# 

Research at high Altitude on Distributed Irradiance Aboard an iNexpensive Cubesat Experiment

Test Readiness Review

Presenters: Katie Dudley, Jenny Kampmeier, Russell Bjella, Jeremy Muesing

Team Members: Brandon Antoniak, Lance Walton, David Varley, James Pavek, Alec Fiala





## Project Statement

RADIANCE will design, build, test, and deliver a 3U CubeSat-style payload to collect solar irradiance data, images, attitude information, and ambient atmospheric data on a high-altitude balloon flight.

Component Testing Subsystem Testing

## Project-Level ConOps

#### Power Up

Using external power source equivalent to 15 W of expected HiWind power



Project Overview

Schedule

Component Testing Subsystem Testing Integration Testing

Budget



3

## **Baseline Design**



Project Overview

Schedule

Component Testing Subsystem Testing Integration Testing

## Functional Requirements



RADIANCE shall...

FR1: Take solar irradiance measurements.

FR2: Survive the environmental conditions of a high-altitude balloon flight up to 40 km.

- FR3: Return data.
- FR4: Determine its attitude.
- FR5: Interface with the HiWind Gondola.
- FR6: Capture images of the Sun in the visible spectrum.

The project deliverables shall include a Path-to-Space report.



Solution

Work

## Levels of Success



| System  | Expected<br>Level | Details                                                                                                                                                                              | Date |
|---------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Instr.  | 3                 | Take solar irradiance measurements at better than<br>1.5nm resolution covering 250-1000nm<br>Capture 1 photo/min of the Sun for full flight<br>Provide calibration of the instrument | 3/18 |
| C&DH    | 3                 | Record solar irradiance, attitude, environmental,<br>and housekeeping data on a durable data storage<br>device with sufficient capacity                                              | 3/18 |
| Thermal | 3                 | All systems survive and operate during the thermal conditions of the full flight                                                                                                     | 3/31 |

Project Overview

Schedule

Component Testing Subsystem Testing Integration Testing

Budget

7

## Levels of Success



| System    | Expected<br>Level | Details                                                                                                                              | Date |  |
|-----------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------|------|--|
|           | 2                 | Determine and record attitude to 1 arcminute of accuracy relative to the sun vector                                                  | 3/31 |  |
| ADS       | 1                 | Determine and record attitude to 1° of accuracy relative to the sun vector                                                           |      |  |
| EPDS      | 1                 | Package operates on HiWind power supply                                                                                              | 3/18 |  |
| Structure | 1                 | Structure must be within 10cm x 10cm x 32cm<br>Data is recoverable after up to 5 Gs on landing<br>Structure can be affixed to HiWind | Done |  |

Project Overview

Schedule

Component Testing Subsystem Testing Integration Testing

Budget

8

## **Critical Project Elements**



9

| CPE                       | Justification                                                        | FR |
|---------------------------|----------------------------------------------------------------------|----|
| Thermal Control           | All components must meet thermal requirements                        | 2  |
| Power                     | Power board design is complex                                        | 5  |
| Software                  | Efficient software design is critical to mission success             | 3  |
| Camera, Lens              | Challenging assembly to ensure in-focus images                       | 6  |
| Attitude<br>Determination | Complex design, small parts, challenging hardware/software interface | 4  |

#### No changes since MSR.





## Executive Summary



|               | January | February | Ma  | rch   | April | May                          |
|---------------|---------|----------|-----|-------|-------|------------------------------|
| EPDS          | 12%     |          | 41% |       |       |                              |
| Procurement   |         |          |     | 65%   |       | 85%                          |
| Manufacturing |         |          |     |       |       | 90 <b>9</b> 5 <mark>%</mark> |
| Thermal       |         |          |     |       |       | 90%100%                      |
| Software      |         |          |     |       |       | 79 <b>%5%</b>                |
| Attitude Det. |         |          |     | 60%   |       | 80%                          |
| Path-to-Space | 0%0%    |          |     | Today |       |                              |
| Testing       |         | 20%      | 40% |       |       |                              |





Project Overview Schedule Component Testing Subsystem Testing Integration Testing

## Verification & Validation Plan



| Component<br>Testing                             | Subsystem<br>Testing                                                | Integration<br>Testing                                               |
|--------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| Verify that<br>components operate<br>as expected | Verify integrated<br>operation of<br>subsystems<br>Model Validation | Verify integrated<br>operation of full<br>system<br>Model Validation |
| Start Nov 21                                     | Start Feb 22                                                        | Mar 10 — Apr 14                                                      |
|                                                  |                                                                     |                                                                      |

