the data is saved to the USB drive connected to the Microzed.
DR 12.1: The operational payload shall have its own processing unit.	The Microzed is the processing unit of the operational payload.
DR 12.3: The operational payload shall have a board capable of measuring RFI power in the GPS band using AGC circuitry.	The NT1065 redesign and antenna.
DR 12.4: The payload shall have a transmitter to relay the data, in real time, back to the ground station.	Transmission to ground station through LTE Modem and MicroZed.

FR

FUNCTIONAL REQUIREMENTS

- FR1 The UAS shall have a flight time of 60 minutes.
- FR2 The UAS shall fly in maximum winds of 30 km/hr.
- FR3 The UAS shall fly in GPS denied environment for a linear distance of up to 2 km and a time of 200 seconds.
- FR4 The UAS shall support all flight hardware and instrumentation.
- FR5 The UAS and its testing shall adhere to FAA and CU Boulder regulations.
- FR6 The UAS shall be capable of flying the operational payload.
- FR7 The system shall fly autonomously given a pre-programmed flight plan.
- FR8 The system shall have the ability to seamlessly switch between GPS and GPS-denied flight.
- FR9 The UAS flight algorithm shall record and transmit data for all 6 degrees of freedom to assess flight performance.
- FR10 The system shall create a profile of RF signal power.
- FR11 The payload components shall be fully functional in a self-contained structure.
- FR12 The payload shall have the ability to measure and localize an RFI source in GPS-denied environments. 45

RISK ANALYSIS

RISK ANALYSIS - INTRODUCTION

Design

Satisfaction

CPE

		Likelihood				
	1 2 3 4 5					
	5					
ity	4					
ver	3					
Se	2					
	1					

Design

Solution

Purpose & Objectives

Likelihood	Severity
1 = 0-20%	1 = Insignificant
2 = 20-40%	2 = Minimal
3 = 40-60%	3 = Manageable but not ideal
4 = 60-80%	4 = Damage to physical components
5 = 80-100%	5 = Project cannot be completed

Project

Summary

Verification

& Validation

Risk Analysis

RISK ANALYSIS - RISKS

Design Satisfaction

R1	There is too much noise in the AGC data which leads to the UAS not knowing when to switch flight modes			
R2	The time taken to switch between flight modes is over 1 second and it causes the UAS to crash			
R3	There is structural damage to the airframe while taking off/landing		5	1
R4	Landing using the barometer data causes a small error in vertical location. The UAS does not land where it should or crashes	sveritv	4	
R5	Line of sight of the UAS is lost	Se	2	
R6	Operating conditions differ from simulated conditions causing a higher rate of error		1	
R7	There is not enough bandwidth to downlink the AGC data			

CPE

Purpose & Objectives Design Solution

		Likelihood				
		1	2	3	4	5
	5		R5	R2		
Severity	4		R3	R1	R4	
	3			R6/R7		
	2					
	1					

Project

Summary

Verification

& Validation

Risk Analysis

RISK ANALYSIS - MITIGATION

Design

Satisfaction

CPE

R1	Coat payload structure in RFI paint to reduce noise in AGC data
<mark>R2</mark>	Ground tests will done to ensure that flight mode switches in time. If it does not, improvements will be made to the algorithm
R3	Skid plates have been added to the nose and underbelly of the UAS to ensure a more safe landing
R4	LIDAR and Optical Flow devices were mounted on the UAS to improve accuracy
R5	A "Return to Home" function will be set on the UAS that allows it to fly back to the takeoff location
R6	Simulations have been run with data from real flights to ensure that the UAS can still achieve the necessary levels of success
<mark>R7</mark>	Tests will be run during varying times of the day to ensure that the AGC downlink will be possible

Design

Solution

Purpose & Objectives

		Likelihood				
	1 2 3 4 5					
	5	R2	R5	R2		
ity	4	R4	R3	R1	R4	
Ver	3	R7		R6/R7		
Se	2	R6	R3/R1			
	1		R5			

Project

Summary

Verification

& Validation

Risk Analysis

Severity: 5 Likelihood: 3 Total: 15

Description: Once the UAS realizes that it is in GPS denied flight, it needs to switch flight modes. If this process takes longer than 1 second, the UAS could crash

Mitigation Options:

- Before the UAS flies, feed in simulated data on the ground to monitor time taken to switch flight modes
- In the event of failure during flight testing, manual control will be taken over the UAS to fly back to the ground and troubleshoot

Severity: 5

Purpose &

Diective

Design

Solution

Post Mitigation Risk Analysis Likelihood: 1 Total: 5

Design

Satisfaction

CPE

Verification

Risk Analysis

Project

Severity: 4 Likelihood: 4 Total: 16

Description: Trusting only the barometer data could lead to an inaccurate reading of altitude. This could cause the UAS to think that is above the ground and crash into it on landing **Mitigation Options:**

 LIDAR and Optical Flow have been added to the airframe so that the accuracy of positioning, especially closer to the ground, would be increased

Post Mitigation Risk Analysis Likelihood: 1 Total: 4

Severity: 4

Purpose &

Diective

Design

Solution

VERIFICATION AND VALIDATION

TEST LOCATION: TABLE MOUNTAIN

Design

Satisfaction

CPE

- Full flight test will be performed at Table Mountain, CO
- CU RECUV can give access with two week notice
- Test environment is flat grassland free of large obstructions

