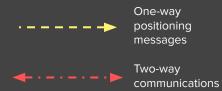
Spring Final Review

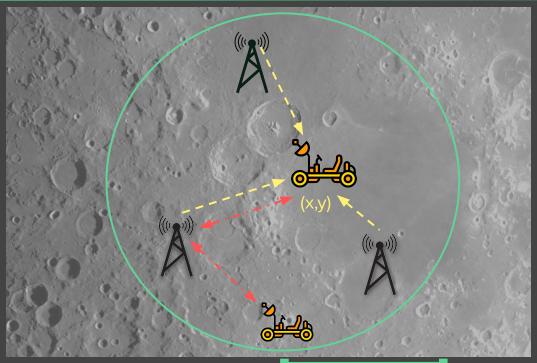
Positioning For Lunar Operations

Team Advisor: Dr. Jade Morton

Agenda

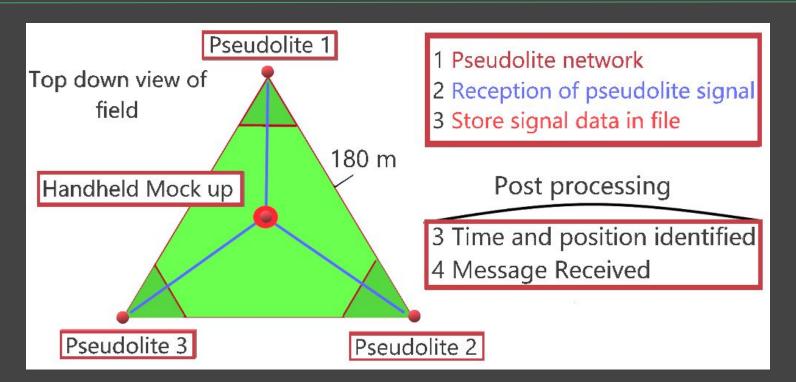
- 1. Project Purpose and Objectives
- 2. Design Description
- 3. Test Overview
- 4. Test Results
- 5. Systems Engineering
- 6. Project Management




Project Purpose and Overview

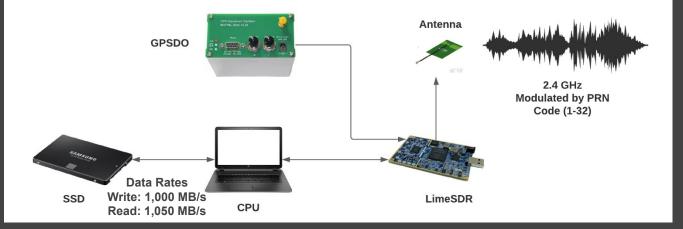
- Provide ground-based positioning and communication to the South Pole
- 10 km radius region

15



Mission Statement

P4LO (Positioning For Lunar Operations) is a prototype network of software defined radios that demonstrates an architecture for the lunar communication and positioning system LunaNet.


P4LO CONOPS

What is a Pseudolite?

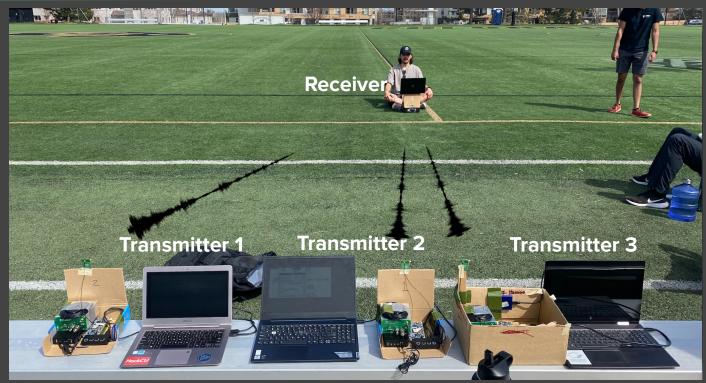
- A portable ground station
 - Transmits
 positioning
 messages
 - Receives user
 communication
 messages

Mission Success

- Key Functional Requirements
 - Scalable Positioning System
 - Sub 10 (m) positioning within specified area
 - 30 ns 1-sigma transfer time
 - Communication Network
 - Communication operating between 2.4 2.48 GHz
 - 1 MHz Signal Bandwidth
 - Framework allowing for up to 170 users communicating within region
 - Data rate of at least 1 kilobit per second

Test

Levels of Success


Purpose

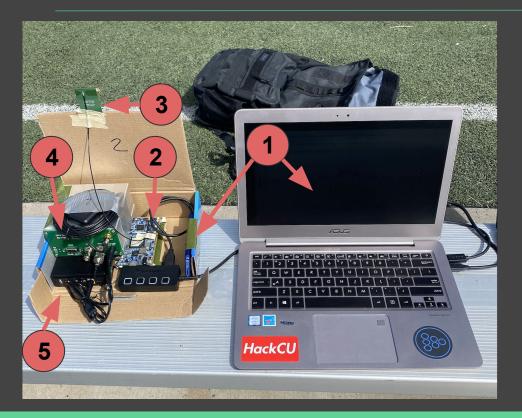
1	Hardware/Softw are interfacing	Ubuntu environment + dependencies, GNURadio, LimeSDR	Completed
2	Wireless Transmission	Wireless transmission. Getting LimeSDR to transmit over the air (simple tx/rx test)	Demonstrated
3	Acquisition	Acquiring PRN codes	Demonstrated
4	Positioning	Ranges from acquisition results + positioning algorithm to compute position solution	Capability In Place
5	Data Transmission	Transmit a .txt data file over the air at specified data rate	Capability In Place

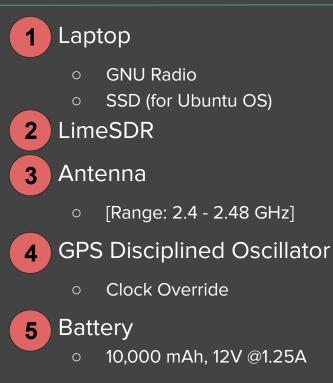
Design Description

Changes since TRR

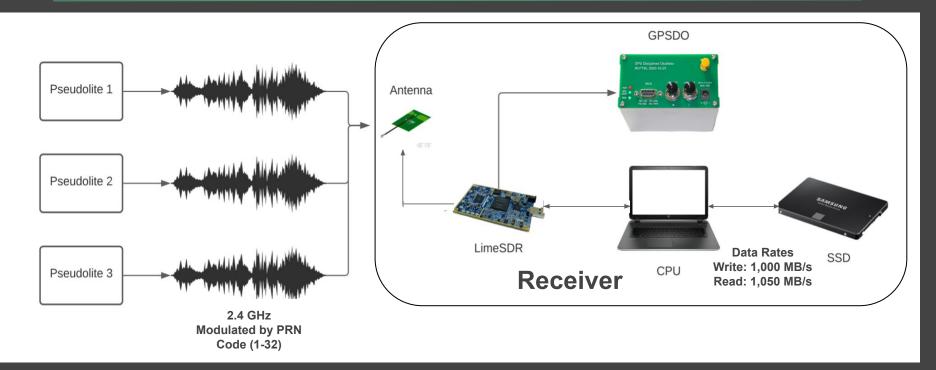
2

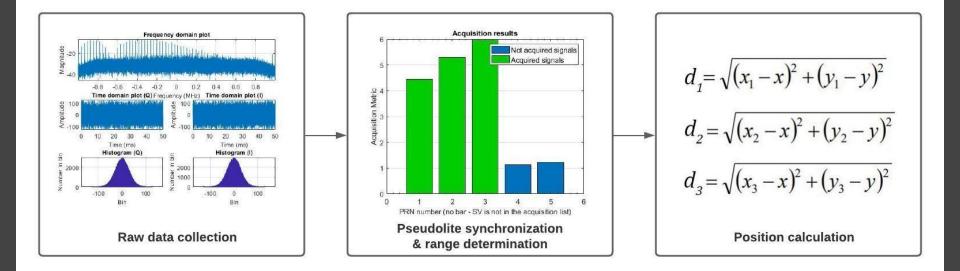
- Used for portability and handling.
- No Tripods.


Results


Management

Physical Design/Critical Project Elements


Test



Hardware FBD

Test Overview

- Basic communication between TX and RX
- Oscillator override
- Short-range acquisition (Multi-TX)
- Long-range acquisition (Multi-TX)

Purpose

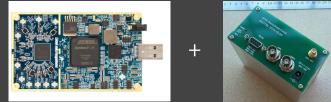
Basic Communication Test

Test

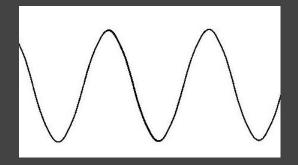
Results

Design

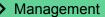
- Integrate hardware and software
- Transmit one FM audio file from SDR transmit port and receive it on the SDR receive port, play results


Management

Systems


Oscillator Override

- Require a more stable oscillator for higher quality transmission and reception
- Will be using a GPS-disciplined oscillator (GPSDO)
- Verification will be done by setting receiver as a GPS receiver and comparing position solutions

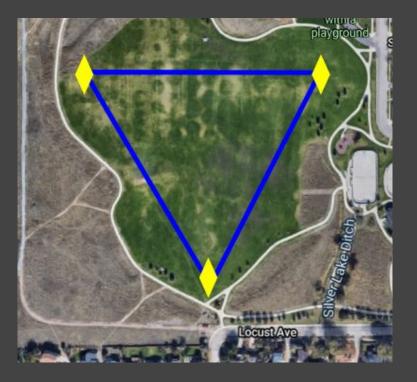


LimeSDR

Short range acquisition (multi-tx)

- Acquisition
 - All transmitters are sending signals on the same frequency
 - Each signal is modulated by a unique Code Division Multiple Access (CDMA) code
 - Acquisition allows for the receiver to pick out individual signals
 - Language analogy
- Test
 - Have 3 pseudolites transmitting at 2.4GHz with their unique codes
 - Receiver in same room
 - Pick out the individual signals

Management



Long range acquisition (multi-tx)

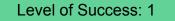
• Test

Purpose

- Same setup as before, but now transmitters are positioned at a distance
 >100m
- Will be done outdoors
- Right: Wonderland Park, pseudolites represented by yellow diamonds

Test Results

Purpose


Basic Communication Test

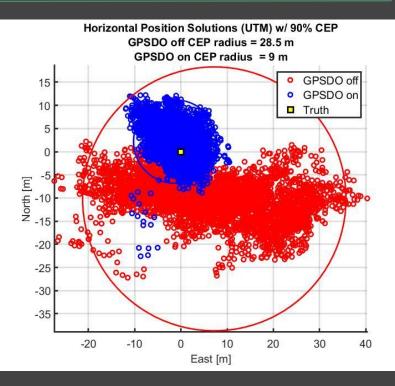
Test

Results

Design

- Integrate hardware and software
- Transmit one FM audio file from SDR transmit port and receive it on the SDR receive port
- Verifies **FR4** and **FR5**, **DR1.2**

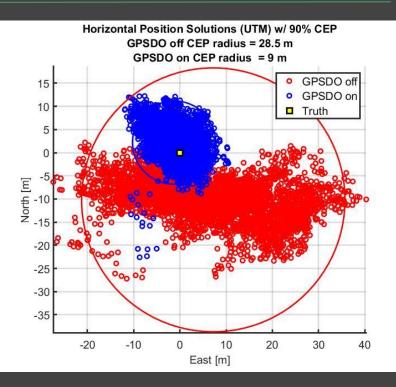
Management

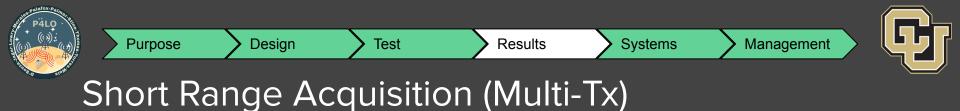

Systems

Clock Override Test

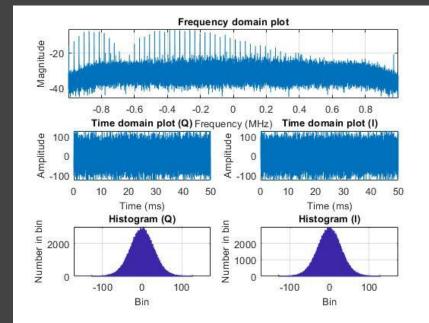
- Compared performance of:
 - LimeSDR + onboard oscillator
 - LimeSDR + GPS-disciplined oscillator (GPSDO)
- Setup LimeSDR as a GPS receiver
- Indirect measure of clock stability/performance

	CEP 90% radius (m)	Mean pos. Error (m)
Onboard	28.5	39.5
GPSDO	9	16.5





Clock Override Test


- Demonstrates that positioning algorithm works
 - CEP radius satisfies <10m positioning requirement
- Using GPS satellites as opposed to the P4LO pseudolites
- Verifies **FR3**, **DR3.2**.

Level of Success: 2 and 5

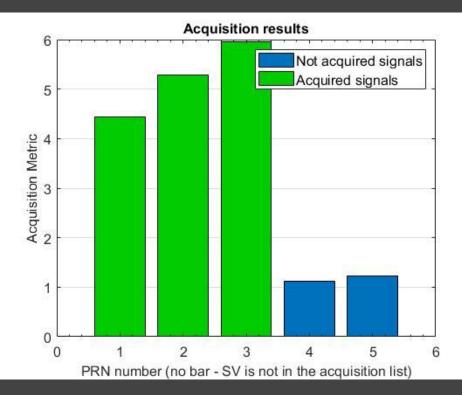
- Transmitted PRNs 1-3
- Raw data collected by receiver
- Spectrum and time domain plots can be seen on the right,

Short Range Acquisition (Multi-Tx)

Test

Results

• Transmitted PRNs 1-3


Purpose

• Attempted to acquire PRNs 1-5

Design

- Acquired 1-3
- Acquisition metric: ratio between 1st and 2nd strongest correlation peak
 - \circ A measure of SNR
 - >2 for successful acquisition
- Verifies **FR6** and **DR6.1**

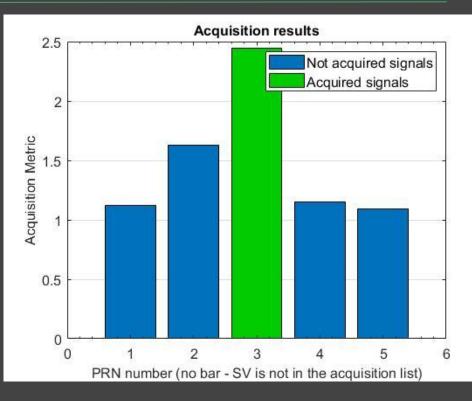
Level of Success: 3 and 4

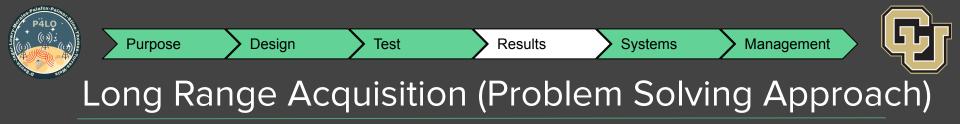
Systems

Management

Test

Results

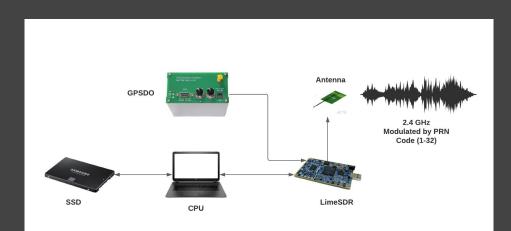

Management


Long Range Acquisition (Multi-Tx)

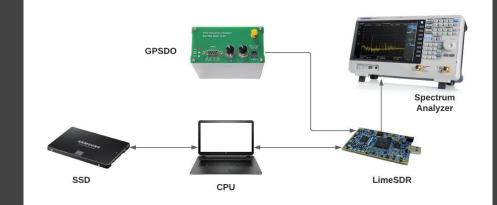
- Rx-Tx Distances >100m
- Managed acquisition but with major caveats
 - Longer processing times (very noisy signals)
 - Needed better antennas and signal amplification (tx)
- Shows foundation for **DR6.2**

Level of Success: 4

Level of Success: 5



- Problem
 - Low Power
 - Noise
- Ran the following tests
 - Wired Power Test
 - Antenna angle test
 - Upgrade system with a low noise amplifier (LNA) and different antenna


• Wired setup to test power coming out of LimeSDR

Original transmitter setup

- Wired setup to test power coming out of LimeSDR
- Transmitter -> Spectrum Analyzer
- 1mW or 0dBm
- Validates transmit power requirements
- Narrows issues to an antenna efficiency problem

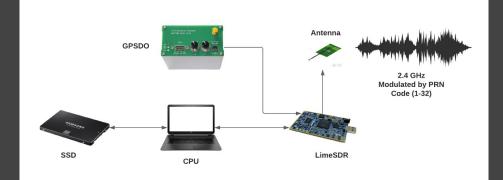
Wired transmitter setup

Test

Management

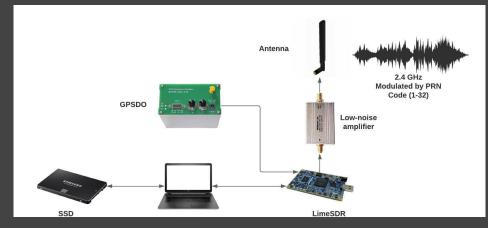
Antenna Orientation Test

Design


- Verified inconsistencies in patch antenna polarization and gain pattern
- Alignment in rx/tx antennas responsible for long-distance acquisition issues