Project Overview Component Testing

Subsystem Testing Integration Testing



## Component Testing

Project Overview Schedule Component Testing Subsystem Testing Testing Budget

14

## Purpose and Scope

Component Testing

#### Subsystem Testing

Integration Testing

Integration

Testing

- Purpose:
  - Verify components turn on, take measurements, and act according to data sheets

Component

Testing

**Subsystem** 

Testing

- Investigate need for calibration & perform calibration
- Scope:
  - Sensors and science instruments
  - Microcontroller and storage devices
  - Power system and thermal control components
- Risks Reduced:

Project

**Overview** 

Camera lens modification

Schedule

## Component Testing Schedule



## Spectrometer Calibration



- Avantes Deuterium light source
- AvaSoft calibration software
- Calibration stored on spectrometer



Wavelength (160-1000nm)

Component Testing Subsystem Testing Integration Testing

### Photodiode Test

- Single photodiode
- Measure current with multimeter
- Verify response to small angular position changes
- Higher than expected current (2.51 mA)
  - Change feedback resistance from 5 kΩ to 1 kΩ



Component Testing Subsystem Testing Integration Testing

## **Battery Capacity Testing**



Battery discharge across load resistor

- Voltage readings taken every 5 seconds
- >50W, 5 $\Omega$  resistor used

**Schedule** 

Project

**Overview** 



**Subsystem** 

Testing

Component

Testing



## Battery Discharge Testing



- >Batteries charged to ~90%
- > Tested at 0.5C discharge rate
- Linear voltage drop to ~3.25V
- Discharge test stopped at 2.5V



## External Humidity Sensor

Analog

## Measure frequency Placed on back of structure





Project Overview

Schedule

Component Testing Subsystem Testing Integration Testing

## Humidity Sensor Error

#### >Systematic error

• ~36%

Project

**Overview** 

#### Circuit produces up to 20% error

- Propagated humidity error ~70%
- Requires calibration
  - EL-USB humidity sensor
  - Accurate to 3% RH

**Schedule** 

Component

Testing





Integration

Testing

Subsystem

Testing

## Status Summary

|  |  | 1 |
|--|--|---|
|  |  |   |
|  |  |   |
|  |  | Ĩ |

| Completed & Passed                                                                                                                                                                                                                                                                                                             | In Progress                                                                                        | Upcoming                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------|
| <ul> <li>Batteries (2)</li> <li>Camera</li> <li>Env. Temperature Sensor</li> <li>Env. Humidity Sensor</li> <li>Housekeeping Temperature<br/>Sensors (3)</li> <li>Raspberry Pi</li> <li>SLC Flash Drive</li> <li>MLC Flash Drive (2)</li> <li>Heaters (2)</li> <li>Photodiodes (4)</li> <li>Spectrometer Calibration</li> </ul> | <ul> <li>ND Filter</li> <li>Wire fit</li> <li>Humidity Sensor</li> <li>SLC microSD card</li> </ul> | <ul> <li>TVAC Temp<br/>Sensors (10)</li> </ul> |

Component Testing Subsystem Testing



24

## Subsystem Testing

Project<br/>OverviewScheduleComponent<br/>TestingSubsystem<br/>TestingIntegration<br/>TestingBudget

## Purpose and Scope



#### Subsystem Testing

#### Integration Testing

Integration

Testing

- Purpose:
  - Verify and integrate operation of subsystems, and interaction between software with hardware
  - Validate CAD model and ADS model
- Scope:
  - Power boards with batteries

Schedule

- Thermal, instrumentation, C&DH, and software
- Structural integration
- Risks Reduced:

Project

**Overview** 

• Fabrication incompatibility, improper data handling, and circuit issues

Component

Testing

Subsystem

Testing

25

## Subsystem Testing Schedule



## Structure Test Summary

PurposeTest fabrication compatibility<br/>between purchased components<br/>and manufactured parts



#### **Designed Assembly**

Actual Assembly

Project Overview

Schedule

Component Testing Subsystem Testing Integration Testing

Budget





27



## Sommers-Bausch Observatory

- Used for testing ADS and camera
- Sun-tracking telescope with 2 arcsec/hour drift

FR 4: RADIANCE shall determine its attitude.