Purpose &

Objectives

Design

Solution

Risk Analysis

Verification

& Validation

Project

Summarv

Purpose & Objectives

Design Solution

TEST PLAN

Ground Level		Preliminary Flight Test		Mission Level Test			
Test	Date (2018)	Test	Date (2018)	Test	Date (2018)		
Talon Hardware Calibration	February 9-12	Talon EKF Calibration and Functionality Test	February 12-28	Maneuvers in GPS Denied Environment	March 19-30		
Payload Functional Ground and Downlink Testing	February 17-24	GPS Guided Flight Test, Endurance test	February 24-28	Mission Level Flight Test and	March 19-30		
GPS Denied Algorithm Ground	February 20-24	INS Guided Flight (Straight and Level)	March 1-17		h f e ve b		
Testing System Integration 	February 9-26	Localization & Power Profile	March 1-17	Tests	March 20-30		

Design Satisfaction

CPE

Verification & Validation

Risk Analysis

Project

Summary

GROUND TESTING

Test	Goals	Requirements Verified
Talon Hardware Calibration	 Verify that Talon UAV hardware (servos, PixHawk) is ready for flight Tune EKF/Kalman filter 	FR 4: UAS shall support all flight hardware and instrumentation
Payload Functional Ground and Downlink Testing	 Verify data collection Thermal Analysis Verify downlink capability 	 FR 11: Payload shall be self contained DR 11.5: The temperature of the payload shall remain below the operating temperatures of all components FR 9: The UAS flight algorithm shall record and transmit data for all 6 degrees of freedom to assess flight performance.
GPS Denied Algorithm Testing	 Verify navigation mode switch time Verify autopilot is ready for flight 	 FR 8: The UAS software shall seamlessly switch from GPS guided flight to inertial guided flight DR 8.2: UAS software shall utilize and RF power threshold in order to trigger a switch in flight modes
System Integration	Verify components interface	All functional requirements

PRELIMINARY FLIGHT TEST

Test	Goals	Requirements Verified
Talon EKF Calibration and Functionality Test	 Tune EKF based on flight performance Verify threshold drift during INS flight 	 DR 3.2: The drift of the UAS in the Z direction (altitude) shall remain under 10 m DR 3.3: The drift of the UAS in the x and y direction shall be less than 40m from 100 seconds of GPS denied flight.
GPS Guided Flight Test, Endurance test	 Verify autonomous flight and successful flight plan Verify basic flight capabilities 	 FR 1: UAS shall have a flight time of 60 minutes FR 2: UAS shall fly in maximum winds of 30 km/hr DR 2.1: UAS shall fly at a maximum speed of 45km/hr FR 7: UAS shall fly autonomously on a pre-programmed flight plan
INS Guided Flight (Straight and Level)	• Verify INS flight for 2km linear distance	 FR 3: UAS shall fly in GPS denied conditions for a linear distance of 2km DR 7.2.2: The UAS shall fly straight and level until GPS signal is regained.
Localization& Power Profile	 Verify AGC & GPS data is obtained 	 FR 12: Payload shall measure RF & localize and RF source FR 10: The system shall create a profile of RF signal power.

Design Satisfaction

CPE

Risk Analysis

Verification

& Validation

Project

Summary

MISSION LEVEL TEST

Test	Goals	Requirements Verified
Maneuvers in GPS Denied Environment	 Verify autopilot functions using INS data Verify UAS executes flight plan in GPS denied area 	 FR 8: The system shall have the ability to seamlessly switch between GPS and GPS-denied flight. DR 8.2.1: The flight algorithm shall switch back to GPS flight when power level drops below power threshold. DR 8.2.2: The UAS flight algorithm shall correct path and recalibrate inertial sensors once access to GPS is regained. DR 7.1.2: The UAS flight system shall be able to withstand high winds as defined in FR2 while using a pre-programmed flight plan.
Mission Level Flight Test and Localization	 Verify autonomous flight and successful flight plan Verify basic flight capabilities 	 DR 10.2: System shall localize within a circular area with a 40 meter radius. Ensuring requirements met for Preliminary flight test are met simultaneously
Redundant Tests	 Verify data collected is optimized and system error is minimal 	
Purpose & S Objectives	Design CPE Design	Risk Analysis Verification Project & Validation Summary 77

LOCALIZATION METHOD

Sphere of influence of a standard 2.4GHz Wi-Fi router mapped using Parrot Disco UAV:

- Supports autonomous flight
- Built-in Wi-Fi receiver
- Built-in GPS receiver

Purpose &

Obiectives

The power map will be used in conjunction with the Talon flight in order to perform localization that incorporates the position error generated by the IMU

Design

Solution

CPE

MODIFIED ARDUPILOT SIMULATIONS – SOFTWARE IN THE LOOP

InertialNav

- Simulink/C model used to test state estimation
- Uses actual flight data to test EKF performance
- Useful for tuning EKF

Flight path from test data

- EKF state estimation of test data without GPS for 200s
- Height error ~500m
 - Will be improved with barometer + chosen IMU
- Y-position error ~200m
 - Will be improved with chosen IMU
- RAMROD flightpath is simpler than test data used