Upgraded pseudolite

- More reliable antenna
 - Better documentation \bigcirc
 - Known polarization Ο
 - Known gain pattern Ο
- Low-noise amplifier (LNA)
- Upgraded ¹/₃ of pseudolites
- Demonstrated performance improvements
 - Increased 1m received Ο power from -35 dBm to -15 dBm



Original transmitter setup

Upgraded pseudolite

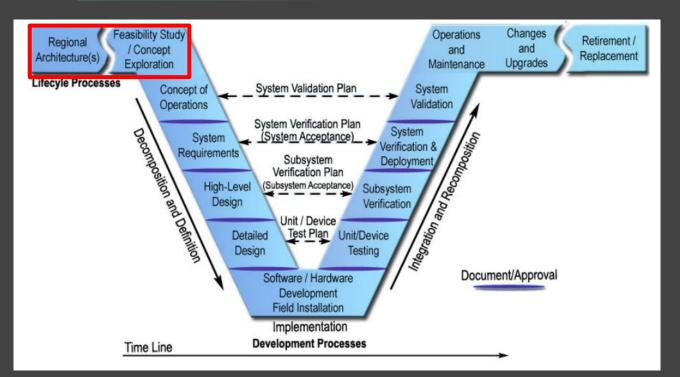
- More reliable antenna
 - Better documentation
 - Known polarization
 - Known gain pattern
- Low-noise amplifier (LNA)
- Upgraded ¹/₃ of pseudolites
- Demonstrated performance improvements
 - Increased 1m received power from -35 dBm to -15 dBm

Upgraded transmitter setup

Consistent Long Range Acquisition: 🗸

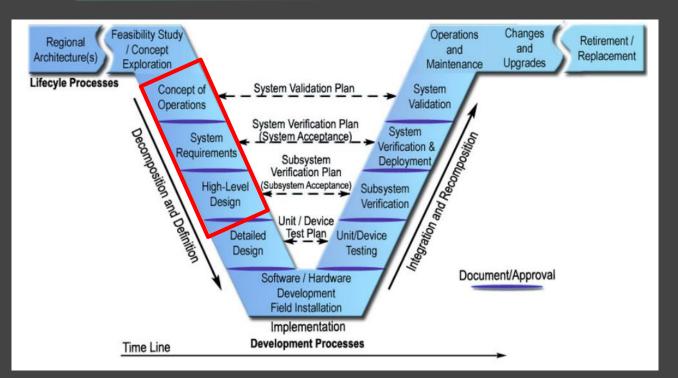
Positioning Capability in Place: 🗸

Systems Engineering



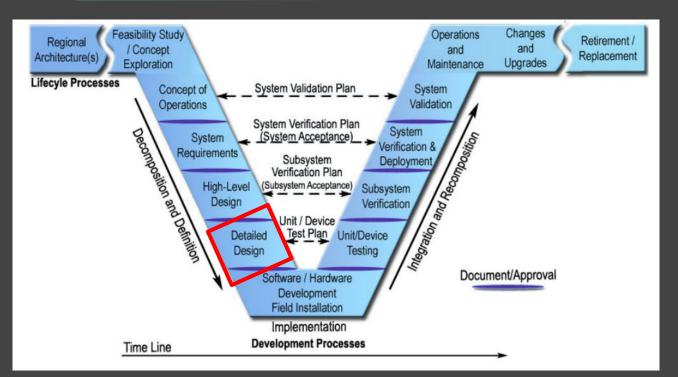
Test

Approach - Initial Problem Statement



- Lunar Communications
 and Positioning
- Narrowing Possibilities
 - Feasibility AnalysisRisk Reduction
- Building Initial
 CONOPS

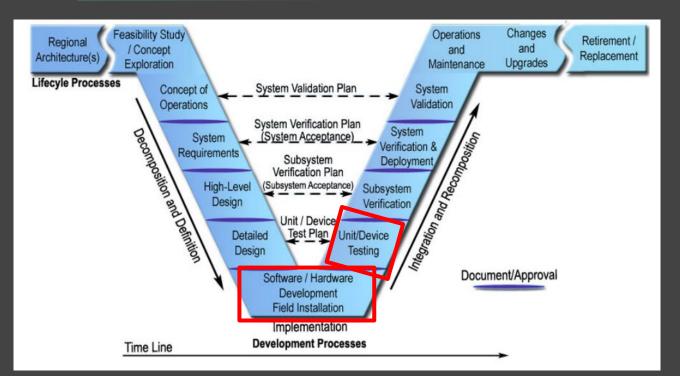
Approach - Refining the Design



- Pseudolite Network
 - Refined
 CONOPS
- Derive Functional Requirements
 - Construct DR's
- Outline necessary hardware
 - SDR, Antenna, power, etc

Approach - Finalizing Design

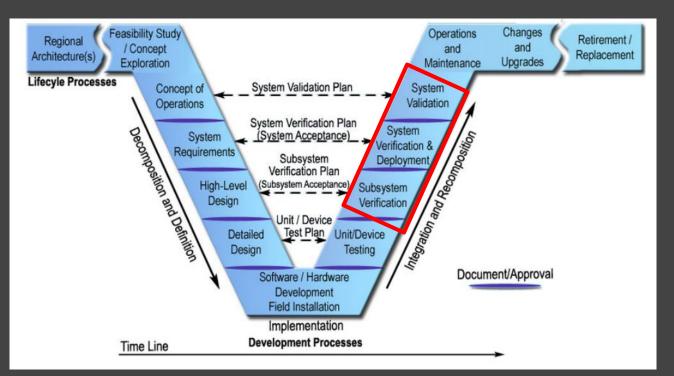
Test


• Trade different aspects of project

Management

- Software and hardware
- Development of ICD's in the form of FBD's
- Create testing plan for all aspects of project

Approach - Testing Hardware



- Get SSD's and GNU Radio set up
- Purchase and receive hardware
- Verify hardware functionality
 - Basic signal transmission and reception

Approach - Full Scale Testing


- Test different subsystems
 - Clock Override
 - Acquisition
- Build pseudolites
- Combine subsystems into overall system
- Does system meet requirements?



Main Issues Encountered

- Difficulty acquiring signals consistently at distances >100 m
 - Antenna/amplifying capabilities limited transmission power
 - Hardware did not meet expected performance
- Significant electrical engineering expertise required
 - CS knowledge
 - RF knowledge
 - Positioning Systems
- COVID
 - Delays in hardware shipping
 - Testing and scheduling
 - Difficulties in scheduling face-to-face meetings
 - Weather, suitable locations, hardware, etc...

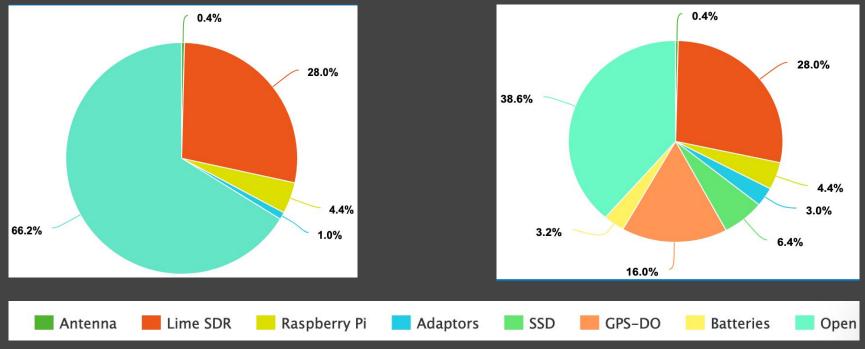
Systems

Key Lessons Learned (Systems)

Test

- LunaNet Risk Mitigation
 - Thorough link budget estimation is required
 - Antenna
 - Amplifiers
 - Radio performance
 - Pseudolite synchronization capabilities
 - Hardware interfacing difficulties
- Design space flexibility
 - Altered requirements may change design path
- Field test efficiency
 - Field tests require proper planning and execution
 - Experience in running efficient field tests

Project Management


Project Management

	Successes		Challenges
1	Great team chemistry	1	Steep Learning Curve
•	Great team chemistry		
2	Team understanding of PNT Technologies	2	Risk Profile Estimation
3	Hands on experience with SDR's	3	Limited Link Budget Calculations
4	Team experience with GNU Radio	4	Hardware Interfacing Difficulties

CDR Budget \$1974

Final Budget- \$3097

Hardware Addition Justification Post-CDR

Component	Purpose	Dollar Increase	Budget Percentage Increase
GPSDO's	Increase transmitter/receiver clock stability	\$800	16%
SSD's	Store data, boot programs like GNU Radio through Ubuntu	\$320	6.5%
Power Packs	Extend to outside testing for pseudolites (power GPS-DO, LimeSDR,etc)	\$160	3.2%
Extra Adaptors	USB-Extender cables and adaptors for pseudolites (needed for accommodating pseudolite housing)	\$150	3.9%

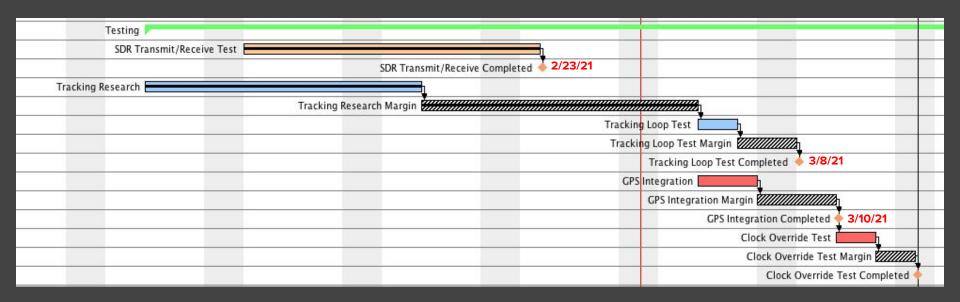
Labor Hours	2230
Labor Rate*	\$31.25
Labor Costs	\$69,687.5
Overhead (200%)	\$139,375
Materials	\$3097
Total Cost	\$142,472

*Assumes yearly salary of \$65,000 for 2080 hours of work

Acknowledgements

- Dr. Jade Morton
- Dr. Scott Palo
- Dr. Dennis Akos
- Dr. Nicholas Rainville
- Sr. Instr. Trudy Schwartz
- Steve Taylor
- Dr. Kathryn Wingate
- Brian Breitsch
- Lara Buri
- Prof. John Mah

Questions?


Backup Slides

Budget

Clock	Override Test Completed 🖣	i <mark>→</mark> 3/14/21
Coarse Acquisition Test 🔽		
Level 1: Lab Setting		
Level 1 Margin		
Level 1 Completed	♦ 3/8/21	
Level 2: At Distance		
Le	vel 2 Margin	
	Level 2 Completed	
Level 3: Three Transmitters	<u>i la </u>	
Le	vel 3 Margin	
	Level 3 Completed	
Coar	e Acquisition Completed	▲ 3/14/21
	Sync Bias Test	
		Sync Bias Test Margin
		Sync Bias Test Completed 🔶 3/27/21
		Positioning Test
		Positioning Test Margin
		Positioning Test Completed 🔶 4/1/21
		Full Functionality Demo
		Full Functionality Demo Margin
		Full Functionality Demo Completed 🕹 4/7/21

Schedule

Budget

Cost Plan & Margin

Group	Cost (USD)	Antenna: 0.4%
Dual TE Connectivity Antennas (4)	\$19.80	Lime SDR's: 28.0%
Lime SDR's (4)	\$1,399.80	Available: 39.5%
Raspberry Pi (4)	\$220.00	Available: 55.5%
Adapters & Connectors (4 Sets)	\$74.65	
Miadi Portable Charger (Power Pack) (4)	\$79.96	Raspberry Pi: 4.4%
5 Feet Tripods (4)	\$111.96	Adaptors & Switch's: 1.5%
GPS Disciplined Oscillator (4)	\$769.53	Power Pack: 1.6% SSD's: 6.4% Tri-Pods: 2.2%
Samsung External SSD 500Gb(4)	\$319.96	SSD's: 6.4% Tri-Pods: 2.2% GPS DO's: 16.0%
Budget Status		
Projected Purchases Total	\$3026.12	
Current Up to date Purchase Amount Total	\$2862.19	
Available Amount / Percentage	\$1973.68 ~ 39.48%	

Major Item List & Status

Item	Status
Dual Band TE Connectivity Antenna (4)	In Possession (4)
Lime SDR's (4)	In Possession (4)
Laptops (4)	In Possession (4) Team Member Laptops
GPS Disciplined Oscillator (4)	Shipped From China (4) Max ETA (3/1)
Samsung External SSD 500Gb(4)	In Possession (4)

Obstacles: P-card access, Shipping Logistics & Chinese New Years Celebration

LimeSuiteGUI - GNU Radio - Gr-LimeSDR Plugin

Wiki.myriadrf.org. 2020. Gr-Limesdr Plugin For Gnuradio - Myriad-RF Wiki. [online] Available at: <https://wiki.myriadrf.org/Gr-limesdr_Plugin_for_GNURadio> [Accessed 30 November 2020].

"Raspberry Pi Icon #35510." Raspberry Pi Icon #35510 - Free Icons Library, icon-library.com/icon/raspberry-pi-icon-20.html.

Al Williams, et al. "Software Defined Radio App Store." Hackaday, 7 May 2016, hackaday.com/2016/05/07/software-defined-radio-app-store/.

Radioparts Two-Way Radios, Parts and Accessories, www.radioparts.com/telewave-ant140f2.

"Radio Waves Clip Png." Pngio, pngio.com/PNG/a104378-radio-waves-clip-png.html.

"Cell Tower." Cell Tower - ClipArt Best, www.clipartbest.com/cell-tower.

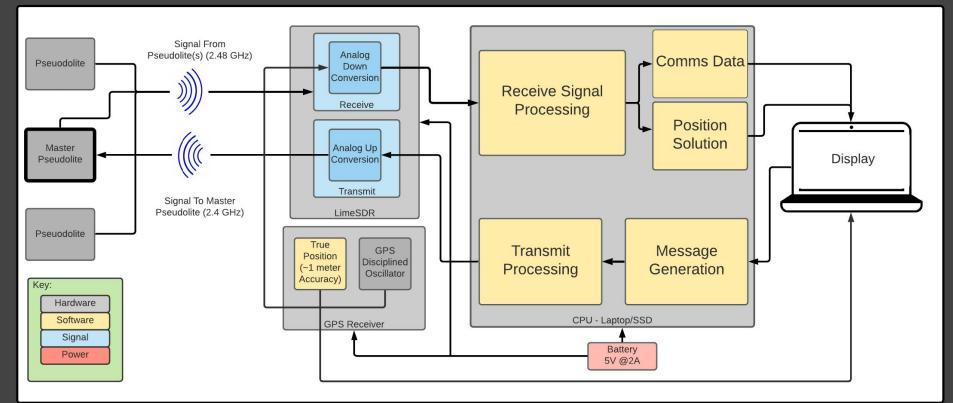
"Custom Laptop Stickers. Print or Download." Custom Mission Patches - Design and Print NASA-Style Mission Patch Stickers for Your Team., mission-patch.com/.

Jon. "Using the Interlocking CU Alone." University of Colorado, 30 Aug. 2019, www.cu.edu/brand-and-identity-guidelines/using-interlocking-cu-alone.

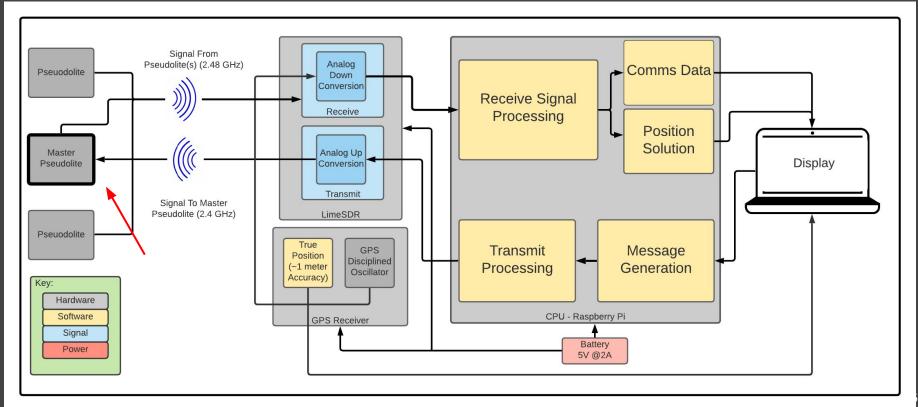
LunaNet: Establishing a Flexible and Extensible Lunar Exploration Communication and Navigation Infrastructure: NASA Goddard Space Flight Center.