FR 6: RADIANCE shall take images of the sun.





**Schedule** 

Component Testing

Subsystem Testing

Integration Testing

## ADS Subsystem Test

- Photodiodes connected to ADC and Raspberry Pi
   Collect data with
- flight software, write to flash drive
- Compare computed angle with STK model



Project Overview

Schedule

Component Testing Subsystem Testing Integration Testing

## Ideal Results (STK)



## Power Testing: Model



#### Verify Voltage

- 3 Modeled Points
- Interfaces
  - -Battery
  - —Heater
  - -USB

Project Overview

Schedule

Component Testing Subsystem Testing Integration Testing

## FlatSat Power Board Testing





Project Overview

Schedule

Component Testing Subsystem Testing Integration Testing

## **Revision 2 Power Testing**





- Verify changes successful
- Verify power model
- Begin integration testing

Project Overview

Schedule

Component Testing Subsystem Testing

## Active Thermal System



- Verify Raspberry Pi turns heater on/off
- Verify software integration with hardware
- Confirm thermostat dead-zone

Project Overview

Schedule

Component Testing Subsystem Testing Integration Testing

## Status Summary



35

| Completed & Passed                                             | In Progress                                                                                                                                                                    | Upcoming                                                                          |  |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| <ul> <li>Structural Fit</li> <li>Power Board Rev. 1</li> </ul> | <ul> <li>Attitude<br/>Determination<br/>System</li> <li>Camera System</li> <li>Power Board Rev. 2</li> <li>Environmental<br/>Sensors with C&amp;DH<br/>and Software</li> </ul> | <ul> <li>Active Thermal<br/>Control System</li> <li>Power Board Rev. 3</li> </ul> |  |

Project<br/>OverviewScheduleComponent<br/>TestingSubsystem<br/>TestingIntegration<br/>TestingBudget



## Integration Testing

Project Overview Schedule Component Testing Testing Integration Testing Budget 36
### Purpose and Scope

Component Testing

#### Subsystem Testing

#### Integration Testing

- Purpose:
  - Verify and demonstrate integrated operation of full system
  - Validate SolidWorks thermal, C&DH storage capacity, and timing models
- Scope:
  - Includes all hardware, electrical components, and software
  - FlatSat Tabletop Integration and Environmental Testing
- Risks Reduced:

Project

**Overview** 

Violating operational temperature bounds

Schedule

- Data overwrite error
- Software lock-up

### Integration Testing Schedule





### FlatSat Tabletop Integration

48-hour continuously staffed test March 17 to March 19

DAQ System:

- Flight system writes data from all sensors to onboard storage
- NI 6009 DAQ system to record voltages
- Manual backup of voltage measurements
- Heartbeat messages to terminal