MODIFIED ARDUPILOT SIMULATIONS – HARDWARE IN THE LOOP

X-Plane

- Runs ArduPilot directly on PixHawk
- Interfaces with computer as a physics simulator
- Will be used as final verification of modified ArduPilot before flight/ground tests

Purpose &

Objectives

Design

Solution

EKF2 TUNING

- Default tune built around stock PixHawk sensors. A higher quality IMU, as well as a pitot tube, and optical flow sensor are to be added.
- Tuning for new IMU
 - Static baseline test
 - Utilize Mission Planner to analyze telemetry logs, view filter innovations
 - Update Parameters
 - Repeat
- Flight testing to follow static ground tests
 - Allow for pitot tube and optical flow tuning

EKF2 TUNING

82

PROJECT SUMMARY

ORGANIZATIONAL CHART

WORK BREAKDOWN STRUCTURE

WORK BREAKDOWN STRUCTURE

SPRING SCHEDULE

Purpose & Design CPE Design Risk Analysis Verification Project

BUDGET BREAKDOWN

Advisor: Jade Morton

<u>Customer</u>: Dennis Akos

<u>PAB</u>: Donna Gerren, Bobby Hodgkison, Trudy Schwartz, Matt Rhode, Jelliffe Jackson, Torin Clark, Zoltan Sternovsky, Francsico Lopez-Jimenez, Dale Lawrence

IRISS/RECUV: Daniel Liebert, Cory Dixon

QUESTIONS?

BACKUP SLIDES

Risk Analysis

Localization

CAD Designs

Power Model

Time/Distance

Weight Breakdown

Flight Time

UAS Model

IMU Interface

Flow Sensor/Pitot Tube

FAA **EKF** Tuning IMU Data Transmission **GPS-Denied Time** MicroZed Wiring Budget ArduPilot Testing

Operation Payload

Optical Flow IMU Hardware Data Transmission Timing Diagram Design Solutions Takeoff/Landing

Operational Temperatures

LOCALIZATION MODEL

UAS Path (109 samples) (Error: 29.74 m)

Back

NONLINEAR LEAST-SQUARES

• The distance to the receiver can be estimated using nonlinear least-squares curve fitting. If we assume an unknown transmitter location at position (x,y) on a finite search grid, we can use the free space loss principle from the previous slide. The space loss coefficient α is determined by obstructions and ground reflections in the environment.

$$P_{12} = P_1 - P_2 = 10\alpha \log_{10}\left(\frac{d_2}{d_1}\right) \qquad P_{12} = 5\alpha \log_{10}\left[\frac{(x-x_2)^2 + (y-y_2)^2}{(x-x_1)^2 + (y-y_1)^2}\right]$$

• The objective function Q measures the difference between the actual measured power between two grid points and the predicted power difference between two grid points.

$$Q(x,y) = \sum_{k$$

 The (x,y) grid point where the objective function Q is minimized is the estimated transmitter location

• The path-loss for a given environment can be approximated by:

 $D^{-\alpha}$

Where α is the path-loss exponent.

- Ideally, signal intensity decreases proportional to the inverse square of distance between transmitter and receiver in threedimensional space. ($\alpha = -2$)
- Factors such as noise interference, ground reflection, obstacles, and imperfect antenna gains can increase signal attenuation.

$$\frac{P_r}{P_t} = G_t G_r \frac{\lambda^2}{(4\pi)^2 D^{-\alpha} L}$$

 α can be determined by measuring actual signal attenuation in the test environment with known transmitter/receiver locations and known transmitter signal Environment Losses power. Transmitter Receiver Pt Pr Gt Gr D

PAYLOAD STRUCTURE BOX DIMENSIONS

Right View

PAYLOAD STRUCTURE BOX DIMENSIONS

Front View

PAYLOAD STRUCTURE TOP DIMENSIONS

BATTERY BRACKET DIMENSIONS

TAIL SKID DIMENSIONS

HD CAMERA MOUNT DIMENSIONS

MAXIMUM POWER REQUIRED

TIME AND DISTANCE COVERED IN GPS-DENIED ENVIRONMENT

- R = 500 m Radius of GPS-Denied Area
- r = 80 m Sensor Range
- R/r = 6.2 Ratio
- L = 3000 m Length of Side of Search Area

Distance Covered in GPS-Denied (D):
Even Terms of R/r:

$$D(R/r) = 2R + 4R \sum_{n=1}^{\frac{1}{2}R/r-1} \sqrt{1 - 4n^2 \left(\frac{1}{R/r}\right)^2}$$
Odd Terms of R/r:

$$D(R/r) = 4R \sqrt{1 - \left(\frac{1}{R/r}\right)^2} + 4R \sum_{n=1}^{\frac{1}{2}(R/r-3)} \sqrt{1 - (2n+1)^2 \left(\frac{1}{R/r}\right)^2}$$

$$D(R/r) \approx 787.7 R/r - 264.2 = 4.5 \text{ km}$$
With S = 57.14 km, R/r = 6.2, and desired FT of 63 + minutes,