D.J.Israeletal., "LunaNet: a Flexible and Extensible Lunar Exploration Communications and Navigation Infrastructure," 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 2020, pp. 1-14. Doi: 10.1109/AERO47225.2020.9172509 URL: <u>http://ieeexplore.ieee.org/stamp/stamp/stamp/stamp/stamp/stamp/stamp/stamp-sta</u>

Muñoz David. Position Location Techniques and Applications. Academic Press, 2009.

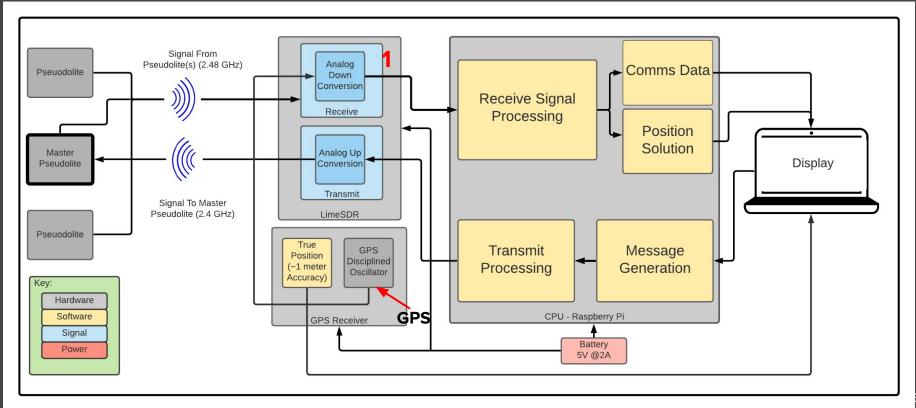

Misra, Pratap, and Per Enge. Global Positioning System: Signals, Measurements, and Performance. Ganga-Jamuna Press, 2012.

Intro/Overview


CPE

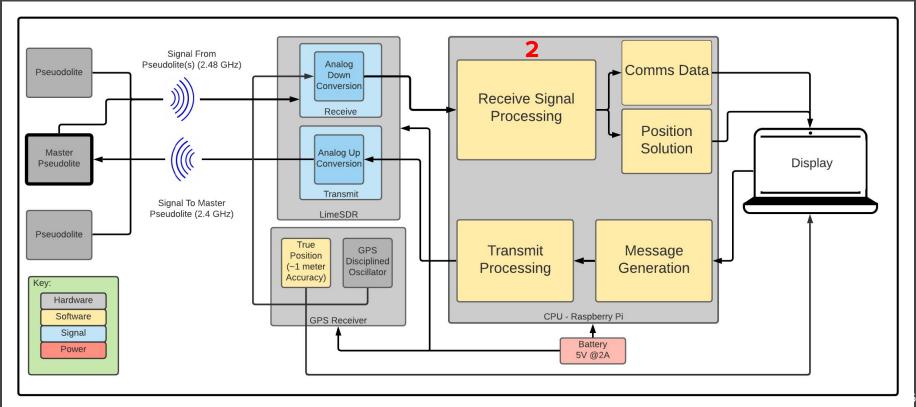
V&V

Planning


CPE

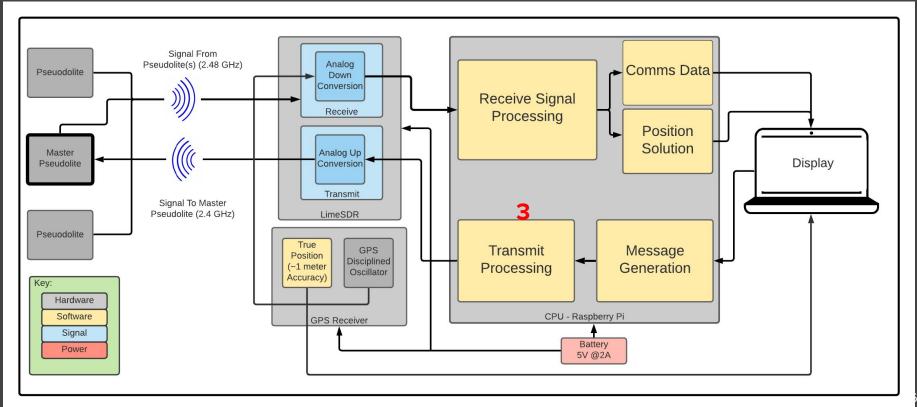
V&V

Planning


CPE

V&V

Planning

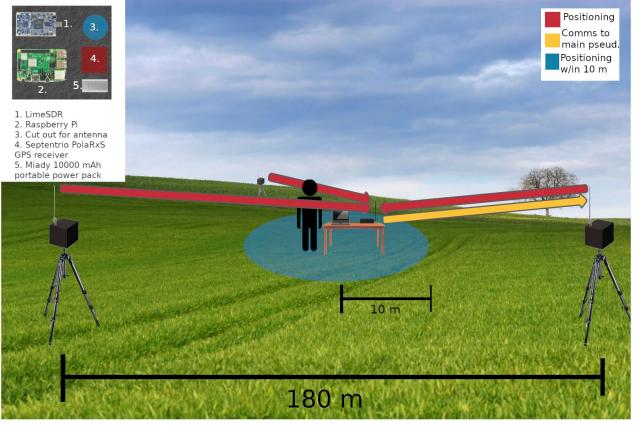

CPE

V&V

Planning

Budget

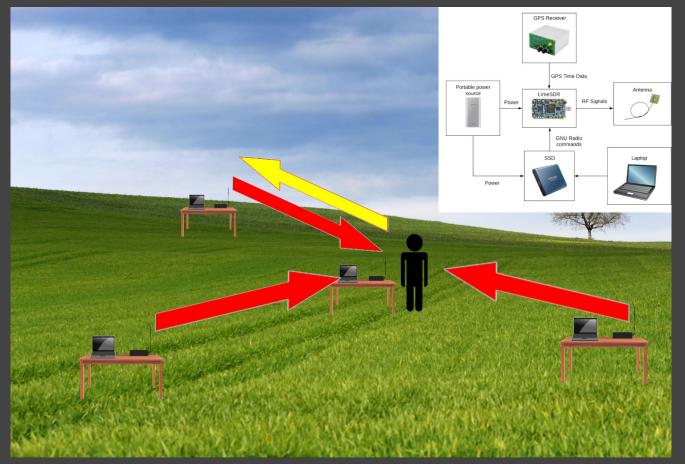
Scaled Down Testing (Placeholder Title)


- Scale from 2.4 km to 0.18 km dist. between transmitters
- Assume 2D (only x and y, no height)
- Transmitting on Earth is at least as complicated as on the Moon
 - Atmospheric losses
 - RF Interference
 - Man-made structures/materials interfering
- <u>Not</u> testing environmental constraints

A scaled-down test in Boulder, CO is still able to validate the design for use on the lunar surface

Design Solution Set Up

Contents of Black Boxes



Design Solution Set Up

CPE

V&V

Critical Project Elements

Critical Project Element	Design Solution
Positioning System	One-Way Pseudolite Ranging
Antenna	Dual Band TE-Connectivity Antenna
Communication	BPSK Modulation CDMA Multiplexing
Software Defined Radio	LimeSDR
Clock	Septentrio PolaRxS - GPS Receiver
CPU	Raspberry Pi

Budget

Software Overview

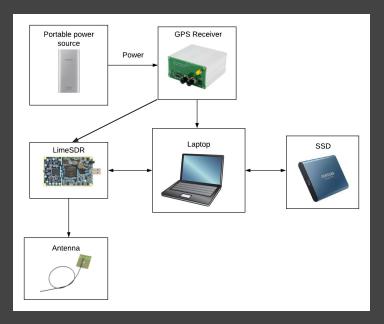
- **GNU** Radio
- Reference oscillator integration
- Signal reception and transmission
 - Modulation
 - Multiplexing
 - Up/Down Conversion
 - Acquisition
 - Tracking

Matlab

- Packet Creation
- Positioning algorithm
- For simulation
 - Modulation
 - Multiplexing
 - Up/Down Conversion
 - Acquisition
 - Tracking

LimeSDR

- Overwrite clock with reference oscillator
- Integrate antenna


Team Created Open Source Edited Outside Leveraged

What is a Pseudolite?

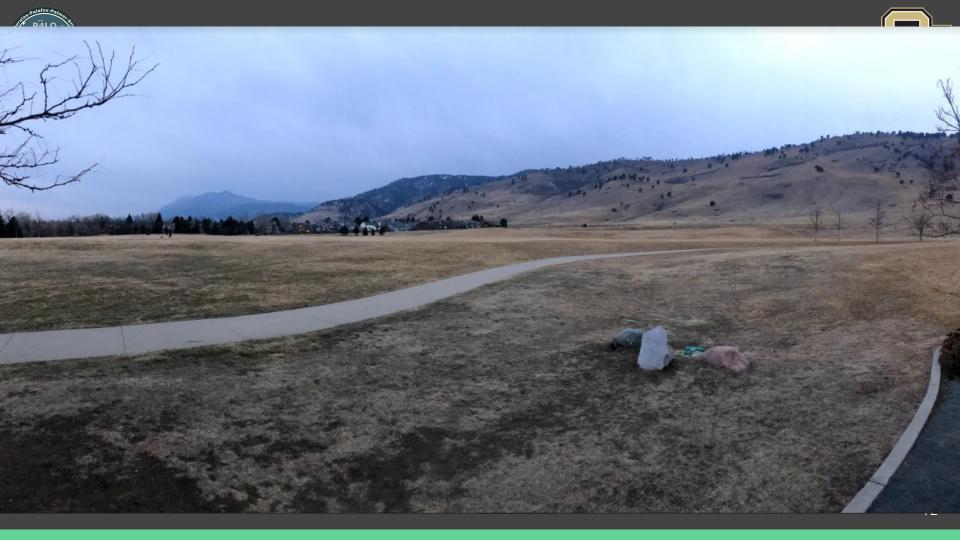
- A portable ground station
 - Transmits
 positioning
 messages
 - Receives user
 communication
 messages

Pseudolite Hardware Block Diagram

> Schedule

Budget

Positioning Test


- Design:
 - Hardware: Pseudolites, User system
 - Software: Positioning Algorithm
- Test:
 - Feed range measurements into positioning algorithm. Determine the position of the user to sub 10m accuracy at testing location
- Status:
 - Positioning algorithm ready to go
 - Need previous tests to be completed first
 - Pseudolites need to be setup

δx $= \left(\mathbf{G}^T \mathbf{G}\right)^{-1} \mathbf{G}^T \delta \boldsymbol{\rho}$

$$\mathbf{G} = A = \begin{bmatrix} -\frac{x^{(1)} - x_0}{R_0^{(1)}} & -\frac{y^{(1)} - y_0}{R_0^{(1)}} & -\frac{z^{(1)} - z_0}{R_0^{(1)}} & 1 \\ -\frac{x^{(2)} - x_0}{R_0^{(2)}} & -\frac{y^{(2)} - y_0}{R_0^{(2)}} & -\frac{z^{(2)} - z_0}{R_0^{(2)}} & 1 \\ -\frac{x^{(3)} - x_0}{R_0^{(3)}} & -\frac{y^{(3)} - y_0}{R_0^{(3)}} & -\frac{z^{(3)} - z_0}{R_0^{(3)}} & 1 \\ \vdots & \vdots & \vdots & \vdots \\ -\frac{x^{(m)} - x_0}{R_0^{(m)}} & -\frac{y^{(m)} - y_0}{R_0^{(m)}} & -\frac{z^{(m)} - z_0}{R_0^{(m)}} & 1 \end{bmatrix}$$
$$\delta \boldsymbol{\rho} = G \begin{bmatrix} \delta \mathbf{x} \\ \delta b \end{bmatrix}$$

Test Site Images

Manufacturing Slides

Changes since CDR

Overview

- Signal Reception: SSD + Laptops instead of Raspberry Pi
 - Due to computation restrictions, boot Linux off external SSDs connected to laptops for additional speed and memory
- Signal Transmission: Pseudolites equipped with a reference oscillator
 - GPS disciplined oscillator (GPSDO)
 - Parts have been selected and ordered.

Budget

Customer Value Proposition

- Develop testing scenario
 - Testing out a **scaled down version** of the system
 - What it takes to test the system
 - What works, what doesn't
- Develop/Integrate hardware & software
 - LimeSDR (Radio)
 - Performance metrics
 - External clock integration
 - GNU Radio v3.8 (Software)
 - Performance
 - Interfacing with LimeSDR

Manufacturing Overview

Purchase

- LimeSDR
- Reference Oscillator
- Antenna
- SSD
- Tripod

Integrate

- Pseudolite electronics
 - Antenna
 - GNU Radio
 - Laptop
- Pseudolite clock
 - Override internal clock
- Calibrate system

Develop / Manufacture

- GNU Radio script
- Communications Protocol
- Positioning Algorithm
- Pseudolite Housing

Manufacturing Overview

Purchase

- LimeSDR
- Reference Oscillator
- Antenna
- SSD
- Tripod

Integrate

- Pseudolite electronics
 - Antenna
 - GNU Radio
 - Laptop
- Pseudolite clock
 - Override internal clock
- Calibrate system

Develop / Manufacture

- GNU Radio script

Budget

- Communications Protocol
- Positioning Algorithm
- Pseudolite Housing

Integrate: Pseudolite Electronics

Schedule

Task: Send and receive test signals using pseudolite electronics

- GNU Radio 3.8 (Software)
- Ubuntu Linux booted on a Samsung T7 500 GB External SSD
 - Running GNURadio
 - 1 GBps read/write
- Dual Band TE Connectivity Patch Antennas
- LimeSDR USB 3.0
- ASUS Zenbook (Core i5 @ 3.5 GHz)
- Write samples to file

Budget

Status: Done

Integrate: Pseudolite Clock

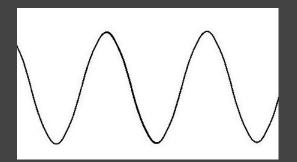
Schedule

Overview

Task: Override internal LimeSDR clock in each pseudolite

- Synchronize all pseudolites in order to get accurate range measurements.
- Provide a more stable oscillator for higher quality transmitting and receiving.
- Using a GPS-disciplined oscillator (GPSDO)

Status: Shipping (ETA: 2/5/21)



Budget

LimeSDR

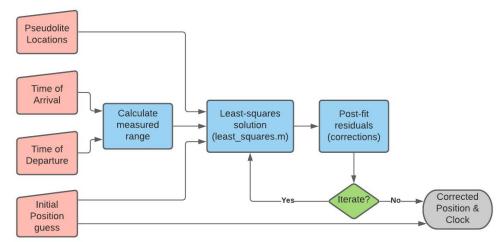
GPSDO

Integrate: Calibrate System

Overview

Task: Measure and calibrate for total system bias (Pseudolite + GPSDO) when transmitting

Status: Waiting for overall system integration

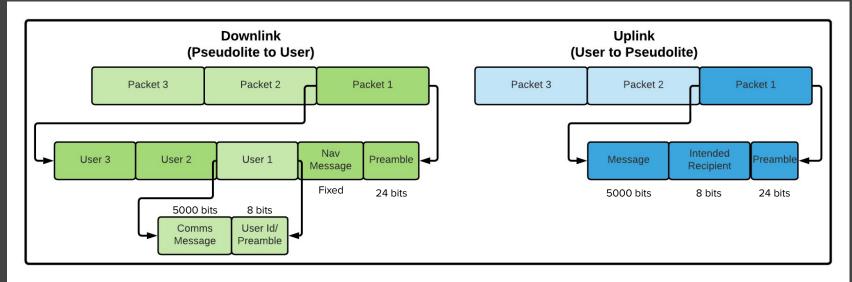


Develop: Positioning Algorithm

Task: Develop code to process received samples and then compuposition.

Status:

- Signal processing script in progress
- Positioning script done


Positioning Script Block Diagram

Develop: Communications Protocol

Task: Format communication data into packets Status: Done

CDR Status Update

- GNU Radio system setup
- Signal detection between two transmitters
- Measured signal interference at testing location
- Preliminary CAD Housing Model Done
- Selected Referenced Oscillator

Hardware

Overview

Solution

Pseudolite Electronic Configuration

CPE

DR

Risk & M

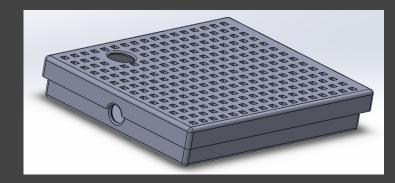
• Electronic/Hardware functional block diagram.

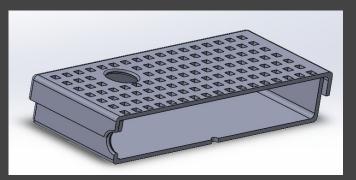
Planning

V&V

- DR 2.1.3: The system will operate using the LimeSDR electronics device
- The LimeSDR combined with the GNU Radio software package.
 - FR1: The system must operate under a scalable LPS model
- How is this scalable?