| FlatSat Test Plan for RADIANCE                                                                                                    | 1   |     |        |
|-----------------------------------------------------------------------------------------------------------------------------------|-----|-----|--------|
| Written by: Katelyn Dudley                                                                                                        |     |     |        |
| Modified: Mar 1                                                                                                                   |     |     |        |
| Required Components by Subsystem                                                                                                  |     |     |        |
| Instrumentation                                                                                                                   |     | uit |        |
| <ul> <li>Camera with mount, lens adjustment, and Neutral Density filter</li> </ul>                                                |     |     |        |
| <ul> <li>Spectrometer</li> </ul>                                                                                                  |     |     | drive, |
| <ul> <li>ADS: photodiodes, mount, transimpedance amps, ADCs</li> </ul>                                                            |     |     |        |
| <ul> <li>Environmental temperature and humidity sensor</li> </ul>                                                                 |     |     |        |
| Power                                                                                                                             |     |     |        |
| <ul> <li>Batteries</li> </ul>                                                                                                     |     |     |        |
| <ul> <li>Power board (Rev 2, flight or FlatSat board ok)</li> </ul>                                                               |     |     |        |
| C&DH/Software                                                                                                                     | Ŧ   |     | ad     |
| <ul> <li>Flight Raspberry Pi with SLC microSD loaded with OS and flight software (with<br/>static IP set and recorded)</li> </ul> |     |     |        |
| <ul> <li>2 MLC flash drives and SLC flash drive</li> </ul>                                                                        |     |     |        |
| <ul> <li>Ethernet cable with access to ethernet port</li> </ul>                                                                   |     |     |        |
| Thermal                                                                                                                           |     |     |        |
| <ul> <li>Housekeeping temperature sensors on SLC flash drive and each battery</li> </ul>                                          |     |     | ights  |
| <ul> <li>Heaters can be plugged in and connected, but should never turn on in lab</li> </ul>                                      |     | ncy |        |
| environment. Place on particle board or wood in case they heat up unexpectedly                                                    |     |     |        |
| (this would be a reason to call for help and debug)                                                                               |     |     |        |
| Structure                                                                                                                         | et  |     |        |
| <ul> <li>Not needed</li> </ul>                                                                                                    | SL  |     |        |
|                                                                                                                                   |     |     |        |
| Other Materials and Equipment                                                                                                     |     |     |        |
| <ul> <li>Power Supply to provide 28V, 15W</li> </ul>                                                                              |     |     |        |
| <ul> <li>Stay away from GPS 4303 supply on station by cabinet 1</li> </ul>                                                        | IX  |     |        |
| Multimeter                                                                                                                        |     |     |        |
| <ul> <li>Kapton tape disks (to attach the housekeeping temp sensors)</li> </ul>                                                   |     |     |        |
| <ul> <li>NI-6009 with USB cable</li> </ul>                                                                                        | ľ   |     |        |
| Modified Basic Voltage VI                                                                                                         |     |     |        |
| Computer with LabView                                                                                                             |     |     |        |
| <ul> <li>Assorted banana cables, alligator clips, breadboard, jumper wire kit</li> </ul>                                          | out |     |        |
|                                                                                                                                   |     | L   |        |
|                                                                                                                                   |     |     |        |
|                                                                                                                                   |     |     |        |
|                                                                                                                                   |     |     |        |
|                                                                                                                                   |     |     |        |
|                                                                                                                                   | У   |     |        |
|                                                                                                                                   | her |     |        |
|                                                                                                                                   | J   |     |        |
| <ul> <li>Plug data storage drives into computer. Delete files, and record storage capacity</li> </ul>                             | /   |     |        |
| properties                                                                                                                        |     |     |        |
|                                                                                                                                   |     |     |        |
| Ending Procedures (Last Shift Only)                                                                                               |     |     |        |
| Ending Procedures (East Shint Only)                                                                                               |     |     | ,      |
|                                                                                                                                   |     |     |        |
|                                                                                                                                   |     |     |        |

Schedule

Component Testing Subsystem Testing Integration Testing

#### Thermal Vacuum Chamber

Component

Testing

Subsystem

Testing

FR 2: The system shall survive the environmental conditions of flight.

- TVAC at HAO NCARWeek of March 20
- Validate thermal models for cruise

Schedule

- >Chamber ratings:
  - 270 Pa, -20°C
- >Our needs:

Project

**Overview** 

• 200 Pa, 5°C



Integration

Testing

41



Unacceptable risk to expose spectrometer to ENV tests
Mimic mass (174 g), conductivity, and heat output
1D heater rated to 20W inside milled-out aluminum block

Component

Testing

**Subsystem** 

Testing

Integration

Testing

Project

**Overview** 

**Schedule** 

#### Environmental Chamber



FR 2: The system shall survive the environmental conditions of flight.



- Payload will experience two full ascent profiles
- Narrow availability for chamber use
- Requires constant staffing

Spectrometer analog will be used to avoid damaging expensive instrumentation

Project Overview

Schedule

Component Testing Subsystem Testing Integration Testing

#### Environmental Chamber

Component

Testing

- External DAQ and Power
- DAQ system: 10 temperature sensors in chamber sending data to DAQ-specific Raspberry Pi

**Schedule** 

Project

**Overview** 

- System will function as in flight (minus spectrometer)
- Wires feed through foam insulated port

Integration

Testing

x = Temperature Sensor

**Subsystem** 

Testing

44

#### Environmental Chamber





>ENV chamber only takes linear inputs

Temperature profile linearized to be harsher than reality

Start test with 60 minutes at -10°C







Project Overview Component Testing Subsystem Testing

### Testing and Risk Mitigation



| Element                     | Value | Test                     |
|-----------------------------|-------|--------------------------|
| Overheating                 | 5     | TVAC                     |
| Frost on optics             | 5     | Acceptable Risk          |
| Heater failure              | 3     | TVAC                     |
| Drive hardware failure      | 4     | Acceptable Risk          |
| Temporary power failure     | 3     | FlatSat (Error Handling) |
| Software data write failure | 2     | FlatSat (Error handling) |
| Bit flip                    | 2     | Acceptable Risk          |
| Drive connection failure    | 2     | Acceptable Risk          |
| Camera oversaturation       | 2     | SBO                      |
| Pi software failure         | 1     | FlatSat                  |