Flight System (FS)					
Component	Quantity	Weight [g]			
Motor w/ Prop	1	221			
Battery	2	423			
Pixhawk Power Module	1	22			
ESC	1	133			
Receiver	1	14			
Aileron Servo	2	22			
Ruddervator Servo	2	10			
Wet Noodle	3 ft	16 g/ft*3 ft = 48			
Airframe	1	1050			
Total		2398			

Autopilot (AP)					
Component	Quantity	Weight [g]			
Pixhawk 2	1	74			
IMU	1	24			
Telemetry Antenna	1	45			
GPS Module	1	47			
Airspeed Sensor/Pitot Tube	1	9/3			
Lidar	1	22			
Optical Flow	1	18			
Total		242			

Operational Payload (OP)					
Component	Quantity	Weight [g]			
Main Structure	1	135			
Top Structure	1	26			
Battery bracket	1	5.2			
Hardware	1	2.9			
Battery	1	73			
Wires	1	30			
Battery PCB	1	30			
MicroZed	1	43.6			
NT1065 V. RAMROD	1	25			
Power Monitoring Antenna	1	180			
TOTAL		536.1			

Miscellaneous (MS)				
Component	Quantity	Weight [g]		
Wires	-	50		
Connectors	-	50		
HD Camera	1	40		
Total		140		

Structural Components (SC)					
Component	Quantity	Weight [g]			
Forward Mounting Plate	1	68			
Aft Mounting Plate	1	55			
Forward Skidplate	1	15			
Rear Skidplate	1	17			
Total		155			

FLIGHT TIME

General	Model Weight: 3500 g incl. Drive \$ 123.5 oz	# of Motors: 1 (on same Battery)	Wing Area: 54.5 dm ² 844.8 in ²	Drag: coeffcient \$ 0.027 Cd	Cross Section: 8.1 dm ² 125.6 in ²	Field Elevation: 1609 m ASL 5280 ft ASL	Air Temperature: 21 °C 70 °F	Pressure (QNH): 900 hPa 26.58 inHg
Battery Cell	Type (Cont. / max. C) - charge state: LiPo 14000mAh - 30/45C + normal +	Configuration: 3 S 1 P	Cell Capacity: 14001 mAh 14001 mAh total	max. discharge: 85% \$	Resistance: 0.001 Ohm	Voltage: 3.7 V	C-Rate: 30 C cont. 45 C max	Weight: 844 g 29.8 oz
Controller	Type: CC Phoenix Edge HV 80	Current: 80 A cont. 80 A max	Resistance: 0.001 Ohm	Weight: 125 g 4.4 oz	Wire extension battery: AWG10=5.27mm ² \$	Length: 0 mm 0 inch	Wire extension motor: AWG10=5.27mm ² \$	Length: 0 mm 0 inch
Motor	Manufacturer - Type (Kv) - Cooling: E-flite medium Search	KV (w/o torque): 1250 rpm/V Prop-Kv-Wizard	no-load Current: 2 A @ 10 V	Limit (up to 15s): 58 A \$	Resistance: 0.02 Ohm	Case Length: 54 mm 2.13 inch	# mag. Poles: 14	Weight: 183 g 6.5 oz
Propeller	Type - yoke twist: APC Electric E ¢ - 0° ¢	Diameter: 10 inch 254 mm	Pitch: 6 inch 152.4 mm	# Blades: 2	PConst / TConst: 1.08 / 1.0	Gear Ratio:	Flight Speed: 0 km/h 0 mph	calculate

Back

FLIGHT TIME

Remarks:											
Battery		Motor @ Optimu	m Efficiency	Motor @ Maximum	1	Propeller		Total Drive		Airplane	
Load:	2.77 C	Current:	31.49 A	Current:	38.80 A	Static Thrust:	1884 g	Drive Weight:	3124 g	All-up Weight:	3500 g
Voltage:	10.96 V	Voltage:	10.96 V	Voltage:	10.92 V		66.5 oz		110.2 oz		123.5 oz
Rated Voltage:	11.10 V	Revolutions*:	12418 rpm	Revolutions*:	12176 rpm	Revolutions*:	12176 rpm	Power-Weight:	123 W/kg	Wing Load:	64 g/dm ²
Energy:	155.4 Wh	electric Power:	345.0 W	electric Power:	423.8 W	Stall Thrust:	1216 g		56 W/lb		21 oz/ft²
Total Capacity:	14000 mAh	mech. Power:	301.5 W	mech. Power:	369.4 W		42.9 oz	Thrust-Weight:	0.54 : 1	Cubic Wing Load:	8.7
Used Capacity:	11900 mAh	Efficiency:	87.4 %	Efficiency:	87.2 %	avail.Thrust @ 0 km/h:	1884 g	Current @ max:	38.80 A	est. Stall Speed:	43 km/h
min. Flight Time:	18.4 min			est. Temperature:	40 °C	avail.Thrust @ 0 mph:	66.5 oz	P(in) @ max:	430.7 W		27 mph
Mixed Flight Time:	20.9 min				104 °F	Pitch Speed:	111 km/h	P(out) @ max:	369.4 W	est. Speed (level):	102 km/h
Weight:	2532 g						69 mph	Efficiency @ max:	85.8 %		63 mph
	89.3 oz			Wattmeter reading	30 0 A	Tip Speed:	583 km/h	Torque:	0.29 Nm	est. Speed (vertical):	- km/h
				Current.	30.0 A		362 mph		0.21 lbf.ft		- mph
				Voltage.	10.90 V	specific Thrust:	4.45 g/W			est. rate of climb:	5.8 m/s
				Power:	425.2 W		0.16 oz/W				1135 ft/min
share									add to	>> Download .csv (0)	<< clear