DR 2.1.3: LimeSDR is in use




Overview Schedule Manufacturing Budget

Mechanical Hardware Integration - CAD

- CAD model of case for holding the limeSDR, GPS, power supply, and Raspberry Pi
- Holes for cable, antenna, and ventilation.
- To do: get a tripod so that the model can be made to attach

SDR - Requirements

Solution

Overview

- FR1: The system must operate under a scalable LPS model
 - DR 2.1.3: The system will operate using the LimeSDR electronics device
- FR2: Demonstrate SMS-like communication
 - DR 2.2.1: Device must demonstrate wireless transmission and reception of data
- FR 4: System will transmit and receive data between (2.4 2.48 GHz)
 - DR 2.4.1: Demonstrate uplink transmission at 2.4-2.48 GHz
 - \circ DR 2.5.1: Demonstrate downlink transmission at 2.4-2.48 GHz

LimeSDR (SDR - "Software Defined Radio")

DR

CPE

Solution

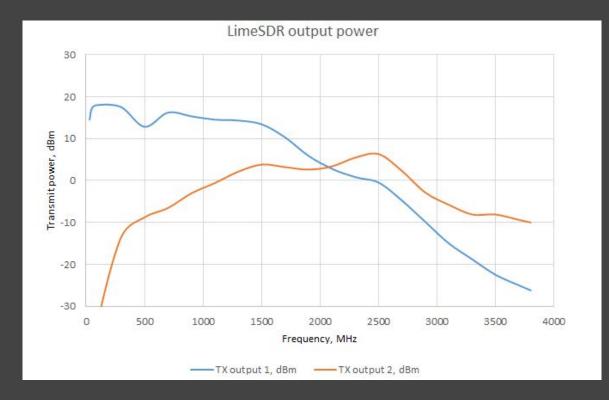
Overview

• LimeSDR (Hardware)

Risk & M

- Customer requirement
- Reception and Transmission of signal

V&V


Planning

- Ability to work with modulator/demodulator software packages
- Functions at 2.4-2.48 GHz
- GNU Radio (Software)
 - Suggested by customer
 - Able to implement all communication schemes and all frequency ranges
 - Able to do simulation and testing

LimeSDR Output Power

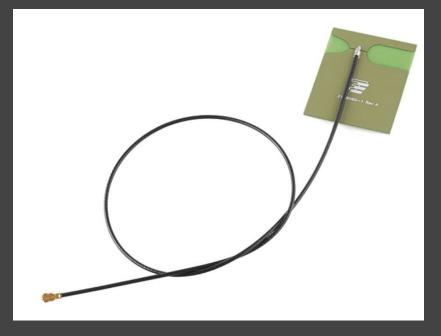
Antenna - Requirements

FR4: The system will transmit data on the S-Band frequency.

 DR 2.4.1 : Demonstrate uplink transmission at a frequency range between 2.4-2.48 GHz

FR5: The system will receive data on the S-Band frequency.

 DR 2.5.1 : Demonstrate downlink reception at a frequency range between 2.4-2.48 GHz



Overview

Dual Band-TE Connectivity Antenna

CPE

DR

Solution

Dual Band-TE Connectivity

• Peak Gain 2dBi

Risk & M

V&V

Planning

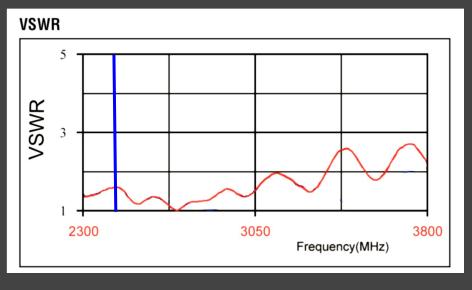
- Embedded Antenna Style
- Freq Range: 2.4-3.8GHz
- Low Weight (<3.3gram)
- Low Cost (5 USD)
- Voltage Standing Wave Ratio (VSWR) -MAX 3:1

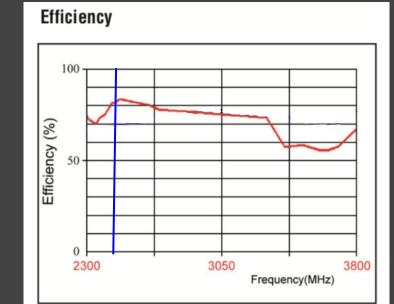
Project Overview	Baseline Design	Feasibility	Summary	

Antenna - Selection Analysis

Customer Requirement: S-Band (due to radio silent far side of the moon)

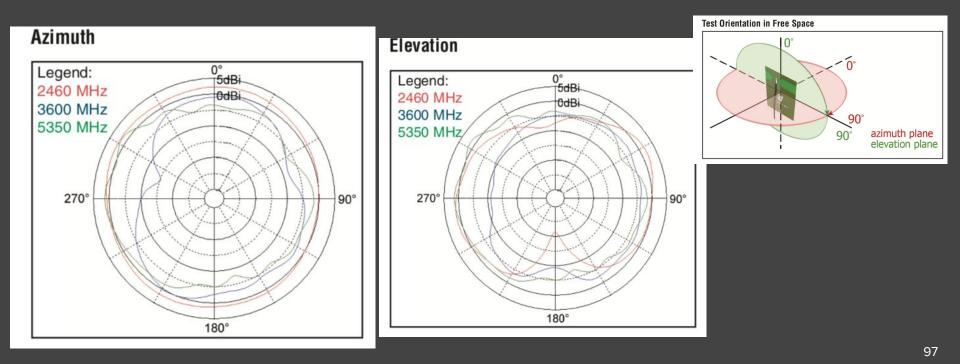
Frequency Range	PROS	CONS
S- Band: (2-4 GHz)	 Previous communication satellites (NASA) Unlicensed bandwidth (2.4-2.483 GHz) good for testing Low Cost system 	 Large amount of interference (Many devices at this bandwidth) Mainly used for large antennas (transmission)




Summary

Antenna - Evidence of Feasibility

DR 2.4.1, 2.5.1 FEASIBLE



Antenna - Evidence of Feasibility

Overview

CPE

Solution

FR4: The system will transmit data on the S-Band frequency.

• DR 2.4.1 : Demonstrate uplink transmission at a frequency range between 2.4-2.48 GHz

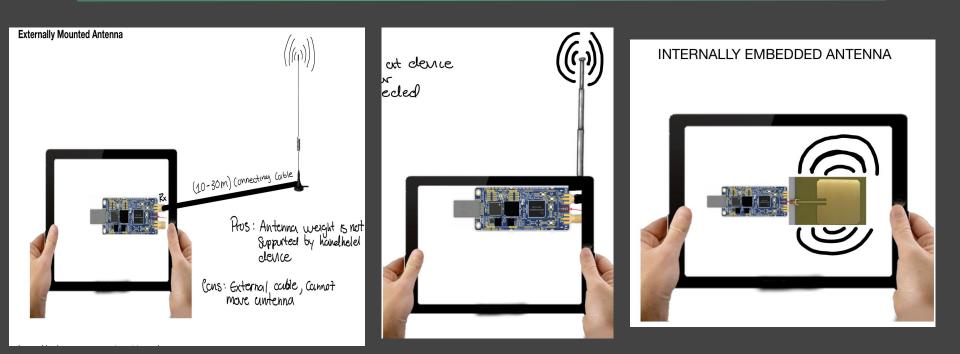
DR

Risk & M

V&V

Planning

FR5: The system will receive data on the S-Band frequency.


• DR 2.5.1 : Demonstrate downlink reception at a frequency range between 2.4-2.48 GHz

Antenna

$VSWR = \frac{1 + |\Gamma|}{1 - |\Gamma|} = \frac{V_{\text{max}}}{V_{\text{min}}}$

= Absolute Reflection Coefficient

Antenna Tradestudy BU-Slides (Table 1)

Table1.Antenna Options with performance characteristics				
Antenna Model	Antenna Type	Antenna Design Configuration	Gain (dBi)	Bandwidth(GHz)
TE Connectivity Antenna	Omnidirecti onal- DualBand	Embedded	2	2.4-3.8 GHz, 5.150-5.870 GHz
Laird-MAF94051	External Dual-Band Omnidirecti onal	Attached	2	2.4-2.5
Laird OC24006H	Omnidirecti onal/ horizontally polarized	External	6	2.4-2.5
Argain-N2420M	Single Band embedded	Embedded	2.81	2.4-2.49

Antenna Tradestudy BU-Slides (Table 2)

Table2.Antenna and other characteristics				
Antenna Model	Weight (grams)	Unit-Cost (USD Currency)	Connector Type	Effective Area (Ae) or Effective Antenna Aperture (m^2)
TE Connectivity	3.3	4.79	Cable-Side Entry	0.001828
Laird-MAF94051	113.4	7.64	RP SMA Connector with 90 degree elbow	0.001814
Laird OC24006H	260	50.20	N-Female	0.004556
Argain-N2420M	0.5	1.80	IPEX/MHF/U FL	0.002186

Antenna Tradestudy BU (Effective Area Equations)

$$A_e = \frac{\lambda^2}{4\pi}G = \frac{c^2}{f^2} \times \frac{G}{4\pi}$$

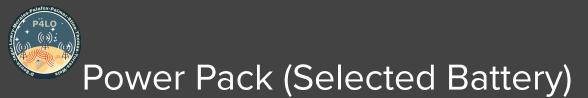
Eq#1 is assuming Linear Gain and Eq#2 Assuming dB Gain

$$A_e = \frac{c^2}{f^2} \times \frac{10^{\frac{G(dB)}{10}}}{4\pi}$$

Table3. Point Matrix Criteria				
Metric	High Score (3)	Medium Score(2)	Low Score(1)	
Cost Effectiveness	low cost for a high performance and capabilities (price<5)	The antenna has an average cost for its capabilities(5-30)	The antenna has a high cost for its capabilities (Over 30)	
Weight	The antenna is very light (Under 50 grams)	The antenna has a medium weight (from 50-200grams)	The antennas has a high weight value (over 200 grams)	
Compatibility	The antenna can easily connect to the SDR, The user has no issues when using the antenna	The antenna is compatible with the sdr without any extra hardware but needs intervention for it to start working	The antenna is not compatible with the sdr without any extra hardware and needs intervention for it to start functioning	
Performance/Specs	Omnidirectional, Operates in designated frequency, high bandwidth, good materials, Large Effective Area,etc.	The antenna has all the required specs but does not have good materials or other hardware constraints	The antenna doesn't satisfy all the needed requirements	

Antenna TradeStudy BU-Slides (Table 4)

Metric	Weighting	Antenna #1 TE	Antenna #2 Laird-1	Antenna #3 Laird-2	Antenna #4 Argain
Cost	0.15	3	2	1	3
Weight	0.30	3	2	1	3
Compatibility	0.15	3	3	2	3
Performance/Specs	0.40	3	3	3	2
Total Score	100%	100%	80%	65%	90%


G

Power Budget

Component	Max Operating Power (Transmit)	Max Operating Power (Receive)
LimeSDR	4.5W (More like 2mW)	NA
Antenna	NA	3.0W
Raspberry Pi	NA	3.5W
Total	4.5W	6.5W
	or approx 2mW	

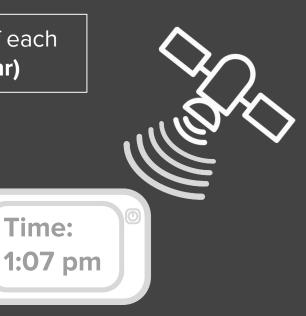
Battery Pack: Miady

5V 2A spread evenly from two outputs

Miady 10000mAh Dual USB Portable Charger

Scaling and Power

- Scaling
 - In the real-life application of this project we will use 2.4km side-lengths for the pseudolite geometry
 - Calculated using the horizon of the Moon.
 - Would also need to take into account any terrain on the Moon.
 - Scaled down geometry was created for practical reasons.
- Power
 - Current testing power is **2 mW** which is **more than enough** (even for a pseudolite configuration with 2.4km side-lengths)
 - As part of our testing we will vary transmit power and plot ranging accuracy vs.
 SNR in order to determine the optimal transmit power.



Pseudolite Clocks

Overview

FR3: All clocks must be within 30 ns of each other for the duration of a test (2 hr)

- On-board Clock (TCXO): Drifts on average 0.05ns every second
- Pseudolite Clocks: GPS Disciplined
 - Using clock bias to keep pseudolite clock synced
 - Reduces jitter
 - Septentrio PolaRxS
- Expected Accuracy: 0.5 ns

Planning

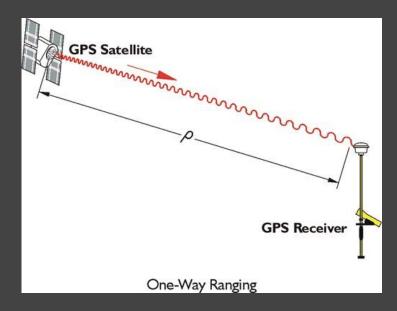
Navigation

V&V

Planning

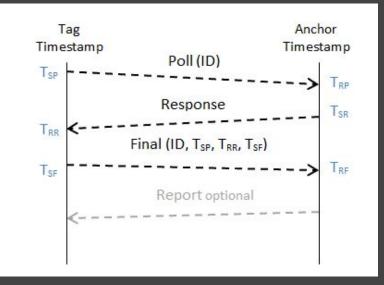
Positioning System Requirements

FR3: The system will be able to provide an architecture for a navigation solution with a 10 meter position accuracy and a 30 nanosecond 1- σ transfer time


• DR 2.3.2 : Provide LPS coverage to the Moon's South Pole

Solution: Pseudolite geometry composed of a 0.18km equilateral triangle + GPS-disciplined clocks

One way ranging

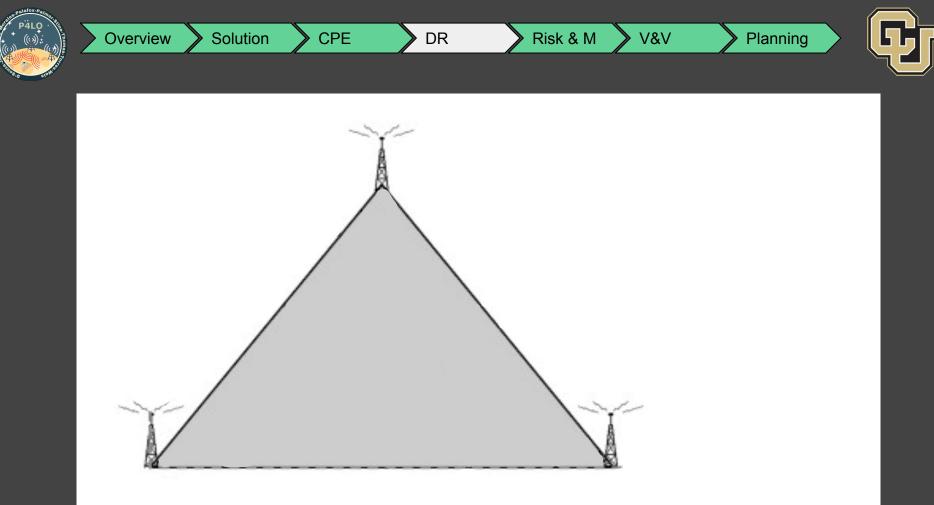

- Requires accurate clocks on both ends to determine the distance based on time differences.
- Lots of research/documentation available supporting the algorithms and systems.
- Only satellite transmits.
- The energy and time required is low due to only one transmission of data.

Two way ranging

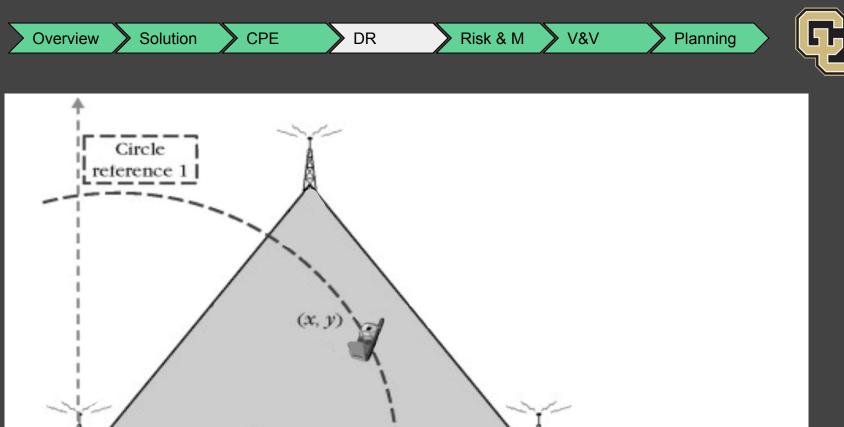
- Requires clocks on both ends but does need them to be synced up with each other.
- Receiver must transmit data BACK to the transmitter - multiple times.
- Both the satellite and the receiver know the location of the satellite.
- The energy and processing requirements are high due to the fast data transmission requirements.