Project Overview

Schedule

Component Testing Subsystem Testing

47

#### Status Summary



| Completed & Passed | In Progress | Upcoming                                                                                                        |
|--------------------|-------------|-----------------------------------------------------------------------------------------------------------------|
| • None yet         | • None yet  | <ul> <li>FlatSat Tabletop Integration</li> <li>Thermal Vacuum Chamber</li> <li>Environmental Chamber</li> </ul> |

Project Overview Schedule Component Subsystem Testing Testing

Integration Testing



Project Overview Schedule Component Testing Subsystem Testing Integration Testing



#### Procurement Status



| Subsystem       | Projected<br>Cost | Procured | To be<br>Procured | Margin (%)   | Effect on<br>Budget |
|-----------------|-------------------|----------|-------------------|--------------|---------------------|
| C&DH            | \$ 167            | \$ 149   | _                 | —            | +\$ 18              |
| Sensors         | \$ 203            | \$ 127   | —                 | —            | +\$ 76              |
| Instrumentation | \$2988            | \$3022   | _                 | —            | -\$ 34              |
| Power           | \$ 662            | \$ 374   | \$ 282            | \$ 56        | -\$ 50              |
| PM              | \$ 84             | _        | \$ 84             | —            | _                   |
| Structure       | \$ 418            | \$ 223   | \$ 4              | \$ 6         | +\$185              |
| Testing         | \$ 250            | _        | \$ 93             | \$ 157       | _                   |
| Thermal         | \$ 66             | \$ 36    | _                 | —            | +\$ 30              |
| TOTAL           | \$4613            | \$3931   | \$ 463            | \$ 219 (47%) | +\$225              |

Project Overview

Schedule

Component Testing Subsystem Testing Integration Testing

#### Budget Status

| Estimate     | Cost   |
|--------------|--------|
| CDR Estimate | \$4920 |
| MSR Estimate | \$4634 |
| TRR Estimate | \$4613 |



| Item                          | Status       | Notes              |
|-------------------------------|--------------|--------------------|
| Avantes calibration hardware  | Procured     | Free               |
| Professional board population | Planned      | Included in budget |
| AIAA conference registration  | Investigated | \$270              |
| Expedited Shipping            | Optional     | —                  |

Project Overview

Schedule

Component Testing Subsystem Testing Integration Testing

#### Thank you!

#### We welcome your feedback!



Project Overview

Schedule

Component Testing Subsystem Testing Integration Testing



### BACKUP





### Requirements and Models



| Requirement                                 | Model              | Test                                            | Date                             |
|---------------------------------------------|--------------------|-------------------------------------------------|----------------------------------|
| FR 1: Take solar<br>irradiance measurements |                    | Spectrometer Calibration                        | Feb 19                           |
| FR 2: Survive<br>environmental conditions   | SolidWorks Thermal | Thermal Vacuum Chamber<br>Environmental Chamber | Wk of Mar 20<br>Mar 31, Apr<br>5 |
| FR 3: Return data                           | C&DH, Storage      | FlatSat Tabletop Integration                    | Mar 10-12                        |
| FR 4: Determine off-sun angle               | Attitude           | Photodiode Testing at SBO                       | Mar 2-8                          |
| FR 5: Interface with<br>HiWind              |                    | Inspection                                      | Continuous                       |
| FR 6: Capture images of the sun             |                    | Camera Testing at SBO                           | Mar 2-8                          |



### Other Testing

#### **Heaters**

- Check resistance
- Check heat production
- Visually inspect for damage

#### **Temperature Sensors**

- Check 1Wire data operability
- Quantify Temperature sensor error with known sources (Boiling water/Ice)

#### **Storage Devices**

- Change formatting to EXT3 with Journaling
- Check data read/write
- Check unplugged data storage
- Check memory volume

#### Wire Fit

- Check wire turn needs
- Check slot clearance width and height
- Smooth possible abrasive corners