					Motor Pa	rtial Load	B							
Propeller	Throttle	Current (DC)	Volage (DC)	el. Power	Efficiency	Thrus	st	Spec. T	hrust	Pitch Sp	eed	Speed (le	vel)	Motor Run Time
rpm	%	A	v	W	%	g	oz	g/W	oz/W	km/h	mph	km/h	mph	(85%) min
1800	14	0.3	11.1	3.1	38.4	41	1.5	13.3	0.47	16	10	3		2549.5
2700	21	0.6	11.1	7.0	57.5	93	3.3	13.2	0.47	25	15			1130.9
3600	28	1.2	11.1	13.7	69.4	165	5.8	12.0	0.42	33	20	2	1.20	575.7
4500	35	2.2	11.1	24.3	76.6	257	9.1	10.6	0.37	41	26			325.0
5400	42	3.6	11.1	39.8	80.9	371	13.1	9.3	0.33	49	31	32		198.7
6300	49	5.5	11.1	61.1	83.6	504	17.8	8.3	0.29	58	36			129.2
7200	57	8.1	11.1	89.4	85.3	659	23.2	7.4	0.26	66	41	55	34	88.2
8100	64	11.4	11.1	125.8	86.4	834	29.4	6.6	0.23	74	46	68	42	62.6
9000	72	15.6	11.0	171.3	87.0	1029	36.3	6.0	0.21	82	51	75	47	45.9
9900	80	20.7	11.0	227.0	87.4	1245	43.9	5.5	0.19	91	56	83	52	34.6
10800	88	26.8	11.0	294.2	87.5	1482	52.3	5.0	0.18	99	61	91	56	26.6
11700	96	34.2	11.0	374.0	87.5	1739	61.4	4.7	0.16	107	66	98	61	20.9
12176	100	38.8	11.0	423.8	87.2	1884	66.4	4.4	0.16	111	69	102	63	18.4

FLIGHT TIME

Foundational Questions

- 1. Can the selected UAS platform achieve a 60-minute flight time? Which airframes can/can't?
- 2. What is the upper limit of endurance for our UAS platform?
- 3. How can we optimize for minimum power consumption onboard the UAS?
- 4. How much will the UAS weigh given airframe and electronics? How heavy does the battery need to be? How much power is required?

	Assumptions
E = 63 I	min (inc. 5% buffer)
Worst-o	case headwind is 10 m/s
Steady	v, level flight throughout
Battery	v discharge depth is 85%
Overal	I system efficiency is 85%

Equations	Quantity [Units]
$m_b = \frac{C_b}{\sigma}$	Battery Mass [kg]
$W = g(m_e + m_{elec} + m_{fp} + m_b)$	Total Weight [N]
$C_{D,0} = \sum_{i=1}^{N} k_i c_{f_i} S_{wet_i} / S_{ref}$	Parasite Drag Coefficient [none]
$P_{flight} = \frac{1}{2}\rho V^3 S C_{D,0} + \frac{W^2}{\frac{1}{2}\rho V} \left(\frac{1}{\pi e b^2}\right)$	Power Required For Steady, Level Flight [W]
$P_{true} = \frac{P_{flight}}{\eta_{overall}}$	Propulsion System Power Required for Steady, Level Flight [W]
$E = 3600 \eta_{overall} \frac{V_b D_b C_b}{P_{flight}}$	Endurance [s]

Name	Variable	Value	
Density	ρ [kg/m³]	1.047	
Wing Area	S [m ²]	0.545	
Wingspan	b [m]	1.718	
Efficiency Factor	e [%]	80	
Propulsive Efficiency	$\eta_{ m overall}$ [%]	85	
Battery Discharge Depth	D _b [%]	85	
Endurance	E [min]	63	
Capacity Density	σ [mAh/kg]	16600	
Battery Voltage	V _b [V]	11.1	

Name	Variable
Velocity	V [m/s]
True Power Req'd	P _{true} [W]
Parasite Drag Coeff.	C _{D,0} [none]
Battery Weight	W _b [N]
Total Weight	W [N]
Total Drag	D [N]

$$P_{flight} = TV = DV$$

$$\begin{split} P_{flight} &= V(\frac{1}{2}\rho V^2 S)(C_{D,0} + \frac{C_L^2}{\pi eAR}) \\ C_L &= \frac{W}{\frac{1}{2}\rho V^2 S} \\ P_{flight} &= \frac{1}{2}\rho V^3 S\left(C_{D,0} + \frac{W^2}{(\frac{1}{2}\rho V^2 S)^2} \left(\frac{1}{\pi eAR}\right)\right) \\ P_{flight} &= \frac{1}{2}\rho V^3 S C_{D,0} + \frac{W^2}{\frac{1}{2}\rho V S} \left(\frac{1}{\pi eAR}\right) \\ P_{flight} &= \frac{1}{2}\rho V^3 S C_{D,0} + \frac{W^2}{\frac{1}{2}\rho V} \left(\frac{1}{\pi eb^2}\right) \\ P_{true} &= \frac{P_{flight}}{\eta_{overall}} \end{split}$$