One way vs Two way ranging

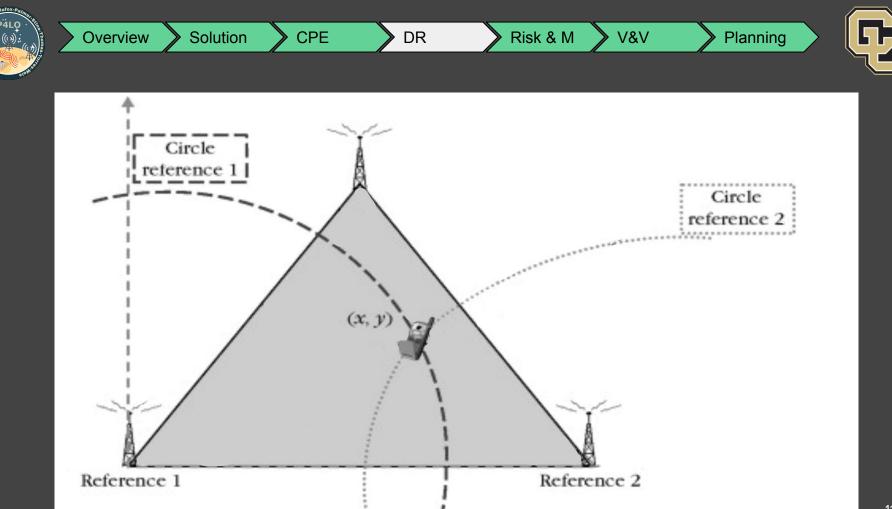
	One way	Two way
Power required	Low	High
Position information	Only receiver	Both receive info
Clock synchronization	Required	Not required



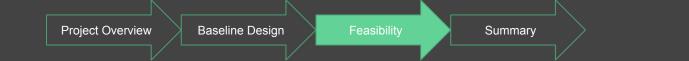
Positioning Algorithm: Least-Squares Solution


- Reason for using least-squares method
- Position Guess and corrections

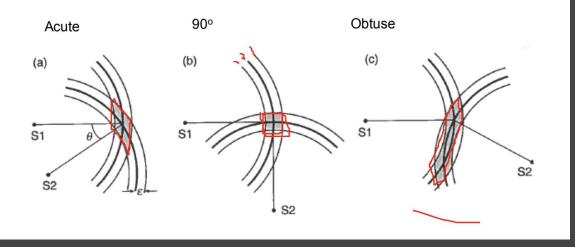
$$G = A = \begin{bmatrix} -\frac{x^{(1)} - x_0}{R_0^{(1)}} & -\frac{y^{(1)} - y_0}{R_0^{(1)}} & -\frac{z^{(1)} - z_0}{R_0^{(1)}} & 1 \\ -\frac{x^{(2)} - x_0}{R_0^{(2)}} & -\frac{y^{(2)} - y_0}{R_0^{(2)}} & -\frac{z^{(2)} - z_0}{R_0^{(2)}} & 1 \\ -\frac{x^{(3)} - x_0}{R_0^{(3)}} & -\frac{y^{(3)} - y_0}{R_0^{(3)}} & -\frac{z^{(3)} - z_0}{R_0^{(3)}} & 1 \\ \vdots & \vdots & \vdots & \vdots \\ -\frac{x^{(m)} - x_0}{R_0^{(m)}} & -\frac{y^{(m)} - y_0}{R_0^{(m)}} & -\frac{z^{(m)} - z_0}{R_0^{(m)}} & 1 \end{bmatrix}$$
$$\delta \rho = G \begin{bmatrix} \delta \mathbf{x} \\ \delta b \end{bmatrix}$$


$$\begin{bmatrix} \delta \hat{\mathbf{x}} \\ \delta \hat{b} \end{bmatrix} = \left(\mathbf{G}^T \mathbf{G} \right)^{-1} \mathbf{G}^T \delta \mathbf{p}$$





Reference 1



Positioning System - HDOP

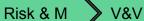
Horizontal Dilution Of Precision

Definition: "Used to specify error propagation as a mathematical effect of navigation pseudolite geometry on positional measurement precision".

RMS horizontal error = $\sqrt{\sigma_E^2 + \sigma_N^2} = \sigma$ HDOP	(6.2
RMS vertical error = $\sigma_U = \sigma \cdot \text{VDOP}$	(6.2
RMS 3-D error = $\sqrt{\sigma_E^2 + \sigma_N^2 + \sigma_U^2} = \sqrt{\sigma_x^2 + \sigma_y^2 + \sigma_z^2} = \sigma$ PDOP	(6.2

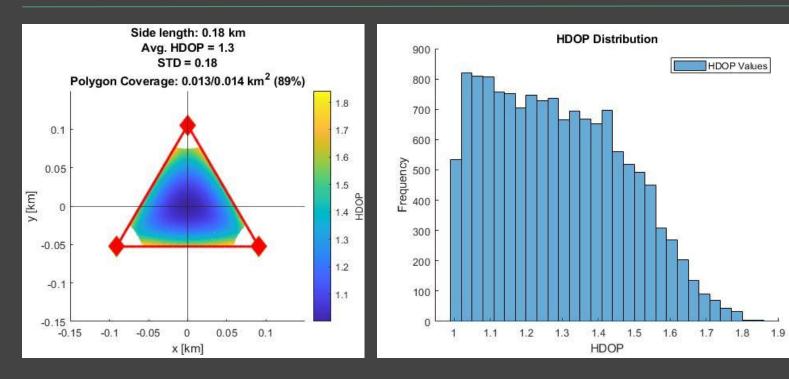
Summary

Positioning System - HDOP


The DOPs provide a simple characterization of the user-satellite geometry. The more favorable the geometry, the lower the DOP. The lower the DOP and σ , the better the quality of the position estimate, in general. If a receiver is limited in the number of satellites it can track simultaneously, the user pays a price with larger rms position error due to higher DOP values.

RMS horizontal error =
$$\sqrt{\sigma_E^2 + \sigma_N^2} = \sigma \cdot \text{HDOP}$$
 (6.27a)
RMS vertical error = $\sigma_U = \sigma \cdot \text{VDOP}$ (6.27b)
RMS 3-D error = $\sqrt{\sigma_E^2 + \sigma_N^2 + \sigma_U^2} = \sqrt{\sigma_x^2 + \sigma_y^2 + \sigma_z^2} = \sigma \cdot \text{PDOP}$ (6.27c)

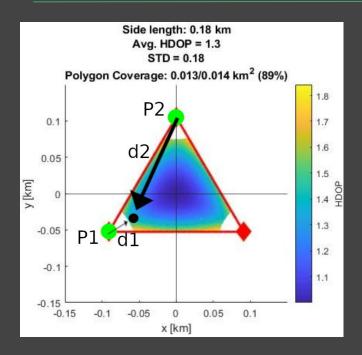
DR

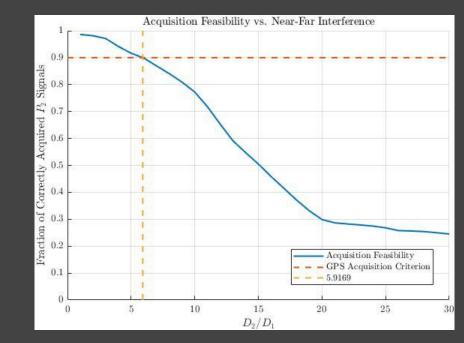

CPE

Pseudolite Geometry

DR

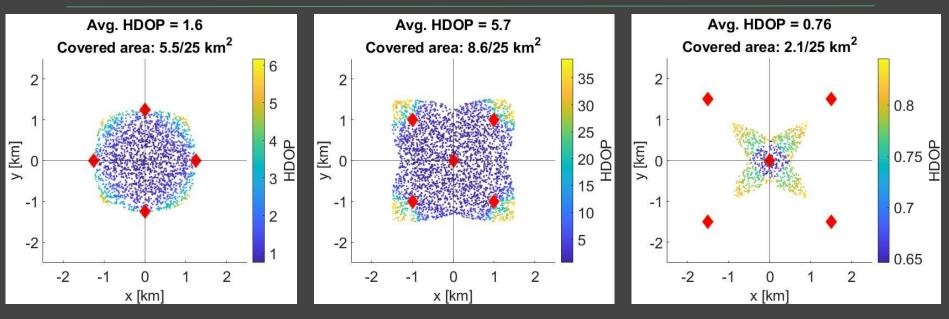
CPE


> ∨&∨

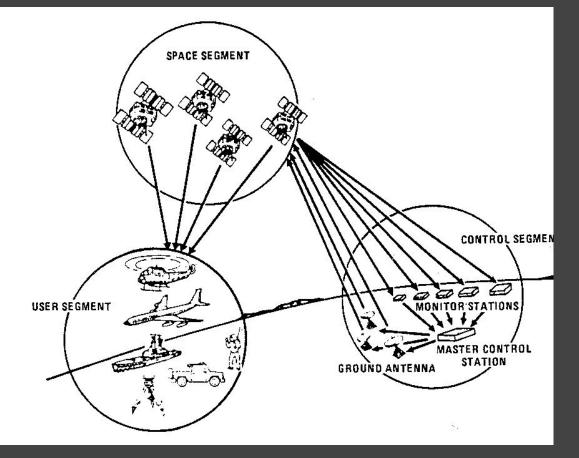

Planning

Risk & M

Near-Far Problem

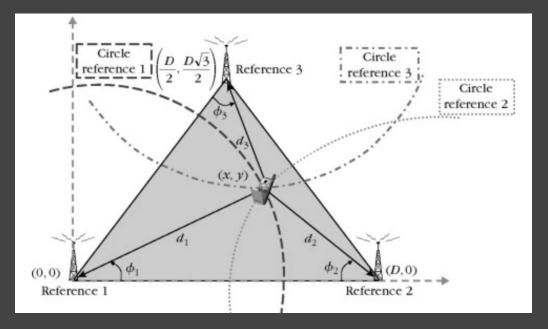


Positioning System - Evidence of Feasibility



DR 2.3.3

FEASIBLE



http://allaboutgps101.blogspo t.com/2010/12/what-are-3-se gments-of-gps-systems.html

Time of Arrival (TOA)

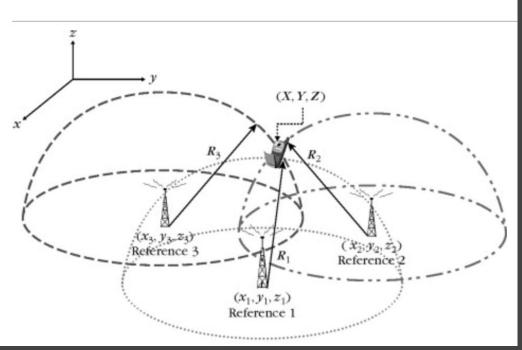
$$d_1 = c(t_1 - t_0) = \sqrt{x^2 + y^2}$$

$$d_2 = c(t_2 - t_0) = \sqrt{(D - x)^2 + y^2}$$

$$d_3 = c(t_3 - t_0) = \frac{1}{2}\sqrt{(D - 2x)^2 + (D\sqrt{3} - 2y)^2}$$

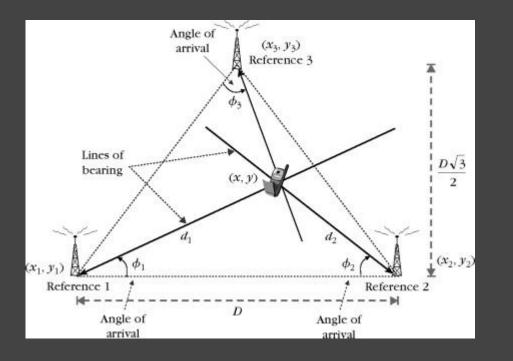
$$t: \text{TOA at reference } t \in \text{ speed of light}$$

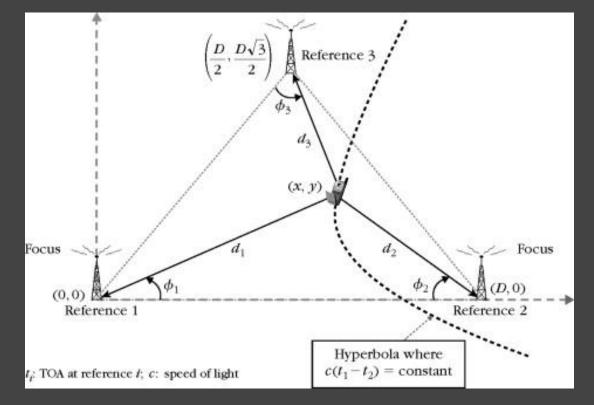
Time of Arrival (TOA)


$$d_i=c(t_i-t_0),$$

$$egin{aligned} &d_1^2 = x^2 + y^2, \ &d_2^2 = (x_2 - x)^2 + (y_2 - y)^2 = (D - x)^2 + y^2, \ &d_3^2 = (x_3 - x)^2 + (y_3 - y)^2 = rac{1}{2}(D - 2x)^2 + ig(D\sqrt{3} - 2yig)^2. \end{aligned}$$

Time of Arrival (TOA)


$$R_i^2 = \left(X - x_i
ight)^2 + \left(Y - y_i
ight)^2 + \left(Z - z_i
ight)^2, i = 1, 2, 3.$$

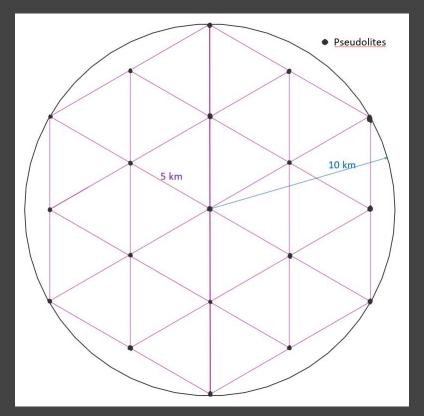

Angle of Arrival (AOA)

$$egin{aligned} x &= d_i \cos(\phi_i) + x_i, \ y &= d_i \sin(\phi_i) + y_i, i = 1, 2, 3. \end{aligned}$$

Time Difference of Arrival (TDOA)

Time Difference of Arrival (TDOA)

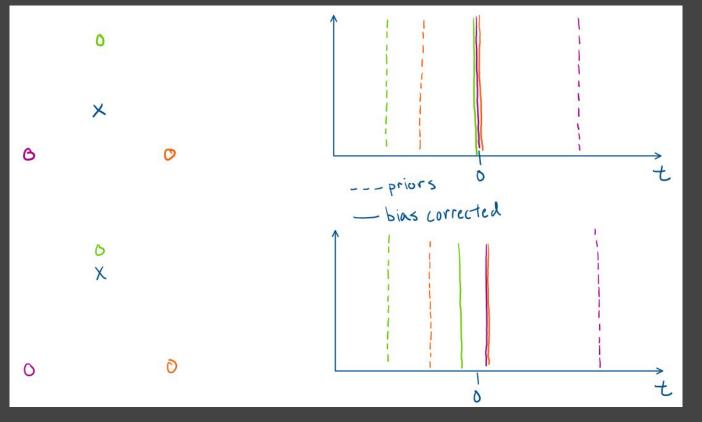
$$d_{ij} = d_i - d_j = c(t_i - t_o) - c(t_j - t_o) = c(t_i - t_j), i = 1, 2, 3, j = 1, 2, 3, i
eq j.$$

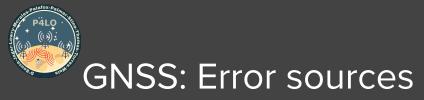

$$d_i = d_{ij} + d_j;$$

$$egin{aligned} &d_2^2 = (d_{21}+d_1)^2 \ &= (x_2-x)^2 + (y_2-y)^2 \ &= x_2^2 - 2x_2x + x^2 + y_2^2 - 2y_2y + y^2 \ &= x_2^2 - 2x_2x + y_2^2 - 2y_2y + d_1^2, \end{aligned}$$

$$egin{aligned} &d_1^2=x^2+y^2,\ &(d_{21}^2-x_2^2-y_2^2)+2d_{21}d_1=-2x_2x-2y_2y,\ &(d_{31}^2-x_3^2-y_3^2)+2d_{31}d_1=-2x_3x-2y_3y. \end{aligned}$$

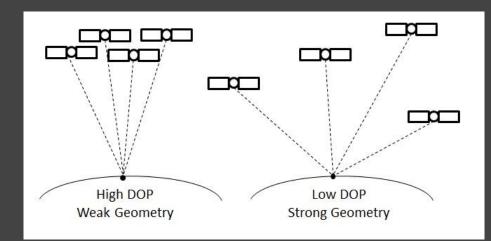
^{*} Lunar Pseudolite Geometry


Positioning Solution


Tentative Trade/Analysis Aspects

- Will we need accurate clocks
- How complicated the positioning algorithm will be / is it feasible for us to implement
- Antenna requirements
- Near Far problem

Basic Positioning System



- Error sources can be divided into two categories:

- Ranging error: signal quality, errors in transmitter location, environmental effects, receiver design, etc....
- Geometry: Geometric Dilution of Precision (GDOP). Measures the quality of the geometric distribution of the satellites visible to the receiver.

https://www.polyu.edu.hk/proj/gef/inde x.php/glossary/dilution-of-precision/

GNSS: Architecture

- 3 segments:
 - Ground control segment
 - Provides satellites with ephemeris data and almanac
 - Provides clock-correction factors and data on atmospheric effects
 - Keeps satellites "in check"
 - Space segment
 - Satellites which send out coded ranging signals, ephemerides, correction parameters and almanac.
 - User segment
 - Receiver (which in the case of this project, can also transmit SMS messages)
 - Acquires and track satellite signals.
 - Computes position solution.
 - For this project, THIS is the segment we'll be working with. All other segments will be assumed as working.