Component Testing Subsystem Testing

55



#### Internal Temp Sensors



One-wire interface

Placement
SLC drive
One per battery



Internal Temperature Sensors

Placed hand on sensor



Note: Uncertainty is 0.5 °C on each measurement

Project Overview

Schedule

Component Testing

28

Subsystem Testing Integration Testing

#### External Temp Sensor



# I2C interface Placed on back of structure





Project Overview

Schedule

Component Testing Subsystem Testing Integration Testing

#### Structure Test Results

Test fit resulted in a few changes:

Camera mount had to be 3D printed
Longer screws needed in a couple places
Using two screws for camera mounting
Minor changes to photodiode array to fit boards
New threads for neutral density filter



#### Attitude Determination System

- Photodiode array (heritage from MinXSS)
  - 4 photodiodes offset at 45 degrees from boresight determine relative position of sun
- Success Levels
  - Level 1: ± 1° accuracy
  - Level 2: ± 1 arcminute accuracy

### FR 4: RADIANCE shall determine its attitude.



Project Overview

Schedule

Component Testing Subsystem Testing Integration Testing

#### **ADS Test Procedure**



Project Overview Schedule Component Testing Subsystem Testing Integration Testing Budget 60





#### Telescope Mount for ADS Test





#### Camera/Lens System

- Images provide context for spectrometer data
- Using neutral density filter
  - Optical density of 1.5
  - Protects camera electronics from saturation/damage
  - 6.3° field-of-view

## FR 6: RADIANCE shall take images of the sun.



Schedule

Component Testing Subsystem Testing Integration Testing

#### Neutral Density Filter Test





#### Power Testing

#### Purpose

#### Resources

Verify Voltage/Power draw

Interfaces

- **>**Pi
- Battery
- Heater

Trudy's and Bobby's labs

- Power Source
- > Multimeters

#### **Risks Reduced**

Variable input voltage (28-33V)

Voltage regulation

Project Overview

Schedule

Component Testing Subsystem Testing







- Unacceptable risk to expose spectrometer to environmental tests
- Mimic conductive properties, mass, and power output
  - Al 6061-T6, 174 g, 1.25 W
- 1D heater rated to 20W inside milled-out aluminum block





### Data Storage Model – MLC

| Measurement   | Size/data point | Frequency | Total   |
|---------------|-----------------|-----------|---------|
| Camera images | 1.8 MB (max)    | 1/60 Hz   | 40.5 GB |

### Data Storage Model – SLC

| Measurement          | Size/data point   | Frequency | Total      |
|----------------------|-------------------|-----------|------------|
| Spectrometer         | 16.384 kB         | 1 Hz      | 10.55 GB   |
| External temperature | 4 B               | 1 Hz      | 5.273 MB   |
| Internal temps (x6)  | 24 B              | 1 Hz      | 31.638 MB  |
| Humidity             | 4 Botal: 10.64 GB | 1 Hz      | 5.273 MB   |
| Photodiode (x4)      | 32 B              | 1 Hz      | 42.1875 MB |
| Sun angle            | 4 B               | 1 Hz      | 5.273 MB   |



## Software System Testing Status

- System testing not started
- Will start after unit testing is complete



### Unit Testing Status

- Unit testing started
- 1/10 tests written





### Static Testing Status

- Static testing tests code without running
- Fixed 3/3 errors

10/12 files checked 73% done Checking RADIANCE-main/src/sensors/spectrometer.cc... Checking RADIANCE-main/src/sensors/spectrometer.cc: AS5216\_EXPORTS... Checking RADIANCE-main/src/sensors/spectrometer.cc: USE\_POSTMESSAGE... Checking RADIANCE-main/src/sensors/spectrometer.cc: USE\_POSTMESSAGE... Checking RADIANCE-main/src/sensors/spectrometer.cc: \_M\_X64... 11/12 files checked 97% done Checking RADIANCE-main/src/systemhaltexception.cc... 12/12 files checked 100% done


## Procured Budget Status



| Subsystem   | Projected<br>Cost | Procured | To be Procured | Effect on<br>Budget |
|-------------|-------------------|----------|----------------|---------------------|
| C&DH, Inst. | \$3424            | \$3304   |                | +\$ 120             |
| Power       | \$ 662            | \$ 281   | \$ 382         |                     |
| PM          | \$ 84             |          | \$ 84          |                     |
| Structure   | \$ 418            | \$ 223   | \$ 10          | +\$ 185             |
| Testing     | \$ 250            |          | \$ 250         |                     |
| TOTAL       | \$4850            | \$3808   | \$ 726         | +\$ 205             |

CDR Total (with margin and excess): \$4,920