Can find
$$V_{min,PR}$$
 by setting $\frac{\partial P_{flight}}{\partial V} = 0$

$$\frac{\partial P_{flight}}{\partial V} = 0 = \frac{3}{2}\rho V^2 S C_{D,0} - \frac{W^2}{\frac{1}{2}\rho V^2} \left(\frac{1}{\pi eAR}\right)$$

$$V_{min,PR} = \left[\frac{4}{3}\left(\frac{W}{S}\right)^2 \left(\frac{1}{\rho^2 C_{D,0}}\right) \left(\frac{1}{\pi eAR}\right)\right]^{\frac{1}{4}}$$

Back

UAS MODEL

Parameters

Well-Known Parameters

- S Wing Area (given by manufacturer, easy to measure)
- AR Wing Aspect Ratio (easy to measure b (wing span) and then calculate)
- W Total Weight (easy to measure on a scale)
- E Endurance (easy to measure with a timer) Unknown Parameters, Fairly Easy to Measure
- ρ Air Density (Take temp + pres measurements)
- V Airspeed (use total + static pressure from pitot tube measurement)

Unknown Parameters, Difficult to Measure

- CD,0 Parasitic Drag Coefficient (difficult to estimate and measure)
- e wing efficiency factor (difficult to measure/estimate)

Most Impactful Parameters

<u>Which</u> parameters will have the largest impact upon the Power Required (and hence endurance?)

- V -> V³ in first term, 1/V in second term (Which terms will dominate for given airframes? How much effect does a given velocity increase have on required power?)
- W -> W² in second term (how much of a power increase is required for a given weight increase?)
- b -> 1/b² in second term (does increasing wingspan (also increases weight) produce an appreciable decrease in required power?)
- η Overall efficiency of the propulsion system could be extremely low

Less important parameters

• C_{D,0} - wide range of values, could significantly impact power required

Drag Buildup

$$C_{D,0} = \sum_{i=1}^{N} k_i c_{f_i} S_{wet_i} / S_{ref}$$

k is form factor c_f is skin friction coefficient S_{wet} is wetted area N = 3 (wing, fuselage, tail) $S_{ref} = S_{wing}$

$$c_f = \frac{0.455}{(\log_{10}(Re_L))^{2.58}}$$
$$Re_L = \frac{\rho VL}{\mu}$$

 $k = 1 + 2(t/c) + 60(t/c)^4$ Wing and Tail

 $k = 1 + 1.5(d/l)^{1.5} + 7(d/l)^3$ Fuselage

 $S_{wet} = 2(1 + 0.2(t/c))S_{ref}$ Wing and Tail

$$S_{wet} = 2\pi (d/2)^2 + \pi dl$$
 Fuselage

 $C_{D,0} = C_{D,0,wing} + C_{D,0,fuselage} + C_{D,0,tail}$

RECUV Talon Di	rive System		RECUV Talon Overvi	ew	
Component Type		Component		Weight [g]	
Motor	E-Flite Power 2	5BL (1250 K∨)	Patton ()Maight [g]	400 (v2)	
Battery	Thunder Power	RC TP7000-3SH	ballery weight [g]	422 (X2)	
	(14000 mAh)		Total Weight [g]	3343	
ESC Phoenix Edge		HV 80A	Motor Power Pating [\//]	700 (1250 Ky)	
Propeller	APC 9x7 10x7			700 (1250 KV)	
	REC Talo	UV operates XUAV n in long-endurance figuration with suite of	Motor Power Rating [W]	700 (1250 Kv)	
	sens	ors and antennas	Battery Capacity [mAh]	7000 3S 11.4 V (x2)	
	 Serves as excellent point of reference for RAMROD Talon-based UAS 60 min+ Flight time is feasible on this airframe 		Optimal Cruise Speed [m/s]	14-17	
5			Endurance [min]	60-90	

DMU11 INTERFACE

PIN GUIDE: PixHawk

PixHawk 2.0:

- 5V Out = 5V supply to sensor
- Tx = UART transmit output
- Rx = UART receive input
- GND = Ground

PIN GUIDE: MAX490

MAX490:

- A = Non-inverting receiver input
- B = Inverting receiver input
- Y = Non-inverting driver output
- Z = Inverting driver output
- DI = Driver input
- RO = Receiver output
- Vcc = Supply voltage
- GND = Ground

PIN GUIDE: DMU11

DMU11:

- RxLo = Negative receive
- RxHi = Positive receive connection
- TxLo = Negative transmit connect
- TxHi = Positive transmit connection
- Vcc = Supply voltage
- GND = Ground
- RT = Termination resistor (120 Ω)

DMU11 INTERFACE

Aeros

GUUÐ

PX4FLOW / PITOT TUBE INTERFACE

I2C Splitter

PX4FLOW / PITOT TUBE INTERFACE

PixHawk I2C Master Receive Operation

Example data transmission, switching between the flow sensor and airspeed sensor through the I2C splitter

No color: Sent by PixHawk Sent by flow sensor Sent by airspeed sensor

Severity: 4 Likelihood: 3 Total: 12

Description: The noise in the downlink of the AGC data makes the UAS appear as if it has not yet entered the sphere of influence of the PPD and it will continue to trust it's GPS even if it shouldn't. It will also tell the UAS not to trust its GPS if it can

Mitigation Options:

• Downlink the data during different times of the day to try and find the time of day that downlinking the data is the most difficult to ensure that the UAS can downlink in the worst case scenario

	Post Mitigation	Risk Analysis
verity: 2	Likelihood: 2	Total: 4

Back

Severity: 4 Likelihood: 2 Total: 8

Description: The UAS could have structural damage when it lands. This damage could be severe enough to force the team to buy a replacement part.