Comms

Communications - Requirements

FR 2: The prototype will provide two-way SMS-like messaging

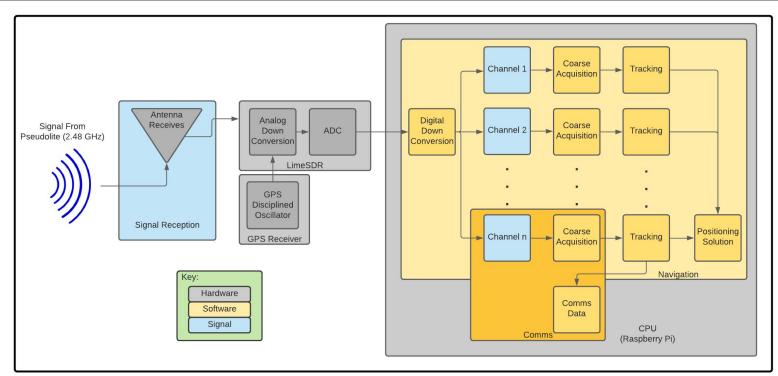
- **DR 2.1:** Device must have wireless transmission and reception of data
- **DR 2.2:** Communication data rate must be at least 200 bits/s

FR 3: The prototype will provide path to navigation solution with 10 meter positioning accuracy and 30 nanosecond 1-sigma transfer time


• DR 3.1: Receiver Signal to Noise Ratio must be at least 20 dB

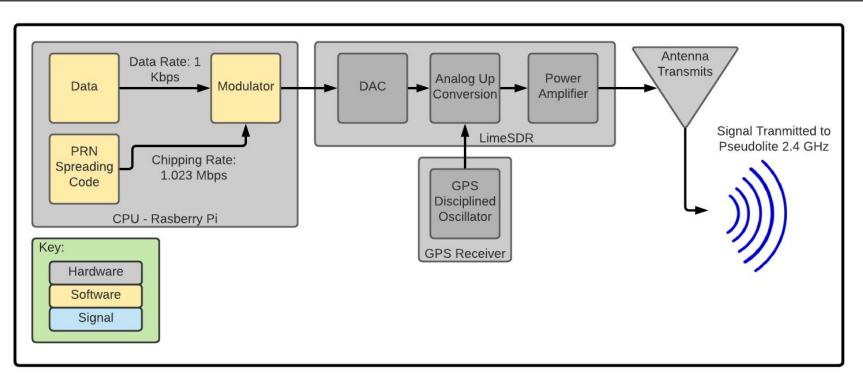
FR 4/5: The communication link must operate at 2.4-2.48 GHz

- **FR 6:** The architecture must be extendable to 170 simultaneous users
- **FR 7:** The communication link must have 3 dB channel bandwidth of 1 MHz

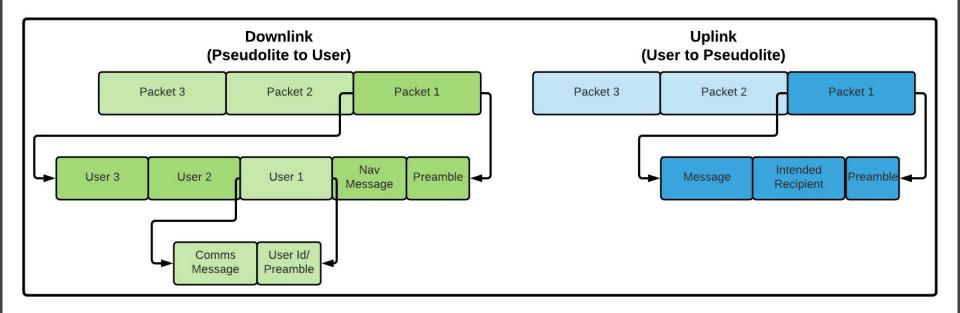


Receive FBD

Overview



V&V

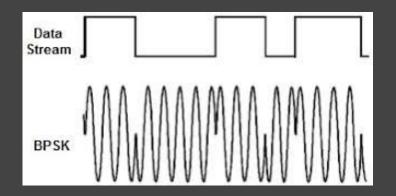

Transmit FBD

Signal FBD

Overview > Solution

Risk & M

V&V



Link Design: Modulation

• Design Choice: Binary Phase Shift Keying (BPSK)

CPE

- Reasoning:
 - Low bit error rate (BER)
 - Low complexity
 - Able to use carrier phase to get even more precise signal time of arrival
 - Currently used in GPS implementations

Link Design: Multiplexing

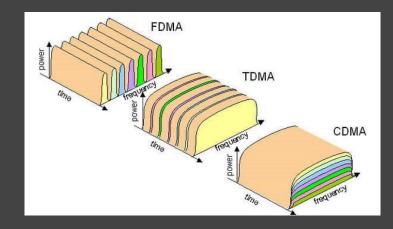
Solution

- Design: Code Division Multiple Access
- Reasoning:

Overview

• Able to use phase of spreading code to calculate time of arrival (TOA)

CPE


DR

Risk & M

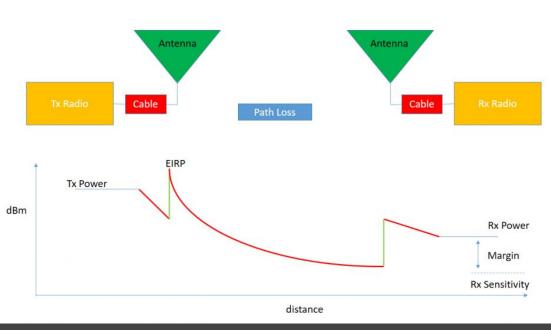
V&V

Planning

- Single Frequency
- Asynchronous CDMA
- Low cross-interference
- Specification (Design Solution):
 - 1023 bit Gold Code PRN chipping code
 - 1.023 MHz chipping rate
 - 1 ms code period (same as data rate)

Summary

Communications - Link Budget

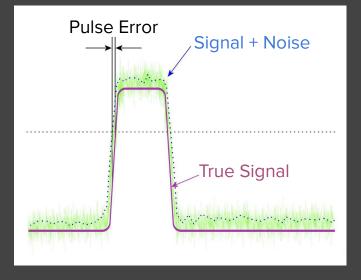

Link Budget (Single User):

- Data Rate: 1 kbps
- Frequency: 2.4 GHz
- Modulation: BPSK
- Distance: 10 km
- Transmit Power: 2 mW

DR 2.1, 2.2, FR4, FR 5

FEASIBLE

- Minimum Receive SNR: -12 dE
 - BER: 10⁻⁸, Eb/NO: 12 dB
- Link Margin: 9 dB

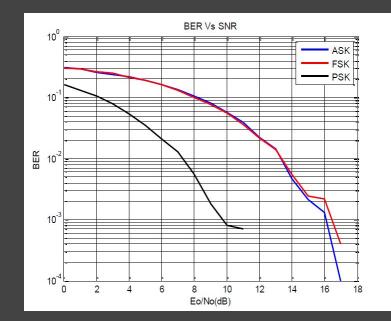


Minimum Ranging SNR

- FR 3: System will provide path to a position to 10 m accuracy (30 ns transfer time)
 - DR 3.1: Received SNR (Signal-to-Noise Ratio) must be at least 20 dB from following formula

$$\delta R = \frac{c_0}{2B\sqrt{2SNR}}$$

- FR 7: Link must operate at 1 MHz bandwidth
- Link Budget operates on a 48 dB-Hz minimum C/N_o

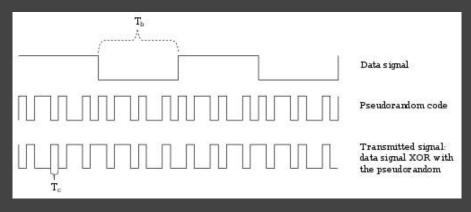


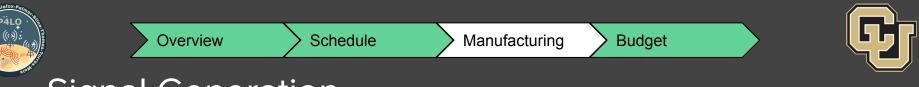
Modulation: Phase Shift Keying

- Modulation Scheme must be compatible with SDR
 - Compatible with LimeSDR
 - Compatible with GNU Radio
- Low Bit Error Rate
- Single Frequency
- Use carrier phase for additional position accuracy
- GPS uses Phase Shift Keying

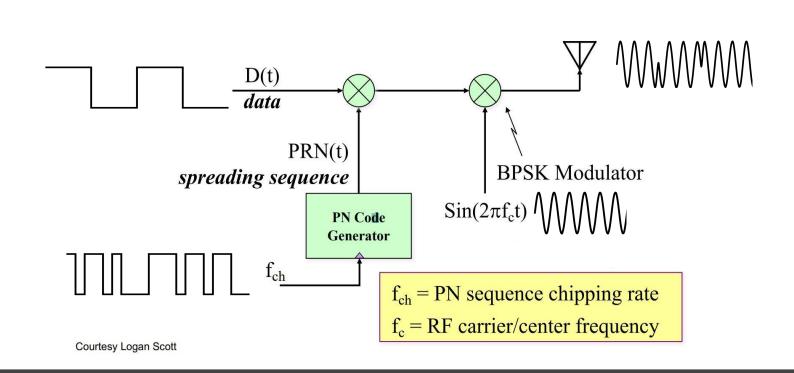
DR 2.1, 2.2, 3.1, FR4, 5, 7 SDR Compatibility

FEASIBLE





Multiplexing: CDMA


- CDMA used in GPS
- CDMA code rate relates to first level of position accuracy
- CDMA can operate on single frequency
- Receiver can receive multiple signals simultaneously
- CDMA with 1023 bit chip code:
 - One way ranging: more end users overall, more precise timing requirements
 - Two way ranging: each user contributes to multiple access interference

One Way Ranging: FR 6 MORE ANALYSIS Two Way Ranging: FR 6 MORE ANALYSIS

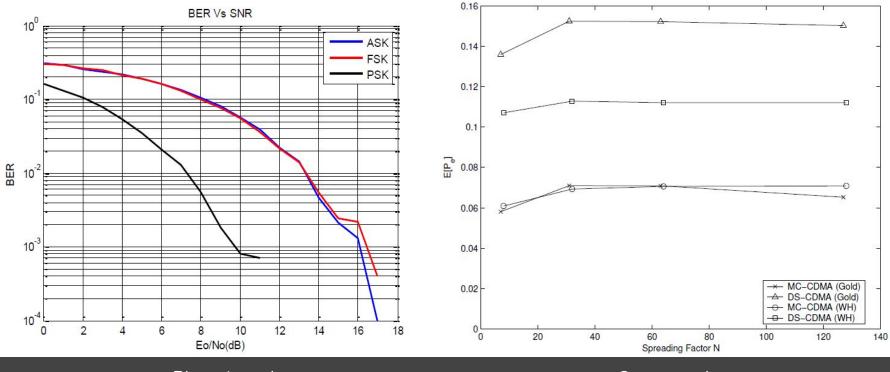
Signal Generation

Downlink Packet Breakdown

- Preamble
 - Unique 24 bit code sequence to allow for signal correlation
- Navigation Message

Overview

- Element of set bit length providing timing for positioning algorithm
- User ID
 - 8 bit element containing a unique user identification sequence for each user to identify intended recipient
 - Designed to accommodate 30 user requirement
- Communications Message
 - \circ 5000 bit text communication element broken into 8 bit characters
 - Message will be appended with ' '(space) buffers to maintain constant size



Uplink Breakdown

- Preamble
 - Unique 24 bit code sequence to allow for signal correlation
- User Identification
 - 8 bit element containing a unique user identification sequence for each user to identify transmitting user
 - Designed to accommodate 30 user requirement
- Communications Message
 - \circ 5000 bit text communication element broken into 8 bit characters
 - Message will be appended with ' '(space) buffers to maintain constant size

Bit Error Rates of Modulation Schemes

Bharati et. al.

Carey et. al.

Pseudolite Link Budget 1

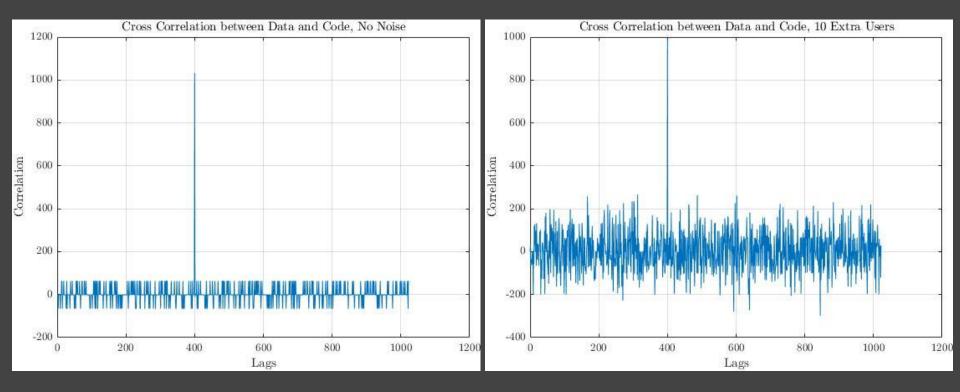
	UPLINK	DOWNLINK	3			
	(Receiver to	(Satellite to				
PARAMETER	Satellite)	Receiver)	UNITS	Symbol	Reference	
Speed of Light	3.0E+08	3.0E+08	m/s	C=λ*f	constant	
Frequency	2.4	2.4	GHz	f	Input: system choice, X-band mil.com.sat.	
Wavelength	0.125	0.125	m	1		
Range	10	10	km	R	Input: Geostationary Satellite [km]	
Boltzman's Constant	1.380E-23	1.380E-23	W/(Hz-K)	k	constant	
Data Parameters	Uplink	Downlink	Units	Symbol	Reference	
Bit Error Rate / Probablility of Bit Error	10-8	10-8	[-]	BER	Input: design requirement	
Data Coding Scheme	QPSK	QPSK			Input: chosen modulation (SMAD Tab.13-10)	
Required Bit Energy to Noise Ratio	12	12.0	dB	Eb/No	Lecture Pt. 2, Slide 15	
Data Rate	1000	1,000		R	Input: based on mission / objective	
Carrier to Noise Ratio Density	42.00	42.00		Pr/No	Lecture Pt. 2, Slide 15	
Required Design Margin	6.00	6.00	dB		Input: design rule (Hoffmann chap. 9.4.4)	
Minimum Pr/No	48.00	48.00	dB-Hz			
			a come			
Noise (applies to receiving elements)	Uplink	Downlink	Units	Symbol	Reference	
Receiving Antenna Noise Temperature	400	400	K	Ta	Lecture Pt. 2, Slide 13	
Receiver Cable Loss	0.9	0.9	dB	Lc	SMAD Table 13-10	
Receiver Noise Figure (based on receiver)	3.0	3.0	dB	NF	SMAD Table 13-10	
Receiver Noise Factor	2.0	2.0	[-]	F	Lecture Pt. 2, Slide 10	
Receiver Noise Temperature	288.6	288.6	K	Tr	Lecture Pt. 2, Slide 10	
Reference Temperature	290	290	K	То	SMAD Eqn13-24	
Receiver System Noise Temperature	580.32	580.32	K	Ts	Lecture Pt 2, Slide 13	
Receiver System Noise Power	-200.96	-200.96	dBW-Hz	No	Lecture Pt 2, Slide 9	
20					2)	
Receiver Parameters:	Uplink	Downlink	Units	Symbol	Reference	
Receive Antenna Diameter		NA	m	D	Input: given geometry from spacecraft	
		NA	m^2	A	Geometry	
Receive Antenna Efficiency	NA	NA	[-]	h	Input: typical value	
Receive Antenna Effective Area	NA	NA	m^2	Ae	efficiency * area	
Receive Antenna Gain	2.00	2.00	ower Ratio	Gr	Lecture Pt 1, Slide 14	
Receive Antenna Beamwidth	180.0	180.0	Degrees	qr	Lecture Pt 1, Slide 16	
Receive Antenna Pointing Accuracy	0.0	0	degrees	er	Input: pointing error e for chosen system	
Receive Antenna Pointing Loss	0.00	0.00	dB	Lpr	SMAD 13-21	
Receiver Cable Loss (see noise)	-0.5	-0.5	dB	Lc	Input: typical value	
Receiver Figure of Merit	0.00	0.00	dB/K	FOM		
Propagation Parameters:	Uplink	Downlink	Units	Symbol	Reference	
Space Loss	-120.05	-120.05		Ls	Lecture Pt 2, Slide 3	
Atmospheric Attenuation (clear air)	0	0	dB	La	Lecture Pt 2, Slide 7	
Polarization Loss	0	0	dB	Lp	Input typical value	

Pseudolite Link Budget 2

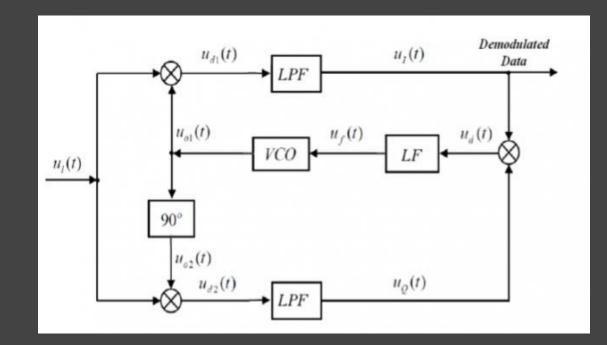
Transmitter Parameters:	Uplink	Downlink	Units	Symbol	Reference
Transmit Antenna Diameter	NA	NA	m	D	Switch Receive
Transmit Antenna Area	NA	NA	m^2	A	Switch Receive
Transmit Antenna Efficiency	NA	NA	[-]	h	Switch Receive
Transmit Antenna Effective Area	NA	NA	m2	Ae	Switch Receive
Transmit Antenna Gain	2.00	2.00	dBi	Gt	Switch Receive
Transmit Antenna Beamwidth	180.00	180.00	degrees	qt	Switch Receive
Transmit Antenna Pointing Accuracy	0.00	0.15	degrees	et	Switch Receive
Transmit Antenna Pointing Loss	0.00	0.00	dB	Lpt	Switch Receive
Transmit Line Loss	-0.5	-0.5	dB	Lt	Input: based on chosen cable/geometry
Transmit Power	-27.0	-27.0	dBW	Pt	10*LOG10(Transmit power)
Tramsmit Power, Linear	0.002	0.002	W		Input: chosen transmitter
Effective Isotropic Radiated Power	-25.49	-25.49	dBW	EIRP	Sum of Power, Gain, and Losses in dB
Link Budget:	Uplink	Downlink	Units	Symbol	Reference
Effective Isotropic Radiated Power	-25.49	-25.49	dBW	EIRP	From Above
Propagation Losses	-120.05	-120.05	dB	L	Sum of Losses
Receive System Gain	1.50	1.50	dB	Gr	Sum of antenna gain and system losses
Received Power	-144.04	-144.04	dBW	Pr	Sum of Power sent out minus losses
System Noise Power	-200.96	-200.96	dBW-Hz	No	
Carrier to Noise Ratio Density	56.93	56.93	dB-Hz	Pr/No	
Minimum Pr/No	48.00	48.00	dB-Hz		
Link Margin	8.93	8.93	dB		

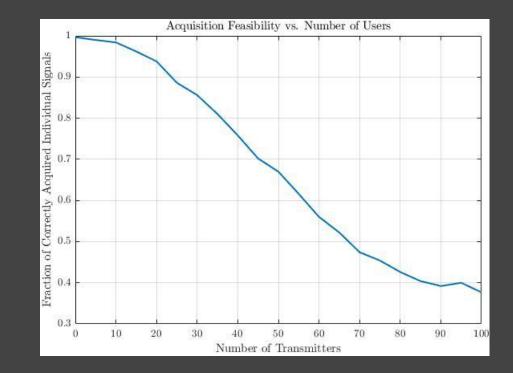
Satellite Link Budget 1

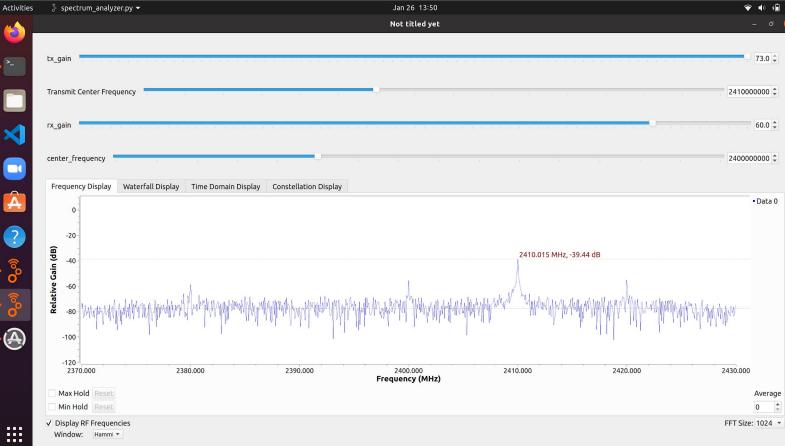
	UPLINK	DOWNLINK			
	(Receiver to	(Satellite to			
PARAMETER	Satellite)	Receiver)	UNITS	Symbol	Reference
Speed of Light	3.0E+08	3.0E+08	m/s	C= λ*f	constant
Frequency	2.5	2.5	GHz	f	Input: system choice, X-band mil.com.sat.
Wavelength	0.120	0.120	m	1	
Range	10000	10000	km	R	Input: Geostationary Satellite [km]
Boltzman's Constant	1.380E-23	1.380E-23	W/(Hz-K)	k	constant
				A LONG THE	
Data Parameters	Uplink	Downlink	Units	Symbol	Reference
Bit Error Rate / Probablility of Bit Error	10-6	10-6	[-]	BER	Input: design requirement
Data Coding Scheme	QPSK	QPSK			Input: chosen modulation (SMAD Tab.13-10)
Required Bit Energy to Noise Ratio	11	12.0		Eb/No	Lecture Pt. 2, Slide 15
Data Rate	1000	1,000		R	Input: based on mission / objective
Carrier to Noise Ratio Density	41.00	42.00		Pr/No	Lecture Pt. 2, Slide 15
Required Design Margin	3.00	6.00	dB		Input: design rule (Hoffmann chap. 9.4.4)
Minimum Pr/No	44.00	48.00	dB-Hz		
Noise (applies to receiving elements)	Uplink	Downlink	Units	Symbol	Reference
Receiving Antenna Noise Temperature	400			Та	Lecture Pt. 2, Slide 13
Receiver Cable Loss	0.9	0.9	dB	Lc	SMAD Table 13-10
Receiver Noise Figure (based on receiver)	3.0	1.0	dB	NF	SMAD Table 13-10
Receiver Noise Factor	2.0			F	Lecture Pt. 2, Slide 10
Receiver Noise Temperature	288.6		K	Tr	Lecture Pt. 2, Slide 10
Reference Temperature	290	290	K	То	SMAD Eqn13-24
Receiver System Noise Temperature	580.32		K	Ts	Lecture Pt 2, Slide 13
Receiver System Noise Power	-200.96	-213.58	dBW-Hz	No	Lecture Pt 2, Slide 9
				-	
Receiver Parameters:	Uplink	Downlink	Units	Symbol	Reference
Receive Antenna Diameter	NA NA	NA NA	m	D	Input: given geometry from spacecraft
Receive Antenna Area	NA		m^2	A	Geometry
Receive Antenna Efficiency	10.77 T.M.	NA	[-]	h	Input typical value
Receive Antenna Effective Area	NA	0.002		Ae	efficiency * area
Receive Antenna Gain	20.00		ower Ratio	Gr	Lecture Pt 1, Slide 14
Receive Antenna Beamwidth	20.0	180.0		qr	Lecture Pt 1, Slide 16
Receive Antenna Pointing Accuracy	0.2	0	degrees	er	Input: pointing error e for chosen system
Receive Antenna Pointing Loss	0.00	0.00		Lpr	SMAD 13-21
Receiver Cable Loss (see noise)	-0.5	-0.5	dB	Lc	Input: typical value
Receiver Figure of Merit	0.03	0.08	dB/K	FOM	
Propagation Parameters:	Uplink	Downlink	Units	Symbol	Reference
Space Loss	-180.37	-180.37	dB	Ls	Lecture Pt 2, Slide 3
Atmospheric Attenuation (clear air)	0	0	dB	La	Lecture Pt 2, Slide 7
Polarization Loss	0	0	dB	Lp	Input: typical value


Satellite Link Budget 2

Transmitter Parameters:	Uplink	Downlink	Units	Symbol	Reference
Transmit Antenna Diameter	NA	NA	m	D	Switch Receive
Transmit Antenna Area	NA	NA	m^2	A	Switch Receive
Transmit Antenna Efficiency	NA	NA	[-]	h	Switch Receive
Transmit Antenna Effective Area	0.002	NA	m2	Ae	Switch Receive
Transmit Antenna Gain	2.38	20.00	dBi	Gt	Switch Receive
Transmit Antenna Beamwidth	180.00	20.00	degrees	qt	Switch Receive
Transmit Antenna Pointing Accuracy	0.00	0.15	degrees	et	Switch Receive
Transmit Antenna Pointing Loss	0.00	0.00	dB	Lpt	Switch Receive
Transmit Line Loss	-0.5	-0.5	dB	Lt	Input: based on chosen cable/geometry
Transmit Power	3.0	14.1	dBW	Pt	10*LOG10(Transmit power)
Tramsmit Power, Linear	2	25.6	W		Input: chosen transmitter
Effective Isotropic Radiated Power	4.89	33.58	dBW	EIRP	Sum of Power, Gain, and Losses in dB
Link Budget:	Uplink	Downlink	Units	Symbol	Reference
Effective Isotropic Radiated Power	4.89	33.58	dBW	EIRP	From Above
Propagation Losses	-180.37	-180.37	dB	L	Sum of Losses
Receive System Gain	19.50	1.88	dB	Gr	Sum of antenna gain and system losses
Received Power	-155.97	-144.90	dBW	Pr	Sum of Power sent out minus losses
System Noise Power	-200.96	-213.58	dBW-Hz	No	
Carrier to Noise Ratio Density	44.99	68.68	dB-Hz	Pr/No	
Minimum Pr/No	44.00	48.00	dB-Hz		
Link Margin	0.99	20.68	dB		

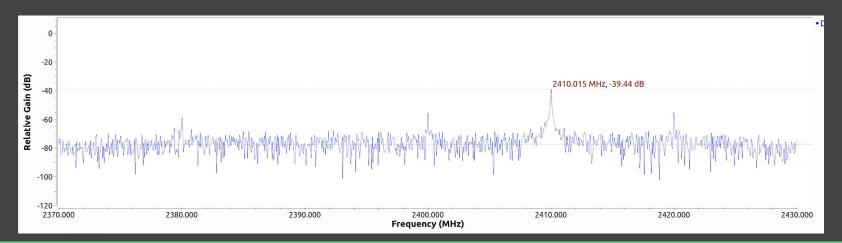

CDMA Signal Acquisition


Simple Tracking Loop (Costas Loop)


Multiple Access Interference

lafox-Pa

LimeSDR Hardware/Software Validation


Budget

Signal Interference (Simple Tranceiver)

Schedule

- Preliminary interference and verification test resulted in positive results.
- Single tone SNR:
 - At 1 foot separation 40dB
 - At 590 feet (180 Meters) -15dB (Extrapolation)

Downlink Packet Breakdown

- Preamble
 - Unique 24 bit code sequence to allow for signal correlation
- Navigation Message

Overview

- Element of set bit length providing timing for positioning algorithm
- User ID
 - 8 bit element containing a unique user identification sequence for each user to identify intended recipient
 - Designed to accommodate 30 user requirement
- Communications Message
 - \circ 5000 bit text communication element broken into 8 bit characters
 - Message will be appended with ' '(space) buffers to maintain constant size

Uplink Breakdown

- Preamble
 - Unique 24 bit code sequence to allow for signal correlation
- User Identification
 - 8 bit element containing a unique user identification sequence for each user to identify transmitting user
 - Designed to accommodate 30 user requirement
- Communications Message
 - \circ 5000 bit text communication element broken into 8 bit characters
 - Message will be appended with ' '(space) buffers to maintain constant size

Gr-LimeSDR Installation Process

The goal is to create a universal installation script, which a person could run on a Linux terminal and have access to a LimeSDR Development Environment.

LimeSuiteGUI

V&V

Planning

V&V

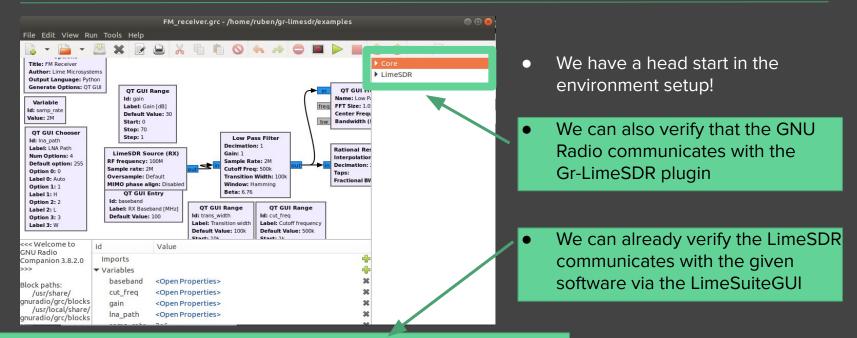
Gr-LimeSDR Installation Process

CPE

Integrating gr-limesdr plugin package.

Example script:

[3] - Gr-limeSDR Plugin Installation: (Source Code Installation) [3.1] - Installing Dependencies: -> sudo apt-get install libboost-all-dev swig Just in case: -> sudo apt-get install gnuradio-dev [3.2] - Building gr-limesdr from source: (Only for GNU Radio 3.8!) -> git clone https://github.com/myriadrf/gr-limesdr -> cd gr-limesdr -> git checkout gr-3.8 -> mkdir build -> cd build -> cmake .. -> make -> sudo make install -> sudo Idconfig



Overview Solution CPE DR

Planning

Gr-LimeSDR Development Environment

Risk & M

V&V

KASEN_4018_SeniorProjects \$ LimeUtil --find
* [LimeSDR-USB, media=USB 3.0, module=FX3, addr=1d50:6108, serial=0009072C0289300F]

Gr-LimeSDR Installation Process

CPF

The goal is to create a universal installation script, which a person could run on a Linux terminal and have access to a LimeSDR Development Environment.

Example script:

[1] - LimeSuiteGUI Installation: (PPA Installation)
> sudo add-apt-repository -y ppa:myriadrf/drivers
> sudo apt-get update
> sudo apt-get install limesuite liblimesuite-dev limesuite-udev limesuite-images
> sudo apt-get install soapysdr-tools soapysdr-module-Ims7 To open the LimeSuiteGUI simply type the command:
-> LimeSuiteGUI
To close, simply close the window.
If you have access to the LimeSDR, you can verify the GUI can talk to it by typing the command:
-> SoapySDRUtil --find="driver=lime"

[2] - GNU Radio Installation: (PPA Installation) Note: The Release version must be 3.8.2.0
-> sudo add-apt-repository ppa:gnuradio/gnuradio-releases
-> sudo apt-get update
-> sudo apt install gnuradio
To optimize GNU Radio kernel usage type:
-> volk_profile
To Open GNU Radio GUI:
-> gnuradio-companion
To close, simply close window.

V&V

.