Mitigation Options:

- Skid plates have been added to the bottom of the UAS so when the UAS lands, the fuselage will not hit the ground
- Structural analysis of the airframe has been conducted to ensure that the structure can handle a significant load

Severity: 2

Post Mitigation Risk Analysis

Likelihood: 2

Total: 4

Severity: 5Likelihood: 2Total: 10Description: While testing the UAS, it flies out the line of sight and
the team is unsure about where it is

Mitigation Options:

- A "Return Home" function will be implemented so that this problem doesn't happen
- An HD camera has been added to the front of the UAS and the pilot of the UAS will be able to see what the UAS sees if they take manual control

Post Mitigation Risk Analysis

Likelihood: 2

Severity: 1

Total: 2

Severity: 3 Likelihood: 3 Total: 9

Description: The simulations the team uses with simulated data don't behave the same as real life and some of the items the team bought will no longer be adequate for the project **Mitigation Options:**

- Simulations have been run using data from real flights to show that the parts selected should be adequate
- Margins have been built into the budget along with duplicate parts being ordered in order to avoid this. The biggest concern is if the IMU gets destroyed

Post Mitigation Risk Analysis Likelihood: 1 Total: 2

Severity: 2

Severity: 3 Likelihood: 3 Total: 9

Description: If the AGC can't downlink then a power profile of the signal source will not be able to be replicated at the ground station and the localization will not be possible

Mitigation Options:

- Test during different times of the day with varying bandwidth traffic to ensure that our downlink will work during the busiest time of the day
- Ensure that the AGC data and positional data get sent down before the IF data in order to generate the power profile

Severity: 3

Post Mitigation Risk Analysis Likelihood: 1 Total: 3

FAA POLICY

- 1. Pilot must have eyes on the UAS at all times.
- 2. Manual controls must be ready and available at all times.
- Flight paths may not be within a 5 mile radius of an airport unless the airport has been notified and has approved of the flight path.
- 4. Flight must be under 400 ft. altitude.
- 5. The Aircraft must remain under 55 lbs.

EKF2 TUNING

- Pitot Tube
 - EK2_EAS_NOISE
 - EK2_EAS_GATE
- Optical Flow
 - EK2_MAX_FLOW
 - EK2_FLOW_NOISE
 - EK2_FLOW_GATE
 - EK2_FLOW_DELAY

- IMU
 - EK2_GYRO_PNOISE
 - EK2_ACC_PNOISE
 - EK2_GBIAS_PNOISE
 - EKF2_GSCL_PNOISE
 - EK2_ABIAS_PNOISE

EKF2 STATES

- Attitude (Quaternions)
- Velocity (North, East, Down)
- Position (North, East, Down)
- Gyro bias offsets (X,Y,Z)
- Gyro bias factors (X,Y,Z)
- Z acceleration bias
- Earth magnetic field (X,Y,Z)
- Body magnetic field (X,Y,Z)

• Wind velocity (North, East)

DMU11 DATA TRANSMISSION

Message Contents

	Serial TX of 22 words at 115,200 baud:						Word	Data Item
	4.201ms, once every 5ms			TX End	TX Start		0	Header
DMA TX DM						(1	Message Count
	(continued	from SLOT 4)			(to SLOT	0)	2-3	X-Axis Angular Rate
0.44ms Concor error calculation: Concor componention: Message						<u> </u>	4-5	X-Axis Acceleration
<->	→				← processi	ing	6-7	Y-Axis Angular Rate
	¥				0.1605		8-9	Y-Axis Acceleration
							10-11	Z-Axis Angular Rate
SLOT 0	SLOT 1	SLOT 2	SLOT 3		SLOT 4		12-13	Z-Axis Acceleration
1,000Hz (1ms)							14-15	Reserved
< >	1	200Hz (5ms)					16-17	Average IMU Temperature
Sensor logging filt	terina	× 7				->	18	System Start-up BIT Flags
and temperature averaging						19	System Operation BIT Flags	
							20	Reserved
							21	Checksum

Back

Maximum Time in GPS Denied Conditions

3 km

MICROZED WIRING AND CONNECTIONS

BUDGET BREAKDOWN

	Item	Quantity	Cost per Unit (USD)	Total Cost (USD)
	UAS Components			
	XUAV Talon Airframe	2	125	250
	Pixhawk 2.1 w/cube	1	200	200
	E-Flight Power 25 BL Motor	1	70	70
	E-Flight 60-Amp Pro Switch-Mode	1	85	85
	TP7000-3SHV Battery	2	100	200
	Garmin LiDAR Lite	1	150	150
	Eagle Tree Prandtl Pitot Tube Kit	2	9	18
	Pixhawk Digital Airspeed Sensor	1	52	52
	Pixhawk PX4Flow	1	100	125
	APC10x7 Propeller	3	3	9
	AR7700 Serial Receiver	1	60	60
	Spectrum Dx6i Transmitter	1	200	200
	TTL 3DR Radio Telemetry kit	1	36	36
	Mobius HD ActionCam	1	65	65
	Here GPS Reciever	1	48	58
Bo	CCK HS-5065MG Wing Servos	4	31	124