Integration: LimeSDR + GNU Radio

Schedule

- gr-limesdr plugin for GNURadio
 - Provides LimeSDR Transmit and Receive blocks
 - Can specify Rx/Tx channels for multiple antennas
- Automatically finds the LimeSDR
- Configurable via .ini file

Overview

 These blocks feed samples into the well documented GNURadio sample stream

Budget

Manufacturing

LimeSDR Source (RX) RF frequency: 100M Sample rate: 2M Oversample: Default MIMO phase align: Disabled

Project Risks and Mitigation

Overview > Solution

DR

CPE

Risk & M V&V

Planning

Risk Identification

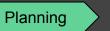
Risk ID	Description	Likelihood	Consequence
COM-3	Near-Far problem: Difficulty to hear weak-far signals from strong-close signal sources	4	5
ELE-1	Time synchronization between pseudolite and GPS receiver	3	5
SOF-1	Team inexperience handling new software. For example, GNU radio	3	4
COM-2	Signal Interference in testing environment	4	3
SOF-2	Lime-SDR, Raspberry Pi, and other hardware components not communicating correctly	2	5
COM-1	Multiple User Communicating	5	2
LOG-1	Hardware/Electronics don't arrive on time which sets back schedule of overall project	2	4

DR

CPE

V&V

Planning


Risk Matrix

			Likelihood				Cons	equence	9	
Risk ID	Description	_		_		1	2	3	4	5
COM-3	Near-Far problem: Difficulty to hear weak-far signals from strong-close signal sources		lend	5			COM-1		COM-3	
ELE-1	Time synchronization between pseudolite and GPS receiver	LOW-MED	Acceptable					COM-2		
SOF-1	Team inexperience handling new software. For example, GNU radio	RISK	Low Risk	4	┝					
COM-2	Signal Interference in testing environment	MEDIUM RISK	Requires Monitoring	e					SOF-1	ELE-1
SOF-2	Lime-SDR, Raspberry Pi, and other hardware components not communicating correctly	MED-HIG H RISK HIGH-	Moderate Mitigation Immediate	7					LOG-1	SOF-2
COM-1	Multiple User Communicating	RISK	Mitigation							
LOG-1	Hardware/Electronics don't arrive on time which sets back schedule of overall project	CRITICAL RISK	Unacceptable Risk	~						170

CPE

V&V

Risk Mitigation Table

Risk ID	Description	Mitigation Approach
COM-3	Near-Far problem: Difficulty to hear weak-far signals from strong-close signal sources	Test within pseudolite geometry boundariesAutomatic gain control
ELE-1	Time synchronization between pseudolite and GPS receiver	Conduct initial test to verify limeSDR clock override with Septentrio PolaRxS GPS reciever.
SOF-1	Team inexperience handling new software. For example, GNU radio	 Fall semester early development Online tutorials, device users manual External Resources: Dr Akos, Dr Rainville, Steve Taylor, Sam Holt
COM-2	Signal Interference in testing environment	Change testing area to back up location (Platteville), change testing time to reduce interference (overnight)
SOF-2	Lime-SDR, Raspberry Pi, and other hardware components not communicating correctly	 Fall semester early development. Refer to overall block diagram, Dive into specific functional block diagrams and debug issues (divide and conquer).
COM-1	Multiple User Communicating	Design an optimal CDMA code for each user
LOG-1	Hardware/Electronics don't arrive on time which sets back schedule of overall project	Change provider of electronics to avoid schedule variance (Amazon, SparkFun, BestBuy,etc)

CPE

Planning

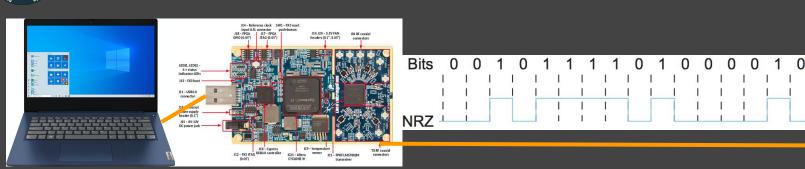
Mitigation Effects

Risk ID	Description
COM-3	Near-Far problem: Difficulty to hear weak-far signals from strong-close signal sources
ELE-1	Time synchronization between pseudolite and GPS receiver
SOF-1	Team inexperience handling new software. For example, GNU radio
COM-2	Signal Interference in testing environment
SOF-2	Lime-SDR, Raspberry Pi, and other hardware components not communicating correctly
COM-1	Multiple User Communicating
LOG-1	Hardware/Electronics don't arrive on time which sets back schedule of overall project

V&V

Verification and Validation

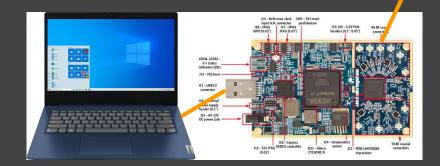
Signal Reception


Overview

LimeSDR demonstrates reception signal through wired connection

- Laptop running GNU radio creates signal and sends to LimeSDR
 - Create 100 bit .txt file to use as transmission signal
 - Send bits to LimeSDR using USB connection
- Verify receipt of signal to the LimeSDR
 - Create .txt file from bits and compare sent and received signal

Overview



DR

USB Connection sends .txt as bits to LimeSDR

Solution

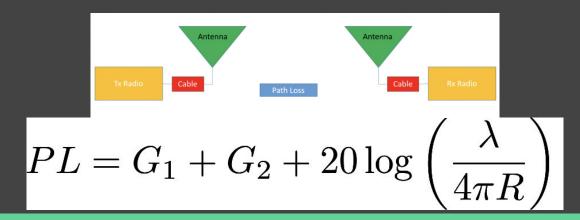
CPE

Wired from TX to RX sending bits

Risk & M

V&V

Planning


Bits converted to .txt and compared to initial file

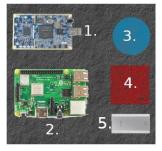
Antenna test

Demonstrate that the antennas used can supply the proper gain for the design

- Measure loss between a two radio/antenna setup running multiple trials at various distances
- Use least squares calculate the gain of the antennas(they are the same)

Transmitter/Receiver Set up

CPE


DR

Risk & M

Solution

Overview

LimeSDR
 Raspberry Pi
 Cut out for antenna
 Septentrio PolaRxS
 GPS receiver
 Miady 10000 mAh
 portable power pack

Each transmitter and receiver will feature a casing for the electronics that will hold the LimeSDR, Raspberry Pi, a battery pack, and space for wiring and a connection to the antenna. The electronics casing will be thread-mounted to a camera tripod.

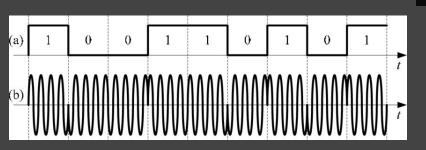
V&V

Planning

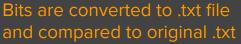
Modulation Scheme

LimeSDR receiver positioned 100m away from LimeSDR transmitter

- Transmitter modulates 100 bit .txt file to 2.48 GHz carrier frequency using GNU Radio PSK modulator
- LimeSDR receiver receives signal and demodulates it using GNU radio PSK demodulator
- Signal is re-output as .txt file and compared to initial file



GRURAdio THE FREE & OPEN SOFTWARE RADIO ECOSYSTEM


GNURadio modbox modulates bits using BPSK modulation scheme

LimeSDR receives the modulated signal and demodulates using GNURadio demodbox

GNURadio

JRadio

Overview

V&V

Multiplexing and Wireless Transmission

Receiver can distinguish CDMA codes and process the desired signal

- 3 transmitters generate and transmit signals of different 100 bit .txt files
 - \circ ~ For each file, send preamble and .txt file using GNU radio PSK modulator
- LimeSDR receiver positioned 100m away receives the signals and listens for specific preamble
 - Based on desired preamble, receiver demodulates and converts desired signal to .txt
- Received .txt file is compared to original 3 to verify proper signal was processed

Planning

Risk & M

HDOP and Positioning Accuracy

CPE

LimeSDR demonstrate positioning accuracy within 10 m

- Have 3 transmitting set ups spaced out in an equilateral triangle
 - \circ $\$ GNU radio with a LimeSDR and an antenna on a tripod
- Have a receiver set up in sensitive areas inside the triangle of transmitters:center of triangle, close to corner(near far problem)
- Receive signals from the transmitter stations to calculate position of receiver
- Verify that receiver position calculated from transmitters is within 10 m of expected position (from GPS)

DR

Overview > Solution

DR 🔪

Risk & M

V&V

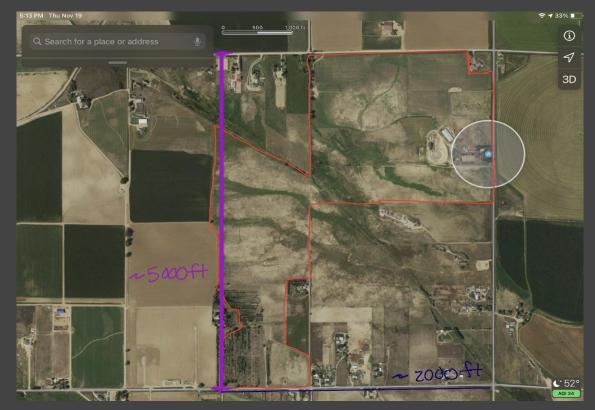
Multiplexing & HDOP Test Setup

CPE

Test Checklist

- 1. Walk transmitters to their positions
- 2. Sync transmitters and receiver with GPS
 - a. Sync up clocks to GPS (as well as to each other)
 - b. Record "true" position of each transmitter and receiver
- 3. Verify all stations ready
- 4. Run communications/positioning test

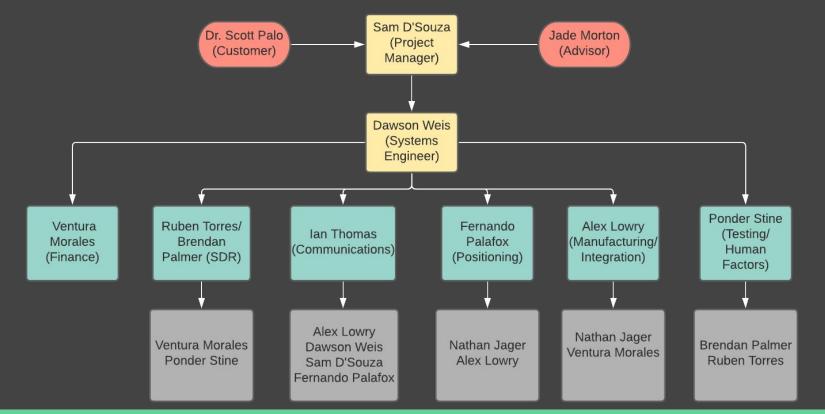
Overview


Testing site: Foothills Park

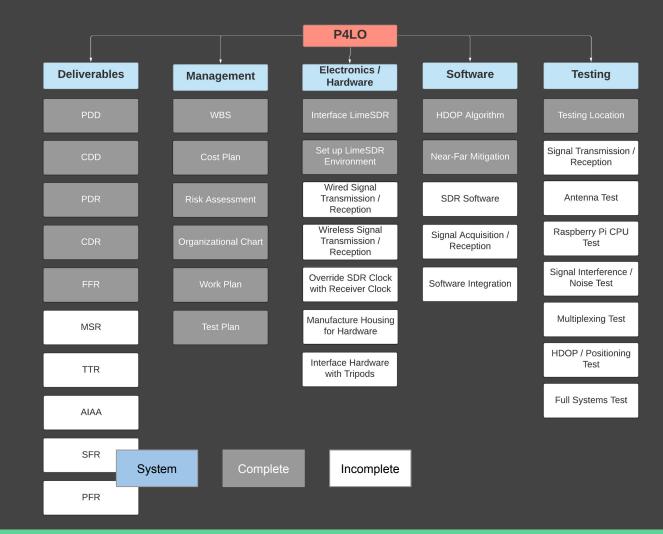
Back-Up Testing Area

Project Planning

Overview > Solution


> DR

CPE



Organizational Chart

PALO			P4LO		
the states	Deliverables	Management	Electronics / Hardware	Software	Testing
	PDD	WBS	Interface LimeSDR	HDOP Algorithm	Testing Location
	CDD	Cost Plan	Set up LimeSDR Environment	Near-Far Mitigation	Signal Transmission / Recpetion
	PDR	Risk Assessment	Wired Signal Transmission / Reception	SDR Software	Antenna Test
Work Breakdown	CDR	Organizational Chart	Wireless Signal Transmission / Reception	Signal Acquisition / Reception	Multiplexing Test
Structure (WBS)	FFR	Work Plan	Override SDR Clock with Receiver Clock	Software Integration	HDOP / Positioning Test
(1120)	MSR	Test Plan	Manufacture Housing for Hardware		Full Systems Test
	TTR		Interface Hardware with Tripods		
	ΑΙΑΑ				
	SFR				
	PFR				

189

System

Complete

Incomplete

CPE

V&V

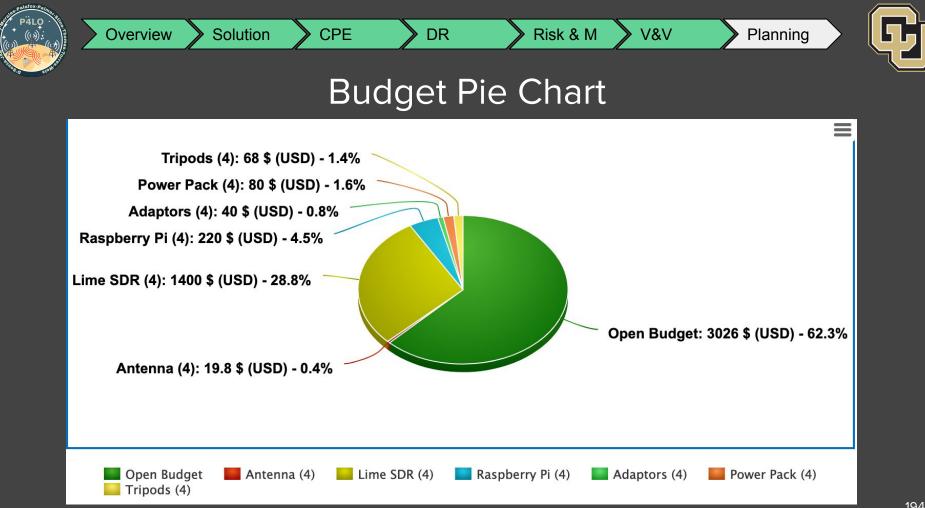
≫

Planning

Work Plan

September	October	November	December	January	February	Mar
Team Delive	rables Due 🔶					
onsolidate Work, Make R	ough Draft 📥					
Rough Draft PD	R Slides Due 🛉					
Create Second	d Draft Slides 🛉					
PDR Slides Review (Dr. Palo / TA) 🖕					
Final	ize PDR Slides					
	PDR Slides Due 🔶					
PDR P	resentation Rehersal					
	PDR Presentation					
Familiarization wit	h SDR					
Get HAM Radio Li	cense					
LimeSDR System	Setup					
	Work on Conceptual Design					
	Positioning Algorithm					
	Pseudolite Matlab Model					
		Power Budget				
		Clock Work				
Creat	te Rough Draft of CDR Slides					
	Rough	Draft of CDR Slides Due 🛓				
Finalize CDR Slides						
CDR Slides Due 🛉						
CDR Presentation Rehersal						
		CDR Presen	tation 🔶			
Work on FFR						
Final Fall Repo						
Last day of Fall semester 🔶						
			Winter Break			

January	 February	l March	April	May
First day of spring semester ◆ January 14th				
Finalize Matlab Simulation				
Work on MSR				
Nanufacturing Status	Review February 2nd			
Testing				
	Work on TRR Slides			
	March 3rd Test Readiness	Review		
LimeSDR Signal Reception				
	March 9th Signal I	Reception Testing 🤶 📃		
Modulation and Multiplexin	a Test			
	March 16th Modula	tion and Multiplexing Testing		
	Work on HDOP Tes			
		March 23rd HDOP Testing Deadline		
		Work on Spring Fin	al Review Slides	
			April 20th Spring Final Review	
			Final Deliverables	
			AIAA Conf. Paper Due 🔶	
			Senior Design S	Symposium 🔶
			Project	: Final Report 🔶
				19



Test Plan

Testing Procedure	Date Scheduled	Location
Signal Reception Test	March 9th	Foothills Park
Modulation and Multiplexing Test	March 15th	Foothills Park
HDOP Test	March 23rd	Foothills Park
Full Scale Test	March 25th	Foothills Park

Budget

Expense Budget & Margin

Team P4LO Budget						
Allowable Budget	\$5,000.00					
Communications Hardware						
Item	Individual Cost	# of Items	Subtotal Per Set	Supplier	Item Link	
Antenna	\$4.95	4	\$19.80	SparkFun	https://www.sparkfun.com/products/11320	
Lime SDR	\$349.95	4	\$1,399.80	SparkFun	https://www.sparkfun.com/products/15027	
Raspberry Pi	\$55.00	4	\$220.00	SparkFun	https://www.sparkfun.com/products/15447	
Hardware Adapators	\$9.95	4	\$39.80	SparkFun	https://www.sparkfun.com/products/9145	
Power Pack	\$19.99	4	\$79.96	Amazon	https://www.amazon.com/Miady-10000mAh-Portabl	
Testing Tripods (6ft)	\$16.99	4	\$67.96		https://www.continentalphoto.com/itemdetails.asp?r	
			Budget Ba	alance		
Sub-total Balance	\$1,827.32					
Sales Tax Total	\$146.19					
Total Cost	\$1,973.51					
Budget Balance	\$3,026.49					

LimeSuiteGUI - GNU Radio - Gr-LimeSDR Plugin

Wiki.myriadrf.org. 2020. Gr-Limesdr Plugin For Gnuradio - Myriad-RF Wiki. [online] Available at: <https://wiki.myriadrf.org/Gr-limesdr_Plugin_for_GNURadio> [Accessed 30 November 2020].

"Raspberry Pi Icon #35510." Raspberry Pi Icon #35510 - Free Icons Library, icon-library.com/icon/raspberry-pi-icon-20.html.

Al Williams, et al. "Software Defined Radio App Store." Hackaday, 7 May 2016, hackaday.com/2016/05/07/software-defined-radio-app-store/.

Radioparts Two-Way Radios, Parts and Accessories, www.radioparts.com/telewave-ant140f2.

"Radio Waves Clip Png." Pngio, pngio.com/PNG/a104378-radio-waves-clip-png.html.

"Cell Tower." Cell Tower - ClipArt Best, www.clipartbest.com/cell-tower.

"Custom Laptop Stickers. Print or Download." Custom Mission Patches - Design and Print NASA-Style Mission Patch Stickers for Your Team., mission-patch.com/.

Jon. "Using the Interlocking CU Alone." University of Colorado, 30 Aug. 2019, www.cu.edu/brand-and-identity-guidelines/using-interlocking-cu-alone.

LunaNet: Establishing a Flexible and Extensible Lunar Exploration Communication and Navigation Infrastructure: NASA Goddard Space Flight Center.

D.J.Israeletal., "LunaNet: a Flexible and Extensible Lunar Exploration Communications and Navigation Infrastructure," 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 2020, pp. 1-14. Doi: 10.1109/AERO47225.2020.9172509 URL: <u>http://ieeexplore.ieee.org/stamp/stamp/stamp.jsp?tp=arnumber=9172509isnumber=9172248</u>

Muñoz David. Position Location Techniques and Applications. Academic Press, 2009.

Misra, Pratap, and Per Enge. Global Positioning System: Signals, Measurements, and Performance. Ganga-Jamuna Press, 2012.