BUDGET BREAKDOWN

Item	Quantity	Cost per Unit (USD)	Total Cost (USD)
HS-5055MG Tail Servos	4	18	72
DMU11 INS	1	360	360
Battery Charger and Case	1	113	113
UAS Total			2247
Payload Components			
MicroZed	1	220	220
Nt1065	1	500	500
PCB	1	30	30
2200mAh USB Battery Pack	1	15	15
TW7872 GPS Antenna	1	400	400
Nylonx Carbon Fiber Filament	2	75	150
Payload Total			1315
Materials			
Misc. Electronics			200
Testing			30
Project Total			<u>3792</u>
Margin Back			1208

ARDUPILOT - AUTO

ARDUPILOT - FBWB

MODIFIED ARDUPILOT SIMULATIONS – SOFTWARE IN THE LOOP

MavProxy

- Runs autopilot code in real time natively on Windows/Linux
- Sensor data estimated based on predictive modeling
- Useful to test/debug code changes
- Access to full range of C++ debuggers
- Can test physical sensors using serial

Replay

- Use DataFlash to simulate flight using actual flight data, with changed parameters
- Useful for testing flight-mode switch with actual data
- EKF tuning

BACK UP - OPERATIONAL PAYLOAD INTERFACE BOARD

Interface Board – PCB Design

Splits power between different systems in payload

Connection between MicroZed and PixHawk

LED Indicators to verify connections

Programming access to MicroZed

BACK UP – INTERFACE BOARD CONNECTIONS

Interface Board – PCB Design

Splits power between different systems in payload

Connection between MicroZed and Pixhawk

LED Indicators to verify connections

Programming access to MicroZed

60 m

= 10.8 m Horizontal distance seen

OPTICAL FLOW CALCULATIONS

Pixel Size $p = 6.0 \ge 6.0 \ \mu m$ Focal length f = 16 mm Resolution = 480×752 pixels $AFOV_h$ or AFOV $w = (480 \text{ pixels})(6.0 \ \mu\text{m}) = 2.88 \ \text{mm}$ $h = (752 \text{ pixels})(6.0 \ \mu\text{m}) = 4.512 \ \text{mm}$ Object at Infinity x or y $(AFOV_h/_2)$ $x = 2(60 \text{ m}) \tan \theta$ AFOV/2 Shorter Focal Length $y = 2(60 \text{ m}) \tan \left(\frac{AFOV_v}{2}\right) = 16.9 \text{ m}$ Vertical distance seen $x_{res} = y_{res} = \frac{x}{w} = \frac{y}{h} = 0.0225 \text{ m/pixel}$ Resolution $AFOV_h = 2\tan^{-1}\left(\frac{w}{2f}\right) = 10.26^\circ$ $AFOV_{v} = 2\tan^{-1}\left(\frac{h}{2f}\right) = 16.05^{\circ}$

IMU HARDWARE

DMU11 From Silicon Sensing

- Gyro bias = +/- 0.25 deg/s
- Gyro bias drift = +/- 0.025 deg/s
- Gyro bias instability < 10 deg/hr
- ARW < 0.4 deg/sqrt(hr)
- Acc. bias = +/- 3.0 mg
- Acc. bias drift = +/- 1.0 mg
- Acc. bias instability < 0.05 mg
- VRW < 0.05 m/s/sqrt(hr)
- Size: 22 x 22 x 10.6 mm
- Mass: 24 g
- Cost: \$359.00 (including evaluation kit)

V&V DATA TRANSFER TESTING METHOD

TIMING DIAGRAM

DESIGN SOLUTION

Parameter	Value
Takeoff Weight	3471 g
Wing Span	1.718 m
Battery Capacity	14000 mAh
Maximum Flight Endurance	92 min
RFI Sampling Rate	3 Hz
GPS Sample Rate (location)	10 Hz
Max Data Transfer Rate to Ground	10 Mbps
Cruise Speed	14.4 m/s
Cruise Altitude	60 m

TAKE OFF & LANDING

Manual

- Initial testing
- Hand launch w/ transmitter

Take Off

Autonomous

- Deliverable
- Bungee or hand launch

Landing

<u>Manual</u>

- Testing/Emergency
- Controlled using transmitter

<u>Autonomous</u>

- Deliverable
- Controlled using PixHawk

OPERATIONAL TEMPERATURES

Component	Minimum Temperature (C)	Maximum Temperature (C)
MicroZed	-40	80
NT1065	-40	85
Battery	-20	60

The openings in the box will allow for heat dissipation and keep the components within the operating temperatures.

Requirements	Satisfaction
DR 11.3: The temperature inside the	The operational temperatures of the
operational payload shall stay within	components will not go outside their
the operating temperature of all	operating temperature.
electronic components contained	